12 United States Patent

Bordawekar et al.

US009823896B2

US 9,823,896 B2
*Nov. 21, 2017

(10) Patent No.:
45) Date of Patent:

(54) PARALLELIZED IN-PLACE RADIX
SORTING

(71)

Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Rajesh Bordawekar, Yorktown
Heights, NY (US); Daniel Brand,
Millwood, NY (US); Minsik Cho,
Austin, TX (US); Ulrich Finkler,
Mahopac, NY (US); Vincent
Kulandaisamy, Hillsboro, OR (US);

Ruchir Puri, Baldwin Place, NY (US)

Inventors:

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

(*) Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 265 days.

This patent 1s subject to a terminal dis-
claimer.

(21) 14/615,599

(22)

Appl. No.:

Filed: Feb. 6, 2015

(65) Prior Publication Data

US 2015/0213076 Al Jul. 30, 2015
Related U.S. Application Data

(63) Continuation-in-part of application No. 14/582,337,

filed on Dec. 24, 2014.
(Continued)

Int. CI.
GO6l 17/30
GO6l 7/24

U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(52)
GO6F 7/24 (2013.01); GO6F 17/30321
(2013.01); GO6F 17/30339 (2013.01); GO6F

17/30598 (2013.01)

(38) Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,094,157 B1* 1/2012 Le Grand GO6F 7/24
345/501

2003/0067461 Al* 4/2003 Fletcher GO6T 17/20
345/420

(Continued)

OTHER PUBLICATTIONS

Agarwal, R., “A Super Scalar Sort Algorithm for RISC Processors”™
In Proceedings of ACM SIGMOD Int. Conf. on Management of
Data, Jun. 1996, pp. 240-246.

(Continued)

Primary Examiner — Shyue Jiunn Hwa

(74) Attorney, Agent, or Firm — Fleit Gibbons Gutman
Bongini1 Bianco PL; Jeflrey N. Giunta

(57)

Systems and methods for sorting a data set. Data 1tems each
having a first portion and a second portion 1s stored. The first

and second portions are stored separately and each has a
separate set of keys. The first portion has a pointer indicating
the second portion. At least some of the first set of keys for
cach data item 1s stored mm a local memory of a first
processor. At least one data stripe set 1s defined with one
stripe within each bucket. An in-place partial bucket radix
sort 1s performed on data items within one data stripe set
with a first processor using an 1nitial key. Incorrectly sorted
data items are grouped into respective incorrect data item
groups within each bucket. A radix sort 1s then performed
using the initial radix on the mcorrect data item groups. A
first level sorted output 1s produced.

ABSTRACT

11 Claims, 14 Drawing Sheets

100
§\ 120 130 140
I i]
e “ s 4 A
i | | iqt i :
A 1257 2ib zﬁ
E i E i 152-!"; E —
s | g i 7l
: : ¥ i b e
E | 2 o M
| i —— C /A [o
E i 10 ;;’ %? T
E |] l 1
; I j Aal r—14‘4‘
i e g — 2,
E D E ; F‘ HEEB %Eir %_4
! | i = M :
oo ok — B2 — g0
i | iz | - U 00
; | i1 Tt I
=N 1 & al e
E E il — g — ::F Paikio
I 4ho it 44
L _J 1 il u
102 104 106 108

US 9,823,896 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 61/932,989, filed on Jan.
29, 2014.

(56) References Cited
U.S. PATENT DOCUMENTS

7/2003 Nehru GOOF 17/30327
8/2003 Levy .oovvvirrnnnnn, GOO6F 17/30445

2003/0130981 Al*
2003/0158842 Al*

OTHER PUBLICATIONS

Albutiu, M., et al., “Massively Parallel Sort-Merge Joins in Main
Memory Multi-Core Database Systems,” Proc. VLDB Endow, Aug.

2012, pp. 1064-1075.

Dachsel, H., et al., “Library Support for Parallel Sorting in Scientific
Computations.” Euro-Par Parallel Processing, Aug. 2007, 695-704.
Dusseau, A., et al., “Fast Parallel Sorting Under LogP: Experience
with the CM-5.” IEEE Transactions on Parallel and Distributed
Systems, Jun. 1996, 1-27.

Gedik, B., et al., “CellSort: High Performance Sorting on the Cell
Processor.” In Proceedings of VLDB Endow, Sep. 2007, pp. 1286-
1297.

Govindaraju, N., et al., “GPUTeraSort: High Performance Graphics
Co-processor Sorting for Large Database Management.” In Proc.
ACM SIGMOD Int. Conf. on Management of Data, Jun. 27-29,
20006, pp. 1-12.

Guo, Q., et al., “AC-DIMM: Associative Computing with ST'T-
MRAM.” In Proc. Int. Symp. on Computer Architecture, Jan. 2013,
pp. 1-12.

Zhang, K., et al., “A Novel Parallel Approach of Radix Sort with
Bucket Partition Preprocess.” In Proc. IEEE Conf. on Embedded
Software and Systems, Jun. 2012, pp. 989-994.

Wikipedia, “Radix Sort,” Edited online on Dec. 2014, Last visited
on Mar. 31, 2015, pp. 1-19.

Inoue, H., et al., “AA-Sort: A New Parallel Sorting Algorithm for
Multi-Core SIMD Processors.” In Proc. Int. Conf. on Parallel
Architectures and Compilation Techniques, Sep. 2007, pp. 1-10.
Jimenez-Gonzalez., D., et al., “Fast Parallel In-Memory 64-bit
Sorting.” In Proc. Int. Conf. on Supercomputing, Jun. 2001, pp.
114-122.

Kim, C., et al., “Sort vs. Hash Revisited: Fast Join Implementation
on Modern Multi-Core CPUs.” Proc. VLDB Endow, Aug. 2009,
1-12.

Kim, C., et al., “CloudRAMSort: Fast and Efficient Large-Scale
Distributed RAM Sort on Shared-Nothing Cluster.” In Proc. ACM
SIGMOD Int. Conf. on Management of Data, May 20-24, 2012, pp.
1-10.

Lee, S., et al., “Partitioned Parallel Radix Sort.” J. Parallel Distrib.
Comput., Apr. 2002, pp. 1-12.
Mcllroy, P., et al., “Engineering Radix Sort.” Computing Systems,

Oct. 1992, pp. 1-22, vol. 6, No. 1.
Merrill, D., et al., “High Performance and Scalable Radix Sorting:
A Case Study of Implementing Dynamic Parallelism for GPU

Computing.” Parallel Processing Letters, Mar. 2011, pp. 1-28.
QOusterhout., J., et al., “The Case for RAMClouds: Scalable High-

Performance Storage Entirely in DRAM.” SIGOPS Oper. Syst. Rev,
Dec. 2009, pp. 92-1035, vol. 43, No. 4.

Pasetto, D., et al., “A Comparative Study of Parallel Sort Algo-
rithms.” In Proc. ACM Int. Conf. on Object Oriented Programming
Systems Languages and Applications, Oct. 2011, pp. 1-18.
Ranganathan, P., “From Microprocessors to Nanostores: Rethinking
Data-Centric Systems.” IEEE Computer Society, Jan. 2011, pp.
39-48.

Satish, N., et al., “Fast Sort on CPUs and GPUs: A Case for
Bandwidth Oblivious SIMD Sort.” In Proc. ACM SIGMOD Int.
Conf. on Management of Data, Jun. 2010, pp. 351-362.

Satish, N., et al., “Fast Sort on CPUs, GPUs and Intel MIC
Architectures.” Technical report, Intel Labs, Jun. 2010, pp. 1-11.
Singler, J., et al., “The GNU Libstdc++ Parallel Mode: Software
Engineering Considerations.” In Proc. of Int. Workshop on
Multicore Software Engineering, May 11, 2008, pp. 1-8.

Singler, J., et al.,, “MCSTL: The Multi-Core Standard Template
Library.” In Proc. Int. Euro-Par Conf. on Parallel Processing, Aug.
2007, pp. 1-12.

Sohn, A., et al., “Load Balanced Parallel Radix Sort.” In Proc. Int.
Conf. on Supercomputing, Jul. 14-17, 1998, pp. 1-8.

Wassenberg, I, et al., “Engineering a Multi-core Radix Sort.” In
Proc. Int. Conf. on Parallel Processing. Aug.-Sep. 2011, pp. 160-
169.

Zagha, M., et al., “Radix Sort for Vector Multiprocessors.” In Proc.
Int. Conf. on Supercomputing, Nov. 1991, pp. 1-10.

Edahiro, M., “Parallelizing Fundamental Algorithms such as Sort-
ing on Multi-core Processors for EDA Acceleration.” Jan. 2009, pp.
1-46.

Wassenberg, J., et al., “Faster Radix via Virtual Memory and
Wirite-Combining.” Sep. 7, 2010, pp. 1-6.

Ebert, A., “NTOSort,” Apr. 2013, pp. 1-6.

Singler, J., et al., “The GNU libstdc++ parallel mode: Algorithms.”
2007, pp. 1-40.

Haglin, D., et al., “Scalable, Multithreaded, Partially-in-place Sort-
ing.” May 2013, pp. 1-9.

Bertasi, P, et al., “psort 2011—pennysort, datamation, joulesort.”
Jan. 2011, pp. 1-10.

Rashid, L., et al.,, “Analyzing and Enhancing the Parallel Sort
Operation on Multithreaded Architectures,” The Journal of
Supercomputing, Aug. 2010, pp. 1-12, vol. 53, Issue 2.

* cited by examiner

US 9,823,896 B2

Sheet 1 of 14

Nov. 21, 2017

U.S. Patent

| "ol
NQE MDﬁ NQﬁ
i1 i _
7Ef o 09
i
> i.x____.,m m W el
ol oy % 29 T
U L]
00| j u 1§ 21
D T . Al glc!
ovi- 8 i -zel i
vol N r i
.Wrw‘ TH mmmm R mmwmw mmrmm
7z i “ W o
g Mmmwm -~ Nmmw I zmmm
or I
Gl¢ [¢
w LI |
M 1 “
i1 41 192
i 1 i | |
LS L]
Ol 0%l Ocl

r-r———~~~"~""~""~"~"~"~""~"“"™""™“"™>"™""™"™/"/"/"7/"7/ 7/ 7/ // 7777

05y

89¢

¢

(v

9l¢

(¢

<Ol

mniviy swlsic sievler e e

Q0L

U.S. Patent

Nov. 21, 2017

210

Sheet 2 of 14

212

222 2D

? 7

US 9,823,896 B2

200
214

2

2]
i

007
1, l

204

2

00%
I

X

ccA por
H 3 T
3
20 255 201

2

2

7

220 221 222 225 224 s
) N . l PR I3
206§ 23] 233 @IQFJ? 205 201
220 221 222 225 224 Zgé
H1 T1 , T2 H 3 T,
208,23 234 255 oz 225 201

/

é\# /

2

220 224

I

2

225

H3 T3

US 9,823,896 B2

Sheet 3 of 14

Nov. 21, 2017

U.S. Patent

Ol%

/

7 LHING

45

/

¢ LIMONG

% ol

5%

/

¢ 1IMONG

Ol&

/

[LIMONd

FHQNm

_ _ ~VC%

&S

Q0%

44"

A%

Ov%

0%

L=

00¢
=

\-0zZ¢

40,2

US 9,823,896 B2

Sheet 4 of 14

¢

Nov. 21, 2017

U.S. Patent

Hﬁ

Ol 1741%

@ i 13 @ a:)3
gzy 9zt ' czv vy

d Vg Vud |€9d Sud C
N: :f: Nams 3 ﬁ N

OO0V

ooy

B
W4

Olv

Qctv

US 9,823,896 B2

Sheet 5 of 14

Nov. 21, 2017

U.S. Patent

004

9 ol

Gt

5%
G ol
217 0.%1%
¢
N 1d < 20
ia 920G 40
A%

U.S. Patent

Nov. 21, 2017

Sheet 6 of 14

US 9,823,896 B2

700
START S
14z PROCESS HEAD POINTER = STRIPE HEAD POINTER /02
ADVANCE TO on
NEXT STRIPE 740
YES " MORE NO PROLESS
R {EAD POINTER < STRIPE
~ TALL POINTER
7
D AL o’
V= DATA STORED IN LOCATION POINTED TO BY PROCESS FEAD PONTRR /Y@
K= BUCKET OF DATAINV /08
70
ISK #
JRRENT BUCKET AND 13~~~ N0
RIPE IN KIHBUCKET NOT
FULL 7
ES
SWAP VALUE INV WITH DATA IN LOCATION POINTED TO BY STRIPE 1 ~712
HEAD POINTER OF STRIPE IN KIH RUCKET
NCREMENT STRIPE HEAD POINTER OF STRPE IV KIHBUGKET P/
' K = BUCKET OF DATAINV /16
718
K =
| N CURRENT BUCKET >
7
7%0~ | DATA PONTED TO BY PROCESS DATA POINTED TO BY PROCESS HEAD -
HEAD POINTER = VALUE IN V POINTED TO BY STRIPE HEAD POINTER
730 NCRENENT PROCESS /22T DATA POINTED TO BY STRIPE FEAD POINTER = VALLE N V
HEAD POINTER

720

P28 INCREVENT STRIPE HEAD PONTER

120

INCREMENT PROCESS HEAD POINTER

Y

FIG. 7

US 9,823,896 B2

Sheet 7 of 14

Nov. 21, 2017

U.S. Patent

g l4
T’ AR, 03%4%
N T >
¢ ¢ [
3 43 - 3 g 1B
15~ } y 19 \
ng Vg M
M ® ® YOg
313 W “
“ & o|Q 17455 — “ 71 OlY “
e18% @@ im oy OlY

0\ L B w ® ki

Ol

U.S. Patent Nov. 21, 2017 Sheet 8 of 14 US 9,823.896 B2

START
900
§ PROCESS TAIL POINTER = BUCKET TAIL POINTER
__PROCESS HEAD POINTER = STRIPE HEAD POINTER _

PROCESS HEAD POINTER = STRIPE HEAD POINTER

202

204

206

PROCESS
HEAD POINTER < STRIPE TAIL
POINTER AND PROCESS HEAD POINTER < PROCESS

TAIL POINTER
)

NO

YES
V = DATA POINTED TO BY PROCESS HEAD POINTER

INCREMENT PROCESS HEAD POINTER 910
I

908

BUCKET
OF V' CURRENT

BUCKET?

NO

YES o172

PROCESS
HEAD POINTER < PROCESS TA
POINTER!?

YES

| DECRENENT PROCESS TAIL POINTER o
96

W = DATA POINTED TO BY PROCESS TAIL POINTER

NO

wile,

BUCKET
OF W = CURRENT
SUCKET?

NO

VES
DATA POINTED TO BY (PROCESS FEAD PONTER 1= W P22V

DATA POINTED TO BY PROCESS TAIL POINTER =V
BUCKET HEAD POINTER = PROCESS TAIL POINTER

FlG. 9

927

924

U.S. Patent Nov. 21, 2017 Sheet 9 of 14 US 9,823.896 B2

fwoo
START
RECEIVE DATA ez
"~ GENERATE HISTOGRAM FOR CURRENT KEY 1094
DEFINE POINTERS FOR EACH BUCKET 1006
BASED ON HISTOGRAM

"~ DIVIDE EACH BUCKET INTO STRIPES 1005
ASSIGN AT LEAST ONE STRIPE IN EACH 1010

BUCKET TO A FIRST PROCESSOR

ASSIGN AT LEAST ONE OTHER STRIPE IN EACH 1012
BUCKET TO A SECOND PROCESSOR

PERFORM RADIX SORT BY FIRST PROCESSOR AND | ~1014
SECOND PROCESSOR IN PARALLEL

REPAR EACH BUCKET NPARALLEL 1%

SET BUCKET HEAD AND TAIL POINTER TO 1016
NCLUDE ONLY UNSORTED [TEMS

1017

N0 ALL BUCKETS SORTED?

YES

ASSIGN PROCESSORS TO PERFORM PARALLEL | ~1018
RADIX SORT FOR SUBSEQUENT KEYS

SORT ON AT LEAST ONE BUCKET FOREACH ~ [/10<C

SUBSEQUENT KEY

END

FlG. 10

US 9,823,896 B2

I
®£ i: NE 9:

-

—

E

79

& “ /ClL 2SI 02U 82ZIL9ZIL V2L 221l 02l

-

& Iy viv & o%
e

) 2l

74

Q0!

U.S. Patent

US 9,823,896 B2

Sheet 11 of 14

Nov. 21, 2017

U.S. Patent

00c<cl

a4
¢ 40553044

7 LIMONd

9ccl

ANIIE
22| Ov2)
7 40SST0M 1 H0SSI00M
e |1 MONG 7 10N WYL
22| T 240zl
A
X
0Z2)
v IMONg € 13MONG, 2 L3M0ng [13NN
T Z2-z0zl
olz| YA o

U.S. Patent Nov. 21, 2017 Sheet 12 of 14 US 9,823.896 B2

1%00
1310 1312 1314 1316 f
R 2/
DATA ITEM 1 KEY2 | ... | KEYN | PONTER
e = 1318
- KEYN<+1 | ... |KEYN+ M| ADDITIONAL DATA
1504 1320 1322
Fl(5. 15
1406 1400
1450 A N f
§ 1420 1422 1424 1426
1o FEL T KEY2 [. | KEYN [PONTER
1412~ KE:Y 1 KEIZ KEIN Pof i ADDITIONAL DATA
(Y1 | KEY2 | ... | KEYN | PONTER -
1414 L a3
ErN+1 [DTA |
é —| KEXN+1 | DATA 1408
1402 :
EYN+1 | DATA P24
vy
1440+ 1442

2

1404

FlG. 14

U.S. Patent Nov. 21, 2017 Sheet 13 of 14

(START)

US 9,823,896 B2

% 1500

PORTION WITH A RESPECTIVE SECOND SET OF KEYS T

STORE DATA ITEMS INTO MEMORY WHERE EACH DATA ITEM HAS A RESPECTIVE FIRST PORTION WI

HA

RESPECTIVE FIRST SET OF KEYS THAT IS STORED IN A LOCAL MEMORY, AND A RESPECTIVE SECOND
AT 1S STORED IN AN EXTERNAL MEMORY

1502

DEFINE AT LEAST ONE DATA STRIPE SET COMPRIS
SORT BUCKET DEFINED IN T

NG AT LEAST ONE STRIPE IN EACH IN-PLACE RADIX
HE MEMORY

1504

FIRST PORTION OF EACH DATA

ARE ANY KEYS

THE DATA ITEMS!
NO

PERFORM AN IN-PLACE PARTIAL BUCKET RADIX SORT USING AN INITIA

IN THE RESPECTIVE SECOND PORTION OF

TEM

12086

YES

Y

| KEY STORED IN THE RESPECTIVE | ~1506

SWAP Th
KEYS IN T
SECOND SET OF

MEM

£ RESPECTIVE FIRST SET OF
1t LOCAL MEMORY WITH THE
KEYS IN EXTERNAL

ORY FOR EACH DATA ITEM

19510

RADIX SOR

PERFORM IN-PLACE PARTIAL BUCKET

" ON THE SECOND SET

NOW L

OCATE

D IN LOCAL MEMO

0F KEYS | 1212

RY

THE FIRST SET C

SWAP THE

FlG. 15

Y
PRODUCE SORTED DATA ITEMS IN THE MEMORY

RESPECTIVE SECOND SET OF
KEYS NOW IN THE LOCAL MEMORY WITH
F KEYS NOW IN EXTERNAL
MEMORY FOR EACH DATA [TEM

1914

US 9,823,896 B2

Sheet 14 of 14

Nov. 21, 2017

U.S. Patent

QQ@\

9l 2l

d41dvaY MHOMLIN

NILSAS
FVEOLS

7191 AJONN

/
909\

(S301A3T

TYNY3LXS

029l

(SHOVAAAIN

0/l

V29l
09I

LINY
INISS 008

09|

JIAGIS/WALSAS 3 1NdNOO

AV 1d5I0

<09l

&9l

US 9,823,896 B2

1

PARALLELIZED IN-PLACE RADIX
SORTING

BACKGROUND

The present disclosure generally relates to the field of
sorting sets of data, and more particularly to the field of a
performing parallelized processing to implement a radix sort
ol said data.

In-place radix sorting 1s a usetful sorting algorithm for
sorting large data sets with numeric or string keys. In-place
Radix sorting has a linear run-time and constant memory
complexity. Benefits of in-place radix sorting include efli-
ciently operating within a large memory footprint by deliv-
ering high performance with fewer cache misses and page
faults than approaches requiring extra memory.

BRIEF SUMMARY

In one example, a method for sorting data i1tems stores a
plurality of data items. Each data 1item 1n the plurality of data
items comprises a respective first portion and a respective
second portion with each respective second portion com-
prising a respective second set of keys and being stored
separately from the respective first portion. Each respective
first portion comprises a respective first set of keys and a
pointer indicating the respective second portion. At least one
key within the respective first set of keys for each data item
in at least a subset of the plurality of data items 1s stored nto
a data storage 1n local memory of a first processor. At least
one data stripe set within a plurality of stripes identified
within a plurality of buckets defined for the plurality of 1tems
1s defined, with each data stripe set comprising one respec-
tive stripe within each respective bucket of the plurality of
buckets. An n-place partial bucket radix sort 1s performed
on data items contained within one data stripe set with a first
processor using an initial radix. Incorrectly sorted data 1tems
are then grouped 1n each bucket 1into a respective incorrect
data item group within each bucket. A radix sort 1s then
performed using the i1nitial radix on the items within the
respective incorrect data item group. A first level sorted
output 1s produced

In another example, a device for data set sorting apparatus
includes a multiple processor computing apparatus and a
memory coupled to the computing apparatus. The device
turther includes a data sorting processor, coupled to the
computing apparatus and the memory, the data sorting
processor 1s configured to store a plurality of data items.
Each data item in the plurality of data items comprises a
respective first portion and a respective second portion and
cach respective second portion comprises a respective sec-
ond set of keys and 1s stored separately from the respective
first portion. Each respective first portion comprises a
respective first set of keys and a pointer indicating the
respective second portion. At least one key within the
respective first set of keys for each data item 1n at least a
subset of the plurality of data items 1s stored into a respective
local memory of a first processor within the multiple pro-
cessor computing apparatus. The data sorting processor 1s
also configured to define at least one data stripe set within a
plurality of stripes 1dentified within a plurality of buckets
defined for the plurality of items, each data stripe set
comprising one respective stripe within each respective
bucket of the plurality of buckets. The data sorting processor
1s also configured to perform an in-place partial bucket radix
sort on data items contained within one data stripe set with
a first processor using an initial radix. The data sorting

10

15

20

25

30

35

40

45

50

55

60

65

2

processor 1s also configured to group incorrectly sorted data
items 1n each bucket mto a respective incorrect data item
group within each bucket. The data sorting processor 1s also
configured to perform a radix sort using the initial radix on
the 1tems within the respective incorrect data item group. A
first level sorted output 1s produced.

In yet another example, a computer program product for
sorting a data set includes a storage medium readable by a
processing circuit and storing instructions for execution by
the processing circuit for performing a method including
storing a plurality of data items. Each data item 1n the
plurality of data items comprises a respective first portion
and a respective second portion with each respective second
portion comprising a respective second set of keys and being
stored separately from the respective first portion. Each
respective first portion comprises a respective first set of
keys and a pointer indicating the respective second portion.
At least one key within the respective first set of keys for
cach data item 1n at least a subset of the plurality of data
items 1s stored 1nto a data storage 1n local memory of a first
processor. At least one data stripe set within a plurality of
stripes 1dentified within a plurality of buckets defined for the

plurality of items 1s defined, with each data stripe set
comprising one respective stripe within each respective
bucket of the plurality of buckets. The method further
includes performing an in-place partial bucket radix sort on
data 1items contained within one data stripe set with a {first
processor using an initial radix. The method groups incor-
rectly sorted data items in each bucket into a respective
incorrect data item group within each bucket. The method
performs a radix sort using the initial radix on the items
within the respective mcorrect data item group. A first level
sorted output 1s produced.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying figures where like reference numerals
refer to identical or functionally similar elements throughout
the separate views, and which together with the detailed
description below are incorporated in and form part of the
specification, serve to further illustrate various examples and
to explain various principles and advantages all 1n accor-
dance with the present disclosure, in which:

FIG. 1 1llustrates an example radix sorting process, in
accordance with one example;

FIG. 2 illustrates an example 1mn-place radix sort process,
according to an example;

FIG. 3 1illustrates an example histogram generation,
according to an example;

FIG. 4 1llustrates a divided data set for parallel radix
sorting, according to an example;

FIG. 5 illustrates a first data stripe set, according to one
example;

FIG. 6 1llustrates a second data stripe set, according to an
example;

FIG. 7 illustrates an in-place partial bucket radix sort
process, according to an example;

FIG. 8 1illustrates a bucket repair permutation, according
to an example;

FIG. 9 illustrates a bucket repair process, according to an
example;

FIG. 10 illustrates a parallel radix sort process, according,
to an example;

FIG. 11 1llustrates a second key radix sort, according to an
example;

US 9,823,896 B2

3

FIG. 12 illustrates a second level key radix sort processing
distribution, according to an example;

FIG. 13 illustrates a large data item, according to an
example;

FI1G. 14 1llustrates a large data 1tem data structure accord-
ing to an example;

FIG. 15 illustrates a large data 1tem 1n-place partial bucket
radix sort process, according to an example; and

FIG. 16 1s a block diagram illustrating one example of an
information processing system according to one example.

DETAILED DESCRIPTION

In-place radix sorting 1s a useful sorting algorithm for
sorting large data sets with numeric or string keys. In-place
Radix sorting has a linear run-time and constant memory
complexity. Eflicient parallelization of in-place radix sorting
has several challenges. Permuting elements into buckets
during the mnitial phase of sorting on the first key value 1s
constrained by the read-write dependency inherent in the
in-place sorting process. Further, load-balancing when
recursively sorting on lower levels keys of the data set in the
resulting buckets 1s complicated by the various sizes of the
buckets, which occurs with skewed distributions of the data
set being sorted.

The below described system and methods describe a
highly scalable and eflicient parallelized radix sorting pro-
cess that allows multiple processors to each efliciently
process portions of a large data set to perform a radix sort
upon the whole data set. In one example, systems include a
multiple processor computing apparatus that has multiple
processors to i1mplement the parallel sorting processing
described below. The below described system and methods
implement eflicient parallel processing based on algorithmic
improvements that are independent of any specific hard-
ware-dependent constructs such as combined write-back,
single 1struction, multiple data (SIMD), and the like. The
tollowing examples perform speculative permutation of data
clements according to keys followed by a repair process that
are both efliciently parallelized. Iteration of these two steps
performs permutation of all elements to in the data set into
their buckets through a fully 1n parallel and 1n-place process.
This algorithm 1s able to be recursively invoked on the
resulting buckets that are sorted according to a particular key
in a manner that allows eflicient parallelization by the use of
distribution-adaptive load-balancing across the multiple pro-
cessors. For a skewed data distribution, these examples
mimmize run-time by adaptively allocating more processors
to larger buckets. The below algorithms allow improved
elliciencies on various processing platiorms, and the perfor-
mance of these algorithms 1s further amenable to 1improve-
ments through the use of hardware-specific accelerations,
such as SIMD processors.

In some examples, implementing parallel processing for
radix sorting on a data set 1s facilitated by partitioning, or
dividing, the data set into stripes that are processed by
different processors in a share-nothing fashion so as to avoid
read-atter-write dependencies. The size of these stripes 1s
not strictly determined based on the number of data 1tems
that are anticipated to be placed into those stripes after
sorting 1s complete, but rather the size of the stripes 1s
determined on a speculative basis. Since the size of these
stripes may not equal the number of data items that are
required to be placed into those stripes when sorting 1s
complete, there will be some data items that are not sorted
after performing permutation of the data items in those
stripes according to a radix sort. In order to accommodate

10

15

20

25

30

35

40

45

50

55

60

65

4

the data items that are not properly sorted, some examples
perform a repair process to correctly place the data 1tems that
are not properly sorted by the permutation sorting process
operating 1n parallel independently on the separate stripes.
The two stages of this process, 1.e., data 1item permutation
and subsequent repair of unsorted 1tems 1n each bucket, are
iterated 1n one example until a complete redistribution of all
the data i1tems in the data set into their proper buckets 1s
achieved. The design of the speculative partitioning 1s such
that both stages can be executed in parallel, where all
processors have an approximately equal load, achieving
good scalability. In some example, any extra processing
resources taken by the repair process to accommodate the
speculative permutation of a portion of each bucket allows
increasing scalability.

Details of some aspects of the below described systems
and methods are described 1n U.S. Provisional Patent Appli-

cation No. 61/932,898, filed Jan. 29, 2014, the entire con-

tents of which 1s hereby included herein by reference.

FIG. 1 illustrates an example radix sorting process 100, 1n
accordance with one example. The radix sorting process
begins with an unsorted data set 102 that 1s illustrated as a
set of seven (7) three digit numbers. In general, an unsorted
data set processed by a radix sort algorithm 1s able to include
any number of data items and 1s in general able to be quite
large. In order to more clearly describe certain aspects of this
process, a simple example using three digit numbers 1s
illustrated. In general, as 1s understood by practitioners of
ordinary skill 1n the relevant arts, any type of data is able to
be sorted by a radix sort.

In the following discussion, the portion of each data item
used as the basis to sort the data set 1s referred to as the
present key. As 1s generally understood and 1llustrated 1n this
example, a radix sort 1s able to 1teratively sort data items by
progressively ordering the data items according to “keys” or
portions of the data. In the illustrated example radix sorting
process as 1s described below, each the data items are
iteratively sorted by progressively selecting each digit of the
three digit numbers as the present key.

The 1llustrated example radix sort process 100 first sorts
the unsorted data set 102 according to the most significant
digit 120 of each data item 1n the set. The first sorted data set
104 1llustrates the data sorted according to only the most
significant digit 120 where data items 1n the 200°s precede
those 1n the 300’s and the data items 1n the 400°s are last. An
example of processing to implement such a radix sort is
described in further detail below. In performing a radix sort,
the data to be sorted 1s able to be thought of as being divided
into groups where each group contains data having the same
current key value. In the following discussion, these groups
are referred to as “buckets.” In the illustrated example, the
data items 1in the first sorted data set 104 are grouped
according to the value of the data items’ most significant
digit, which 1s the first key in this example. As illustrated,
data items starting with “2” are grouped 1nto a first bucket
110, data 1tems starting with “3” are grouped 1nto a second
bucket 112, and data items beginning with “4” are grouped
into a third bucket 114. In general, when sorting decimal
based numbers, a radix sort uses ten (10) buckets, one for
cach possible digit value. When sorting data according to
other types of keys, such as sorting alphanumeric values,
sorting data using keys of arbitrary number of possible
values such as keys defined by a certain number of binary
bits, or any other type of key, the number of buckets
generally equals the number of possible values that the key
1s able to have 1n the data set. In the 1llustrated example radix

US 9,823,896 B2

S

sort 100, only three of these ten buckets are depicted in order
to simplity the description and focus on the relevant con-
cepts.

Although the first sorted data set 104 1s sorted according
to 1ts most significant digit, the data items 1n each bucket are
otherwise unsorted. The radix sort 1n this example performs
another iteration to further sort the data 1n each bucket of the
first sorted data set according to the next most significant
digit, 1.e., the second digit of each data i1tem, to produce a
second sorted data set 106. In this example, the second digit
1s the second key used for the radix sort. In the second sorted
data set 106, the data in the first bucket 110 1s sorted
according to the first bucket second digit 130, the data 1n the
second bucket 112 1s sorted according to the second bucket
second digit 132, and the data in the third bucket 114 1s
sorted according to the third bucket second digit 134.

Sorting the first sorted data set 104 1s based on defining
sub-buckets of each bucket defined for the key used to create
the first sorted data set 1.e., the first key or the most
significant digit in this example. Because a radix sort places
data into sub-buckets according to values of a second key
alter that data has been sorted by a first key, the data 1n the
sub-buckets used for sorting on the second key contain data
that have the same value for the first key as well as the same
value for the second key.

The example radix sort process 100 1illustrates a first
sub-bucket of the first bucket 160, which contain data items
having the same value of the second key, which 1s the second
digit 1n this example. Because the data set has already been
sorted according to the first key, which 1s the first digit, the
data 1tems 1n the first sub-bucket 160 have the same values
of the first key and second key, 1.¢., 21x, where x 1s the value
of the third digit. Similarly, the second sorted data set 106
has a second sub-bucket of the first bucket 162, and a third
sub-bucket of the first bucket 164. Again, 1n general, there
would be ten (10) sub-buckets for each bucket of the first
key, but fewer are shown here for simplicity. The second
bucket 112 and third bucket 114 are shown to only have one
sub-bucket, the first sub-bucket of the second bucket 166
and the first sub-bucket of the third bucket 168, due to the
small size of the data set. In general, these buckets used to
sort according to the first key would also each have their
own ten (10) buckets to retlect the number of possible values
of the second key.

Even though the illustrated example 1llustrates a relatively
small data set for simplicity of explanation, each bucket and
sub-bucket 1s in general able to contain many data items. For
example, the second bucket 112 of the illustrated example
only contains one data item and thus sorting i1s not really
performed 1n that case. The third bucket 114 contains two
data items with the same second digit 134, thus sorting 1s
trivial. Although unlikely, buckets or sub-buckets containing,
such small amounts of data or data with similar values are
able to occur 1n practice and do not aflect the generality of
the present discussion.

To complete the sort of the illustrated data set, a third
iteration of a radix sort 1s performed to further sort the
second sorted data set 106 according to the next most
significant digit, which 1s the third digit in this example, to
create a third sorted data set 108. In this example, each
sub-bucket of the second sorted data set 106 1s further
divided into 1ts own sub-buckets 1n an iterative fashion
according to the above described process. Due to the small
s1ze of the 1llustrated data set, only a few sub-buckets are
illustrated. It 1s to be understood that, in general, performing

10

15

20

25

30

35

40

45

50

55

60

65

6

a radix sort at a given iteration level uses a number of
buckets corresponding to the number of possible values for
that key 1n the data.

The third sorted data set 108 depicts data in the first
sub-bucket of the first bucket 160 sorted according to the
third key, 1.e., the third significant digit of the data item. The
first sub-bucket of the third bucket 168 has two data items
that are sorted according to the third key. The other illus-
trated sub buckets, 1.e., the second sub-bucket of the first
bucket 162, the third sub-bucket of the first bucket 164, and
the first sub-bucket of the second bucket 166, only have one
data item and therefore do not require sorting. As shown, the
third sorted data set 108 contains a numerically sorted list of
the seven (7) numbers contained 1n the unsorted data set 102.

FIG. 2 illustrates an example 1n-place radix sort process
200, according to an example. The example n-place radix
sort process 200 1s a data sorting process that allows a large
data set to be sorted by swapping data 1tems in the memory
storing the data set, and therefore only requires memory to
store the original data set and does not use intermediate
buflers to store large amounts of the data set during sorting.
The illustrated example in-place radix sort i1s used to
describe a technique to perform a radix sort on a data set
using a particular key, such as a digit in a given position
within a number, or an alphanumeric value in a given
position 1n a textual data set. The following description,
numeric data 1s presented where the key has three possible
1, 2, or 3. Such a limited range of values 1s used to simplity
the description and 1s not intended to limait the generality of
the description, which 1s applicable to any data set that can
be sorted using keys of any range of values.

The example in-place radix sort process 200 depicts an
initial data set 202 that 1s stored 1n a data structure 201. The
depicted data structure 201 1s able to represent any acces-
sible data storage device such as a data vector 1n a computer
memory, data stored on a mass storage device, data stored in
any suitable device, or combinations of these. The nitial
data set 202 1s divided into three buckets, a first bucket 210,
a second bucket 212, and a third bucket 214. In a manner
similar to that discussed above with regards to the example
radix sort 100, the example 1n-place radix sort process 200
presents a simplified 1illustration of data to more clearly
describe relevant concepts and 1s not a limiting example of
performing an i-place radix sort.

The three illustrated buckets are similar to the buckets
described above for the example radix sort 100. In this
example, the first bucket 210 stores data with a first key
value equal to one (1), the second bucket 212 stores data
with a first key value equal to two (2), the third bucket 214
stores data with a first key value equal to one (3). A
technique to define the division of the 1nitial data set 202 into
these buckets 1s described below. In general, the goal of a
first level radix sort 1s to sort the 1nitial data set 202 such that
all of the data 1items in the first bucket 210 have a first key
value equal to one (1), all of the data 1tems 1n the second
bucket 212 have a first key value equal to two (2), all of the
data items 1n the third bucket 214 have a first key value equal
to three (3).

The 1itial data set 202 1n one example 1s stored as a data
vector or similar data structure that contains a number of
storage locations where each storage location stores one data
item. The 1initial data set 202 1s divided into the three
buckets, as discussed above. Initially, all data items of the
initial data set 202 are to be processed by the radix sorting
process for the first key value. As the radix sort processes the
stored data items, more data 1items are 1dentified to be or are
moved to be properly located 1n the correct bucket, which

US 9,823,896 B2

7

means that these data items are known to have key values
corresponding to the key value associated with that bucket.
The data remaining 1n each bucket that 1s to be processed by
the sorting process 1s identified by data pointers pointing to
certain data items in the data structure 201. At the start of
processing, as indicted with the initial data set 202, all data
1s to be processed by the sorting process. In this example, the
start of data to be processed 1n the first bucket 1s defined by
a first head pointer H, 220, which points to the first data item
in the first bucket 210 within the data structure 201, and a
first tail pointer T, 221, which points to the last data 1tem 1n
the first bucket 210 Wlthm the data structure 201. Slmllarly,,
the start of data to be processed i the second bucket 1s
indicated by a second head pointer H, 222, which points to
the first data item 1n the second bucket 212, and a second tail
pointer T, 223, which points to the last data item in the
second bucket 212. The start of data to be processed in the
third bucket 1s indicated by a third head pointer H, 224,

which points to the first data 1tem in the third bucket 214,

and a third tail pointer T, 223 points to the last data item in
the third bucket 214. As a radix sort progresses, these
pointers are generally changed to move towards one another
as more data 1s determined to be located 1n 1ts proper bucket.

At the head of the first bucket 210 1s a first data item 230,
pointed to the by first head pointer H, 220, and 1s followed
by a first bucket second data item 231 within the data
structure 201. The key value of the first data item 230 1s
three (3), as 1s indicated by the numeral in that data 1tem’s
depiction. A second data item 232, with a key value of one
(1) as indicated by the numeral 1n its depiction, 1s at the head
of the second bucket 212 and 1s pointed to by the second
head pointer H, 222. A third data 1item 234 with a key value
of two (2) as indicted by the numeral 1n 1ts depiction 1s at the
head of the third bucket 214 and 1s pointed to by the third
head pointer H, 224. The second data item 232 1s followed
in the data structure 201 by a second bucket second data 1tem
233, and the third data item 234 1s followed in the data
structure 201 by a third bucket second data 1tem 2385.

At the start of the radix sort, the first data item to be
processed 1n the first bucket 210 1s indicated by the first head
pointer H, 220. A sorting processor uses the first head
pointer H, 220 to accesses the first data item 230 1n this case
and determines 1ts key value, which 1s “3” 1n this case. The
key value of “3” for the first data item 230 indicates that 1t
1s 1ncorrectly located in the first bucket 210 and should be
placed into the third bucket 214. The sorting processor uses
the head pointer for the third bucket 214, 1.¢., the third head
pointer H; 224, to access the first data 1tem to be processed
in the third bucket. In the example illustrated with the mitial
data set 202, the third head pointer H, points to the third data
item 234, which has a key value of “2,” thus indicating that
it 1s 1incorrectly placed 1n the third bucket 214 and should be
in the second bucket 212.

A first exchanged data set 204 illustrates the location of
data after the first data item pointed to by the first head
pointer H, 220 1s placed into the first location of the third
bufler 214. Because the third data item 234 1s improperly
located 1n the third bucket, the sorting processor withdraws
the value of the third data item 234 from the location pointed
to by the third head pointer and places the first data item 230
into that location. The third head pointer 1s then incremented
to pomnt to the third bucket second data location 235,
indicating that the first data item located at the start of the
third bucket 1s properly located.

The first exchanged data set 204 1s then similarly pro-
cessed to properly place the third data item 234 that was
extracted from the data structure to place the first data 1tem

5

10

15

20

25

30

35

40

45

50

55

60

65

8

230 into the third bucket 214. The third data item 234 has a
key value of “2” and thus 1s to be placed into the second
bucket 212. The sorting processor 1n this case examines the
key value of the data item pointed to by the second head
pomnter H2 222, which 1s the second data item 232 1n this
case.

A second exchanged data set 206 1s created by placing the
third data i1tem 234 into the second bucket 212. The sort
processor examines the data item pointed to the by second
head pointer 222, which 1s the second data item 232 1n this
case. This data item has a key value of indicating that it 1s
not 1n 1ts proper location. The sort processor extracts the
value of the second data item 232 prior to placing the first
data 1item 230 into the location pointed to by the second head
pointer H, 222, and then increments the value of the second
head pointer H, 222 to point to the second bucket second
data 1tem 233. The second data item 232 has a key value of
“1” and 1s placed at the location from which the first data
item 230 was originally extracted, 1.e., the location pointed
to by the first head pointer H, 220. The final exchanged data
set 208 1n this example 1s then completed by incrementing
the first head pointer H, 220 to point to the first bucket
second data 1tem 231.

In the above example, each head pointer pointed to a data
item that was not located 1n 1ts proper bucket. As 1s under-
stood by practitioners of ordinary skill 1n the relevant arts 1n
light of the present discussion, i1f a head pointer 1s pointing
to a data item that 1s located in 1ts proper bucket, 1.¢., the key
value of that data item matches the key value associated with
that bucket, the head pointer 1s simply incremented to the
next data item in the data structure 201. The data items
pointed to by the head pointer are then successively exam-
ined as the head pointer 1s incremented until a data item 1s
pointed to with a key value that does not match the bucket
in which 1t 1s stored.

In the above example, the head pointers are incremented
as more data 1s processed until the head pointer for a
particular bucket points to the same location as the tail
pointer for that same bucket. When the head pointer and tail
pointer point to the same location, the values of those
pointers are said to be equal. A determination 1s able to be
made that there 1s no more data to process 1n a particular
bucket when the head pointer for that bucket equals the tail
pointer.

FIG. 3 illustrates an example histogram generation 300,
according to an example. The example histogram generation
300 1llustrates a process used to determine the size of each
bucket 1n a data set. The example histogram generation 300
processes a data structure 302 that contains a number of data
items 304. The example histogram generation 300 1n one
example performs one pass over all data 1items 304 1n the
entire data structure 302 to simply count the number of
occurrences of each key value 1n all of the data items 304.

The example histogram generation 300 creates a histo-
gram 306 that includes a number of items that were counted
having each respective key value. The example histogram
generation 300 illustrates a case where there the key over
which the data items 304 are to be sorted are able to have
four possible values. Because the key 1s able to have one of
four possible values, there are four buckets defined for the
output sorted according to that key. The histogram 306
therefore contains four values that correspond to the number
of data i1tems that are to be stored in each bucket aifter the
data set 1s sorted according to that key. A first bucket count
320 indicates the number of data items that have a key value
of “1”” and 1s therefore the number of data items to be placed
in the first bucket 310, a second bucket count 322 indicates

US 9,823,896 B2

9

the number of data items that have a key value of “2” and
1s therefore the number of data items to be placed 1n the
second bucket 312, a third bucket count 324 indicates the
number of data items that have a key value of “3” and 1s
therefore the number of data items to be placed 1n the third
bucket 314, and a fourth bucket count 326 indicates the
number of data items that have a key value of “4” and 1s
therefore the number of data items to be placed in the fourth
bucket 316. The values determined for the histogram 306 are
used 1 one example to set head pointers and tail pointers
into the data structure 302 to support radix sorting, such as
1s described above with regards to the example in-place
radix sort 200.

In one example, the histogram for a data set 1s able to be
performed by a number of processors operating in parallel.
In one example, a data structure 302 1s able to be evenly
divided 1into a number of segments of equal size, with one
segment being assigned to a separate processor to accumu-
late the histogram data for that segment. In the illustrated
example histogram generation 300, the data structure 302 1s
divided into three segments, a first segment 340, a second
segment 342, and a third segment 344. In this example, each
of these three segments have an equal number of data 1tems,
which 1s one third of the number of data items 1n the data set
stored 1n the data structure 302. A first processor 1s assigned
to count occurrences of key values 1n the first segment 340,
a second processor 1s assigned to count occurrences of key
values 1n the second segment 342, and a third processor 1s
assigned to count occurrences ol key values in the third
segment 344. Each of these processor counts these occur-
rences, and the histogram data counted by each processor for
cach key value are then added together to determine the total
number of occurrences of each key value 1n the entire data
structure 302 that 1s to be sorted.

FIG. 4 illustrates a divided data set for parallel radix
sorting 400, according to an example. The divided data set
for parallel radix sorting 400 1s an example of a data
structure 402 that 1s divided 1nto four (4) buckets to support
radix sorting based on a key value having two data bits. The
data structure 402 1s divided into a first bucket 410, a second
bucket 412, a third bucket 414, and a fourth bucket 416. This
example illustrates four buckets and a two data bit key to
simplily the discussion of relevant concepts 1n a clear and
concise manner. It 1s clear that the principles discussed with
regards to the illustrated example are able to be extended to
sorting data using key values having range of values.

The storage location within the data structure 402 that
define the dividing points between the four buckets is
determined in one example by a histogram, such as is
discussed above with regards to FIG. 3, of the data contained
within the data structure 402. Such a histogram identifies the
number of data 1items in each bucket, and thereby supports
defining pointers to data elements that correspond to the
dividing line between buckets, which will be the dividing
line between data elements with different key values when
sorting of the data in the data structure according to the
present key value 1s completed.

The first bucket 410 15 mitially defined by the first global
head pointer gh, 420 and the first global tail pointer gt, 421.
The second bucket 412 1s mitially defined by the second
global head pointer gh, 422 and the second global tail
pointer gt, 423. The third bucket 414 1s initially defined by
the third global head pointer gh, 425 and the third global tail
pointer gt 426. The fourth bucket 416 1s 1nitially defined by
the global head pointer gh, 428 and the second global tail
pointer gt, 430.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

In the 1llustrated divided data set for parallel radix sorting
400, each bucket 1s further divided into two stripes to
support parallel radix sorting of the data structure 402. Each
stripe 1n this example 1s a portion of a particular bucket,
where no two stripes in the same bucket overlap with each
other. The division of each bucket 1n this example allows
radix sorting to be performed by two independent processors
operating in parallel 1 order to speed the radix sorting
process. Illustrating only two stripes 1n this description 1s
chosen to more simply and clearly describe and explain the
relevant aspects of the described examples and associated
processing. In general, the concepts described below are
able to be easily expanded to dividing each bucket into any
number of stripes in order to support parallel radix sort
processing by a corresponding number of processors. In one
example, all buckets are divided into an equal number of
stripes, such as the illustrated two strips per bucket. In
turther examples, each bucket 1s able to be divided into four
strips, 10 stripes, or any number of stripes.

In one example, as 1s described 1n further detail below,
data consistency during parallel sorting processing 1s facili-
tated by assigning one stripe from bucket to one processor
so that the one processor 1s able to perform a radix sort of
data contained 1n the strips assigned to 1t without causing a
data storage conflict with another processor that would be
accessing the same data Conversely, each stripe 1s only
assigned to one processor in this example. In this configu-
ration, the processor 1s able to perform a radix sort on the
data 1n the stripes assigned to it by freely placing each
encountered data 1tem 1nto the stripe in the proper bucket for
that data 1tem without concern of a data storage contlict with
a processor accessing the same data. Such independent data
access 1mproves processing efliciency and execution perfor-
mance.

In the 1llustrated divided data set for parallel radix sorting,
400, each stripe 1s 1imitially defined by 1ts own head pointer
and tail pointer. In one example, the data 1tems 1n one stripe
of each bucket are assigned to one processor and that
combined set 1s processed 1n a manner similar to the process
described above with regards to the example in-place radix
sort process 200.

The first bucket 410 1s divided into a first bucket first
stripe 450 and a first bucket second stripe 451. The first
bucket first stripe 450 1s 1nitially defined by a first bucket
first stripe head pointer ph, ' and a first bucket first stripe tail
pointer pt,". The first bucket second stripe 451 is initially
defined by a first bucket second stripe head pointer ph,* and
a first bucket second stripe tail pointer pt,~.

The second bucket 412 1s divided into a second bucket
first stripe 452 and a second bucket second stripe 453. The
second bucket first stripe 452 1s mitially defined by a second
bucket first stripe head pointer ph,' and a second bucket first
stripe tail pointer pt,". The second bucket second stripe 453
1s 1nitially defined by a second bucket second stripe head
pointer ph,” and a second bucket second stripe tail pointer
pt,”~.

The third bucket 414 1s divided into a third bucket first
stripe 454 and a third bucket second stripe 455. The third
bucket first stripe 454 1s mitially defined by a third bucket
first stripe head pointer ph," and a third bucket first stripe tail
pointer pt,'. The third bucket second stripe 455 is initially
defined by a third bucket second stripe head pointer ph,* and
a third bucket second stripe tail pointer pt,~.

The fourth bucket 416 1s divided into a fourth bucket first
stripe 456 and a fourth bucket second stripe 457. The fourth
bucket first stripe 456 1s 1imitially defined by a fourth bucket
first stripe head pointer ph,"' and a fourth bucket first stripe

US 9,823,896 B2

11

tail pointer pt,’. The fourth bucket second stripe 457 is
iitially defined by a fourth bucket second stripe head

pointer ph,” and a fourth bucket second stripe tail pointer
2

pt,~.

In various examples, each stripe in a particular bucket 1s
able to have various sizes relative to other stripes 1n the same
bucket. In one example, each bucket 1s divided into stripes
where each stripe 1 a bucket has the same size as other
stripes 1n the same bucket. In further examples, stripes 1n a
particular bucket are able to have different sizes, 1.e., have
unequal number of data 1tems, relative to each other based
upon various factors, such as information derived by various
techniques to estimate the number of data 1tems that will be
placed into that stripe when the data set 1s sorted. For
example, the sizes of different stripes 1n a bucket are able to
be based on value distribution characteristics of the plurality
of data items, such as a count of the number of 1tems that
will be placed into that stripe when the data 1s sorted.

FIG. 5 1llustrates a first data stripe set 500, according to
one example. The first stripe set 500 depicts a subset of the
data 1tems stored in the data structure 402 described above
with regards to parallel radix sorting 400. In particular, the
first data stripe set 300 depicts the first stripe that 1s defined
for each bucket in the data structure 402. As illustrated, the
first data stripe set 500 includes the first bucket first stripe
450, the second bucket first stripe 452, the third bucket first
stripe 454, and the fourth bucket first stripe 456. In an
example, a single processor 1s used to perform radix sorting
on the data items contained 1n the stripes that make up the
first data stripe set 500.

The processor performing radix sorting of the first stripe
data set 500 generally proceeds by sequentially processing
data 1n one stripe ol one bucket, and proceeding to process
the stripe 1n a next bucket after the stripe of one bucket 1s
tully processed. In performing this processing, the processor
generally maintains a processor head pointer 506. When
starting to perform a radix sort on the data within a stripe,
the processor head pointer 1s assigned to the same value, 1.¢.,
to point to the same storage location, as the head pointer for
that stripe. For example, when processing the first bucket
first stripe 450, the processor head pointer 506 1s assigned to
the same value as the first bucket first stripe head pointer
502. The separate head pointer 1s used 1n some examples to
accommodate a possible condition encountered 1n the par-
allelized radix sort processing described herein. The han-
dling of such conditions and accommodations are described
in further detail below.

The first stripe data set 500 depicts the value of the stripe
pointers after some of the radix sort processing of the data
items contained 1n the first bucket first stripe 450 has been
performed but 1s not completed. As 1s understood, radix
sorting of a first bucket results 1n some data items being
moved 1nto their proper locations 1n other buckets based
upon the value of the key in those data items. The first
bucket first stripe head pointer ph,' 502 is depicted as
pointing to the middle of the first bucket first stripe 450 and
the first bucket first stripe tail pointer pt,' 504 points to the
last data item 1n the first bucket first stripe 450. The
processor head pointer 506 1s further set to point to the same
location as the first bucket first stripe head pointer ph,’ 502.
In this configuration, the data items preceding the {first
bucket first stripe tail pointer pt, ' have been processed by the
radix sorting algorithm and are thus properly sorted and
located 1n the proper bucket. The data items located between
the first bucket first stripe head pointer ph,' and the first
bucket first stripe tail pointer pt, ' are yet to be processed and
are not yet sorted.

10

15

20

25

30

35

40

45

50

55

60

65

12

The second bucket first stripe 452 and the third bucket
first stripe 454 depict similar head and tail pointers that
reflect some of the data 1items 1n these stripes, 1.e., the data
items preceding the respective head pointer, are already
sorted. Data items in these stripes that are between these
pointers are yet to be processed and are therefore not yet
sorted.

In one example, a processor performs a radix sort by
sequentially processes data items within the stripes com-
prising the first data stripe set. An example of a radix sort
process 1s described above with regards to FIG. 2. When a
data 1item 1s encountered that 1s not located in the proper
bucket, 1.e., the key value for that data item does not match
the key value associated with that bucket, that data item 1s
generally placed into the stripe within the first data stripe set
500 that 1s located in the bucket associated with the key
value of that data 1tem. In an example, a misplaced data item
in a first bucket 1s swapped with a data item pointed to by
the head pointer of the corresponding stripe of the proper
bucket for the misplaced data item

The 1llustrated fourth bucket fourth stripe 456 in this
example 1s shown to have the fourth bucket first stripe head
pointer ph,’ equal to the fourth bucket first stripe tail pointer
pt,'. The equality of these pointers indicates that all of the
data items 1n this stripe have been processed and are 1n their
proper bucket. The equality of these pointers further indi-
cates that additional data items are not able to be placed nto
this stripe as would be required, for example, when a data
item with a key value corresponding to the fourth bucket 1s
found while performing radix sort processing of data items

in stripes of another bucket. An example of processing to
handle such a condition 1s described below.

FIG. 6 1llustrates a second data stripe set 600, according
to an example. The second data stripe set 600 consists of a
subset of the data items stored 1n the data structure 402 that
are the second set of stripes 1n each bucket. In particular, the
second data stripe set 600 depicts the second stripe that 1s
defined for each bucket in the data structure 402. As 1llus-
trated, the second data stripe set 600 includes the first bucket
second stripe 451, the second bucket second stripe 453, the
third bucket second stripe 455, and the fourth bucket second
stripe 457. In an example, a single processor that 1s different
from the processor performing a radix sort of the first data
stripe set 300 1s used to perform radix sorting on the data
items contained in the stripes that make up the second data
stripe set 600. Dividing the data contained 1n each bucket of
the data structure 402 into different sets of stripes that do not
overlap each other, and processing each of those sets of
stripes with a different processor allows parallel processing
of radix sorting of data stored in the data structure 402
without 1incurring data access contlicts or contentions
between the two processors.

The second data stripe set 600 also 1llustrates processing,
that addresses a condition that 1s able to be encountered
during parallelized radix sorting processing. Although the
buckets defined for the data structure 402 are properly sized
based on the histogram described above, the stripes are
defined based on speculation about the number of data 1tems
that would be placed 1n each stripe when the data items in
the stripe set 1s sorted. Because the distribution of key values
of the data items that are initially within each stripe of a
stripe set 1s not known betfore hand 1t 1s possible that a stripe
in a particular bucket will not be large enough to all of the
data items from the other stripes that have keys associated
with the bucket of that particular stripe. Processing per-
formed by one example to accommodate the condition of a

US 9,823,896 B2

13

stripe being unable to accept additional data items during a
radix sort of the stripe set 1s described below.

The first bucket second stripe 451 1s shown to have a first
falled data item 610. In this example, the first failed data
item 610 has a key value of “4” and therefore should be
placed into the fourth bucket 416. In this example, when the
radix sort processing ol data items in the first bucket second
stripe 451 encounters the first failed data 1item 610, the fourth
bucket second stripe 457 1s already full of data 1items having,
the key associated with the fourth bucket and therefore
cannot accept the first failled data item 610. The fourth
bucket second stripe 457 1s determined to be unable to
accept turther data items by noting that the fourth bucket
second stripe head pointer pt,” is equal to the tail pointer
ph,”.

In order to accommodate this condition, the radix sort
processing ol some examples maintains a process head
pointer 606 that points to the data item currently being
processed by the radix sort processing, 1.e., the radix sort
processing examines the value of the key in the data item
pointed to by the process head pointer 606. Initially, when
the radix sort processing begins processing a stripe, the
process head pointer 606 1s set equal to head pointer of that
stripe. For example, when the radix sort processing begins
processing the first bucket second stripe 451, the process
head pointer 606 1s set to be equal to the first bucket second
stripe head pointer 602, which at the beginning of that stripe
at that time. As data i1tems are processed, the process head
pointer 606 and the first bucket second stripe head pointer
602 advance together as data items are placed into their
proper stripes so that they are located 1n their proper bucket
and will be properly sorted according to the value of the key
in each data i1tem. If a stripe that 1s to recerve a data item
encountered by the radix sort processing becomes full and
thus unable to receive that data item, the radix sort process-
ing 1n one example leaves that data item, such as the first
failed data 1tem 610, 1n 1ts original location and the process
head pointer 606 1s incremented so as to process the next
data 1tem. In this situation, the first bucket second stripe head
pointer 602 1s not incremented and continues to point to the
first failed data item 610. This 1s the condition depicted by
the second data stripe set 600, where the first bucket second
stripe head pointer 602 1s left pointing to the first failed data
item 610, but the process head pointer 606 1s advanced to the
next data item 1n the first bucket second stripe 451. By
leaving the first bucket second stripe head pointer 602
pointing to the first failled data item 610, the first bucket
second stripe head pointer 602 will continue to point to a
data 1tem that has to be processed according to the radix sort
processing, and the condition 1s satisfied that data items
preceding the first bucket second stripe head pointer 602 are
in the proper bucket according to the sort. In a parallelized
radix sort 1n one example, as a new data 1tem 1s encountered
at the process head pointer 606 that has the proper key for
the bucket being processed, either by being mitially located
there or swapped into that location according to a radix sort
process, that new data item 1s swapped with the first failed
data item 610 and both the process head pointer 606 and the
first bucket second stripe head pointer 602 are incremented.

FIG. 7 illustrates an in-place partial bucket radix sort
process 700, according to an example. The mn-place partial
bucket radix sort process 700 1s an example of a process that
performs permuting of data items within one stripe of a data
stripe set 1n order to sort the data items according to a key
value 1n the data 1tem. As discussed above, a data stripe set
1s part of a data set to be sorted according to a radix sort,
where the data stripe set includes one stripe, which 1s part of

10

15

20

25

30

35

40

45

50

55

60

65

14

cach bucket, from each bucket. The m-place partial bucket
radix sort process 700 1s an example of a process to perform
radix sort processing on a stripe defined within buckets of a
data set as 1s described above. The in-place partial bucket
radix sort process 700 1s an example of a process that
operates on one stripe within the second data stripe set 600,
as 1s described above, to move data items into the stripes
within the second data stripe set 600 that are in the proper
bucket based on the value of the key being sorted. The
in-place partial bucket radix sort process 700 operates on a
stripe within a data set, such as the data structure 402 that 1s
depicted and described 1n FIGS. 4 and 6, that has buckets
defined for each value of the key upon which data items are
being sorted, and each bucket 1s further divided 1nto stripes
that have pointers defining the head and tail of each stripe.
After the 1llustrated partial bucket radix sort stripe process 1s
complete, the next stripe 1n the data stripe set, such as 1n the
second data stripe set 600, 1s processed until all stripes 1n the
stripe data set have been processed.

The m-place partial bucket radix sort process 700 allows
a single processor to perform a radix sort on part of a data
set that 1s to be sorted. Multiple processors are able to be
assigned to different portions of the data to allow scalability
by eflicient parallelization of the sort processing. The partial
bucket radix sort process incorporates various features to
accommodate the speculative permutation whereby each
bucket 1s speculatively divided into stripes to allow parallel
processing of the separate stripes in each bucket. These
various features include: 1) determinming that the target
stripe, 1.€., the stripe 1n a bucket into which a data 1tem being
sorted 1s to be placed, 1s full 1n order not to overwrite
existing elements in that target stripe; 2) head pointer of each
stripe 1s only incremented 11 the data element being exam-
ined 1s 1n the correct bucket, thus ensuring that all data
clements to the right of the head pointer are located 1n the
proper bucket; and 3) all data items that are not located 1n the
correct bucket, either because they have not yet been pro-
cessed or because the stripe 1n the proper destination bucket
for those items was full, are between the head and tail
pointer for that stripe.

The 1n-place partial bucket radix sort process 700 begins
by setting, at 702, a process head pointer to the value of the
stripe head pointer for the stripe being processed. In one
example, a separate process head pointer 1s maintained to
accommodate certain aspects of partial bucket radix sorting,
as 1s described above. In general, the process head pointer 1s
the primary pointer used by the radix sorting process to
identify the data item’s key value and swap with data located
in the bucket associated with the key value of that data item.
An example of a process head pointer 1s described above as
the process head pointer 606 with regards to the second data
stripe set 600. In the following discussion, the pointers
defining the start of each stripe are referred to as stripe
pointers. In particular each stripe 1s said to have a stripe head
pointer, referred to by the nomenclature ph. -, and a stripe tail
pointer, reterred to by the nomenclature pt,”. In this nomen-
clature, “x” refers to the bucket number, 1.e., the value of the
key associated with that bucket, and “y” refers to the stripe
number for that bucket.

After setting the process head pointer to the value of the
stripe head pointer, a determination 1s made, at 704, if the
process head pointer 1s less than the stripe tail pointer. This
condition determines 11 the process head pointer has reached
the end of the stripe being currently processed. If this
condition 1s true, the processing of the current stripe is
complete and the processing moves to the next stripe in the
data stripe set 11 there are any. As shown, a determination 1s

US 9,823,896 B2

15

made, at 740, 1f there are more stripes to process. It there are,
the process advances, at 742, to the next stripe in the data
stripe set, such as the illustrated second data stripe set, and
returns to setting the process head pointer to the stripe head
pointer, at 702, as 1s described above.

Returming to the decision at 704, 11 the process head
pointer 1s determined to be less than the stripe tail pointer,
a variable “V” 1s set, at 706, to equal the value of the data
item stored in the location pointed to by the process head
pointer. A variable “K” 1s set, at 708, to equal the key value
of the data item 1n the variable “V,” which is also the bucket
into which that data item 1s to be placed in order to properly
sort the data set being processed.

A determination 1s made, at 710, 1f the value of K 1s not
equal to the value associated with the current bucket, and
also 1t the stripe 1n the bucket associated with the value of
K 1s full. The first part of this determination determines 1f K
1s not equal to the value associated with the currently
processed bucket, thereby indicating that the data item
pointed to by the process head pointer 1s to be moved 1nto
another bucket. The second part of this determination deter-
mines 1f there 1s room in the destination stripe for that data
item, which 1s the stripe of the particular data stripe set that
is in the K” bucket. In one example, the determination that
the stripe in the K” bucket is not full is made by determining,
that the stripe head pointer for the stripe in the K bucket is
not equal to the stripe tail pointer for that same stripe.

If the determination 1s true, then the data item i1s pointed
to by the process head pointer 1s to be swapped with the first
unprocessed data item within the stripe in the K” bucket.
The first unprocessed data item 1n that stripe 1s pointed to by
the stripe head pointer for that stripe. The process performs
this swap, at 712, by swapping the value 1n V with data in
the location pointed to by the stripe head pointer of the stripe
in the K bucket. The stripe head pointer of the stripe in the
K” bucket is incremented, at 714. The value stored in the
variable K 1s then set, at 716, to the value of the bucket
associated with, 1.e., the value of the key of, the data stored
the variable V. The process then continues to process the
data items by returning to the decision, at 710, that is
described above.

Returning to the decision at 710, it that decision 1s false,
the process determines, at 718, 11 the value 1n the vanable K
corresponds to the bucket being currently processed. It the
value 1n the variable K 1s determined to not correspond to the
current bucket, then the stripe 1n the destination bucket is
tull as 1s determined above, at 710. In one example, the
processing continues to process the data items 1n the stripe.
In the 1llustrated example, the data pointed to by the process
head pointer 1s set, at 730, to the value 1n the variable V, and
the process head pom‘[er 1s incremented, at 732. The process
then returns to processing the next data item, by determining,
if the strlpe 1s empty, at 704, and continuing with the
processing described above.

Returning to the decision at 718, i1f the value of K
indicates the current bucket, the current data item 1s 1n the
proper bucket and already sorted. In the 1llustrated example,
the process continues by swapping the values in the data
storage that are pointed to by the process head pointer and
the Stripe head pointer. This corresponds to placing a value
that 1s determined to be properly located in the current
bucket mto the location pointed to by the stripe head pointer.
This swapping also places the value pointed to by the
process head pointer at the location of the data 1item that had
just been processed. Under some conditions, the data item
pointed to by the stripe head pointer 1s a data 1tem that
belongs 1n another bucket but that was unable to be placed

10

15

20

25

30

35

40

45

50

55

60

65

16

into that bucket because the stripe 1n that bucket was full.
This swapping causes the misplaced data item to be moved
down the stripe, and will result 1n all misplaced data 1tems,
1.€., data 1tems that could not have been moved to the proper
bucket, being located between the stripe head pointer and the
stripe tail pointer. IT all encountered data 1tems are able to be
placed 1nto the proper destination buckets, then the stripe
head pointer and the stripe tail pointer will be equal to each
other at the end of processing this stripe. Placing these
misplaced data items at the end of the stripe reduces the
amount of some subsequent processing used to accommo-
date this characteristic of the in-place partial bucket radix
sort process 700.

This swapping of data 1s performed, 1f the value 1n K 1s
determined to be associated with the current bucket as
determined at 718, by first setting, at 720, data storage
pointed to by the process head pointer to the data pointed to
by the stripe head pointer. This swapping 1s then completed
by setting, at 722, data storage that 1s pointed to by the stripe
head pointer to the value 1n the variable V. The stripe head
pointer 1s incremented, at 724, and the process head pointer
1s incremented, at 726. The process then returns to process-
ing the next 1tem 1n the stripe, by determining 1f the process
head pointer 1s at the end of the stripe, at 704, and continuing
with the subsequent processing described above.

FIG. 8 illustrates a bucket repair permutation 800, accord-
ing to an example. As 1s described above, the m-place partial
bucket radix sort process 700 1s able to complete 1n a manner
that leaves unsorted data items at the end of each stripe. In
order to accommodate this condition, an example performs
processing to group together all of the unsorted data 1tems in
cach bucket so that these data items can be more efliciently
processed. The bucket repair permutation 800 1s an example
of an eflicient process to group the unsorted data items at one
location 1n each bucket, so that these groups can be sorted
into the correct buckets 1n order to complete sorting the data
set according to the current key. In an example, the bucket
repair permutation 800 1s able to be performed indepen-
dently on each bucket, thereby allowing multiple processors
to operate 1n parallel with one processor operating on each
bucket. Further, the bucket repair permutation 800 does not
operate on all elements 1n the bucket, but only those ele-
ments between the stripe head pointer and the stripe tail
pointer after each stripe 1s processed by the in-place partial
bucket radix sort process 700.

The bucket repair permutation 800 1llustrates a partially
sorted data set 802, which corresponds to the data structure
402 after the in-place partial bucket radix sort process 700
has been performed on all of the defined stripes. The
partially sorted data set 802 indicates the four buckets
described above, the first bucket 410, the second bucket 412,
the third bucket 414, and the fourth bucket 416, along w1th
the two stripes that are defined for each bucket. Each bucket
1s defined by two pointers, such as the first global head
pointer gh, 420 and the first global tail pointer gt, 421, the
second global head pointer gh, 422 and the second global
tail pointer gt, 423, the third global head pointer gh, 425 and
the third global tail pointer gt, 426, and the fourth global
head pointer gh, 428 and the second global tail pointer gt,
430, respectively, as 1s described above with regards to the
divided data set for parallel radix sorting 400. These pointers
are shown for the partially sorted data set 802. As 1is
discussed above, four buckets with two stripes per bucket 1s
illustrated 1n order to simplity the presentation of the rel-
evant concepts and i1n further examples, any number of
buckets that each contain any number of stripes 1s able to be
defined for a data set being sorted.

US 9,823,896 B2

17

The partially sorted data set 802 depicts five (5) regions
that contain unsorted data items. In the 1llustrated partially
sorted data set 802, the third bucket second stripe 828, the
tourth bucket first stripe 830, and the fourth bucket second
stripe 832 do not have unsorted data items. In an example,
some of the stripes that do not contain unsorted data items
were “filled” during the in-place partial bucket radix sort
process 700 and have only data items that belong in that
bucket based on the key value of those data 1tems. Because
some of these stripes were filled during the in-place partial
bucket radix sort process 700, there are unsorted data 1tems
left 1n the stripes of other buckets because those data 1tems
were not able to be moved into the stripe 1n the correct
bucket for those data items.

The partially sorted data set 802 1llustrates a first unsorted
data item group 810 that 1s the end of the first bucket first
stripe 820, a second unsorted data item group 812 that 1s the
end of the first bucket second stripe 822, a third unsorted
data 1item group 814 that 1s the end of the second bucket first
stripe 824, a fourth unsorted data item group 816 that 1s the
end of the second bucket second stripe 826, and a fifth
unsorted data item group 818 that 1s the end of the third
bucket first stripe 828.

In one example, a bucket repair process 1s performed on
the partially sorted data set to group together all of the
unsorted data items 1n each bucket. The bucket repair
permutation 800 depicts a repaired data set 804, which
illustrates a first bucket unsorted data group 840 that con-
tains the data items of the first unsorted data item group 810
and the second unsorted data item group 812. A second
bucket unsorted data group 842 contains the third unsorted
data 1item group 814 and the fourth unsorted data item group
816, and a third bucket unsorted data group 844 contains the
fifth unsorted data item group 818.

In order to support iterative execution of the in-place
partial bucket radix sort process 700 upon the unsorted data
groups, the pointers defining the head and tail of each bucket
are adjusted to point to the first and last data 1item of the
unsorted data group in each bucket. As depicted 1n the
repaired data set 804, the first global head pointer gh, and the
first global tail pointer gt, 421 have been adjusted to point
to the first data item 1n the first bucket unsorted data group
840, the second global head pointer gh, and the second
global tail pointer gt, have been adjusted to point to the first
data item 1n the second bucket unsorted data group 842, and
the third global head pointer gh, and the third global tail
pointer gt, have been adjusted to point to the first data item
in the third bucket unsorted data group 844. The fourth
bucket 416 1n this example has no unsorted data items, and
therefore the global head pointer gh, points to the same
location as the second global tail pointer gt, to indicate that
the bucket 1s fully sorted and no further processing is
required.

FIG. 9 1llustrates a bucket repair process 900, according
to an example. The 1llustrated bucket repair process 900 1s
an example of process to group unsorted data items within
cach bucket, such as 1s described above with regards to the
bucket repair permutation 800. Once the unsorted data 1tems
are grouped together in each bucket, these data items are
able to be more etliciently sorted and placed i1n the correct
bucket to complete sorting of the data set.

In an example, the bucket repair process 900 1s performed
independently on each bucket. The independence of the
processing of each bucket allows the bucket repair process
900 to be performed on each of two or more buckets by
different processors operating in parallel. Such paralleliza-
tion of the bucket repair process by the independent pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

cessing of each bucket allows eflicient utilization of parallel
processing to increase the performance of this stage of data
item sorting.

The bucket repair process 900 begins by setting, at 902,
a process tail pointer to the value of the bucket tail pointer.
In an example, the bucket repair process maintains a sepa-
rate process tail pointer to point to the last item 1n the bucket
being processed. A process head pointer 1s then set, at 904,
to the value of the stripe head pointer of the stripe being
processed. As discussed above, after performing the in-place
partial bucket radix sort process 700, the stripe head pointer
ol each stripe points to the start of the unsorted data item
group in that stripe. In an example, the bucket repair process
maintains a separate process head pointer to point to the first
item 1n the bucket being processed.

The process determines, at 906, if the process head
pointer 1s less than the stripe tail pointer and 1f the process
head pointer 1s less than the process tail pointer. This
determination 1ndicates that the bucket repair process 1s not
completed for that bucket when these conditions are true. If
this determination 1s not true, the processing of this bucket
ends by setting, at 924, the bucket head pointer to the
process tail pointer. When these conditions are true, a
variable 1s set, at 908, to the value of the data item pointed
to by the process head pointer and the process head pointer
1s incremented, at 910. A determination 1s then made, at 911,
if the proper bucket for the data item 1n the vanable “V™ 1s
not the current bucket being processed. 11 this determination
1s not true, the processing of this bucket ends by setting, at
924, the bucket head pointer to the process tail pointer.

Returning to the decision at 911, 11 the determination 1s
true, a determination 1s made 1f the process head pointer 1s
less than the process tail pointer, at 912. If this determination
1s not true, the processing of this bucket ends by setting, at
924, the bucket head pointer to the process tail pointer. If this
determination 1s true, the process tail pointer 1s decremented,
at 914 and a variable W 1s set equal to data pointed to by the
process tail pointer, at 916. A determination 1s made 11 the
proper bucket for the data stored in the variable W 1s the
current bucket. It this determination 1s not true, the process-
ing of this bucket ends by setting, at 924, the bucket head
pointer to the process tail pointer. If this determination 1s
true, the value in the varniable W 1s stored 1n a location
preceding the location 1n the data structure pointed to by the
process head pointer, 1.e., the location at the process head
pointer—1, at 920. The data stored 1n the variable V 1s then
stored 1n the location pointed to by the process tail pointer,
at 922. The process then returns to determine, at 906, if the
process head pointer 1s less than the stripe tail pointer and
the process head pointer 1s less than the process tail pointer,
as 1s described above.

FIG. 10 illustrates a parallel radix sort process 1000,
according to an example. The parallel radix sort process
1000 depicts an example of a complete data set sorting
process that includes the in-place partial bucket radix sort
process 700 and the bucket repair process 900, described
above.

The parallel radix sort process 1000 begins by receiving,
at 1002, a data set. The data set 1s able to be received 1n any
suitable manner. In various examples, the received data set
1s able to be completely stored in a random access memory
accessible to a processor, or parts of the data set 1s able to
be stored 1in an external data storage whose contents 1s
selectively brought 1nto the local processing memory of the
processor for processing.

A histogram 1s generated, at 1004. As discussed above
with regards to the example histogram generation 300, a

US 9,823,896 B2

19

histogram 1n this context 1s a count of the number of data
items that have each key value. In general, multiple proces-
sors are able to execute the processing 1n parallel to generate
this histogram. For example, the received data set 1s able to

be divided into a number of portions equal to the number of 53

processors, and each processor 1s assigned one portion
where the processor counts the number of each key value
occurring in the portion assigned to 1t. After each processor
determines the histogram data for its portion of the received
data, these histogram values are added to determine a
composite histogram for the entire received data set.

Pointers to indicate the start and end of each bucket, based
on the histogram data, are define, at 1006. As described
above, for each key on which the data items in the received
data set 1s to be sorted, pointers are able to be defined that
indicate where changes in the key values 1n the sorted data
items will occur.

Each bucket 1s then divided, at 1008, into stripes, which
are non-overlapping portions of each particular bucket. At
least on stripe 1n each bucket 1s then assigned, at 1010, to a
first processor.

At least one other stripe in each bucket 1s then assigned,
at 1012, to a second processor. Dividing buckets imto mul-
tiple stripes and assigning at least one stripe 1n each bucket
to a separate processor 1s discussed above with regards to the
divided data set for parallel radix sorting 400. Once these
non-overlapping stripes are assigned to different processors,
cach processor 1s able to performing an in-place partial
bucket radix sort process 700 on the stripes assigned to it, as
1s described above with regards to the first data stripe set 500
and the second data stripe set 600. In the 1llustrated parallel
radix sort process 1000, the first processor and the second
processor each perform a partial bucket radix sort, at 1014,
on the stripes assigned to them.

After each processor performs a parallel radix sort process
on the stripes assigned to 1t, a bucket repair process 1s
performed, at 1015. The bucket repair process in this
example groups together all of the unsorted data items 1n
cach bucket so that subsequent processing 1s able to properly
place these data items into the proper bucket to complete
sorting on the current key. In an example, the above
described bucket repair process 900 1s performed.

After performing a bucket repair process, there may be
unsorted data items at the end of each bucket. The bucket
head pointer and the bucket tail pointer are set, at 1016, to
include only the unsorted data items, which were grouped by
the bucket repair process. A determination 1s made, at 1017,
to determine 1f all data buckets have been sorted. As
described above, once the bucket repair process 1s finished
some buckets are able to have unsorted 1tems remaining, but
those unsorted 1tems will be grouped together, such as at the
end of the bucket. If 1t 1s determined that the buckets are not
all sorted, such as 1s able to be determined by determining
i any bucket head pointer 1s not equal to the bucket tail
pointer for that bucket, the process sorts those unsorted data
items. In one example, the process performs an in-place
partial bucket radix sort process 700 on the remaining
unsorted data items. In the illustrated example, the process
returns to dividing, at 1008, each bucket, as defined by the
bucket head pointer and the bucket tail pointer for that
bucket, into stripes. This 1s not the full bucket, but only those
data items 1n each bucket that 1s unsorted.

After repair of the buckets and determining that all
buckets are completely sorted, the data set 1s properly sorted
according to the current key. In order to completely sort the
received data set, each bucket for the currently sorted key 1s
recursively sorted according to the next key value. This

10

15

20

25

30

35

40

45

50

55

60

65

20

recursive sorting continues until the received data set 1s
completely sorted according to all of the applicable keys,
such as digits 1n a number. In the example parallel radix sort
process 1000, processors are assigned, at 1018, to perform
parallel radix sort processes for subsequent keys. In some
examples, alter the data 1s sorted into buckets according to
a first key, only a subset of those buckets are selected for
sorting according to a subsequent key by a parallel radix sort
process. Other buckets are sorted according to, for example,
another i-place radix sorting algorithm. The parallel radix
sort processes are then recursively performed, at 1020, for
cach subsequent key. The parallel radix sort process 1000
then ends.

FIG. 11 illustrates a second key radix sort 1100, according,
to an example. The second key radix sort 1100 depicts a data
set 1102 after completing an 1in-place radix sort according to
a first key. The second key radix sort 1100 1llustrates the data
buckets defined for the first key radix sort, such as 1s
described above with regards to FIGS. 3 and 4. In the
context of the second key radix sort 1100, the four buckets
defined for the first level key, 1.e., the first bucket 410, the
second bucket 412, the third bucket 414, and the fourth
bucket 416, have been sorted according to the first sort key,
such as the most significant digit of numbers 1n the data set,
but the contents of these buckets are not sorted with regards
to a next level key, such as the next most significant digit of
those numbers. As part of the sorting process, the sorting
process recursively sorts the contents of each bucket accord-
ing to subsequent keys, until the data has been stored
according to all keys.

In order to more clearly describe relevant aspects depicted
by this figure, the second bucket 412 1s much larger than the
other buckets. This reflects that there are more data items
that have a key value associated with the second bucket 412
than with other buckets. In this example, i1t 1s further
assumed that the next level key i1s also able to have four
values, and therefore the sorting of data within each bucket
1s also performed by an in-place radix sort that will place
data 1tems into one of four lower level buckets that are
defined within each bucket of the higher order key.

In order to more efliciently sort the data items 1n the larger
second bucket 412 1n this example, the data items within the
second bucket 412 are processed by multiple processors
operating 1n parallel according to the above described 1n-
place partial bucket radix sort process 700. The second
bucket 412 1s shown to be divided into four low level
buckets, a first lower level bucket 1110, a second lower level
bucket 1112, a third lower level bucket 1114, and a fourth
lower level bucket 1116. Each of these lower level buckets
1s show to be further divided into two stripes. The first lower
level bucket 1110 1s divided into the first lower level bucket
first stripe 1120 and the first lower level bucket second stripe
1122. The second lower level bucket 1112 1s divided nto the
second lower level bucket first stripe 1124 and the second
lower level bucket second stripe 1126. The third lower level
bucket 1114 1s divided into the third lower level bucket first
stripe 1128 and the third lower level bucket second stripe
1130. The fourth lower level bucket 1116 1s divided into the
fourth lower level bucket first stripe 1132 and the fourth
lower level bucket second stripe 1134. A parallel radix sort
process, such as the in-place partial bucket radix sort process
700 described above, 1s executed on these four lower level
buckets to sort the data therein based upon the second level
key of the data. In one example, sorting the data in the other
buckets according to the second level key, such as the data
in first bucket 410, the third bucket 414, and the fourth

bucket 416 1s able to be performed by other techniques, such

US 9,823,896 B2

21

as more conventional in-place radix sorting. In further
examples, the data 1n some or all of the other buckets is also
able to be sorted according to a parallel radix sort process,
such as the m-place partial bucket radix sort process 700. In
one example, the selection of processing a lower level
bucket 1s based upon the number of data 1tems within the
bucket and, for example, a judgment according to various
defined rules that a parallel radix sort 1s to be applied instead
of, for example, a conventional in-place radix sort or other

sort algorithm.

FI1G. 12 1llustrates a second level key radix sort processing,
distribution 1200, according to an example. The second
level key radix sort processing distribution 1200 depicts an
example of performing radix sorting on a second key, or a
subsequent key after the first key, of data items. Radix
sorting on the first key of data items in a data set, such as by
sorting according to the most significant digit of a number,
requires accessing all data items 1n the data set 1n order to
swap data 1tems into the correct bucket. Once the data items
are sorted according to the first key, the data in each bucket
defined by the first key values are able to be sorted 1nde-
pendently of data in other buckets defined by the first key.
This independence i1s true for performing radix sorting
according to all keys except the first key of the sort. In order
to improve the performance of data sorting atter the data set
1s sorted according to the first key, one example allocates
one or more buckets to each available processor according
to a number of 1tems to sort 1n each bucket.

The second level key radix sort processing distribution
1200 depicts a data set 1202 that has four defined buckets,
a first bucket 1210, a second bucket 1212, a third bucket
1214, and a fourth bucket 1216. A bucket data 1item count
1204 depicts a relative number of data items 1n each bucket,
with a first bucket count 1220, a second bucket count 1222,
a third bucket count 1224, and a fourth bucket count 1226.
In this 1llustration, the first bucket count 1220 indicates that
the first bucket 1210 has a much higher first bucket count
1220, and therefore has many more data items than the other
buckets. The fourth bucket 1216 1s shown to have a fourth
bucket count 1228 that 1s a bit larger than the second bucket
count 1222 and the third bucket count

In order to more efliciently perform sorting of the data in
the data set 1202 according to the second key by multiple
processors, each processor 1s assigned one or more buckets
to perform radix of data based on keys other than the first
key after the second key based on the number of data 1tems
in each bucket. In the illustrated example, first bucket 1210
has a relatively large number of data items, so one processor,
processor 1 1240 1n this example, 1s assigned to perform a
subsequent radix sort on the data with in first bucket 1210.
The second bucket 1212 and the third bucket 1214 each have
a relatively small number of data 1tems, and the radix sort on
the subsequent key 1n those buckets 1s anticipated to require
fewer processing resources, e€.g., will take less processing
time, to perform. Therefore, one processor, 1.e., processor 2
1242 1n this example, 1s assigned to perform the radix sort
on both the second bucket 1212 and third bucket 1214.
Processor 2 1242 1s able to process these two buckets either
sequentially, e.g., processing the second bucket 1212 first
tollowed by processing the third bucket 1214, or the pro-
cessor 1s able to perform the tasks 1n parallel through known
techniques. In the illustrated example, the fourth bucket
1226 1s shown to have more data items than either the first
bucket or the second bucket, so one processor, processor 3
1244 1n this example, 1s assigned to perform the sort on the
subsequent keys 1n that bucket.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

The above assignment of processors to individual buckets
1s one design choice available for performing parallel pro-
cessing of sorting on subsequent data keys, where individu-
ally processing each bucket 1s by a separate processor 1s a
practical option given the independent nature of sorting the
data in these buckets. In another example, buckets are not
assigned to specific processors, but each processor beings by
processing bucket that has not yet been processed, and after
completing the sort based on the subsequent key in that
bucket, moves to the next bucket that has not been pro-
cessed. Fach processor sequentially processes buckets 1n
this example until all buckets are sorted.

In another example, sorting a bucket according to a
subsequent key that has a that has a large number of data
items 1s able to be performed by assigning multiple proces-
sors to that bucket, where each processor performs a parallel
radix sort process 1000, as 1s described above. Designs of
systems to allocate multiple processors to perform sorting on
subsequent keys within buckets 1s able to base such deci-
sions on, for example, heuristics regarding performance of
parallel radix sort processes on data sets of various sizes
relative to performing a conventional radix sort on the data,
or any other critena.

FIG. 13 illustrates a large data item 1300, according to an
example. The performance of any in-place radix sorting
method 1s 1mproved by retaining as many data items as
possible 1n the local memory of a processor, which 1s often
limited. As the size of each data item increases, fewer data
items are able to be stored in the local memory of the
processor, and more data items are then stored 1n so called
external storage, which 1s able to be a lower performance
storage media such as hard drive storage. Storing more data
items 1n external storage involves, for example, swapping
data from the local memory of the processor with data stored
in the external storage, which degrades processing perfor-
mance.

In one example, the data items of a data set which 1s to be
sorted by a radix sorting process, such as by the above
described parallel radix sort process 1000, the data items
stored within the data structure are divided into two portions,
a first portion that contains some or all of the keys upon
which data will be sorted, and a second portion that 1s also
able to store other keys as well as other data that 1s not used
as a basis for sorting the data items. In various examples, the
first portion 1s able to be stored in local memory of a first
processor, which 1n one example 1s memory that 1s locally
accessible by the first processor that 1s the processor per-
forming an in-place radix sort. In one example, local
memory 1s able include one or both of a cache memory or
a random access memory that 1s readily accessible by the
processor. The second portion 1s able to be stored in any
suitable location or data storage device or structure. For
example, the second portion 1s able to be stored 1n external
memory or 1n a data structure or block 1n external memory
or storage device.

The 1llustrated large data item 1300 1n this example 1s one
data 1tem of a large number of similar data items that are
stored 1n a data structure and which will be sorted according
to the key value 1n each data item. The 1llustrated large data
item 1300 depicts a first portion 1302 that includes a number
of keys that will be used to sort the data 1tem, and a second
portion 1304 that, in this example, stores additional keys and
also contains additional data 1318 that 1s part of the data
item but not used as a basis for sorting the data. In further
examples, the second portion 1304 1s able to not contain

US 9,823,896 B2

23

additional data 1318 and all data stored in the first portion
1302 and the second portion 1304 are key values upon which
the data will be sorted.

The first portion 1302 1ncludes a first set of keys which 1n
this example includes a number of key values such as the
“N” keys depicted as the first set of keys including a key 1

1310, akey 2 1312, through a key N 1314. These key values
are the keys that will be sequentially processed to perform
a radix sort on a multitude of large data items 1300. The first
portion 1302 further includes a pointer 1316, which 1ndi-
cates, such as by pointing to, the second portion 1304. In
various examples, the pointer 1316 1s able to be 1mple-
mented through a variety of mechanisms. In one example,
the pointer 1316 1s able to be a direct memory address in
external memory. In another example, the pointer 1316 1s
able to be an 1dentifier that locates the second portion 1304
within a data structure/block in external memory, mn a
storage device, or in combinations of these. Also, the pointer
1316 1s able to refer to a separate data structure than that
containing the first portion 1302, portions of the same data
structure containing the first portion 1302, or indicate data
stored 1n any suitable storage device. In general, the pointer
1316 1s able to implement any suitable method of indicating
a second portion of a data item.

The second portion 1304 includes a second set of keys,
which m this example 1s a number of additional keys such
as the “M” keys including a key N+1 1320 through a key
N+M 1322. The second portion further includes the addi-
tional data 1318 that 1s not used as a basis for sorting these
data items.

In performing a radix sort on a data structure containing
a number of large data 1items 1300, the radix sort first sorts
the data 1tems according to the keys stored 1n the first portion
In one example, a processor 1s able to be configured to store
only the first portion 1302 1n 1ts local memory, and store the
second portion 1304 1n external memory. When sorting the
large data item 1300 according to keys stored in the first
portion 1302, the data in the second portion 1304 is not
accessed and does not have to occupy the local storage
memory of the processor. By storing the second portion
1304 1n external memory, the relevant portions of more data
items are able to be stored in the local memory of the
processor and the amount of unnecessary data permutation
can be reduced. Because more data items are stored in the
more ethiciently accessed local memory, the performance of
a sorting process sorting a data set containing large data
items 1300 1s able to be increased.

When sorting a data set containing large data items 1300
that include keys stored 1n the second portion 1304, various
processing techniques are able to be used to efliciently
access the keys stored 1n the second portion 1304. After the
data items are sorted according to the keys stored in the first
portion 1302, 1n some examples the data structure storing the
large data items 1300 1s able to be modified to store, for
example, the additional keys that are stored in the second
portion 1304 within the local memory of the processor. In
some examples, the data storage for each data item 1in the
processor’s local storage 1s able to be increased to hold the
additional keys, or the value of the keys stored the first
portion 1302 and the second portion 1304 are able to be
swapped for purposes of performing sorting on the addi-
tional keys. In an example, the keys including key N+1 1320
through key N+M 1322 are able to be swapped with the
same number of keys stored in the first portion 1302 for
purposes of sorting on those additional keys. After sorting on
the additional keys 1s completed, those key values are able

10

15

20

25

30

35

40

45

50

55

60

65

24

to be swapped again to restore the original contents of each
large data item 1300 for further processing.

FIG. 14 1llustrates a large data item data structure 1400
according to an example. The large data item data structure
1400 depicts a number of large data 1items, which are similar
to the above described large data 1tem 1300. In the large data
item data structure 1400, each large data 1tem includes a first
portion 1406 that 1s stored 1n a local memory 1402, and a
second portion 1408 that 1s stored 1n an external memory
1404. In this example, the large data item data structure
stores data 1tems 1nto a data storage 1450 that includes both
the local memory 1402 and the external memory 1404. In
various examples, external memory refers to memory that 1s
not immediately accessible by a particular processor. In
contrast, local memory for a particular processor 1s more
readily accessible by that particular processor. For example
in some virtual memory systems, each processor has a local
cache that 1s directly accessible, with the complete set of
data that 1s able to be used by a processor stored on a
secondary storage system such as a mechanical hard drive.
In such examples, cache memory for a particular processor
1s a local memory while the secondary storage on a mechani-
cal hard drive 1s external storage. In various examples,
system Random Access Memory (RAM) from which cache
memory 1s drawn 1s able to be considered either local
memory or external storage based upon the processing
architecture and structure of a particular system and appli-
cation;

The first portion 1406 1n this example includes the first set
of keys, which are the keys upon which the data 1tems 1n the
large data 1tem structure 1400 will be mtially sorted,
including a key 1 1420, a key 2 1422 through an N key
1424. The second portion 1408 of each data item contains a
second set of keys 1440 and additional data 1442 that 1s not
used for sorting the data items, as 1s described above for the
large data item 1300. The second set of keys 1440 in this
example 1s able to contain any number of additional keys
that are able to be used to further sort the data items in the
memory. For clarity of illustration, only one additional key
in the second set of keys 1440 1s shown, although 1t 1s clear
that any number of additional keys 1s able to be stored 1n the
second set of keys 1440. In further examples, the second
portion 1408 does not contain additional keys and all of the
data i1tems are sorted based only upon the first set of keys
stored 1n the first portion 1406. In one such example, the
second portion 1408 only contains additional data 1442 that
1s not used to sort the data items 1n the memory

The 1llustrated first portion 1406 of each data item 1s all
stored 1n a local memory 1402 of one or more processors.
The local memory 1402 shows a first large data 1tem 1410,
a second large data item 1412, and an M? large data item
1414. Storing these smaller relevant portions of larger data
items, 1.e., the portions relevant to the current keys being
processed for an 1n-place radix sort, 1n a processor’s local
memory 1402 reduces the amount of data permutation 1n the
processor’s local memory and improves the performance of
performing a radix sort on these data.

The first portion 1406 of each data i1tem stored in local
memory 1402 further includes a respective pointer 1426 for
cach data item. This pointer indicates an additional data 1tem
that 1s stored 1n a second portion 1408 of each data item. The
first data 1tem 1410 1s shown to have a pointer indicating
data 1 1430, the second data 1item 1412 1s shown to have a
pointer indicating data 1 1432, the M” data item 1414 is
shown to have a pomnter indicating data M 1434. The
illustrated structure where the first portion 1406 of each
large data item has a pointer indicating the additional data

US 9,823,896 B2

25

for that large data item, performing a radix sort by only
moving the data elements in the first portion 1406 obviates
also moving the data stored 1n the second portion 1408 of
those data items, since the pointers 1426 will continue to
point to the proper location of the respective second portion
1408 of that data item after the first portion has been moved
in the data storage to achieve proper sorting ol values
according to the value of the keys 1n that data item.

FI1G. 15 illustrates a large data 1tem in-place partial bucket
radix sort process 1500, according to an example. The large
data 1tem in-place partial bucket radix sort process 1500 1s
a process by which an m-place partial bucket sort algorithm,
such as 1s described above, 1s able to be etfliciently imple-
mented with data items that include large data items. In one
example, the large data item in-place partial bucket radix
sort process 1500 operates on data 1items that include large
data items such as the large data item 1300 described above
are stored 1n a memory architecture such as data storage

1450 that includes local memory 1402 and external memory
1404.

The large data item in-place partial bucket radix sort
process 1500 begins by storing, at 1502, data i1tems 1nto
memory where each data item has a respective first portion
with a respective first set of keys that 1s stored 1n a local
memory, and a respective second portion with a respective
second set of keys that 1s stored 1n an external memory. At
least one data stripe set comprising at least one stripe in each
in-place radix sort bucket defined in the memory 1s defined,
at 1504. An 1n-place partial bucket radix sort using an 1nitial
key stored 1n the respective first portion of each data item 1s
performed, at 1506.

A decision 1s made, at 1508, to determine 11 there are any
keys 1n the respective second portion of the data items. If this
determination 1s true, the respective first set of keys 1n the
local memory 1s swapped, at 1510, with the second set of
keys 1n external memory for each data item. An in-place
partial bucket radix sort on the second set of keys now
located 1n local memory 1s performed, at 1512. After the
in-place partial bucket radix sort, the respective second set
of keys now m the local memory 1s swapped, at 1514, with
the first set of keys now in external memory for each data
item.

After the swap, at 1514, or in the case of determining that
there are no keys 1n the respective second portions of the
data 1items, at 1508, the sorted data i1tems are produced, at
1516, in the memory as an output of the large data item
in-place partial bucket radix sort process 1500. The process
then ends.

Information Processing System

Referring now to FIG. 16, this figure 1s a block diagram
illustrating an imnformation processing system 1600 that can
be utilized 1 various examples of the present disclosure.
The information processing system 1602 1s based upon a
suitably configured processing system configured to imple-
ment one or more embodiments of the present disclosure.
Any suitably configured processing system can be used as
the information processing system 1602 1n embodiments of
the present disclosure. In another embodiment, the informa-
tion processing system 1602 1s a special purpose information
processing system configured to perform one or more
embodiments discussed above. The components of the infor-
mation processing system 1602 can include, but are not
limited to, one or more processors or processing units 1604,
a system memory 1606, and a bus 1608 that couples various
system components including the system memory 1606 to
the processor 1604.

10

15

20

25

30

35

40

45

50

55

60

65

26

The bus 1608 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (IMCA) bus, Enhanced ISA
(EISA) bus, Video FElectromics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

The system memory 1606 can also include computer
system readable media 1n the form of volatile memory, such
as random access memory (RAM) 1610 and/or cache
memory 1612. The information processing system 1602 can
further include other removable/non-removable, volatile/
non-volatile computer system storage media. By way of
example only, a storage system 1614 can be provided for
reading from and writing to a non-removable or removable,
non-volatile media such as one or more solid state disks
and/or magnetic media (typically called a “hard drnive™). A
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such stances, each can be connected to the bus 1608 by
one or more data media interfaces. The memory 1606 can
include at least one program product having a set of program
modules that are configured to carry out the functions of
various examples described above.

Program/utility 1616, having a set of program modules
1618, may be stored 1n memory 1606 by way of example,
and not limitation, as well as an operating system, one or
more application programs, other program modules, and
program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
1618 generally carry out the functions and/or methodologies
of the above described processes and systems.

The information processing system 1602 can also com-
municate with one or more external devices 1620 such as a
keyboard, a pointing device, a display 1622, and the like.
The information processing system 1602 1s further able to
communicate with one or more devices that enable a user to
interact with the information processing system 1602; and/or
any devices (e.g., network card, modem, etc.) that enable
computer system/server 1602 to communicate with one or
more other computing devices. Such communication can
occur via I/O mterfaces 1624. Still yet, the information
processing system 1602 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 1626. As depicted, the network
adapter 1626 communicates with the other components of
information processing system 1602 via the bus 1608. Other
hardware and/or software components can also be used in
conjunction with the information processing system 1602.
Examples include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems.

Non-Limiting Examples

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)

US 9,823,896 B2

27

having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers, and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program 1nstructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting or either
source code or object code written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instruc-
tions may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider). In some embodiments, electronic circuitry includ-
ing, for example, programmable logic circuitry, field-pro-
grammable gate arrays (FPGA), or programmable logic
arrays (PLA) may execute the computer readable program
instructions by utilizing state information of the computer

10

15

20

25

30

35

40

45

50

55

60

65

28

readable program instructions to personalize the electronic
circuitry, in order to perform aspects of the present inven-
tion.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-

ucts according to embodiments of the mvention. It will be

understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are mtended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used 1n this specification, specily the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence

US 9,823,896 B2

29

or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
The description of the present mvention has been pre-
sented for purposes of 1llustration and description, but 1s not
intended to be exhaustive or limited to the mvention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without depart-
ing from the scope and spirit of the invention. The embodi-
ment was chosen and described 1n order to best explain the
principles of the invention and the practical application, and
to enable others of ordinary skill 1n the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What 1s claimed 1s:

1. A data set sorting apparatus, comprising:

a multiple processor computing apparatus, each processor
in the multiple processor computing apparatus having a
respective local memory;

an external memory coupled to the multiple processor
computing apparatus;

a data sorting processor, coupled to the multiple processor
computing apparatus and the external memory, the data
sorting processor configured to:

divide a memory containing a plurality of data items 1nto
a plurality of buckets for an in-place radix sort, each
bucket being associated with a respective key value;

identify, within each bucket of the plurality of buckets, a
respective plurality of stripes;

define a plurality of stripe sets, each data stripe set
comprising one respective stripe within each respective
bucket of the plurality of buckets, the plurality of stripe
sets comprising at least a first stripe set and a second
stripe set that 1s separate from the first stripe set;

store a respective first portion of each data item within the
first stripe set mto a data storage comprising a local
memory ol a first processor in the multiple processor
computer apparatus:

store a respective first portion of each data item within the
second stripe set into a data storage comprising a local
memory of a second processor in the multiple processor
computer apparatus;

store a respective second portion of the each data item 1n
the plurality of data items into the external memory,
cach respective second portion comprising a respective
second set of keys and 1s stored separately from the
respective first portion of the each data 1tem, and each
respective first portion comprising a respective first set
of keys and a pointer indicating the respective second
portion;

perform, with the first processor, an 1in-place partial
bucket radix sort using an initial key on data items
contained within the first stripe set;

perform, with the second processor, an in-place partial
bucket radix sort using the inmitial key on data items
contained within the second stripe set;

group, 1n each bucket after performing the in-place partial
bucket radix sort, incorrectly sorted data items into a
respective 1ncorrect data 1tem group within each
bucket, the incorrectly sorted data items comprising
data items within a first bucket but having a respective
key value associated with a different bucket;

perform a radix sort using the initial key on the items
within the respective incorrect data item group; and

produce a first level sorted output comprising the plurality
of data items within the data storage sorted according
to the mnitial key.

10

15

20

25

30

35

40

45

50

55

60

65

30

2. The data sorting apparatus of claim 1, the data sorting
processor further configured to perform, subsequent to pro-
duction of the first level sorted output, a subsequent in-place
radix sort using at least one key within the respective second
set of keys within each data 1tem of the first stripe set and the
second stripe set.

3. The data sorting apparatus of claim 2, the data sorting,
processor further configured to perform the subsequent
in-place radix sort with the first processor, and wherein the
respective second set of keys within each data item of the
first stripe set and the second stripe set are stored within
memory external to the first processor and the second
Processor.

4. The data sorting apparatus of claim 2, the data sorting
processor further configured to:

swap, prior to performance of the subsequent in-place

radix sort and for each data item within the first stripe
set and the second stripe set, at least a portion of the
respective first set of keys with at least a portion of the
respective second set of keys such that the at least a
portion of the respective second set of keys 1s stored 1n
the local memory of the first processor; and

swap, subsequent to performance of the subsequent in-

place radix sort and for each data item within the first
stripe set and the second stripe set, the at least a portion
of the respective first set of keys with the at least a
portion of the respective second set of keys such that
the at least a portion of the respective second set of keys
1s stored 1n the memory external to the first processor
and the second processor.

5. The data sorting apparatus of claim 1,

wherein the data sorting apparatus 1s further configured to

define the plurality of buckets by being configured to

divide the data storage by defining a plurality of data

pointers into the data storage, each data pointer indi-

cating a separation between two adjacent buckets, and

wherein the data sorting apparatus further configured to

identify each data stripe 1n each one data stripe set by

further:

defining a respective stripe head pomter for each
respective stripe, each respective stripe head pointer
indicating a first element of each respective stripe;
and

defining a respective stripe tail pointer for each respec-
tive stripe, each respective stripe tail pointer 1ndi-
cating a last element of each respective stripe.

6. The data sorting apparatus of claim 1, wherein data
sorting apparatus further configured to:

divide, subsequent to performing the radix sort using the

initial key on the items within the respective incorrect
data 1item group, at least one bucket within the plurality
of buckets into a plurality of second level buckets, each
second level bucket being associated with a respective
second level key value;

identify, within at least one second level bucket, a plu-

rality of respective second level stripes;
define at least one second level data stripe set comprising
one respective second level stripe within each second
level bucket of a respective at least one bucket; and

perform, with the first processor within the multiple
processor computing apparatus, a partial bucket radix
sort on the first level sorted output using a second level
key on data items contained within the at least one
second level data stripe set.

7. The data Sortmg apparatus of claim 6, wherein the data
sorting apparatus 1s further configured to select the at least
one second level bucket based upon a number of data

US 9,823,896 B2

31

clements 1n the at least one second level bucket relative to
a number of data elements 1 other second level buckets
within the plurality of buckets.

8. A computer program product for sorting a data set, the

computer program product comprising:

a storage medium readable by a processing circuit and
storing 1nstructions for execution by the processing
circuit for performing a method comprising:

dividing a memory containing a plurality of data items
into a plurality of buckets for an in-place radix sort,
cach bucket being associated with a respective key
value;

identifying, within each bucket of the plurality of buckets,
a respective plurality of stripes;

defining a plurality of stripe sets, each data stripe set
comprising one respective stripe within each respective
bucket of the plurality of buckets, the plurality of stripe
sets comprising at least a first stripe set and a second
stripe set that 1s separate from the first stripe set;

storing a respective first portion of each data item within
the first stripe set into a data storage comprising a local
memory of a first processor;

storing a respective first portion of each data item within
the second stripe set into a data storage comprising a
local memory of a second processor;

storing a respective second portion of the each data item
in the plurality of data items into the external memory,
cach respective second portion comprising a respective
second set of keys and 1s stored separately from the
respective first portion of the each data 1tem, and each
respective first portion comprising a respective first set
of keys and a pointer indicating the respective second
portion;

performing, with the first processor, an in-place partial
bucket radix sort using an initial key on data items
contained within the first stripe set;

performing, with the second processor, an in-place partial
bucket radix sort using the inmitial key on data items
contained within the second stripe set;

10

15

20

25

30

35

32

grouping, in each bucket after performing the in-place
partial bucket radix sort, incorrectly sorted data items
into a respective icorrect data item group within each
bucket, the incorrectly sorted data items comprising
data items within a first bucket but having a respective
key value associated with a different bucket;

performing a radix sort using the inmitial key on items
within the respective incorrect data item group; and

producing a {irst level sorted output comprising the plu-
rality of data items within the data storage sorted

according to the initial key.
9. The computer program product according to claim 8,

the method further comprising performing, subsequent to
producing the first level sorted output, a subsequent in-place
radix sort using at least one key within the respective second
set of keys within each data item of the first stripe set and the
second stripe set.

10. The computer program product according to claim 9,
wherein performing the subsequent in-place radix sort 1s
performed with the first processor, and comprises storing,
within memory external to the first processor, the respective
second set of keys within each data 1tem of the first stripe set
and the second stripe set.

11. The computer program product according to claim 9,
the method further comprising:

swapping, prior to performing the subsequent in-place

radix sort and for each data item within the first stripe
set and the second stripe set, at least a portion of the
respective first set of keys with at least a portion of the
respective second set of keys such that the at least a
portion of the respective second set of keys 1s stored 1n
the local memory of the first processor; and
swapping, subsequent to performing the subsequent in-
place radix sort and for each data item within the first
stripe set and the second stripe set, the at least a portion
of the respective first set of keys with the at least a
portion of the respective second set of keys such that
the at least a portion of the respective second set of keys
1s stored 1n the memory external to the first processor.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

