US009823992B2

12 United States Patent 10) Patent No.: US 9.823.992 B2

Chow et al. 45) Date of Patent: Nov. 21, 2017
(54) DECOUPLING DYNAMIC PROGRAM 6,795,966 Bl 9/2004 Lim et al.
ANALYSIS FROM EXECUTION IN VIRTUAL ggggggg‘ g% 18%883 f:al—lrag -
;] 01 CL 4l.
ENVIRONMENTS 6,895,582 B1* 5/2005 QGreveccocovviiviiiiiiiiiinl 718/1
(75) Inventors: James Chow, San Jose, CA (US); Tal g’gzg’gg? E% 13%88 IT{ESE;, of al
Gﬂl‘ﬁllk@l,, Palo AltO, CA (US), Peter 7:840:940 R? 11/203:0 Vertes
M. Chen, Ann Arbor, MI (US) 7,844,954 B2 11/2010 Venkitachalam et al.
7,996,836 Bl 8/2011 McCorkendale et al.
(73) Assignee: VMware, Inc., Palo Alto, CA (US) 8,578,340 B1 11/2013 Daudel et al.
2004/0193394 Al 9/2004 Levit-Gurevich et al.
(*) Notice: Subject to any disclaimer, the term of this 2004/0199828 AL 10/2004 Cabezas et al.
patent is extended or adjusted under 35 2007/0011667 Al . 12007 Subbiah et al.
U.S.C. 154(b) by 1144 days. 2007/0234325 Al* 10/2007 Bobrovsky et al. 717/151
(Continued)

(21) Appl. No.: 12/239,590

OTHER PUBLICATIONS
(22) Filed: Sep. 26, 2008
Dunlap et al., ReVirt: Enabling Instrusion Analysis through Virtual-

(65) Prior Publication Data Machine Logging and Replay, 2002.*
US 2009/0320009 A1 Dec. 24, 2009 (Continued)

Related U.S. Application Data

(60) Provisional application No. 61/074,236, filed on Jun. Primary bxaminer — 11 B Zhen

20, 2008. Assistant Examiner — Bradford Wheaton
(74) Attorney, Agent, or Firm — Patterson & Sheridan,
GO6l’ 9/44 (2006.01)
GO6I’ 11/36 (2006.01)
GO6F 9/455 (2006.01) (57) ABSTRACT
(52) U.S. CL
CpPC GO6F 11/3612 (2013.01); GO6F 9/45558 Dynamic program analysis 1s decoupled from execution 1n

(2013.01); GO6F 11/3636 (2013.01); GO6F virtual computer environments so that program analysis can
2009/45591 (2013.01) be performed on a running computer program without

(58) Field of Classification Search allecting or perturbing the workload of the system on which

CPC .l GO6F 11/3612; GOGF 11/3636 the program 1s executing. Decoupled dynamic program

See application file for complete search history. analysis is enabled by separating execution and analysis into

two tasks: (1) recording, where system execution 1s recorded

(56) References Cited with minimal interference, and (2) analysis, where the
U.S PATENT DOCUMENTS execution 1s replayed and analyzed.

5,966,537 A 10/1999 Ravichandran
6,543,011 B1 4/2003 Schumacher et al. 32 Claims, 13 Drawing Sheets

L START B (START E
¥

Turn on record feature 300 ‘ ‘ Instantiate new VM from snapshot 312 E

Track timing of VM instruction stream 314 |

[— [———

VMM takes snapshot of
current state of VM

e —— [rem— —

316

Does log file indicate
2 device inlerrupt,
No asynchronous event
ar other nan-
deterministic event at

ﬁ this tima?

Crevice intemupt,
asynchronous
evanL or cther

nan-deterrninistic

ovanl? o

Ma
Yes

Feed evant into VM 318 |
—— S

Vi executes event & delivers any 320
, . N iated non-deterministic data i fi
Record event in fog file (including time) 308 relae noe mul :t;?l;::;ge ?;?;:;; i le 1o the
I A R T~ — e r—— e =

Recording VM 324 Replaying VM 326

US 9,823,992 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0244937 Al 10/2007 Flynn, Jr. et al.

2008/0046699 Al 2/2008 Pauw et al.

2008/0082750 Al* 4/2008 Ok etal.o.ooooe 7117115
2008/0244535 Al 10/2008 Nelson et al.

2009/0007111 Al 1/2009 Nelson et al.

2009/0037885 Al 2/2009 Edwards et al.

2009/0070761 Al 3/2009 Zhao

2009/0089879 Al 4/2009 Wang et al. 726/24
2009/0249049 Al* 10/2009 Weissman et al. 712/238
2009/0320009 Al 12/2009 Chow et al.

2009/0320011 A1 12/2009 Chow et al.

2009/0328044 Al 12/2009 Bergheaud et al.

OTHER PUBLICATIONS

Jim Chow, et al. “Decoupling dynamic program analysis from
execution 1n virtual enviornments.” USENIX ’08: 2008 USENIX

Annual Technical Conference, Jun . 22-27, 2008.
Edmund B. Nightingale, et al., “Parallellizing Security Checks on
Commodity Hardware.” Proceedings of the 2008 International

Conference on Architectural Support for Programming I.anguages
and Operating Systems (ASPLOS), Mar. 2008.

George W. Dunlap, et al., “ReVirl: Enabling Intrusion Analysis
through Virtual-Machine Logging and Replay.” Proceedings of the
2002 Symposium on Operating Systems Design and Implementa-

tion (OSDI), Dec. 2002.
Harish Patil, et al., “Efficient Run-time Monitoring Using Shadow
Processing.” Proceedings of the International Workshop on Auto-

mated and Algorithmic Debugging (AADEBURG), May 1995.
Shimin Chen, et al., “Log-Based Architectures for General-Purpose
Monitoring of Deployed Code.” 2006 Workshop on Architectural
and System Support for Improving Software Dependability (ASID),
Oct. 2006.

Steve Herrod, “The Amazing Record/Replay Feature in VMware

Workstation 6,” VMware: Virtually There blog, Apr. 17, 2007 entry,
available at http://blogs.vmware.com/sherrod/2007/04/the_ amaz-

ing vm__html (last visited Sep. 25, 2008).

Dunlap, George W., “Execution Replay for Multiprocessor Virtual
Machines”, Mar. 5, 2008, ACM 978-1-59593-796-4/08/03, p. 121-
130.

Burtsev et al., “Time Travel for Closed Distributed Systems”, IMC
2004,

Xu et al, “reTrace: Collecting Execution Trace with Virtual
Machine” in Proceedings of the 3rd Annual Workshop on Modeling,
2007,

Oflice Action dated Sep. 16, 2014 in counterpart U.S. Appl. No.
12/239,674.

* cited by examiner

US 9,823,992 B2

Sheet 1 of 13

Nov. 21, 2017

U.S. Patent

B ey)

281 (AVHYVY }SI0) WILSAS FJOVHOLS

- T — LA

EV R TRV RIEY: Tg

13beuep awnjoA jeabon

(S4NA) Waisis m__.m mcl:_umz IENUIA

(HOSIAYIJAH) I1INEIAWA

o OEE W W W W W OB W W W W WO OW W OWE W oW we oF

V8H IERHIA
| 791 AAH [ENHIA

shg bunjesadQ

'oar
A

_.--------—--------—----------------‘

061 WALSAS HILNJWOD

— ——

.]

_ WHO 41V 1d MH

I 3dNOIS

74’

¥3al

991

4F T T O T W W W B W E chier ol ek e A W e W A T O W O T T e Wy
r

WHO J1V1d MH

L A A S S S

/
'
|
§
'
'
'
'
k
E
;
'
'
'
'
!
'
'
'
[
'
'
'
'
|
'
’
'
h
'
]
\

WA j* e *l WA Wiojield 81EMpIEH [BNPIA

X

O] WaisAg GunesadQ ysang

sugljednddy

001 FEILSAS HILNGNIO0D

“-_'--ﬂﬂ-"'---ﬂ-.

US 9,823,992 B2

Sheet 2 of 13

Nov. 21, 2017

U.S. Patent

048

0PZ FHVYMAHVYH TVIISAHd

SPC ¥3AY NOILVZITVNLYIA |

L - L L ..___-_
- e E - E F S FEsSTETESES ﬁ _lr_ y "oV eSsSsassses h-. L
L

- L
E L L BARE - ..FJ}ILP—..
5:_: m L:n..:..: ..nr.n:n.ri.
mntﬂ "Anonuacfoiiea s
Qan Lnnnnunuunnnnn .

Arr innoaAafasad nnade,

v v

G52 WILSAS ONILYYICO LSINS

05C 3YVYMAUYH G3LvINWI

i

G€C WA ONIAV1d3d

¢ J4NOld

G9¢

0€T CT44
induj 1asn BRQ YIomjeN

01Z 3YYMAYVYH TvIISAHd

:l.r...r!iii._.u_i
Y EETET.- 3. T 0-0.9~
“andAago BOARE
willdabo uunﬂ

—dnoanoonat oMb

0Z7 WILSAS ONILYY3AO 1S3N9

00Z WA ONIQH023Y

9Z< WA buiAe|day

US 9,823,992 B2

>m_a2 10} 82IA3p uBm._mEm
ay) 0} 9]y Bo| ul eyep onsivILLIB)8p-UOU pa)e|a.
0Z¢ Aue sisAljop R JUBAS SBINJ8X8 NA

—.II —,r— - mT TE.T—m = = — — . .- - e S - - " Tr——— — —_— e e kT

- A Ay T TTTTEE T —E— - —EC U ¢ TR T R L L L L - — - L —mr— —_ - —_— e & - —_— e T —

B —m—m A OJUI JUBAD poa
cm SOA

e

~N \

b

W

@nu éawmn siy)

e JUBAS J1ISIUILLIBIaP
y -UouU J3Y}10 10
JUBAD SNOUOJYIJUASE
1dnusiul 8di1Asp e
a1edipul ajiy Bo| saoQ

SlLe

T T PR T O el e e —r— P Y. el R e e e e — L ——————————————" =

[YLE wWeays uononusul WA Jo Buiwn yoelt

Nov. 21, 2017

e e e e e e e e e e T T N i T T L e e e e — . U W S Skl hkddee Bk

Trm joysdeus wolj A MaU ajenuejsuy]

U.S. Patent

¢ ANDOI

pZE WA buipioday

* 80¢€ (awiy buipnjour) apy 6oy ut JUsAd pI0oSY

{JUBAD
Jl)SIuIWLIa}ap-uoU
J9Y]0 JO ‘JUBAD
SNOUOIYIUASE
1dnadjul 821A3Q

90¢

WA JO 3je}s Juaund
JO Joysdeus saye} NINA

2/n}ed) pJooas Uuo uin|

US 9,823,992 B2

Sheet 4 of 13

Nov. 21, 2017

U.S. Patent

OFF IYYMONVH TYIISAHd

mnv HIAYT mO...ﬂDE.m mmewUOma .

H lllllllllllllll Yy T T emmmEmEmsose - .q .l...i.l

0S5 W3LSAS ONILVYY3IdO LS3ND

0EY WHO4LV1d ¥OLVINWIS ¥0SSID0Nd

P ANOIS

G8Y

Sl¥ ol¥
induj 15N 18] NJOMION

JHVMAAVYH 1vY2ISAHd

OLv

3

SZF S3OV4HILNI IDIAIA Q3LVINWI "

0ZP WIALSAS ONILYYIdO 1S3ND

i — e—

0 NJO41LV1d ANIHOVIA TVNLYIA

US 9,823,992 B2

Sheet 5 of 13

Nov. 21, 2017

U.S. Patent

G 3dNOIld

9Zs Joje|nuuig buiejday ¥2S WA buipioday

———— [WL W EE——E YT — e TR R W

Bojful
ﬁggﬁﬁge@%ﬁ%
4S5 SENER Y NVERS SEREEE SNV

JOJE|NWIIS O)JUl JUSAR pao4 LJUDAD
ONSIUILLIB}BP-UOU
1aylo 10 ‘JuaAs
SNOUOIYIUASE

‘idnuajul 8218

906

¢aluy sy}
1 JUDAS JIISIUIULIB)Op
-Uou J3Y}o 1o
JUBAS SNOUOIYDUASE
‘1dnualul 80IABD B
alealpul 9y bo| sso(]

91§

v0S INA JO JOIABYSQ UOIINOBXa Yoel|

WA JO 9)e]s Juaiund
Jo joysdeus sa)e} WA

A bLG Weass uononasul Jo buiwg yoed |

|

Z1G loysdeus uo psseq Jojejnwis ajeniul ainjea) pJodal uo winy

— —— T r—rerah—r———— T T T T, T - e vl P Srklelieuors's sl b el CSeierhieb e el rorsler e reelrreiieir e SO I lreelr | dreberie— olllilide— 0 —— — . e —w—————

US 9,823,992 B2

Sheet 6 of 13

Nov. 21, 2017

U.S. Patent

ccq Jojeinwig Aejda
- GE9 J0je|nNWS ArR|GIY

H |] i AL FII"IEE.ID:EI'FIJ

tuiojyelgisisi|etivioitueuAa

P SR [s T Ty e e < T e T T T e e T T T T s T A T T 41.!1'__._-_.1

9 NOIS

0€9 12AeT uonjenwig 10SSa20.1d

(sa2ina@ ON) MH IenuiA "
wajsAg BunesadQ 3sono
0o =
suopnes||ddy

wioleldisISAleUIEUAG

e - o T SRR S

MH IENHIA
- H

FEAEINIEF R RN FERAN R A PRI R b AR P AR A A A T bR I bRl ba PR bk rn pdlrm e A I PR R P E IR FE R I I PR e e v N s AR b RR A AR i A R ek vk R A a i T

wajsAg BujjesadQ ysang

“.-..I-.-.-:.."..".."..r‘.':‘..'-..I'-'.l-ll.l!ll.llllllll.ll.l-.llll - .I.I.I...I.III'-":l.lI'-'-.I..III.....I.....-..I-...I..II-'
H :

suones||ddy |

§S9

QUIYOB [ENHIA

|

009 WA PEO}IOM UlBIN

WINA

MH [enMIA

L e e T oy T A Y I e S

L UL L L == - L] - _-.._.-.l.-.._..__-dl
: ’
u

. wa)sAg bunesadQ jsano

I]
» [

L]
.I-.l-t-:ll:-l:-i.lllli—_ll_.-l:-.l-I._:I'.-'.-'-.-_.-'.-l-nl.l-l_lll_-Iii-..-.i'-iii.I.-.-.i-..Ii.iIi-i-i-'-i.i.!ii.i-i-iii'i'ili:'ii-iili

LAkt rhddrdrdrariirara rana
[]

suonjesijddy

-
T AFAR AR PR RO A

3UIYIB [ENUIA

L RANOI

US 9,823,992 B2

147

QL cQL

2 4

indug tesn B8] HIOMION

T L

Sheet 7 of 13

L 057 YAV YOLYINWIS HOSSAO0Ud | : : : :
R R ALLCLCREITTOREEEE PITPRSERISDEAEae B I 0t F3AV NOILYZITVNLYEIA
R BV D B e e m 1!!:“11....-.

_h. ﬂ-w-n-". £~ m.t.-l o i .|.-.n .mlu .#m.l.u
M.n_ 8 Fw EI TR saansaa iy
oQn U EEEIRICI L 8 4T B D CF YY)

Jpacfaup].duspocduagoounizu
ghnsdranabinpnonanngn

507 ¥3Av] NOILVZITVNLHIA |

-

*

I I S R

Nov. 21, 2017

RN Wy
%

087 S3OVAHILNI 39IAIA GILVINWE

,’r;*i!!it'!i!l!;"# wir ek ik s b o e R e e e e e e e we e

_;.ﬂﬁt DIFRITLE T RS . K . LEF LIRS
GO oo EODGB
o aropeaacsaRnae

E Lagonupdpdyodan
3:.&3ﬁﬁﬂ..i:a:ﬂ:::&:nﬁzﬁ

STZ 3dvMAdYH Q3 LY INNS

- 1'*'."‘-.

[' swiwiniriaiinigiyl-

S WI1SAS ONILYHIE40 LS3NO 0GZ WI1SAS ONILYYILO 153NS | ¢L W3LSAS ONILVHEAdO LS3IND

GSZ HOLVINWIS SISATYNY ¢l INA ONIAY 143N 00Z WA ONIONOD3Y

U.S. Patent

a

aa

N\ v8 3xNOI4

! gg 2.nbi4 o] _

B — 508 WA buife|dey 008 WA Buip1ooay
-]

=

7s 0ce (saoinap

- ? NdO Ul) SUOKIE JNSILIULB)SP

Juanbasqgns e sAejdal

A@c_umE oS, ¥ BOINBP pajejnwia ay} 0} 9j oy
Buipnour) aj1) 60| Ul JusAs pJodaY
< 8LE A OJUI JUDAD Po9D4 S9A
o
=
v o
- ONjSiUILLIB}BpP-UoU
% | 1910 10 ‘JUBAD
= SNOUQIYDUASE
9 ¢l Sy} ‘1dnusjul 8o1naQ
_ JB JUSAD D1)SIUIULIB)ap

SoouolySuASe y 4 -UoU Jay}o i0 90¢

pidnusiufedine@ JUSAS SNOUOIYIUASE
-~ GIS "dnuajul 8oiAsp e
— a1ealpul 8}y Bo| seo(
& 9}€ b0g
— AN JO J0IABYD(] UONNJBXS Yoed |
&\
>
M plLE weals — —

uonanuisul WA jo buiwn xoes WA JO 9)E]S Jualns

T rESLEL AR T CTERT o T ETEETLA N TR L LR TR e) e

jo Joysdeus saye)} INIWA

ﬁ@m@ EVRIEE)) (IO8EY WO WIR)

Joysdeus
ZL¢ WOl WA mau a]EllUEB]SU|

et el e r—)" T — —— s —_—— 1 U

(s

U.S. Patent

US 9,823,992 B2

Sheet 9 of 13

Nov. 21, 2017

U.S. Patent

Gzg 103ejnwis buide|day

e L T T BT T TP PR T IR TS S T T I S—

W e

bojulullhetliofoonapipale)nttio
unhndnofejeplpo;e|SiS1oN 3P
b VIR SRNRERSD JAHWWITS

Tl ey ey = i g — T N S S - L —— L L S S S S L St L S e kbl

ﬁ@@%
T

G @][]

KE
| weans uoponasul Jo Buiwiy yoed |

ON

L

.

joysdeus uo
ClS paseq Jojenuis ajeiiul

ELEELEETTLE L LA RLLEE g R AR .. ST e —

g8 J:4NO!d

vg 9Jnbi4 woi4
I

(wg 24nbi4 woJi} pajeaday)
G08 WA bulfejday

EEETE W ————— I ———— ———————r—— — . N —— T TE—

0t (sao1Aap
? NdD ul) suoioe disiuluSep
Jjusnbasqgns ||e sAejda.
2 3JIA3P paje|nwa ay) 0} 3|y bo)
Ul ejep J)jsiuius)ap-uou paje|al
| AUB SIBAI|9P 'Q JUDAD SOINDAXD A

(BUpeione

jncinoleieplsainapRallinibul paau)
&I (B 1) JUERS [IeEER)

mm> e e W L e . Tl Ayl = L, — = = ety Ayl e i - = ST AT e, A e e AL . s = =

gLe _>_> OJUl JUBAD PBd

LaW S}
JE JUBSAD JlISIuluLIBap
-tou 13y)o 1o
JUBAS SNOUOIYIUASE
1ANUBJUI 8JIA8D B
ajeoipul 3|y Bol s90Q

9l¢

..E% 5 TWERD
SHCUOIUDUASE .
IE] CRREE \,

S8

vLE wealls
uononIIsul WA Jo Buiw yoel |

g r——

. ——— TR TR SR g —

GE6 J0JejnwIg sisAfeuy V6 JdNOl3 006 WA BUIPI099)

US 9,823,992 B2

BEG
WEAS UeTRRTEY]) 0 UCeHnREES
enutoslpliehndineleiepleses|sy]

@E@%g

JEIEVES JEAT WNIEe) 806G Am:_zm_.:.a_
029 N O] ©)) IR ENERER) 2 1NdjNOo B}ep S21ASp ‘awl)
n ayy BOJ Ul (JeW.O0} B2IASP POJEINLIS I Buipnoul) ajiy 6oy Ul JUBAS PI0I3Y
“ u1) Indino ejep pajejdl siaAlap P ceeeer
= Q JUDAD S8JNDX9 JOJBINWIS :
— :
— s e : £1UBAS
e : 21)SIUILUIB)BP-UOU
.mn...w |8 LS Jojeinuwis ojul juens poa. : CEVENES BUE WERS USIORTSYL Jouo 1o ‘ons
v -Cl_@ @R@ '@ !Um@._— snouoIyouAse
S ’ Wm\f mnn-.. TEIYFERY @Wﬁ%&giﬁﬁg@ ._H.Q:.._.._ww:_ gmﬁﬂm
weIie el juoshsanbay
oW Siy) _
I~ J& JUSAD JNSIUIULa)Op . -
m -Uou Jayjo Jo F@ %&@
m uenanistificllionnaexebi2e|g
ol fﬂﬂﬂ%ﬁ:ﬁﬁﬂ Mm oN I Jo tel) ana | [WA JO J01ABYSQ UOINJSX3 YOB) |
ﬂ o1edipul 9| Bo| seo(]
N 915 T
S soc A0 3EIs juaino
rd 10 Joysdeus sae} WAIA |
?_.m weans
uoponJsut jo Butwy yoel | _ e
| . B YRy 00S 2Jmes) pI0d3 UO UINY

s BisISIndinG;
EJER Ay
506

joysdeus uo
cLG Poseqiojenwis sjeniuj

U.S. Patent

US 9,823,992 B2

Sheet 11 of 13

Nov. 21, 2017

U.S. Patent

g6 J4NOId

G/6 10)e|nug sisAjeuy

)L
WS VSRS JOERVW]S
V] GV ENL @) @l (VRERD
Snsnbluisindinolelep]||eleses|ay|

0c5 NdO 9
aly Boj ul (Jewwio) a01Aap pajeINd
ul) Indino ejep paleja. SJaAl|dp
2 JUBAS S3)JNJI9X3 JOJB|NWIS

LA R BB BERERRNERERHNBERZSHESIEH:SH;IHJS.

wrm Joje|nwis ojul Em,.,m uwmn_

LOw] siyl
J€ JUBAS JSIUILLIB)ap
-uou Jayjo o
JUDBAD SNOUDJYIUASE
"ldnlisiul 92iA9p €
g)ea1pui a)y Boj sa0(Q

-§ CRVVCR
pliefeseajsifioindinoleieplonansy| |

ON

wm>

Em_w MHIOM]

e @ 9) 5&5@

joysdeus

Z1G U0 paseq Jojenwis ajeliu|

Sy6 WA buipiooay

80S (Bumew.oj
B INd)N0 ejep a821As8p ‘suwl)
Buipniour) aj) Boj ul jJusaa pPlodaYy

LIUDAD
asiuiua)ap-uou
JIL]O JO ‘JUIAD
snousiyduAse
"1dnuajul eA3Qg

90§

—_— JE—— —_ —_——t—,eee—_—,e—_—_—_e—e—_—————_———ee e — s Y———_— ——. — ———_—,— ————— ————— ——

[05
| WA j0 101neYaq UONNOBX® el)

el ey ety Sy * ey

INA JO 8)B]S Jualind

<03 10 Joysdeus saye) WINA

“ 00§ 8ainjesy plodsalr uo uin|

US 9,823,992 B2

Sheet 12 of 13

Nov. 21, 2017

U.S. Patent

9Z0L WA SisAjeuy

—— e e [T T

| N0 01 ely Bof Ul indino eep

[0201 SI19AI|BP § JUBAS SBJNDBXd NN

¢oul) sy
1B JuaA8 JNSIUILLIBIap
-uoU J2j0 JO
JUDAS SNoUoIYduAse
‘1dnud)ul adiInap e
a)ed1pul ajly 6o seo(Q

z101 lousdeus wol WA mau ajenuelsu

VoI 3:¥N0OI

201 WA bulpioday

. L. oS- L LI B, S - AL L.

o:mw_,._;o Blep 901A8p pajejal
Buipnjour) aji 6oj Ui Juaas pioodY

8001

\
2 IUBA®
' OIISIUILLIB}aP-UOU
J9Y)0 10 ‘JUBAS

SNOUOJIUASE
‘tdnuaiul 221A9Q

9001

" shbnalaletule's e el i

17001 WA JO J0IABYSQq UONNJaXa Hoel|

INA JO B1B)S JuaLInD

Jo Joysdeus sayel INWA

US 9,823,992 B2

Sheet 13 of 13

Nov. 21, 2017

U.S. Patent

801 NOI4

0v0l Joje|nwig SiSAjeuy vZ0L A Buipioosay

T — L ————

_ naveNsbollul
(ewhofeanapipaieinwiauhndinolelepipale|ol

L —— LA LR L L L —

(bUmedtiolshndineleieploainop
o), BB CUERRN) EE (B8] U JUERS (MERER)

el SENER & TR0 SEEEe JeiE

- e Raamm e e a ia o

9€01

LIUDAD
ANSIUILLBIBP-UOU
JoY}0 10 'JUdAD
SNOUOIYOUASE
“1dnualul 8diaaq

el siy)
1B JUDAS JSIUIRLIBIOP
-UOU J8YJo 10
JUSAD SNOUOIYIUASE
‘1dnuIB)Ul BJIABP B
ayedipul 9| 6oy s80(]

peol

—i.rf}jll..r e e e T Th B EEETEET S T TR TR T T TR T TEEE AN TE T % N ST T E I e T T ——— . . — T

iv001L WA J0 Jolneyaq uoinoaxe yoel |

INA JO 3]E)S JualInd
200l Jo Joysdeus saye} WA

_|lz1;£i
| gz01 Jousdeus uo paseq Joje|nwis ajey|

B \liil.ii!
_ 1dV1S RS ARS

0001 3JN)e3} plooal uo uin|

US 9,823,992 B2

1

DECOUPLING DYNAMIC PROGRAM
ANALYSIS FROM EXECUTION IN VIRTUAL
ENVIRONMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. provi-
sional patent application Ser. No. 61/074,236, filed on Jun.
20, 2008, and entitled “Decoupling Dynamic Program
Analysis From Execution In Virtual Environments,” which
1s hereby incorporated by reference. The present application
also 1ncorporates by reference the following: U.S. patent
application Ser. No. 12/239,648, enfitled “Decoupling
Dynamic Program Analysis From Execution Across Hetero-
geneous Systems™ and filed on Sep. 26, 2008, U.S. patent
application Ser. No. 12/239,674, entitled “Synchronous
Decoupled Program Analysis In Virtual Environments™ and
filed on Sep. 26, 2008, and U.S. patent application Ser. No.
12/239,691, entitled “Accelerating Replayed Program

Execution To Support Decoupled Program Analysis™” and
filed on Sep. 26, 2008.

BACKGROUND OF THE INVENTION

Dynamic program analysis involves the analysis of a
computer program while 1t 1s executing 1n real-time. It may
be used for various applications including intrusion detec-
tion and prevention, bug discovery and profiling, corruption
detection and identifying non-fatal memory leaks.

Dynamic program analysis adds overhead to the execu-
tion of the computer program because it 1s executed “inline”™
with program execution. It requires dynamic loading of
special libraries or recompiling the computer program to
isert analysis code into the program’s executable code.
Some dynamic program analysis (e.g., instrumentation and
probing functionality, etc.) can add suthcient overhead to the
execution of the program to perturb the processor workload
and even cause “heisenbugs,” 1.e., where the phenomenon
under observation 1s changed or lost due to the measurement
itself. For example, dynamic program analysis commonly
used for detecting bufler overflow or use of undefined
memory routinely incurs overhead on the order of 10-40x,
rendering many production workloads unusable. Even in
nonproduction settings, such as program development or
quality assurance, this overhead may dissuade use 1n longer
more realistic tests. As such, to minimize performance costs,
dynamic program analysis tools today perform a mimimal set
of checks, meaming that many critical software flaws can
remain overlooked.

SUMMARY OF THE INVENTION

In one or more embodiments of the mvention, dynamic
program analysis 1s decoupled from execution in virtual
computer environments so that program analysis can be
performed on a running computer program without affecting
or perturbing the workload of the system on which the
program 1s executing. Decoupled dynamic program analysis
1s enabled by separating execution and analysis into two
tasks: (1) recording, where system execution 1s recorded
with minimal interference, and (2) analysis, where the
execution 1s replayed and analyzed.

A method according to an embodiment of the invention 1s
used 1n analyzing a computer program while the computer
program 1s being executed in real-time. This method com-
prises steps of accessing a log recorded by a main workload

10

15

20

25

30

35

40

45

50

55

60

65

2

virtual machine, replaying an execution behavior of the
main workload wvirtual machine on an analysis virtual
machine using the log, and executing program analysis code
on the analysis virtual machine while execution behavior of

the main workload virtual machine 1s replayed on the
analysis virtual machine.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts functional block diagrams of virtualized
computer systems in which one or more embodiments of the
invention may be practiced.

FIG. 2 1s a block diagram depicting one embodiment of a
homogeneous record and replay platform.

FIG. 3 1s a flow chart depicting an embodiment of a
method for recording and replaying execution behavior on a
homogeneous record and replay platform.

FIG. 4 15 a block diagram depicting one embodiment of a
heterogenous record and replay platform.

FIG. 5§ 1s a flow chart depicting an embodiment of a
method for recording and replaying execution behavior on a
heterogeneous record and replay platiorm.

FIG. 6 1s a schematic diagram of dynamic analysis
platforms according to one or more embodiments of the
invention.

FIG. 7 1s a block diagram depicting one embodiment of a
heterogeneous record and replay platform using a relog file
to 1mprove performance.

FIGS. 8A and 8B are tflow charts depicting an embodi-
ment of a method for recording and replaying execution
behavior on a heterogeneous record and replay platform
using a relog file to improve performance.

FIG. 9A 1s a flow chart of an embodiment of a method for
synchronizing a record and replay platform.

FIG. 9B 1s a flow chart of an embodiment of another
method for synchronizing a record and replay platform.

FIG. 10A 1s a tflow chart of an embodiment of a method
for accelerating replay on an analysis platform.

FIG. 10B 1s a flow chart of an embodiment of another
method for accelerating replay on an analysis platform.

DETAILED DESCRIPTION

A. Virtualization Platform Architecture

FIG. 1 depicts functional block diagrams of virtualized
computer systems in which one or more embodiments of the
invention may be practiced. Computer system 100 may be
constructed on a typical desktop or laptop hardware platform
102 such as an x86 architecture platform. Such a hardware
plattorm may include CPU 104, RAM 106, network card
108, hard drive 110 and other I/O devices such as a mouse
and a keyboard (not shown in FIG. 1). Host operating system
112 such as Microsoft Windows, Linux or NetWare runs on
top of hardware platform 102. Virtualization software layer
114 1s installed on top of host operating system 112 and
provides a virtual machine execution space 116 within
which multiple virtual machines (VMs) 118,-118,, may be
concurrently instantiated and executed. In particular, virtu-
alization layer 114 maps physical resources of hardware
platform 102 (e.g., CPU 104, RAM 106, network card 108,
hard drive 110, mouse, keyboard, etc.) to “virtual” resources
of each virtual machine 118,-118,, such that each virtual
machine 118,-118,, has its own virtual hardware platform
120 with 1ts own emulated CPU 122, RAM 124, network
card 126, hard drive 128 and other emulated I/O devices. For
example, virtual hardware platform 120 may function as the
equivalent of a standard x86 hardware architecture such that

US 9,823,992 B2

3

any Xx86 supported operating system such as Microsoit
Windows, Linux, Solaris x86, NetWare, FreeBSD, etc. may
be 1nstalled as guest operating system 130 to execute appli-
cations 132 for an mstantiated virtual machine such as 118,;.
As part of virtualization layer 114, virtual machine monitors
(VMM) 134 ,-134,, implement wvirtual system support
needed to coordinate operation between host operating sys-
tem 112 and 1ts corresponding virtual machines 118,-118,..
An example of software implementing virtualization layer
114 for a desktop or laptop hardware platform 102 1s
VMware Workstation 6™ which 1s available from
VMware™ [nc. of Palo Alto, Calif.

Computer system 150 1s an alternative system i1n which
one or more embodiments of the invention may be practiced.
Computer system 150 may be constructed on a conventional
server-class, hardware platform 152 including host bus
adapters (HBA) 154 1n addition to conventional platform
processor, memory, and other standard peripheral compo-
nents (not separately shown). Hardware platform 152 may
be coupled to an enterprise-class storage system 182.
Examples of storage systems 182 may be a network attached
storage (NAS) device, storage area network (SAN) arrays,
or any other similar disk arrays. It should also be recognized
that enterprise-level implementations of the foregoing may
have multiple computer systems similar to computer system
150 that may be connected through various different known
topologies and technologies (e.g., switches, etc.) to multiple
storage systems 182. A virtualization software layer (also
sometimes referred to as a hypervisor) such as, for example,
VMware’s VMkernel™ 156 in 1ts server-grade VMware
ESX™ product, 1s installed on top of hardware platform 152
and supports a virtual machine execution space 158 within
which multiple VMs 160,-160,, may be concurrently instan-
tiated and executed. Each such virtual machine 160,-160,;
implements a virtual hardware (HW) platform 162 that
supports the installation of a guest operating system 164
which 1s capable of executing applications 166. Similar to
guest operating system 130, examples of guest operating
system 164 may be Microsoit Windows, Linux, Solaris x86,
NetWare, FreeBSD or any other supported operating system.
In each instance, guest operating system 164 includes a
native file system layer (not shown), for example, either an
NTES or an ext3 type file system layer. These file system
layers interface with wvirtual hardware platform 162 to
access, from the perspective of guest operating systems 164,
a data storage HBA, which 1n reality, 1s virtual HBA 168
implemented by virtual hardware platform 162 that provides
the appearance of disk storage support (1.e., virtual disks
170 ,-170,) to enable execution of guest operating system
164 transparent to the virtualization of the system hardware.

Although, from the perspective of guest operating sys-
tems 164, file system calls to mitiate file system-related data
transier and control operations appear to be routed to virtual
disks 170 ,-170,, in reality, such calls are processed and
passed through virtual HBA 168 to adjunct virtualization
software layers (for example, VMM layers 172 ,-172,,) that
implement the virtual system support needed to coordinate
operation with VMKkernel 156. In particular, host bus emu-
lator 174 functionally enables guest operating system file
system calls to be correctly handled by VMkernel 156 which
passes such operations through to true HBAs 154 that
connect to storage system 182. For example, VMkernel 156
recerves file system calls from VMM layers 172 ,-172,,, and
converts them 1nto file system operations that are understood
by virtual machine file system (VMFS) 176 which 1n gen-
eral, manages creation, use, and deletion of files stored on
storage system 182. VMFES 176, 1n turn, converts the file

10

15

20

25

30

35

40

45

50

55

60

65

4

system operations to volume block operations, and provides
the volume block operations to logical volume manager
(LVM) 178, which supports volume oriented virtualization
and management of the disk volumes 1n storage system 182.
LVM 178 converts the volume block operations into raw
disk operations for transmission to device access layer 180.
Device access layer 180, including device drnivers (not
shown), applies command queuing and scheduling policies
to raw disk operations and sends them to HBAs 1354 for
delivery to storage system 182.

B. Deterministic VM Record and Replay Functionality

One or more embodiments of the mmvention leverage the
capability of certain virtual machine platforms to record and
subsequently replay execution behavior of virtual machines.
An example of a virtual machine with such record and replay
features 1 which embodiments of the invention can be
implemented 1s VMware Workstation 6 which 1s available
from VMware Inc. of Palo Alto, Calif. To support replay,
inputs to the CPU that are not included in the state of the
guest operating system memory, registers or disk are sup-
plied to the CPU of the replaying virtual machine. As
depicted i FIG. 2, in one embodiment, VM 200 (the
“recording VM™) records information corresponding to non-
deterministic events that occur within 1ts instruction stream
in log file 260. Examples of such non-deterministic events
include reads from external devices (e.g., network, keyboard
or timer, etc.) (see, e.g., 225 and 230) and virtual machine
interrupts (e.g., an 1ndication aiter a data read instruction
that DMA transfer from disk has been completed and 1s
ready to be read, etc.). VM 235 (the “‘replaying VM™)
replaying the instruction stream of recording VM 200 con-
sumes the recorded information in log file 260. Recording
VM 200 and replaying VM 233 are instantiated from the
same type of virtualization layer 2035 and 245 (although they
may be hosted on different hardware platforms 210 and 240)
and share the same types of emulated resources and devices
(see 215 and 250). Given a particular input to a particular
emulated resource or device, both recording VM 200 and
replaying VM 235 will deterministically output the same
result. As such, non-deterministic inputs into emulated
devices 215 (e.g., network data and user input) of recording
VM 200 are recorded (as indicated by line 265) into log file
260 so they can be delivered (as indicated by line 270) to the
corresponding emulated devices 250 of replaying VM 235.
If recording VM 200 and replaying VM 235 begin from the
same 1nitial VM state (e.g., same guest operating systems,
see 220 and 255, memory, registers, disk, etc.) and replaying
VM 2335 knows when to insert the next non-deterministic
event occurring in the istruction stream of recording VM
200, then replaying VM 2335 will accurately recreate the
instruction stream of recording VM 200.

A record and replay functionality, as implemented in one
or more embodiments of the mvention, 1s depicted 1n the
flowchart of FIG. 3. First, the VMM of recording VM 324
enables the recording feature (step 300), takes a snapshot of
the VM state (e.g., guest memory, registers, disks, etc.) (step
302), and begins tracking system behavior (including CPU
and device activity) as recording VM 324 executes (step
304). When non-deterministic events such as device inter-
rupts or other asynchronous events occur (step 306), infor-
mation relating to such events 1s recorded 1n a log file (step
308). Such mmformation includes timing (e.g., placement
within the instruction stream, such as the n” instruction in
the stream) of the occurrence so that replaying VM 326 can
execute the event at the same time within its own instruction
stream. For example, the timing of a virtual machine inter-
rupt indicating that DMA transfer from an emulated hard

US 9,823,992 B2

S

drive has been completed may be recorded 1n the log file.
However, the data value of the DMA transfer itself may not
necessarily be recorded because the same type of hard drive
1s emulated on both recording VM 324 and replaying VM
326 such that the emulated hard drive of replaying VM 326
can deterministically output the correct data upon replaying
the mterrupt at the right time. For other non-deterministic
events, additional data may be recorded 1n addition to timing
information. For example, for emulated devices that support
external inputs such as a keyboard, mouse, or network card,
data values such as user key press, mouse movement and
clicks, network data, etc. are recorded in the log file 1n
addition to timing imnformation since the corresponding emu-
lated devices of replaying VM 326 cannot deterministically
recreate such external inputs. Similarly, reads of a timer of
recording VM 326 may also record the value of the timer
since such a value cannot be deterministically obtained from
the timer of replaying VM 326. After such events are
recorded in step 308, the flow then returns to step 304.

Replaying VM 326 1s instantiated from the snapshot taken
in step 302 (step 312) and replaying VM 326 tracks the
timing of the execution of 1ts mnstruction stream 1n step 314.
If the log file recorded by recording VM 324 indicates the
occurrence of a non-deterministic event (step 316), the
VMM of replay VM 326 feeds the non-deterministic event
into the instruction stream of replay VM 326 at the same
point 1n time that it occurred during the original execution
(step 318). Replaying VM 326 executes the event, for
example, by timely delivering external input data recorded
in the log file such as key presses, mouse movements and
network data to the appropriate emulated devices (e.g.,
keyboard, mouse, network card, etc.) to be deterministically
replayed by such devices or by timely inserting interrupts
into the CPU instruction stream to retrieve outputs deter-
mimstically made available by emulated devices (e.g., hard
drive data output responses aiter CPU read requests) (step
320). The tflow then returns to step 314 to handle subsequent
non-deterministic events 1n the log file, 11 any.

FI1G. 4 1s a block diagram depicting one embodiment of a
“heterogenous” record and replay platform. In this embodi-
ment, the execution behavior of a workload 1s recorded on
one platform, such as virtual machine platform 400, and then
replayed on a different (i.e., heterogeneous) platform that
does not share the same types of emulated devices as the first
platform, such as processor simulator 430. An example of
processor simulator 430 1n which embodiments of the inven-
tion can be implemented 1s the open source x86 simulator
QEMU. Similar to the virtual machine platforms of FIG. 1,
recording virtual machine platform 400 has a virtualization
layer 405 that maps physical hardware 410 of the actual
computer system to emulated hardware 415 (which may be
different from the physical hardware) that 1s exposed to
guest operating system 420. Guest operating system 420 and
emulated hardware 415 interact with each other through
emulated hardware intertaces 425 (e.g., hardware port
accesses, memory mapped /O, etc.) which format requests
to and responses from the emulated devices mto data pack-
ages speciiic for such emulated devices. Similarly, replaying
processor simulator platform 430 has processor simulator
layer 435 that maps physical hardware 440 of 1ts computer
system to its emulated hardware 445 (which are different
from emulated hardware 415 of virtual machine platform
400) that 1s exposed to guest operating system 430 (1.e., the
same operating system as guest operating system 420)
through emulated hardware interface 455.

Because processor simulator platform 430 does not emu-
late the same hardware as virtual machine platform 400,

10

15

20

25

30

35

40

45

50

55

60

65

6

instructions from the instruction stream of virtual machine
platiorm 400 that involve requests made to emulated devices
415 (e.g., reads of the hard dnive, etc.) cannot be determin-
istically replayed by a corresponding emulated device as 1n
the embodiment of FIG. 3. As such, instead of recording the
non-deterministic external inputs to emulated devices, vir-
tual machine platform 400 records (as indicated by line 460)
in log file 465 the outputs from emulated devices 415 to the
CPU as well as the corresponding specific emulated device
data formatting information (e.g., data formatting packet
structures, etc.) from emulated device interface 425, 1n
addition to timing mformation. In turn, replaying processor
simulator 430 1s modified so that the device data outputs and
formatting are consumed directly from log file 465 rather
than from emulated device layer 445 (as indicated by line
485).

A flowchart depicting record and replay between the
heterogeneous platforms of FIG. 4 1s depicted in FIG. S.
First, the VMM of recording VM 524 enables the record
teature (step 500), takes a snapshot of the VM state (e.g.,
guest memory, registers, disks, etc.) (step 502), and begins
tracking system behavior (including CPU and device activ-
ity) as recording VM 524 executes (step 504). When non-
deterministic events such as device interrupts or other asyn-
chronous events occur (step 506), information relating to
such events 1s recorded i1n a log file (step 508). Such
information includes the timing (e.g., placement within the
instruction stream) of the occurrence and device data outputs
to the CPU (as specifically formatted by the emulated
devices of recording VM 524) so that replaying simulator
526 can execute the event at the same place within 1ts own
istruction stream and simulate any data outputs from the
emulated device associated with recording VM 3524 by
transmitting to the simulated processor system the data
output recorded 1n the log file (1n the format that would have
been transmitted by the emulated device). Unlike step 320 in
FIG. 3, the recording of external inputs to emulated devices
such as user key presses, mouse movements and clicks,
network data, etc. are not necessary 1n the embodiment of
FIG. S because the data outputs of these emulated devices
that are recorded 1n the log file already capture such infor-
mation. After recording such events, the flow then returns to
step 504.

Replaying simulator 526 1s instantiated based upon infor-
mation 1n the snapshot taken i step 302 (step 512) and
tracks the timing of the execution of its instruction stream in
step 514. I the log file recorded by recording VM 3524
indicates the occurrence of a non-determinmistic event (step
516), replaying simulator 526 feeds the non-deterministic
event 1nto 1ts mstruction stream at the same point 1n time that
it occurred during the original execution of recording VM
524 (step 518). Processor simulator 526 executes the event,
for example, by timely delivering any related device data
output (1n the proper emulated device format) in the log file
for access by the emulated CPU of processor simulator 526
(step 520). The flow then returns to step 514.

It should be recognized that variations on the heteroge-
neity of the recording and replaying platiorms may be
implemented 1n an embodiment without departing from the
spirit of the mnvention. For example, rather than a replaying
simulator as 1n FIGS. 4 and 5, a different virtual machine
platform supporting different emulated devices may be used
to replay the recording VM’s execution behavior.

C. Decoupling Analysis from Workload

FIG. 6 1s a schematic diagram of dynamic analysis
platforms according to one or more embodiments of the
invention. Dynamic program analysis 1s performed by

US 9,823,992 B2

7

decoupling analysis from a main workload while providing
the analysis with the i1dentical and complete sequence of
states from the main workload as if they were not decoupled.
Such decoupling allows the analysis to be added to a running
system without fear of breaking the main workload. Fur-
thermore, because the analysis 1s run on a separate system
from the main workload, new analyses can be carried out
without changing the running applications, operating system
or VMM of the main workload.

In one embodiment, a record feature 1s enabled on a VM
running main workload 600, thereby creating replay log 605
that 1s fed 1into a different instantiated VM 610 that has been
loaded with an 1mitial recorded snapshot of main workload
VM 600. VMM 615 of replay VM 610 1ncludes dynamic
program analysis platform 620 that 1s executed during
replay. A similar decoupled dynamic program analysis plat-
form 625 can be built in simulation layer 630 of a replaying
heterogeneous platform such as replay simulator 635. In
these systems, when analysis code 1s executed, the order of
recorded and replayed instructions streams are not affected
because dynamic program analysis platform 620 or 625 1s
implemented at the level of VMM 615 or simulation layer
630, which are able to programmatically ignore or otherwise
remove 1nstructions relating to the analysis code when
generating the wvirtual machine or simulated processor
instruction streams.

The decoupling of analysis from the main workload as
described herein further enables embodiments to scale and
run multiple analyses as depicted 1in 650 and 655 for the
same workload. In one embodiment, the decoupled analyses
are run in parallel with the main workload. In another
embodiment, the decoupled analyses are run in parallel with
cach other. Without decoupling, running multiple analyses
would require separate execution runs per analysis and
would therefore suller from the likelihood of divergent runs
and 1nconsistent analyses. Furthermore, decoupling enables
optimization techmiques to be separately applied to main
workload VM 600 and the analysis platforms (e.g., 610 and
635). For example, main workload VM 600 can be opti-
mized for real-time performance and responsiveness while
the analysis platiorms (e.g., 610 and 635) can be separately
optimized for ease ol instrumentation during analysis.

It should be recognmized that dynamic analysis may be
implemented in VMM layer 615 or simulation layer 630 of
a replay system 1n a variety of ways. For example, 1n one
embodiment, ad-hoc hooks that supply callbacks when
events ol interest happen may be bwlt mto the replaying
environment OS. Similarly, dynamic analysis may be imple-
mented through dynamic binary translation (BT), which
dynamically translates a set of instructions into an alterna-
tive set of instructions on the fly, when are then executed.
Performing dynamic analysis at the level of VMM 6135 or
simulation layer 630 provides visibility at all layers of the
software stack, thereby enabling embodiments to analyze
operating systems, applications, and interactions across
components. For example, any individual process running 1n
guest operating system as well as the guest OS kernel 1tself
can be a target of analysis.

It should be recognized that decoupling analysis accord-
ing to one or more embodiments of the invention may treat
the timing of the analysis/replay system differently to
achieve certain results in performance and safety. For
example, for situations where timely analysis results are
critical, such as intrusion detection and prevention, the
analysis/replay system may be executed in parallel with the
main workload VM, with the output of the workload syn-
chronized with the analysis. For situations that can tolerate

10

15

20

25

30

35

40

45

50

55

60

65

8

some lag between analysis and workload, the analysis/replay
system may be run 1n parallel with the workload, but with no
synchronization between the output of the workload and
analysis. For situations where analyses are not known
beforehand or are not time critical, such as debugging, the
analysis/replay system can be run oflline. For example,
system admuinistrators can use intensive checks for data
consistency, taint propagation, and virus scanning on their
production systems. Developers can run itensive analyses
for memory safety and invarniant checking as part of their
normal debugging, or as additional offline checks that aug-
ment testing that must already be performed in a quality-
assurance department. Computer architects can capture the
execution of a production system with little overhead, then
analyze the captured instruction stream on a timing-accu-
rate, circuit-level simulator. Because decoupling can be done
oflline, analysis that was not foreseen during the original run
can be performed with users iteratively developing and
running new analysis on the original execution behavior of
the main workload VM.

D. Improving Heterogeneous Replay

As previously discussed 1n the context of FIGS. 4 and 5,
heterogeneous record and replay systems require the record-
ing VM to momitor and record more information into the
replay log file than systems that utilize the same virtual
machine platform (1.e., “homogeneous™ systems), such as
the systems of FIGS. 2 and 3. For example, the heteroge-
neous record and replay systems of FIGS. 4 and 3 record the
data outputs from emulated devices to the CPU, correspond-
ing emulated device data formatting information (e.g., data
formatting packet structures, etc.) from emulated device
interface 425 and timing mformation mnto the log file while
the homogenous record and replay embodiment of FIGS. 2
and 3 record only the timing of non-deterministic events and
external inputs to emulated devices. The increased level of
recording in heterogenecous systems can aflect the overall
execution behavior of the main workload 1n the recording
VM, for example, by slowing it down.

FIG. 7 1s a block diagram depicting one embodiment of a
heterogeneous record and replay platform using a relog file
to 1mprove performance. An intermediary homogeneous
replay VM 725 1s placed in between main workload record-
ing VM 700 and heterogeneous replay and analysis simu-
lator 755 to reduce the level of recording responsibilities on
main workload recording VM 700. Similar to recording VM
200 in FIG. 2, recording VM 700 assumes that a virtual
machine nstantiated on the same virtual machine platform
replays 1ts log file 785. External inputs to physical devices
710 such as mncoming network data 702 and user interaction
with a keyboard and mouse 704 are mapped by virtualiza-
tion layer 705 ito external nputs to corresponding emu-
lated devices 715. The timing and values of these external
inputs are recorded into log file 7835 (as indicated by line
742), 1n addition to timing for other non deterministic events
such as interrupts.

To replay the execution behavior of recording VM 700,
replaying VM 725 consumes the recorded information in log
file 785. In particular, virtualization layer 730 delivers the
external mput values and related timing information 1n log
file 785 (as indicated by line 744) to corresponding emulated
devices 740 of replaying VM 725 (1.e., any external inputs
to physical layer 735 of replaying VM 725 are 1gnored
during a replay session). Corresponding emulated devices
740 of replaying VM 725 are thus able to deterministically
replay the receiving of external inputs and format the data
inputs into a data package understandable by guest operating
system 750 through emulated device interface 745. To

US 9,823,992 B2

9

support heterogeneous replay, virtualization layer 730 fur-
ther records the data format packet structures supported by
emulated device interface 745 as well as the data values
themselves and timing information (1.e., timing of the device
interrupts) into relog file 790 (as indicated by line 782).

Analysis platform 7355 of FIG. 7 1s a processor simulator
that does not share the same emulated devices as recording,
VM 700 and replaying VM 725. For example, while record-
ing VM 700 and replaying VM 725 are each wvirtual
machines running the same type of guest operating system
720 and 750 (such as Microsoit Windows) on top of emu-
lated x86 virtual platforms 705 and 730 (such as VMware
Workstation 6) with the same emulated devices 715 and 740
running on top of Microsoft Windows as their hosted
operating systems (not shown) on top of an actual x86
architecture platform 710 and 733, analysis simulator 755 1s
implemented on an AMD hardware platform 7635 running
Linux as its hosted operating system (not shown) with the
open source emulator QEMU as simulator layer 760 running
on top of Linux with a set of emulated devices 770 that are
different from emulated devices 715 and 740. Guest oper-
ating system 775 running on top of simulator layer 760 1n
such an embodiment would also be Microsoft Windows to
replay the execution behavior of recording VM 700. To
replay the execution behavior of recording VM 700, simu-
lator layer 760 consumes the information in relog file 790 to
recreate the instruction stream of recording VM 700. In one
embodiment, simulator layer 760 1s modified (e.g., a modi-
fied QEMU) such that 1ts original emulated device interfaces
780 are removed or otherwise supplanted by the delivery of
device outputs recorded in the proper emulated device
format to the stmulated processor (and ultimately to be acted
upon by guest operating system 775) through relog file 790
represented by arrow 784.

FIGS. 8A and 8B are flow charts depicting an embodi-
ment of a method for recording and replaying execution
behavior on a heterogenecous record and replay platform
using a relog file to improve performance. Recording VM
800 executes and records the main workload of the system
and consumes the same amount of computing resources as
recording VM 324 of FIG. 3 to provide a recording log file
(steps 300 to 308 in FIG. 8) for replaying VM 805 that 1s
instantiated from the same virtual platform as recording VM
800 and that has the same emulated devices as recording VM
800.

Replaying VM 805 can be thought of as a combination of
replaying VM 326 of FIG. 3 and recording VM 524 of FIG.
5. In particular, replaying VM 805 consumes the contents of
the log file created by recording VM 800 to recreate the
execution behavior of recording VM 800 1n a similar manner
as replaying VM 326 of FIG. 3 (see steps 312 to 320 1n FIG.
8) but additionally has recording steps similar to recording
VM 524 to further support replay on a heterogeneous
platiorm. In particular, the VMM of replaying VM 803 turns
on the recording feature in step 810 (analogous to step 500
of FIG. 5) and subsequently monitors the execution behavior
for non-deterministic events such as device interrupts 1n step
815 (analogous to step 506 of FIG. 5) which have been
inserted nto the mstruction stream in step 320 through the
log file created by recording VM 800. Similar to step 308 of
FIG. 5, upon the occurrence of such non-deterministic
events within the mstruction stream, in step 820, the VMM
records the timing (e.g., placement within the instruction
stream) of the occurrence and device data outputs to the
CPU (as specifically formatted by the emulated devices of
replaying VM 805, which are the same types of emulated
devices of recording VM 800) into a second “relog™ file such

5

10

15

20

25

30

35

40

45

50

55

60

65

10

as 790 of FIG. 7 so that replaying simulator 825 can execute
the event at the same place within 1ts own 1nstruction stream
and simulate any data outputs from replaying VM’s 805
associated emulated device by transmitting to the simulated
processor system the data output recorded 1n the relog file (in
the format that would have been transmitted by the emulated
device).

To replay the recording, replaying simulator 825 may be
created based upon information 1n the snapshot taken 1n step
300 (step 312 1n FIG. 8). By tracking the timing of the
execution of 1ts mnstruction stream 1n step 314 (in FIG. 8),
replay simulator 825 delivers the non-deterministic events
recorded 1n the relog file (step 830) into the instruction
stream of replay simulator 825 at the same point in time (1.e.,
within the mstruction stream of recording VM 800) that they
occurred during the original execution (step 518 1n FIG. 8).
Replaying simulator 8235 thereby recreates recording the
instruction stream of recording VM’s 800 by executing the
event and delivering any related device data output (in the
proper emulated device format) 1n the relog file to the CP
(step 835). The tlow then returns to step 514.

It should be recognized that the particular embodiments of
FIGS. 7, 8A and 8B are merely exemplary and that varia-
tions 1n certain flows or components may be made without
departing from the spirit of the mvention. For example,
while FIGS. 7, 8A and 8B (as well as the previous figures)
depict embodiments having log and relog files stored per-
sistently on disk, 1t should be recognized that the non-
deterministic event information of such files may also be
stored and consumed at the RAM level or through a shared
cache between the record and replay platforms without
necessarily storing such files 1 persistent storage (e.g.,
analysis can take place by reading the log over the network
without saving to disk).

E. Synchronizing Analysis and Workload

In certain embodiments, the decoupled analysis system
runs in a synchronized fashion with the main workload. In
one example, the decoupled analysis system executes analy-
s1s relating to security checks and upon i1dentifying an
intrusion, halts the main workload. In such embodiments, a
teedback channel 1s used to provide communication between
the main workload and the decoupled analysis system.

FIGS. 9A and 9B are flowcharts of embodiments of
methods for synchronizing a main workload recording VM
and a heterogeneous replay analysis simulator. It should be
recognized that the same techniques may be used in an
homogeneous embodiment using record and replay VMs,
similar to FIG. 3. In the embodiment of FIG. 9A, main
workload VM 900 performs the same recording and logging
features as recording VM 524 (see steps 500 to 3508).
However, whenever main workload VM 900 generates data
outputs (e.g., data to be output to the network, etc.) (step
905), the VMM 1ntercepts such data output (step 910) and
blocks the execution of main workload VM 900 (step 915).
In FIG. 9A, main workload VM 900 requests a confirmation
from replay analysis simulator 935 that 1t has reached the
same point 1n 1ts replay of the instruction stream of main
workload VM 900 and has completed 1ts analytics (e.g., for
a intrusion detection embodiment, 1t has found no intru-
sions) (step 920). When replay analysis simulator 935
receives such a request and has reached such a point, 1t waill
transmit a confirmation to main workload VM 900 (step
940). When main workload VM 900 receives such a con-
firmation (step 925), 1t then releases the data output (e.g., to
the network) (step 930). It should be recognized that slight
variations in the flow of FIG. 9A do not detract from the
scope or spirit of the invention. For example, in an alterna-

US 9,823,992 B2

11

tive embodiment, main workload VM 900 does not transmit
a request for confirmation to replay analysis simulator 9235
as 1n step 920; mstead, main workload VM 900 blocks and
waits for a communication of such confirmation from replay
analysis simulator 925 which transmits such confirmations
every time 1t generates a corresponding data output.

In FIG. 9B, main workload VM 945 does not block its
execution when 1t has data to output. Instead, after main
workload VM 9435 generates data outputs (step 950) and the
VMM intercepts such data output (step 955), the VMM
places the data outputs 1n a queue for release (step 960) but
continues execution of main workload VM’s 945 instruction
stream. In the embodiment of FIG. 9B, replay analysis
simulator 973 periodically transmits to main workload VM
945 the current timing of its 1nstruction stream (and confir-
mation that 1s has conducted 1ts program analysis up to that
point) (step 980). When main workload VM 945 receives
such timing information (step 963), it releases those data
outputs in the queue that occurred up to that same time 1n
main workload VM’s 945 instruction stream (step 970).

In certain embodiments implementing synchromzation
between a primary workload VM and an analysis platform
(1.e., stmulator or VM), the primary VM does not block the
release of output until the analysis platform’s 1nstruction
stream reaches the same output release point (as 1n FIGS. 9A
and 9B). For certain types of analysis, the characteristics that
are being analyzed on the analysis platform can be guaran-
teed 1n a discrete step prior to the occurrence of data outputs.
For example, in one embodiment, the analysis platiorm
performs a virus scan ol all executables prior to their
execution. In such an embodiment, the outputs of the
primary workload VM are released as soon as the analysis
plattorm completes the last applicable virus scan. Rather
than waiting for the analysis platform to reach the data
output point 1n its 1nstruction stream, the primary workload
VM waits until completion of the virus scan, which can
occur prior to any related data output points.

Alternative embodiments may further enhance the syn-
chronization between the main workload VM and analysis
plattorm by limiting how far the main workload VM 1s
allowed to run ahead of the analysis platform. For example,
the analysis platform may transmit its current time 1n the
replay of the main workload’s instruction stream such that
the main workload VM 1s able to verity that its own timing
in the instruction stream 1s no greater than a predetermined
time interval after the current time of the analysis platform.
I1 the main workload VM 1is too far ahead, 1t may block until
its timing falls within the predetermined time interval.
Limiting the lag between the main workload VM and
analysis platform limits the amount of time that the main
workload’s outputs are deferred, which 1 turn limits the
amount ol timing perturbation the main workload may
observe (e.g., when i1t measures the round-trip time of a
network).

F. Improving Performance of Analysis System

Because an analysis VM executes the same instructions as
the primary workload VM 1n addition to performing the
work of analysis, the analysis VM can become a bottleneck
and slow down execution of the primary VM, for example,
when running in a synchronous fashion as discussed in
Section E. Optimizations may be made to the analysis
platform to 1improve 1ts execution performance. One such
optimization, according to an embodiment of the invention,
1s based upon an observation that during replay on an
analysis VM, interrupt delivery 1s or can be made immedi-
ate. For example, in x86 operating systems, the hit mstruc-
tion 1s used to wait for interrupts; this saves power compared

10

15

20

25

30

35

40

45

50

55

60

65

12

to 1dle spinning. One hit invocation waiting for a 10 ms timer
interrupt can consume equal time to tens of millions of
istructions on modern 1+GHz processors. During analysis,
hit time passes instantaneously. As an example, the primary
workload VM may be a typical interactive desktop workload
with a user surfing the web. Idle times during which the user
may be reading on the web or where human reaction times
on the desktop are slow (e.g., opening applications, selecting
menus, etc.) enable the execution of the analysis VM to
catch up to the primary workload VM. As such, idle time can
be deliberately 1increased 1n many run-time environments to
assist the analysis VM 1n keeping up with the main workload
VM. For example, i1dle time can be increased in server farms
by adding more servers and balancing load across them.

Additionally, device I/O can be accelerated during replay.
For example, 1n one embodiment, network writes need not
be sent and network data 1s recorded in the replay log
(similar to a heterogeneous system) such that network reads
can use the network data from the replay log. This frees the
analysis VM from waiting for network round-trip times,
because disk throughput (to access the log) 1s often greater
than end-to-end network throughput. Disk reads can simi-
larly be satisfied from the replay log rather than the emulated
hard disk of the analysis VM, and this can accelerate the
analysis VM because the replay log 1s always read sequen-
tially. This optimization can also free the analysis VM from
executing disk writes during replay, which frees up physical
disk bandwidth and allows completion interrupts to be
delivered as soon as the instruction stream arrives at an
appropriate spot to receive them. Disk reads done by the
primary VM may also prefetch data and thereby accelerate
subsequent reads by the analysis VM. In one exemplary
embodiment, device 1/O 1s further accelerated through the
use of a shared cache of disk blocks when a primary
workload VM and analysis VM are run on the same hard-
ware platform. In this embodiment, when the primary work-
load VM executes, device I/O data and/or other log infor-
mation 1s stored in the shared cache so that the analysis VM
can access such data during replay rather than repeating the
same device 1/O.

FIG. 10A depicts a flowchart of an embodiment of a
method for accelerating replay 1n a homogeneous environ-
ment. First, the VMM of recording VM 1024 enables the
record feature (step 1000), takes a snapshot of the VM state
(step 1002), and begins tracking system behavior as record-
ing VM 1024 executes (step 1004). When non-deterministic
events such as device interrupts or other asynchronous
events occur (step 1006), information relating to such events
are recorded 1n a log file (step 1008). Such information
includes the timing of the occurrence and device data
outputs to the CPU (e.g., disk reads, network reads, etc.) so
that analysis VM 1026 can consume the data directly from
the log and avoid waiting for device I/O round trip times
during replay. The tlow then returns to step 1004.

Analysis VM 1026 1s instantiated based upon information
in the snapshot taken in step 1002 (step 1012) and tracks the
timing of the execution of its instruction stream 1n step 1014.
If the log file recorded by recording VM 1024 indicates the
occurrence ol a non-deterministic event (step 1016), analy-
sis VM 1026 feeds the non-deterministic event into its
instruction stream at the same point 1n time that 1t occurred
during the original execution of the recording VM 1024
(step 1018). Analysis VM 1026 executes the event and
delivers any related device data output in the log file to 1ts
virtual processor, thereby avoiding any device 1/O round trip
times during replay (step 1020). Because the log file 1s read
contiguously by analysis VM 1026, replay 1s accelerated 1n

US 9,823,992 B2

13

comparison to a slower random-access style disk I/O event
that would have occurred had data been delivered to analysis
VM’s 1026 emulated hard disk to perform the device I/0 (as
in step 320 of FIG. 3). The flow then returns to step 1014.

In another embodiment, operations that are executed
during record are not replayed. One such example of this 1s
exception checking. For example, x86 systems often check
for exceptional conditions. Although these checks rarely
raise exceptions, executing them adds overhead to an
embodiment’s emulated CPU. For example, with segment
limit checks, every memory reference or istruction fetch
must be checked that it 1s within bounds for an approprate
segment. Most accesses do not raise exceptions and inter-
rupts are utilized to replay any exceptions that do occur.
Decoupled analysis enables one to reduce the overhead of
exception checking on an analysis simulator by leveraging
the exception checking that has already occurred on the
main workload VM. During logging, the time and location
in the 1nstruction stream of any exceptions are recorded, and
these exceptions are delivered during replay just like other
asynchronous replay events. This strategy frees the analysis
simulator from the overhead of explicitly checking for
exceptions during replay. Skipping these checks on the
analysis simulator makes the CPU simulator faster and less
complex, while still guaranteeing proper replay of a work-
load that contains violations of any checks (as reflected by
the exceptions recorded 1n the log file). It should be recog-
nized that many checks can be similarly skipped in embodi-
ments of the invention, including debug exceptions, control
transier checks for segment changes, the alignment check
(which when enabled, ensures all memory accesses are
performed through pointers aligned to appropriate boundar-
ies) and others.

FIG. 10B depicts a flowchart of an embodiment of a
method for accelerating replay on a heterogeneous system
where analysis simulator 1040 skips exception checking that
has already been performed by recording VM 1024. Record-
ing VM 1024 takes the same 1nitial steps 1000 to 1004 as the
embodiment of FIG. 10A. When non-deterministic events
such as device mterrupts or other asynchronous events occur
(step 1006), information relating to such events are recorded
in a log file (step 1009, which 1s similar to step 508 1n
heterogeneous environments). Such events include excep-
tions that are generated pursuant to exception checking,
because exceptions are non-deterministic events. The flow
then returns to step 1004,

Analysis simulator 1040 1s mstantiated based upon infor-
mation in the snapshot taken in step 1002 (step 1028), turns
ofl exception checking (step 1030), and tracks the timing of
the execution of 1ts instruction stream in step 1032. By
turning oil exception checking, analysis simulator 1040 1s
able to utilize computing resources that would have been
allocated for exception checking to accelerate execution. If
the log file recorded by recording VM 1024 indicates the
occurrence of a non-deterministic event (step 134), analysis
simulator 1040 feeds the non-deterministic event into its
instruction stream at the same point in time when 1t occurred
during the original execution of the recording VM 1024
(step 1036). As noted previously, exceptions are non-deter-
mimistic events and would be recorded 1n the log file. In step
1038, analysis simulator 1040 executes events (including
exceptions) and delivers external input data recorded in the
log file such as key presses, mouse movements and network
data to the appropriate emulated devices (e.g., keyboard,
mouse, network card, etc.) to be deterministically replayed
by such devices or timely mserting interrupts into the CPU
instruction stream to retrieve outputs deterministically made

5

10

15

20

25

30

35

40

45

50

55

60

65

14

available by emulated devices (e.g., hard drive data output
responses alter CPU read requests). The flow then returns to
step 1032.

It should be recognized that various optimization tech-
niques such as those discussed in this Section F can be
combined into a single embodiment of the invention which
may utilize either a VM or CPU simulator for analysis,
depending upon the techniques selected.

The invention has been described above with reference to
specific embodiments. Persons skilled 1in the art, however,
will understand that various modifications and changes may
be made thereto without departing from the broader spirit
and scope of the invention as set forth in the appended
claims. The foregoing description and drawings are, accord-
ingly, to be regarded 1n an illustrative rather than a restrictive
sense. For example, while the foregoing discussions have
generally discussed recording and replay VMs having the
same emulated devices, 1t should be recognized that many of
the teachings herein can also be performed at the hardware
level, so long as the recording and replay VMs have the
same physical hardware devices as well. Similarly, the
foregoing discussions have discussed timing of the mstruc-
tion stream 1n a general sense. It should be recognized that
such timing may be measured at the mstruction level (1.e.,
the n™ instruction in the instruction stream) but that other
measurements of time may be implemented in certain
embodiments, for example, clock cycles, assuming certain
guarantees of timing in the hardware platform.

The various embodiments described herein may employ
various computer-implemented operations nvolving data
stored 1n computer systems. For example, these operations
may require physical manipulation of physical quantities
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals where they, or repre-
sentations of them, are capable of being stored, transierred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to 1n terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various gen-
eral purpose machines may be used with computer programs
written 1n accordance with the teachings herein, or 1t may be
more convenient to construct a more specialized apparatus
to perform the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, miCroproces-
sor-based or programmable consumer electronics, minicom-
puters, mainframe computers, and the like.

One or more embodiments of the present invention may
be implemented as one or more computer programs or as one
or more computer program modules embodied 1n one or
more computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system com-
puter readable media may be based on any existing or
subsequently developed technology for embodying com-
puter programs in a manner that enables them to be read by
a computer. Examples of a computer readable medium
include a hard drive, network attached storage (INAS),
read-only memory, random-access memory (e.g., a flash

US 9,823,992 B2

15

memory device), a CD (Compact Discs) CD-ROM, a CD-R,
or a CD-RW, a DVD (Dagital Versatile Disc), a magnetic
tape, and other optical and non-optical data storage devices.
The computer readable medium can also be distributed over
a network coupled computer system so that the computer
readable code 1s stored and executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described i some detail for clarity of
understanding, 1t will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be consid-
ered as illustrative and not restrictive, and the scope of the
claims 1s not to be limited to details given herein, but may
be modified within the scope and equivalents of the claims.
In the claims, elements and/or steps do not imply any
particular order of operation, unless explicitly stated in the
claims.

In addition, while described virtualization methods have
generally assumed that virtual machines present interfaces
consistent with a particular hardware system, persons of
ordinary skill in the art will recognize that the methods
described may be used in conjunction with virtualizations
that do not correspond directly to any particular hardware
system. Virtualization systems in accordance with the vari-
ous embodiments, implemented as hosted embodiments,
non-hosted embodiments, or as embodiments that tend to
blur distinctions between the two, are all envisioned. Fur-
thermore, various virtualization operations may be wholly or
partially implemented in hardware. For example, a hardware
implementation may employ a look-up table for modifica-
tion of storage access requests to secure non-disk data.

Many variations, modifications, additions, and 1improve-
ments are possible, regardless the degree of virtualization.
The virtualization software can therefore include compo-
nents of a host, console, or guest operating system that
performs virtualization functions. Plural instances may be
provided for components, operations or structures described
herein as a single instance. Finally, boundaries between
various components, operations and data stores are some-
what arbitrary, and particular operations are 1llustrated 1n the
context of specific illustrative configurations. Other alloca-
tions of functionality are envisioned and may fall within the
scope of the invention(s). In general, structures and func-
tionality presented as separate components in exemplary
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements may fall within the scope
of the appended claims(s).

We claim:

1. A method for analyzing a computer program while the
computer program 1s being executed 1n real-time, the
method comprising:

executing the computer program 1n real-time 1n a main

workload virtual machine, said executing producing an
instruction stream of the computer program;

during the execution of the computer program in the main

workload virtual machine, recording a log comprising
non-deterministic events occurring during the execu-
tion thereof;

accessing the log recorded by the main workload virtual

machine;

replaying the instruction stream of the computer program

in the main workload virtual machine on a first analysis
virtual machine while consuming the log during the

10

15

20

25

30

35

40

45

50

55

60

65

16

replaying, the first analysis virtual machine being sepa-
rate from the main workload virtual machine; and

executing first program analysis code on the first analysis
virtual machine during replay of the instruction stream
of the computer program 1n the main workload virtual
machine on the first analysis virtual machine, the first
program analysis code executing in parallel with the
computer program executing in real-time 1n the main
workload virtual machine.

2. The method of claim 1, wherein the main workload
virtual machine and the first analysis virtual machine are
instantiated on the same hardware platiorm.

3. The method of claim 1, wherein the main workload
virtual machine 1s instantiated on a first hardware platform
and the first analysis virtual machine 1s instantiated on a
second hardware platform that 1s physically separate from
the first hardware platform.

4. The method of claim 1, wherein the non-deterministic

events mclude device interrupts.

5. The method of claim 1, wherein the non-deterministic
events include external inputs to emulated devices of the
main workload virtual machine.

6. The method of claim 5, wherein the replaying step
comprises transmitting values of the external inputs to
corresponding emulated devices of the first analysis virtual
machine.

7. The method of claim 1, further comprising;:

accessing a snapshot of the main workload virtual

machine; and

instantiating the first analysis virtual machine from the

snapshot prior to the replaying.

8. The method of claim 1, wherein execution behavior of
the main workload virtual machine on the first analysis
virtual machine 1s an identical and complete sequence of
states from the main workload virtual machine.

9. The method of claim 1, the method further comprising:

replaying the instruction stream of the computer program

in the main workload virtual machine on a second
analysis virtual machine while consuming the log dur-
ing the replaying, the second analysis virtual machine
being separate from the main workload virtual
machine; and

executing second program analysis code on the second

analysis virtual machine during replay of the instruc-
tion stream of the computer program in the main
workload virtual machine on the second analysis virtual
machine, the second program analysis code executing
in parallel with the main workload virtual machine.

10. The method of claim 9, wherein the second program
analysis code executes in parallel with the first program
analysis code.

11. The method of claim 1, wherein a first optimization
technique 1s applied to the main workload virtual machine,
and a second optimization technique 1s applied to the first
analysis virtual machine, the second optimization technique
being different from the first optimization technique.

12. The method of claim 1, wherein at least one of the
non-deterministic events 1s recorded with a delay associated
therewith, and the instruction stream of the computer pro-
gram 1n the main workload virtual machine 1s replayed on
the first analysis virtual machine without the delay with
which one or more of the non-deterministic events were
recorded in the log to enable the replaying of the mstruction
stream of the computer program in the main workload
virtual machine on the first analysis virtual machine to keep
up with the execution 1n the main workload virtual machine.

US 9,823,992 B2

17

13. A computer system for providing decoupled dynamic
program analysis, the computer system comprising:

a virtual machine platform comprising a processor pro-

grammed to execute a virtual machine software layer to

(a) mstantiate a main workload virtual machine compris- 5
ing a virtual processor and emulated devices, and

(b) log non-deterministic events 1n the main workload
virtual machine’s 1nstruction stream; and

an analysis computer system coupled to the wvirtual
machine platform, the analysis computer system being 10
separate from the virtual machine platform, the analysis
computer system comprising a processor programmed
to execute a first software layer to

(a) access a log of the non-deterministic events in the
main workload virtual machine’s instruction stream, 15

(b) replay the instruction stream of the main workload
virtual machine while consuming the log during the
replay, and

(c) execute first program analysis code during the replay
of the instruction stream, 20

the first program analysis code executing 1n parallel with
the main workload virtual machine.

14. The computer system of claim 13, wherein the first
software layer of the analysis computer system 1s a virtual
machine monitor layer. 25

15. The computer system of claim 14, wherein the pro-
cessor of the analysis computer system 1s further pro-
grammed to instantiate a second virtual machine comprising
corresponding emulated devices relating to the emulated
devices of the main workload virtual machine. 30

16. The computer system of claim 15, wherein the second
virtual machine 1s instantiated from a snapshot of the main
workload virtual machine.

17. The computer system of claim 16, wherein the main
workload virtual machine and the second virtual machine 35
are instantiated on the same hardware platform.

18. The computer system of claim 16, wherein the main
workload virtual machine 1s instantiated on a first hardware
platform and the second virtual machine 1s instantiated on a
second hardware platform that 1s physically separate from 40
the first hardware platform.

19. The computer system of claim 15, wherein the log of
the non-deterministic events includes information relating to
device interrupts and external input values into the emulated
devices. 45

20. The computer system of claim 19, wherein the pro-
cessor ol the analysis computer system i1s further pro-
grammed to deliver the external mput values to the corre-
sponding emulated devices of the second virtual machine.

21. The computer system of claim 13, wherein the analy- 50
s1s computer system further comprises a processor pro-
grammed to execute a second software layer to

(a) access the log of the non-deterministic events in the
main workload virtual machine’s instruction stream,

(b) replay the instruction stream of the main workload 55
virtual machine while consuming the log during the
replay, and

(c) execute second program analysis code during the
replay of the instruction stream,

the second program analysis code executing in parallel 60
with the main workload virtual machine.

22. The computer system of claim 21, wherein the second
program analysis code executes in parallel with the first
program analysis code.

23. The computer system of claim 13, wherein a first 65
optimization technique 1s applied to the main workload
virtual machine, and a second optimization techmque 1s

18

applied to the analysis computer system, the second opti-
mization technique being different from the first optimiza-
tion technique.

24. The computer system of claim 13, wherein at least one
of the non-deterministic events 1s recorded 1n the log with a
delay associated therewith, and the instruction stream of the
main workload virtual machine 1s replayed 1n the analysis
computer system without the delay with which one or more
of the non-deterministic events were recorded in the log to
enable the replay of the instruction stream of the main
workload virtual machine on the analysis computer system
to keep up with the execution in the main workload virtual
machine.

25. A computer readable, non-transitory storage medium
having stored therein a computer program for decoupled
program analysis, wherein an analysis computer system
executing the computer program carries out steps of:

accessing a log recorded by a main workload virtual

machine, the analysis computer system being separate
from the main workload virtual machine, the log com-
prising non-deterministic events occurring during
execution of the main workload virtual machine, said
execution producing an instruction stream;

replaying the instruction stream of the main workload

virtual machine while consuming the log during the
replaying; and

analyzing execution behavior of the maimn workload vir-

tual machine as replayed during the replaying step by
running a first analysis program, the analyzing step
being performed in parallel with the execution of the
main workload virtual machine.

26. The computer readable storage medium of claim 25,
wherein the analysis computer system executing the com-
puter program lurther carries out the steps of:

accessing a snapshot of the main workload wvirtual

machine; and

instantiating an analysis virtual machine from the snap-

shot prior to the replaying.

27. The computer readable storage medium of claim 25,
wherein the log of execution behavior of the main workload
virtual machine comprises non-deterministic events 1n the
instruction stream of the main workload virtual machine and
timing of the non-deterministic events.

28. The computer readable storage medium of claim 25,
wherein the log of execution behavior of the main workload
virtual machine comprises data outputs of emulated devices
to a virtual processor of the main workload virtual machine
and timing of the data outputs of the emulated devices.

29. The computer readable storage medium of claim 28,
wherein the step of replaying comprises transmitting the
data outputs of the emulated devices to a simulated CPU of
the analysis computer system.

30. The computer readable storage medium of claim 25,
wherein the step of analyzing the execution behavior of the
main workload virtual machine comprises running a second
analysis program during a second replaying of the instruc-
tion stream of the main workload virtual machine, wherein
the first and second analysis programs are run in parallel.

31. The computer readable storage medium of claim 25,
wherein a first optimization technique 1s applied to the main
workload virtual machine, and a second optimization tech-
nique 1s applied to the analysis computer system, the second
optimization technique being diflerent from the first opti-
mization technique.

32. The computer readable storage medium of claim 25,
wherein at least one of the non-deterministic events that are
recorded in the log has a delay associated therewith, and the

US 9,823,992 B2
19 20

analysis computer system replays the instruction stream of
the main workload virtual machine without the delay with
which one or more of the non-deterministic events were
recorded 1n the log to enable the replaying of the instruction
stream of the main workload virtual machine on the analysis 5
computer system to keep up with the execution in the main
workload virtual machine.

¥ ¥ e ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

