

US009822414B2

(12) United States Patent

Van Delft et al.

(10) Patent No.: US 9,822,414 B2

(45) Date of Patent: Nov. 21, 2017

(54) IN VITRO METHOD FOR PREDICTING IN VIVO GENOTOXICITY OF CHEMICAL COMPOUNDS

(75) Inventors: Joseph Henri Marie Van Delft,

Etterbeek (BE); Joseph Catharina Stephanus Kleinjans, Maastricht (NL); Christina Magkoufopoulou, Norwich (GB); Danyel Gerardus Jacobus

Jennen, Elsloo (NL)

(73) Assignees: UNIVERSITEIT MAASTRICHT,

Maastricht (NL); ACADEMISCH ZIEKENHUIS MAASTRICHT,

Maastricth (NL)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 143 days.

(21) Appl. No.: 14/117,731

(22) PCT Filed: May 19, 2012

(86) PCT No.: PCT/EP2012/059317

§ 371 (c)(1),

(2), (4) Date: Jan. 27, 2014

(87) PCT Pub. No.: **WO2012/156526**

PCT Pub. Date: Nov. 22, 2012

(65) Prior Publication Data

US 2014/0194309 A1 Jul. 10, 2014

(30) Foreign Application Priority Data

May 19, 2011 (EP) 11166771

(51) Int. Cl. *C120 1/*

 $C12Q \ 1/68$ (2006.01) $G01N \ 33/50$ (2006.01)

(52) **U.S. Cl.**

CPC *C12Q 1/6883* (2013.01); *G01N 33/5014* (2013.01); *G01N 33/5017* (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,683,036	B2*	3/2010	Esau C12N 15/111
7.858.608	B2 *	12/2010	514/44 R Pellicciari C07J 9/00
			514/182 Pellicciari C07J 9/00
			514/182
2005/0158805	Al*	7/2005	Purcell G01N 33/5014 435/7.21
2009/0269744	A 1	10/2009	Krause et al.

2010/0120893	A1*	5/2010	Sah	C12N 15/111
				514/44 A
2011/0166043	A 1	7/2011	Nagy et al.	
2011/0250606	A 1	10/2011	Kleinjans et al.	
2012/0108444	A 1	5/2012	Philibert et al.	

5/2012 Kleinjans et al.

FOREIGN PATENT DOCUMENTS

WO	2007048978 A2	5/2007
WO	2009064321 A2	5/2009
WO	2010070059 A1	6/2010
WO	2010129354 A2	11/2010
WO	2011012665 A1	2/2011
WO	2012156526 A1	11/2012

2012/0122727 A1

OTHER PUBLICATIONS

Newton et al. Environ Health Perspect 112:420-422 (2004).* Collins et al., Generation and initial analysis of more than 15,000

full-length human and mouse cDNA sequences, PNAS, Dec. 24, 2002, vol. 99, No. 26, pp. 16899-16903, plus Supporting information, pp. 1-78.

PCT International Search Report, PCT/EP2012/059317, dated Sep. 3, 2012.

Database Entrez Gene (Online) NCBI, Oct. 29, 2011, HOGA1 r-hydroxy-2-oxoglutarate aldolase 1, XP002662622.

Database Entrez Gene (Online) NCBI, Jun. 20, 2009, Hypothetical protein LOC100131914, XP002662621.

Dumitriu et al., Human Dendritic Cells Produce TGF-1 under the Influence of Lung Carcinoma Cells and Prime the Differentiation of CD4+CD25+Foxp3+ Regulatory T Cells, Journal of Immunology, Mar. 1, 2009, pp. 2795-2807, vol. 182, No. 5.

Magkoufopoulou et al., Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells, Mutagenesis, Sep. 1, 2011, pp. 593-604, vol. 26, No, 5, IRL Press, Oxford, GB.

Van Delft et al., Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling, Carcinogenesis, Feb. 1, 2004, pp. 1265-1276, vol. 25, No. 7, Oxford University Press, GB. PCT International Written Opinion, PCT/EP2012/059317, dated Sep. 3, 2012.

PCT International Preliminary Report on Patentability, PCT/EP2012/059317, dated Nov. 19, 2013.

Primary Examiner — James Martinell (74) Attorney, Agent, or Firm — TraskBritt, P.C.

(57) ABSTRACT

The invention is in the field of genomics and it provides an in vitro method for predicting whether a compound is genotoxic in vivo. In particular, the invention provides a method for predicting the in vivo genotoxicity of a compound comprising the steps of performing an Ames test on the compound and determining if the result is positive or negative, followed by a step wherein the gene expression of at least 3 genes is determined in a HepG2 cell, compared to a reference value and predicting that the compound is in vivo genotoxic if the expression level of more than 2 of the genes is above a reference value.

5 Claims, No Drawings

^{*} cited by examiner

1

IN VITRO METHOD FOR PREDICTING IN VIVO GENOTOXICITY OF CHEMICAL COMPOUNDS

FIELD OF THE INVENTION

The invention is in the field of genomics and it provides an in vitro method for predicting whether a compound is genotoxic in vivo.

BACKGROUND OF THE INVENTION

Cancer is one of the leading causes of death accounting for 13% of all deaths worldwide in 2004 according to the World Health Organization. In 2007 and 2008, cancer was ranked the second cause of death accounting for 23% and 26% of total deaths, in the US and Europe respectively (1, 2). Cancer is a very complicated and yet not fully understood disease, nevertheless, two causal factors for its development $_{20}$ is appreciated. The first is the presence of specific gene mutations genetically inherited or endogenously induced, e.g. BRCA1 and BRCA2 mutations are considered responsible for breast cancer (3). The second is exposure to exogenous carcinogenic factors, such as the link between 25 tobacco smoke and lung cancer (4). The molecular mechanism of tumor formation after carcinogenic exposure frequently comprises the induction of DNA mutations by the carcinogen or its metabolites. If mutations occur within genes responsible for cell proliferation or survival, the cells 30 may become malignant (5). Cellular transformation to a tumor cell may also be caused through a variety of mechanisms (production of reactive oxygen species, immunosuppression, peroxisome proliferation etc.) which do not necessarily involve DNA damage. Consequently, carcinogens 35 are classified as genotoxic (GTX) or non-genotoxic (NGTX) (5). Since almost all GTX compounds are carcinogenic, it is important, in particular for regulatory purposes, to evaluate the genotoxic potential of chemicals to which humans are exposed, and therefore to discriminate between GTX and 40 NGTX compounds.

The most commonly used assay, the Salmonella typhimurium test, for evaluating mutagenic properties of chemicals in vitro was developed in 1975 by Bruce N. Ames (6). Subsequently, several in vitro assays were developed aiming at assessing genotoxic properties of chemicals in mammalian cellular models and are accepted by the regulatory authorities. However, the conventional in vitro test battery consisting of a bacterial mutation assay [Ames assay], mammalian micronuclei [MN], chromosomal aberration 50 [CA] and mouse lymphoma assays [MLA]) often fails to correctly predict in vivo genotoxic and carcinogenic potential of compounds, even reaching a 50% false positive rate in some cases (7).

Depending on the intended use of the chemicals and the 55 purpose of the assessment, regulatory authorities may require the in vivo evaluation of genotoxic and carcinogenic properties in rodents, especially for chemicals that are genotoxic in vitro (EC 1907/2006) and/or intended for human use (8). As a consequence of the high false positive 60 rate of these in vitro assays, a high number of unnecessary animal experiments are performed each year. Next to its limited relevance for human health, the use of experimental animals inflicts considerable costs and raises ethical issues.

In cases where animal testing is not required after positive 65 outcomes of in vitro assays (Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 3rd

2

revised edition, UN, 2009), false positive in vitro results cause wrong chemical classifications.

Overall, a more reliable in vitro assay for predicting in vivo genotoxicity is urgently required.

SUMMARY OF THE INVENTION

The aim of this study was to develop an in vitro transcriptomics-based prediction method for in vivo genotoxicity.

The invention provides an in vitro method for predicting whether a compound is genotoxic in vivo. In particular, the invention provides a method for predicting the in vivo genotoxicity of a compound comprising the steps of performing an Ames test for the compound and determining if the result is positive or negative, followed by a step wherein the gene expression level of at least 3 genes is determined in at least one HepG2 cell, compared to a reference value and predicting that the compound is in vivo genotoxic if the expression level of at least two genes is above the predetermined reference value.

More in particular, we found that in vivo genotoxicity could be predicted by a method for predicting the in vivo genotoxicity of a compound comprising the steps of

- a. performing an Ames test on the compound and determining if the compound is Ames positive or Ames negative,
- b. providing a HepG2 cell
- c. exposing the HepG2 cell for a period of time between 12 and 48 hours to said compound,
- d. if the compound is Ames positive, determining the level of expression of a first gene set comprising at least genes NR0B2, PWWP2B and LOC100131914,
- e. if the compound is Ames negative, determining the level of expression of a second gene set, comprising at least genes SLC40A1, PNMA6A and C10orf65
- f. Comparing the level of expression of the first gene set or the second gene set to a predetermined reference value,

wherein the compound is predicted to be in vivo genotoxic if the expression level of at least 2 genes exposed to the compound are above their predetermined reference values.

This method appeared to be superior to the conventional methods as further detailed herein.

DETAILED DESCRIPTION OF THE INVENTION

In this study we aimed at developing an alternative in vitro transcriptomics-based method for predicting in vivo genotoxic properties of chemicals.

This novel approach for the prediction of in vivo genotoxicity results in an improved accuracy when compared to each of the conventional in vitro genotoxicity assays or to the combination of Ames assay with the other conventional in vitro methods.

We surprisingly found that the accuracy and sensitivity of the classical Ames test could be greatly improved when the results were combined with a gene expression assay as described herein.

In particular, the invention relates to a method for predicting the in vivo genotoxicity of a compound comprising the steps of

- a. performing an Ames test on the compound and determining if the compound is Ames positive or Ames negative,
- b. providing a HepG2 cell

- c. exposing the HepG2 cell for a period of time between 12 and 48 hours to said compound,
- d. if the compound is Ames positive, determining the level of expression of a first gene set comprising at least genes NR0B2, PWWP2B and LOC100131914,
- e. if the compound is Ames negative, determining the level of expression of a second gene set, comprising at least genes SLC40A1, PNMA6A and C10orf65
- f. Comparing the level of expression of the first gene set or the second gene set to a predetermined reference value,

wherein the compound is predicted to be in vivo genotoxic if the expression level of at least 2 genes exposed to the

The term "in vivo genotoxicity" is intended to mean the ability of a chemical to cause DNA damage in vivo, as determined by a positive result in at least one in vivo genotoxicity assay, including but not limited to the MN and CA assays as described in the OECD guidelines of testing of 20 chemicals, Test No 474 and Test No 475, respectively.

The phrase "the expression level of at least 2 genes exposed to the compound" is intended to mean "the expression level of at least 2 genes within said first or second gene set".

The expression "at least 2 genes" in the context of the testing of 3 genes is intended to mean "2" or "3".

The term "Ames test" is intended to mean the bacterial reverse mutation assay as described by the OECD guideline of testing for chemicals: Test No. 471.

The term "Ames positive" is intended to refer to a positive mutagenic result in the Ames test.

The term "Ames negative" is intended to refer to a non-mutagenic result in the Ames test

human hepatocellular carcinoma origin with ATCC no. HB-8065, with a karyotype as described by Wong et. al. (Wong N, Lai P, Pang E, Leung T W, Lau J W, Johnson P J. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology. 2000 40 invention could even be improved when additional genes November; 32 (5):1060-8).

The term "determining the level of expression" is intended to mean the quantitative measurement of mRNA molecules expressed by a certain gene present in HepG2 cells. Such mRNA levels may be determined by several 45 methods known in the art such as microarray platforms, Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR), and deep sequencing.

The term "reference compound" is intended to mean a compound for which results are available in the Ames test 50 and an in vivo genotoxicity assay.

The term "Ames positive in vivo genotoxic reference compound" is intended to mean a compound with mutagenic results in the Ames test and the ability to cause DNA damage in vivo, as determined by a positive result in at least one in 55 invention could also be improved when additional genes vivo genotoxicity assay, including but not limited to the MN and CA assays as described in the OECD guidelines of testing of chemicals, Test No 474 and Test No 475, respectively.

The term "Ames positive in vivo non-genotoxic reference 60 compound" is intended to mean compound with mutagenic results in the Ames test and lack of the ability to cause DNA damage in vivo, as determined by a negative result in all the in vivo genotoxicity assays that the compound has been tested, including but not limited to the MN and CA assays, 65 as described in the OECD guidelines of testing of chemicals, Test No 474 and Test No 475, respectively.

The term "Ames negative in vivo genotoxic reference compound" is intended to mean compound with non-mutagenic results in the Ames test and the ability to cause DNA damage in vivo, as determined by a positive result in at least one in vivo genotoxicity assay, including but not limited to the MN and CA assays as described in the OECD guidelines of testing of chemicals, Test No 474 and Test No 475, respectively.

The term "Ames negative in vivo non-genotoxic reference 10 compound" is intended to mean compound with non-mutagenic results in the Ames test and lack of the ability to cause DNA damage in vivo, as determined by a negative result in all the in vivo genotoxicity assays that the compound has been tested, including but not limited to the MN and CA compound are above their predetermined reference values. 15 assays, as described in the OECD guidelines of testing of chemicals, Test No 474 and Test No 475, respectively.

> The term "reference value" is intended to refer to the level of mRNA expression of a certain gene in HepG2 cells not exposed to a test compound. This reference value is used as a reference to which the expression level of the gene in HepG2 cell(s) after exposure to a test compound is compared.

The term "mean expression level" is intended to mean the average of the obtained expression levels for a single gene 25 from all conducted biological and/or technical replicates.

The term "about 24 hours" is to be interpreted as meaning 24 hours plus or minus 2 hours, preferably plus or minus 1 hour, most preferably plus or minus half an hour.

When the method according to the invention was performed using a first gene set consisting of the genes NR0B2, PWWP2B, and LOC100131914 for the Ames positive compounds, an accurate prediction was obtained in about 80% of the cases.

When the method according to the invention was per-The term "HepG2 cell" is intended to mean the cell of 35 formed using a second gene set consisting of genes SLC40A1, PNMA6A and C10orf65 for the Ames negative compounds, an accurate prediction was obtained in about 90% of the cases.

> The results obtained with the method according to the were included in the analysis. When the first gene set for the Ames positive compounds as mentioned above was supplemented with at least one gene selected from the group consisting of genes CEACAM1, SLC27A1, TTR, UBE2E2, NAT8, GMFG, RBPMS, C10orf10, PROSC, TBC1D9, OR10H1, APOM, C1orf128, AVEN, ZNRF3 and SNORD8, the results improved.

> The invention therefore relates to a method as described above wherein the first gene set additionally comprises at least one gene selected from the group consisting of genes CEACAM1, SLC27A1, TTR, UBE2E2, NAT8, GMFG, RBPMS, C10orf10, PROSC, TBC1D9, OR10H1, APOM, C1orf128, AVEN, ZNRF3 and SNORD8.

> The results obtained with a method according to the were added to the second set. When the second gene set for the Ames negative compounds as mentioned above was supplemented with at least one gene selected from the group consisting of genes SGK1, SLC64A, ANXA6, BTD, FGA, NDUFA10, NFATC3, MTMR15, ANAPC5, ZNF767, SCRN2 and GSTK1, the results improved.

> The invention therefore relates to a method as described above wherein the second gene set additionally comprises at least one gene selected from the group consisting of genes SGK1, SLC64A, ANXA6, BTD, FGA, NDUFA10, NFATC3, MTMR15, ANAPC5, ZNF767, SCRN2 and GSTK1.

O TABLE 1-continued

A reference value for a gene may be empirically determined by methods known in the art. The reference values may be varied depending on the desire to either improve the sensitivity of the assay or the specificity. A skilled person in the art will know the metes and bounds of choosing a 5 reference value.

In a preferred embodiment, a reference value for a particular gene is obtained by determining the expression level of that particular gene in the presence and absence of a genotoxic compound. The ratio between the expression level 10 in the presence and the absence of the genotoxic compound is termed the GTX ratio. Thereafter, the expression level of that particular gene in the presence and absence of a nongenotoxic compound is determined. The ratio between the expression level in the presence and the absence of the 15 non-genotoxic compound is termed the non-GTX ratio. The average value of the log 2 of the GTX ratio and the non-GTX ratio is a suitable reference value. The reliability of the reference value may be increased by determining the GTXand non-GTX ratios in the presence and absence of multiple 20 genotoxic and non-genotoxic compounds.

Hence, the invention also relates to a method as described above wherein the predetermined reference value for a particular gene is calculated as the mean of the log 2 of the ratios of the expression level said gene in the presence and 25 absence of at least one genotoxic compound and at least one non-genotoxic reference compound.

A preferred criterion for predicting a compound as in vivo genotoxic is as follows.

First, the expression level of each of these 3 genes NR0B2, PWWP2B, and LOC100131914 as described above is determined in a HepG2 cell in the presence and absence of the compound. The ratio between the expression levels in the presence and absence of the compound is then determined. The log 2 value of this ratio is then compared with the reference values shown in table 1.

If the log 2 value of the ratio of the expression level of at least two of the three genes in cells exposed to the compound is above the reference value, then the compound is predicted to be in vivo genotoxic. If log 2 value of the ratio of the 40 expression level of at least two of the three genes in cell(s) exposed to the compound are below the reference value, then the compound is predicted to be in vivo non-genotoxic.

Hence, the invention also relates to a method as described above wherein the predetermined reference value for the 45 gene is taken from table 1.

TABLE 1

	Genes and their reference values. 5				
EntrezGene ID	Gene Symbol	Gene Name/function	Reference value		
8431	NR0B2	nuclear receptor	-0.099		
		subfamily 0,		5	
		group B, member 2			
170394	PWWP2B	PWWP domain	-0.071		
		containing 2B			
100131914	LOC100131914	hypothetical protein	-0.054		
		LOC100131914 (custom			
		CDF version 11),		6	
		identical with		_	
		LOC100505880 (custom			
		CDF version 14)			
634	CEACAM1	Receptor ligand	0.1795		
1183	CLCN4	Voltage-gated	-0.014		
		ion-channel		_	
2009	EML1	Generic phosphatase	-0.1825	6	
7325	UBE2E2	Generic enzyme	0.006		

Genes and their reference values. Reference EntrezGene ID Gene Symbol Gene Name/function value USP13 Generic protease 0.0468975 9535 **GMFG** -0.0125Generic binding protein 11212 PROSC Generic protein -0.04457276 TTR Generic binding protein -0.24659027 NAT8 Generic enzyme -0.26711030 RBPMS Generic binding protein -0.0495C10orf10 11067 Generic protein 0.0355 23158 TBC1D9 -0.163Generic protein -0.057529916 SNX11 Generic binding protein ROBO4 Generic receptor 0.104 BCOR 54880 Generic binding protein -0.1415ROBO2 Generic receptor 0.0816092 6725 SRMS Protein kinase -0.077526539 OR10H1 0.0455 GPCR Generic kinase 27010 TPK1 64115 C10orf54 0.0405 Generic receptor 319103 SNORD8 -0.0105RNA 414918 Generic protein 0.0655 FAM116B 55937 APOM Transporter -0.16356675 NRIP3 Generic binding protein 0.0465 57095 C1orf128/ Generic protein 0.1155 PITHD1 AVEN Generic binding protein 0.148 57099 Generic binding protein BRUNOL6 0.08660677 84133 ZNRF3 Generic binding protein -0.3185146227 BEANGeneric binding protein 0.119376497 SLC27A1 -0.037Generic enzyme

Similarly, when the second gene set consisting of the three genes SLC40A1, PNMA6A and C10orf65 is used, a preferred criterion for predicting an Ames negative compound as in vivo genotoxic is as follows.

First, the expression level of each of these 3 genes in a HepG2 cell is determined in the presence and absence of the compound. The ratio between the expression levels in the presence and absence of the compound is then determined. The log 2 value of this ratio is then compared with the reference values shown in table 2.

If the log 2 value of the ratio of the expression level of at least two of the three genes in cells exposed to the compound is above the reference value, then the compound is predicted to be in vivo genotoxic. If log 2 value of the ratio of the expression level of at least two of the three genes in cell(s) exposed to the compound are below the reference value, then the compound is predicted to be in vivo non-genotoxic.

Hence, the invention relates to a method as described above wherein the predetermined reference value for the gene is taken from table 2.

TADIE 2

			TABLE 2	
		Genes	and their reference values.	
55	Entrez Gene ID	Gene Symbol	Gene name	Reference Value
	30061	SLC40A1	solute carrier family 40 (iron-regulated transporter), member 1	0.329
60	84968 112817	PNMA6A C10orf65	paraneoplastic antigen like 6A chromosome 10 open reading frame 65, HOGA1 (4-hydroxy-2- oxoglutarate aldolase 1)	0.251 0.146
65	309 337 686 1939	ANXA6 APOA4 BTD LGTN	Generic binding protein Receptor ligand Generic enzyme Generic receptor	0.1655 0 0.037 0.0275

-0.048

	17	ADLE 2-continued		
	Genes	and their reference values.		
Entrez Gene ID	Gene Symbol	Gene name	Reference Value	
3267	AGFG1	Generic binding protein	-0.086	
4705	NDUFA10	Generic enzyme	0.038	
4775	NFATC3	Transcription factor	0.159	
9373	PLAA	Generic binding protein	-0.057	1
22909	MTMR15	Generic binding protein	0.0755]
51433	ANAPC5	Generic enzyme	0.0265	
64969	MRPS5	Generic binding protein	0.0845	
79970	ZNF767	Generic protein	0.0985	
373156	GSTK1	Generic enzyme	0.0355	
2243	FGA	Generic binding protein	-0.0205	1
6446	SGK1	Protein kinase	0.1975	1
6532	SLC6A4	Transporter	0.0535	
90507	SCRN2	Generic protease	0.0405	
200014	CC2D1B	Generic protein	0.0165	
		±		

As an illustrative example only, the following simplified model is provided for the calculation of a reference value.

648921/ LOC648921/

288921 LOC283693

First the expression ratio of gene A is calculated. Therefore, the relative expression level of gene A is determined in the presence and absence of genotoxic compound Z. The expression level in the presence of compound Z is found to be 6 times higher than in its absence. It is then concluded that the GTX ratio of gene A is log 2 of 6=2.58. The expression level of gene A in the presence of non-genotoxic compound Y is found to be 2 times higher than in its absence. It is then concluded that the non-GTX ratio of gene A is log 2 of 2=1. A suitable reference value for gene A is than the average between the GTX ratio and the non-GTX ratio, in this example (2.58+1)/2=1.79.

Instead of a GTX ratio obtained with only one genotoxic compound, it may be advantageous to obtain several GTX ratios with different genotoxic compounds and calculate an average GTX ratio. The same may apply mutatis mutandis for non-GTX ratios.

When more than 3 genes are used in the method according to the invention, the reliability of the method may even be further improved when the criterion for genotoxicity is that (apart from the criterion that at least two out of three genes are above their reference value) more than half of the number of genes exposed to the compound are above their predetermined reference values.

Hence, the invention also relates to a method as described above wherein the compound is predicted to be in vivo genotoxic if the expression level of more than half of the number of genes exposed to the compound are above their predetermined reference values.

In a preferred embodiment, the step of comparing the level of expression of the first gene set or the second gene set to a predetermined reference value, is performed by a computer program.

A computer program particularly suited for this purpose is PAM (Prediction Analysis for Microarrays) or Support Vector Machines (SVM).

Representative examples of the accuracy, sensitivity and 65 specificity of the method according to the invention are presented in Table 3.

Comparison of the performance of Ames test, in vitro test battery and a method according to the invention.

5	Ames	in vitro test battery ¹	Invention
Accuracy	79.0%	67.7%	84.4%
Sensitivity	78.3%	95.7%	85.5%
Specificity	79.5%	51.3%	83.8%

O positive result in at least one test, i.e. Ames, MLA, MN and/or CA.

The method according to the invention showed a clear improvement in comparison to methods of the prior art in regard to the accuracy and the specificity. A comparison of the results obtained by the method according to the invention and by conventional in vitro assays, is presented in Table 3.

When a method according to the invention was performed on a set of 62 compounds, the following results were obtained (Table 4): The raw data underlying table 4 are presented in tables 4A-4D.

TABLE 4

C	Compound	Prediction	Compound	Prediction
2	2AAF	GTX+	ABP	GTX
A	AFB1	GTX	AZA	GTX
A	APAP	NGTX	BZ	GTX
E	3aP	GTX	Cb	GTX
Ι	DES	GTX	cisPt	GTX
Ι	OMBA	GTX+	CP	GTX
Ι	OMN	GTX+	DEN	GTX
N	ИМС	NGTX+	ENU	GTX
p	Cres	GTX	FU	NGTX+
P	Ph	GTX	IQ	GTX
Γ	TBTO	GTX	MOCA	GTX
7	/itC	GTX	2-Cl	GTX+
2	2CMP	NGTX	Anis	<u>GTX</u>
4	AAF	NGTX+	ASK	NGTX
8	SHQ	GTX+	BDCM	NGTX
a	.mpC	NGTX	CAP	NGTX+
A	AnAc	NGTX	CCl4	NGTX+
	CsA	NGTX	Cou	NGTX
	Cur	NGTX	DDT	NGTX
Ι	DEHP	NGTX	DZN	NGTX
Ι	Diclo	NGTX	EthylB	NGTX
Ι	Oman	NGTX	EuG	NGTX+
E	E2	NGTX	HCH	NGTX
E	EtAc	<u>GTX</u>	NBZ	NGTX+
N	NPD	NGTX+	PCP	NGTX
P	PhB	NGTX	Prog	NGTX
P	hen	NGTX	Sim	NGTX
	Que	NGTX	TCE	NGTX
R	Res	NGTX		
R	RR	<u>GTX</u>		
S	Sulfi	NGTX		
Γ	CCDD	NGTX		
Γ	TPA	NGTX		
V	VY	NGTX		

GTX: the compound is predicted genotoxic;

Results indicated with bold and underlined letters indicate misclassification;
Results labeled + indicate that two of the three replicates were classified in the indicated

TABLE 4A

Log2 treatment: control ratios obtained in triplicate experiments
with Ames positive compounds.

	NR0B2	PWWP2B	LOC100505880
2AAF	0.042	-0.045	-0.103
2AAF	-0.673	-0.14	-0.643

NGTX: the compound is predicted non-genotoxic;

10

TABLE 4A-continued

Log2 treatment: control ratios obtained in triplicate experiments with Ames positive compounds.			Log2 treatment: control ratios obtained in triplicate experiments with Ames positive compounds.					
	NR0B2	PWWP2B	LOC100505880	5		NR0B2	PWWP2B	LOC100505880
2AAF	0.472	0.042	0.579	_	Fu	-0.457	0.008	-0.218
ABP	0.806	0.442	0.65		IQ	0.847	0.188	3.101
ABP	0.211	0.047	0.088		IQ	0.627	-0.003	2.784
ABP	0.217	0.264	-0.072		IQ	-0.396	-0.052	2.082
AFB1	0.605	0.098	0.281	10	MMC	0.071	-0.106	-0.208
AFB1	1.482	0.275	0.774		MMC	-0.308	-0.232	-0.256
AFB1	0.548	0.088	0.534		MMC	0.38	0.022	0.595
AZA	1.473	0.536	1.541		MOCA	0.498	0.047	0.088
AZA	0.232	0.044	0.022		MOCA	0.957	0.134	0.143
AZA	0.893	-0.035	1.33		MOCA	0.484	0.259	-0.424
BaP	1.322	0.119	1.086	1.5	Paracres	1.286	0.271	-0.41
BaP	1.8	0.439	1.208	15	Paracres	1.877	0.072	0.437
BaP	0.592	0.105	0.877		Paracres	1.893	0.384	0.487
BZ	1.254	0.013	0.217		2-C1	0.881	0.564	-0.222
BZ	0.556	-0.137	0.523		2-C1	0.162	0.197	-0.041
BZ	0.916	0.255	-0.087		2-C1	-0.623	0.058	-0.47
Cb	1.254	0.399	1.036		2CMP	-1.551	-0.214	-1.088
Cb	0.671	-0.133	0.803	20	2CMP	-1.683	-0.23	-1.225
Cb	0.519	0.145	0.483		2CMP	-1.227	-0.031	-0.867
cisPt	0.367	0.095	0.35		4AAF	-0.04	-0.524	-0.217
cisPt	1.545	-0.147	0.602		4AAF	-0.278	-0.086	-0.295
cisPt	0.467	-0.18	0.166		4AAF	-0.088	0.002	-0.101
CP	-0.404	0.042	-0.031		8HQ	-0.007	0.014	-0.34
CP	0.276	-0.221	-0.01	25	8HQ	-0.753	-0.165	-0.572
CP	0.039	0.073	0.139		8HQ	0.249	-0.069	0.558
DEN	0.689	0.087	0.823		Anis	0.886	0.013	1.084
DEN	0.245	0.095	0.448		Anis	0.751	0.076	0.697
DEN	-0.262	0.056	-0.022		Anis	-0.076	0.253	0.288
DMBA	0.064	-0.155	0.022		NPDhigh	-0.277	0.011	-0.119
DMBA	-0.116	0.088	-0.059	20	NPDhigh	-0.621	-0.153	-0.115
DMBA	-0.116	-0.102	-0.025	30	NPDhigh	0.1	-0.133	0.008
DMN	-0.070 -0.173	-0.102	0.222		PhB	0.352	-0.236 -0.169	-0.154
DMN	-0.173 -1.832	-0.368	-0.518		PhB	-0.176	-0.109 -0.272	-0.134 -0.38
DMN	-0.051	-0.308 -0.304	0.321		PhB	-0.170 -0.407	-0.272 -0.154	-0.36 -0.303
ENU	0.424	0.01	0.321			-0.407 -0.635	-0.134 -0.206	0.062
ENU	0.424	0.01	0.088		Que	-0.633 -0.69		-0.337
ENU	1.056			35	Que	-0.69 -3.709	-0.437	-0.337 -0.727
		0.11	-0.192		Que		-0.113	-0.727
FU FU	0.781 -0.197	0.256 0.175	0.583 -0.067		reference value	-0.099	-0.071	

TABLE 4B

Determination of GTX or NGTX status according to a method of the invention wherein a compound is scored as GTX when at least two out of three genes are above the reference value. Plus sign indicates a value above the reference value, minus sign indicates a value below the reference value.

Compound	Standard	NR0B2	PWWP2B	LOC100505880	At least ² / ₃ genes +?	Average result over three measurements
2AAF	GTX	+	+	_	GTX	GTX
2AAF	GTX	_	_	_	NGTX	
2AAF	GTX	+	+	+	GTX	
ABP	GTX	+	+	+	GTX	GTX
ABP	GTX	+	+	+	GTX	
ABP	GTX	+	+	_	GTX	
AFB1	GTX	+	+	+	GTX	GTX
AFB1	GTX	+	+	+	GTX	
AFB1	GTX	+	+	+	GTX	
AZA	GTX	+	+	+	GTX	GTX
AZA	GTX	+	+	+	GTX	
AZA	GTX	+	+	+	GTX	
BaP	GTX	+	+	+	GTX	GTX
BaP	GTX	+	+	+	GTX	
BaP	GTX	+	+	+	GTX	
BZ	GTX	+	+	+	GTX	GTX
BZ	GTX	+	_	+	GTX	
BZ	GTX	+	+	_	GTX	
Cb	GTX	+	+	+	GTX	GTX
Cb	GTX	+	_	+	GTX	

11

TABLE 4B-continued

Determination of GTX or NGTX status according to a method of the invention wherein a compound is scored as GTX when at least two out of three genes are above the reference value. Plus sign indicates a value above the reference value, minus sign indicates a value below the reference value.

Compound	Standard	NR0B2	PWWP2B	LOC100505880	At least ² / ₃ genes +?	Average result over three measurements
Cb	GTX	+	+	+	GTX	
cisPt	GTX	+	+	+	GTX	GTX
cisPt	GTX	+	_	+	GTX	
cisPt	GTX	+	_	+	GTX	
CP	GTX	_	+	+	GTX	GTX
CP	GTX	+	_	+	GTX	
CP	GTX	+	+	+	GTX	
DEN	GTX	+	+	+	GTX	GTX
DEN	GTX	+	+	+	GTX	
DEN	GTX	_	+	+	GTX	
DMBA	GTX	+	_	+	GTX	GTX
DMBA	GTX	_	+	_	NGTX	
DMBA	GTX	+	_	+	GTX	
DMN	GTX	_	+	+	GTX	GTX
DMN	GTX	_	_	_	NGTX	
DMN	GTX	+	_	+	GTX	
ENU	GTX	+	+	+	GTX	GTX
ENU	GTX	+	+	+	GTX	
ENU	GTX	+	+	_	GTX	
FU	GTX	+	+	+	GTX	NGTX
FU	GTX	_	+	_	NGTX	
Fu	GTX	_	+	_	NGTX	
IQ	GTX	+	+	+	GTX	GTX
IQ	GTX	+	+	+	GTX	
IQ	GTX	_	+	+	GTX	
MMC	GTX	+	_	_	NGTX	<u>NGTX</u>
MMC	GTX	_	_	_	NGTX	
MMC	GTX	+	+	+	GTX	
MOCA	GTX	+	+	+	GTX	GTX
MOCA	GTX	+	+	+	GTX	
MOCA	GTX	+	+	_	GTX	CITIZ I
Paracres	GTX	+	+	_	GTX	GTX
Paracres	GTX	+	+	+	GTX	
Paracres	GTX	+	+	+	GTX	COTENT.
2-Cl	NGTX	+	+	_	GTX	<u>GTX</u>
2-Cl	NGTX	+	+	+	GTX	
2-Cl	NGTX	_	+	_	NGTX	N LCTTN Z
2CMP	NGTX	_	_	_	NGTX	NGTX
2CMP	NGTX	_	<u>-</u>	_	NGTX	
2CMP	NGTX	_	+	_	NGTX	NICTN
4AAF	NGTX	+	_	_	NGTX	NGTX
4AAF	NGTX	_	_	_	NGTX	
4AAF	NGTX	+	+	_	GTX	CTV
8HQ	NGTX	+	+	_	GTX	<u>GTX</u>
8HQ	NGTX	_	_		NGTX	
8HQ	NGTX	+	+	+	GTX	CTV
Anis	NGTX	+	+	+	GTX	<u>GTX</u>
Anis Anic	NGTX	+	+	+	GTX	
Anis	NGTX	+	+	+	GTX	NCTV
NPDhigh	NGTX	_	+	_	NGTX	NGTX
NPDhigh	NGTX	<u>-</u>	_	-	NGTX	
NPDhigh	NGTX	+	_	+	GTX	NCTV
PhB	NGTX	+	_	_	NGTX	NGTX
PhB	NGTX	_	_	_	NGTX	
PhB	NGTX	_	_	_	NGTX	NICTY
Que	NGTX	_	_	+	NGTX	NGTX
Que	NGTX	_	_	_	NGTX	
Que	NGTX	_	_	_	NGTX	

Bold and underlined means that the result of the method of the invention differs from the standard designation.

12

13 TABLE 4C

TABLE 4C-continued

14

Log2 treatment: control ratios obtained in triplicate experiments with Ames negative compounds.				Log2 treatment: control ratios obtained in triplicate experiments with Ames negative compounds.				
	SLC40A1	PNMA6A	C10orf65/HOGA1	- 5		SLC40A1	PNMA6A	C10orf65/HOGA1
APAP	0.057	-0.186	0.057		DZN	1.44	-0.03	-1.077
APAP	0.056	0.414	0.049		Estradiol	0.225	-0.245	-0.059
APAP	-0.052	-0.062	-0.002		Estradiol	0.157	-0.333	0.15
DES	0.723	0.135	0.206		Estradiol	-0.013	-0.166	-0.112
DES	1.504	0.286	0.146	10	Ethylacrylate	-0.448	0.375	0.391
DES	0.717	0.203	0.516		Ethylacrylate	0.634	0.243	0.429
Phenol	0.411	1.052	0.796		Ethylacrylate	0.031	0.409	0.624
Phenol	0.65	0.262	0.113		EthylB	-0.23	0.313	-0.18
Phenol	0.921	0.831	0.209		EthylB	-0.141	0.434	0.116
TBTO	0.604	0.909	0.426		EthylB	0.295	0.392	-0.084
TBTO	1.649	0.663	0.098	15	EuG	0.161	0.39	-0.156
TBTO	0.208	0.456	0.858	15	EuG	0.712	0.124	0.3
VitC	0.972	1.027	0.333		EuG	0.293	0.031	-0.066
VitC	0.225	0.378	0.348		HCH	0.334	-0.604	-0.367
VitC	0.125	0.642	0.42		HCH	0.924	-0.2	-0.143
AA	-0.174	0.167	-0.045		HCH	0.712	0.012	-0.165
AA	-0.49	-0.628	-0.061		NBZ	-0.497	0.457	0.501
AA	0.007	0.562	0.002	20	NBZ	-0.013	-0.022	0.299
ampC	-0.175	-0.201	-0.152		NBZ	0.144	-0.009	0.138
ampC	-0.326	-0.493	-0.096		PCP	0.408	0.037	0.068
ampC	0.068	0.251	-0.089		PCP	-0.361	-0.052	0.055
ASK	-0.348	0.264	0.014		PCP	-0.334	-0.137	0.019
ASK	-0.221	0.161	-0.015		Phen	-0.646	-0.023	0.043
ASK	0.08	-0.677	0.083	25	Phen	0.127	0.218	0.056
BDCM	-0.891	0.22	0.003	20	Phen	-0.048	-0.237	0.034
BDCM	-0.071	-0.289	0.113		Prog	-0.154	0.147	-0.015
BDCM	-0.176 -0.017	-0.285	0.236		Prog	-0.108	-0.03	-0.013
CAP	-0.607	0.312	0.000		Prog	-0.502	0.164	0.293
CAP	-0.032	-0.168	0.203		Res	0.398	0.104	0.293
CAP	0.265	-0.166	0.223	20	Res	-0.212	-0.624	6.45E-05
CCl4	-0.888	0.412	0.138	30	Res	-0.212 -0.057	0.288	-0.043
CCl4	-0.000 -0.041	-0.412 -0.425	0.301			0.867		0.534
					Resorcinol		0.284	
CCl4	-0.185	-0.14	-0.083		Resorcinol	1.665	0.632	0.693
Cou	-0.215	0.073	-0.481		Resorcinol	0.803	0.252	1.012
Cou	-0.309	0.081	-0.483		Sim	-0.601	0.246	0.22
COU	-0.104	0.14	-0.069	35	Sim	-0.1	0.186	0.14
CsA	0.534	0.051	-0.593		Sim	-0.245	0.202	0.155
CsA	0.176	0.088	-0.309		Sulfi	-0.275	-0.084	0.033
CsA	0.246	0.495	-0.302		Sulfi	0.384	-0.08	-0.287
Cur	0.174	-0.138	0.113		Sulfi	0.425	0.133	-0.164
Cur	0.252	-0.135	0.028		TCDD	0.169	-0.041	-0.107
Cur	0.253	0.263	-0.293	4 0	TCDD	-0.21	0.26	0.056
DDT	0.685	-0.223	-0.925	70	TCDD	0.104	0.072	0.151
DDT	0.118	0.118	0.469		TCE	0.195	-0.244	-0.36
DDT	0.493	-0.515	-0.025		TCE	-0.121	-0.041	-0.274
DEPH	0.249	-0.264	-0.364		TCE	-0.304	0.062	-0.003
DEPH	-0.387	-0.841	-0.23		TPA	-0.327	-0.493	0.108
DEPH	0.234	-0.034	-0.559		TPA	1.338	-0.137	-0.423
Diclo	-0.32	0.018	-0.235	45	TPA	0.199	-0.137 -0.26	
Diclo	-0.232	0.605	-0.28					0.14
Diclo	-0.324	0.219	-0.115		WY	-0.312	0.059	-0.061
Dman	0.005	-0.035	0.022		WY	-0.393	-0.515	-0.158
Dman	-0.155	0.459	-0.159		$\mathbf{W}\mathbf{Y}$	-0.643	1.157	-0.053
Dman	-0.035	0.01	0.023		Reference	0.329	0.251	0.146
DZN	0.569	-0.352	-1.12	50	Value			
DZN	0.773	-0.624	-0.738					

TABLE 4D

Determination of GTX or NGTX status according to a method of the invention wherein a compound is scored as GTX when at least two out of three genes are above the reference value.

Compound	Standard	SLC40A1	PNMA6A	C10orf65/HOGA1	At least ² / ₃ genes +?	Average result over three measurements
APAP	GTX	_	_	_	NGTX	NGTX
APAP	GTX	_	+	_	NGTX	
APAP	GTX	_	_	_	NGTX	
DES	GTX	+	_	+	GTX	GTX
DES	GTX	+	+	+	GTX	
DES	GTX	+	_	+	GTX	
Phenol	GTX	+	+	+	GTX	GTX

16

15

Determination of GTX or NGTX status according to a method of the invention wherein a compound is scored as GTX when at least two out of three genes are above the reference value.

Average result over three Standard C10orf65/HOGA1 At least ²/₃ genes +? SLC40A1 PNMA6A Compound measurements GTX GTX Phenol GTX GTX Phenol GTX GTX TBTO GTX GTX TBTO GTX TBTO GTX GTX GTX VitC GTX GTX GTX VitC GTX GTX GTX VitC NGTX NGTX NGTX AANGTX NGTX AANGTX NGTX AANGTX NGTX NGTX ampC NGTX NGTX ampC NGTX NGTX ampC ASK NGTX NGTX NGTX NGTX ASK NGTX ASK NGTX NGTX **BDCM** NGTX NGTX NGTX **BDCM** NGTX NGTX **BDCM** NGTX NGTX CAP NGTX GTX NGTX + CAP NGTX NGTX CAP NGTX NGTX GTX NGTX CCI4 NGTX NGTX NGTX CCI4 NGTX CCI4 NGTX NGTX NGTX NGTX Cou NGTX NGTX Cou COU NGTX NGTX NGTX NGTX NGTX CsA NGTX CsA NGTX NGTX NGTX CsANGTX NGTX NGTX Cur NGTX NGTX Cur NGTX NGTX DDT NGTX NGTX NGTX DDT NGTX NGTX DDT NGTX NGTX NGTX DEPH NGTX NGTX DEPH NGTX NGTX NGTX NGTX DEPH NGTX NGTX NGTX Diclo Diclo NGTX NGTX Diclo NGTX NGTX NGTX NGTX NGTX Dman NGTX NGTX Dman NGTX NGTX Dman DZNNGTX NGTX NGTX NGTX DZNNGTX NGTX DZNNGTX NGTX NGTX NGTX Estradiol NGTX Estradiol NGTX Estradiol NGTX NGTX GTX Ethylacrylate NGTX $\underline{\mathbf{GTX}}$ GTX Ethylacrylate NGTX GTX Ethylacrylate NGTX + EthylB NGTX NGTX NGTX EthylB NGTX NGTX EthylB NGTX NGTX NGTX NGTX NGTX EuG EuG GTX NGTX EuG NGTX NGTX NGTX HCH NGTX NGTX HCH NGTX NGTX HCH NGTX NGTX NBZGTX NGTX NGTX NBZNGTX NGTX NGTX NGTX NBZPCP NGTX NGTX NGTX PCP NGTX NGTX PCP NGTX NGTX NGTX NGTX NGTX Phen Phen NGTX NGTX

TABLE 4D-continued

Determination of GTX or NGTX status according to a method of the invention wherein a compound is scored as GTX when at least two out of three genes are above the reference value.

Compound	Standard	SLC40A1	PNMA6A	C10orf65/HOGA1	At least 2/3 genes +?	Average result over three measurements
Phen	NGTX	_	_	_	NGTX	
Prog	NGTX	_	_	_	NGTX	NGTX
Prog	NGTX	_	_	_	NGTX	
Prog	NGTX	_	_	+	NGTX	
Res	NGTX	+	_	_	NGTX	NGTX
Res	NGTX	_	_	_	NGTX	
Res	NGTX	_	+	_	NGTX	
Resorcinol	NGTX	+	+	+	GTX	<u>GTX</u>
Resorcinol	NGTX	+	+	+	GTX	
Resorcinol	NGTX	+	+	+	GTX	
Sim	NGTX	_	_	+	NGTX	NGTX
Sim	NGTX	_	_	_	NGTX	
Sim	NGTX	_	_	+	NGTX	
Sulfi	NGTX	_	_	_	NGTX	NGTX
Sulfi	NGTX	+	_	_	NGTX	
Sulfi	NGTX	+	_	_	NGTX	
TCDD	NGTX	_	_	_	NGTX	NGTX
TCDD	NGTX	_	+	_	NGTX	
TCDD	NGTX	_	_	+	NGTX	
TCE	NGTX	_	_	_	NGTX	NGTX
TCE	NGTX	_	_	_	NGTX	
TCE	NGTX	_	_	_	NGTX	
TPA	NGTX	_	_	_	NGTX	NGTX
TPA	NGTX	+	_	_	NGTX	
TPA	NGTX	_	_	_	NGTX	
WY	NGTX	_	_	_	NGTX	NGTX
WY	NGTX	_	_	_	NGTX	
WY	NGTX	_	+	_	NGTX	

Bold and underlined means that the result of the method of the invention differs from the standard designation.

An important increase of the specificity, and therewith a reduction of the false positive results, of up to 32% is 35 further testing for genotoxicity in vivo may be supported. achieved when the method according to the invention is compared to the outcome of the conventional in vitro assays.

The false positive rate of the conventional in vitro assays exceeds 50%, with the exception of Ames (23%) (7), whereas the false-positive rate of the method according to 40 the invention is approximately 16%.

The false positive rate of our assay results from the misclassification of 5 NGTX compounds, namely RR, 2-Cl, PhB, Anis and Sim. All of these compounds, with the exception of Sim, have delivered positive results in the 45 conventional in vitro genotoxicity assays (see Table 5).

Due to its high accuracy, and especially due to its high specificity, the method according to the invention may be used in several applications in order to avoid unnecessary experiments on animals. For instance, it may facilitate the 50 hazard identification of existing industrial chemicals to serve the purposes of the EU chemical policy program REACH, for which it has been estimated that some 400,000 rodents may be used for testing genotoxicity in vivo (14); specifi-

cally, chemical prioritization by grouping chemicals for

The method according to the invention may also be applied for assessing genotoxic properties of novel cosmetics, since in the EU, for cosmetic ingredients, animal testing is generally prohibited since 2009 (EC Regulation 1223/ 2009). Furthermore, our approach may be effective in drug development, by significantly avoiding false positive results of the standard in vitro genotoxicity test battery, implying that promising lead compounds will no longer be eliminated due to wrong assumptions on their genotoxic properties and that rodents would not be unnecessarily sacrificed in costly experimentation.

EXAMPLES

Example 1: Chemicals

Table 5 shows the doses for the 62 compounds used in this study and provides information on the stratification of the compounds based on the Ames assay, and on in vivo genotoxicity data.

TABLE 5

Chemicals used in this study, selected doses and information on in vitro and in vivo genotoxicity data.								
Compound	Abbreviation	CAS no	Dose	Solvent	Ames	In vitro GTX	In vivo GTX	
2-acetyl aminofluorene	2AAF	53-96-3	50 μΜ	DMSO	+	+	+	
Aflatoxin B1	AFB1	1162- 65-8	1 μΜ	DMSO	+	+	+	
Benzo[a]pyere	BaP	50-32-8	2 μΜ	DMSO	+	+	+	

TABLE 5-continued

Chemicals used in this study, selected doses and information on in vitro and in vivo genotoxicity data.

		CAS				In vitro	In vivo
Compound	Abbreviation	no	Dose	Solvent	Ames	GTX	GTX
7,12-Dimethyl	DMBA	57-97-6	5 μΜ	DMSO	+	+	+
benzantracene Dimethyl	DMN	62-75-9	2 mM	DMSO			
Dimethyl nitrosamine	DIVIN	02-73-9	Z 1111V	DIVISO	+	+	+
Mitomycine C	MMC	50-07-7	200 nM	DMSO	+	+	+
Para-cresidine	pCres	120-71-8	2 mM	EtOH	+	+	+
2-(chloromethyl)pyridine•HCl	2CMP	6959- 47-3	300 μM	DMSO	+	+	-
4-acetyl aminofluorene	4AAF	28322- 02-3	100 nM	DMSO	+	+	_
4-Nitro-o- phenylenediamine	NPD	99-56-9	2 mM	DMSO	+	+	_
8-quinolinol	8HQ	148-24-3	15 μM	DMSO	+	+	_
Quercetin	Que	117-39-5	50 μM	DMSO	+	+	-
Phenobarbital	PhB	50-06-6	1 mM		+	+	_
Acetaminophen	APAP	103-90-2	100 μM	PBS	_	+	+
Diethylstilbestrol	DES	56-53-1	5 μM	EtOH	_	+	+
Phenol	Ph	108-95-2	2 mM		_	+	+
Tributylinoxide Curcumin	TBTO Cur	56-35-9 458-37-7	0.02 nM 1 μM	EtOH DMSO	_	+	+
o-anthranilic acid	AnAc	118-92-3	$\frac{1 \text{ mW}}{2 \text{ mM}}$		_	+	_
Resorcinol	RR	108-46-3	2 mM		_	+	_
Sulfisoxazole	Sulfi	127-69-5	5 μM	DMSO	_	+	_
17beta-estradiol	E2	50-28-2	30 μM	DMSO	_	+	_
Ethylacrylate	EtAc	140-88-5	1 mM	EtOH	_	+	_
Phenacetin	Phen	62-44-2	1 mM	EtOH	_	+	_
L-ascorbic acid	VitC	50-81-7	2 mM	PBS	-	_	+
Ampicillin trihydrate	AmpC	7177- 48-2	250 μΜ	DMSO	_	-	-
Diclofenac	Diclo	15307- 86-5	100 μΜ	PBS	-	-	-
D-mannitol	Dman	69-65-8	250 μM	PBS	_	_	_
Cyclosporine A	CsA	59865- 13-3	3 μΜ	DMSO	-	_	_
di(2-ethylhexyl)phthalate	DEHP	117-81-7	10 mM		-	_	_
Reserpine 2,3,7,8-tetrachloro	Res TCDD	50-55-5 1746- 01-6	12.5 μM 10 nM	DMSO DMSO	_	_	_
dibenzo-p-dioxin Tetradecanoyl phorbol acetate	TPA	16561- 29-8	500 nM	DMSO	_	_	_
Wy 14643	Wy	50892- 23-4	200 μΜ	DMSO	_	_	_
4-aminobiphenyl	ABP	92-67-1	80 μM	DMSO	+	+	+
Azathioprine	AZA	446-86-6	250 μM	DMSO	+	+	+
Benzidine	BZ	92-87-5	1 mM	DMSO	+	+	+
Chlorambucil	Cb	305-03-3	20 μM	DMSO	+	+	+
Cisplatin	cisPt	15663- 27-1	20 μΜ	PBS	+	+	+
Cyclophosphamide	CP	6055- 19-2	2 mM	PBS	+	+	+
Diethylnitrosamine	DEN	55-18-5	500 μM	DMSO	+	+	+
1-ethyl-1-	ENU	759-73-9	1 mM	DMSO	+	+	+
nitrosourea	Е.,	110 00 0	2 mM	DMCO			
Furan 2-amino-3- methyimidezo[4.5 flouinoline	Fu IQ	110-00-9 76180- 96-6	2 mM 800 μM	DMSO DMSO	+	+	+
methyimidazo[4,5-f]quinoline 4,4'-	MOCA	90-0 101-14-4	60 μ M	DMSO	+	+	+
methylenebis(2-chloroaniline)							
2-chloroethanol	2-Cl	107-07-3	2 mM	DMSO	+	+	_
p-anisidine	Anis	104-94-9	60 μM	DMSO	+	+	_
Bromodichloro methane	BDCM	75-27-4	2 mM		_	+	_
Carbon tetrachloride	CCl4	56-23-5	2 mM	DMSO	_	+	_
Ethylbenzene	EthylB	100-41-4	800 μM	DMSO	_	+	_
Eugenol	EuĞ	97-53-0	500 μM	DMSO	_	+	_
Nitrobenzene	NBZ	98-95-3	2 mM	DMSO	_	_	_
1,1,1-trichloro-2,2- di-(4-chlorophenyl)ethane	DDT	50-29-3	80 μΜ	DMSO	_	_	_
Pentachlorophenol	PCP	87-86-5	10 μ M	EtOH	_	_	_
Progesterone	Prog	57-83-0	6 μΜ	EtOH	_	_	_
Tetrachloroethylene	TCE	127-18-4	2 mM	EtOH	-	-	-

TABLE 5-continued

Chemicals used in this study, selected doses and information on in vitro and in

vivo genotoxicity data.							
						In	I
		CAS				vitro	vi
Compound	Abbreviation	no	Dose	Solvent	Ames	GTX	G

Compound	Abbreviation	CAS no	Dose	Solvent	Ames	In vitro GTX	In vivo GTX
Lindane	ү-НСН	58-89-9	2 mM	DMSO	_	_	_
Acesulfame-K	ASK	55589- 62-3	2 mM	DMSO	-	_	_
Caprolactam	CAP	105-60-2	2 mM	DMSO	_	_	_
Coumaphos	COU	56-72-4	250 μM	DMSO	_	_	_
Diazinon	DZN	333-41-5	250 μM	DMSO	_	_	_
Simazine	Sim	122-34-9	50 μM	DMSO	_	_	_

^{*}Ames results based on NTP data

Example 2: Cell Culture and Treatment

HepG2 cells were cultured in 6-well plates as previously described (15). When the cells were 80% confluent, medium was replaced with fresh medium containing the corresponding dose of each compound or with the corresponding 25 control treatment (DMSO, EtOH, or PBS 0.5%).

All doses were selected based on a MTT assay resulting to 80% viability at 72 h incubation, or a maximum dose of 2 mM was used when no cytotoxicity was observed, or the maximum soluble dose was used, whichever is the lowest 30 (15). Cells were exposed for 24 h. These exposure periods were selected based on the time that GTX need to be metabolized (15) and the cell cycle duration of HepG2 cells (approximately 20 h) (16). Thereafter the culture medium was replaced by TRIZOL (Gibco/BRL) for RNA isolation. Three independent biological replicates were conducted.

Example 3: Total RNA Isolation and Microarray Experiments

Total RNA was extracted using 0.5 ml TRIZOL according to the manufacturer's instructions and purified using RNeasy® Mini Kits (Qiagen). Sample preparation, hybridization, washing, staining and scanning of the Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays were 45 conducted according to the manufacturer's protocol as previously described (17). Quality controls were within acceptable limits. Hybridization controls were called present on all arrays and yielded the expected increases in intensities.

Example 4: Annotation and Normalization of Microarray Data

The obtained data sets were re-annotated to the MBNI Custom CDF-files versions 11 and 14. (http://brainarray.mb- 55 ni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp) (18) and RMA normalized (19) using the NuGOExpressionFileCreator in GenePattern (20). Log 2 ratios were calculated for each replicate to the corresponding control treatment.

Example 5: Selection of Classifiers for Genotoxicity

The 34 chemicals were stratified into two groups based on 65 the results of the Ames mutagenicity assay (Table 5) and consequently assigned to Ames-positive and Ames-negative.

Within each group both in vivo GTX and in vivo NGTX chemicals are present. For the Ames-positive group, 13 t-tests were performed to select classifiers for discriminating in vivo GTX compounds from in vivo NGTX compounds. Genes significant in all t-tests were then selected. Within this geneset, sub-sets were investigated with regards to their predictive power. The best prediction was obtained for the geneset with three genes, namely NR0B2, PWWP2B, and LOC100131914.

For the Ames-negative group 21 t-tests were performed to select classifiers for discriminating in vivo GTX from in vivo NGTX chemicals. Genes significant in all t-tests were then selected. Within this geneset, sub-sets were investigated with regards to their predictive power. The best prediction was obtained for the geneset with three genes, namely SLC40A1, PNMA6A and C10orf65.

Example 6: Class Prediction of the Training and Validation Sets of Reference Compounds

Prediction analysis according to our method was conducted for each of the selected genesets. The gene expression data of the three replicates was compared to the respective reference values. A compound was predicted to be in vivo GTX or in vivo non-GTX when at least two out of the three replicates were assigned to one class.

The accuracy was calculated as the percentage of the correctly classified chemicals to the total number of tested chemicals; the sensitivity as the percentage of the correctly classified GTX to the total number of tested GTX com-50 pounds and the specificity as the percentage of the correctly classified NGTX to the total number of tested NGTX compounds.

REFERENCES

- 1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010 September-October; 60(5):277-300.
- 2. OECD. Mortality from Cancer, in OECD, Health at a Glance: Europe 2010 OECD Publishing. 2010 34-5.
- 3. Petrucelli N, Daly M B, Feldman G L. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010 May; 12(5):245-59.
- 4. Clapp R W, Jacobs M M, Loechler E L. Environmental and occupational causes of cancer: new evidence 2005-2007. Rev Environ Health. 2008 January-March; 23(1): 1-37.

[†] in vitro genotoxicity is considered positive when at least one in vitro genotoxicity assay (Ames, MN, CA, MLA) showed positive results,

in vivo genotoxicity is considered positive when at least one in vivo genotoxicity assays (MN, CA) showed positive results. Equivocal in vivo data are considered positive.

23

- 5. Oliveira P A, Colaco A, Chaves R, Guedes-Pinto H, De-La-Cruz P L, Lopes C. Chemical carcinogenesis. An Acad Bras Cienc. 2007 December; 79(4):593-616.
- 6. Ames B N, Lee F D, Durston W E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA. 1973 March; 70(3):782-6.
- 7. Kirkland D, Aardema M, Henderson L, Müller L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res. 2005 Jul. 4; 584(1-2):1-256.
- 8. ICH. Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use S2(R1). 2008.
- 9. IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Supplement 7: Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42. 1987.
- 10. IARC. IARC Monographs on the evaluation of carci- ²⁰ nogenic risks to humans. Volume 73: Some Chemicals that Cause Tumours of the Kidney or Urinary Bladder in Rodents and Some Other Substances. 1999.
- 11. Voogd C E. Azathioprine, a genotoxic agent to be considered non-genotoxic in man. Mutat Res. 1989 Sep- ²⁵ tember; 221(2):133-52.
- 12. Bergman K, Muller L, Teigen S W. Series: current issues in mutagenesis and carcinogenesis, No. 65. The genotoxicity and carcinogenicity of paracetamol: a regulatory (re)view. Mutat Res. 1996 Feb. 1; 349(2):263-88.
- 13. Nagafuchi K, Miyazaki K. Modulation of genotoxicity of azathioprine by intracellular glutathione in hepatocytes. J Cancer Res Clin Oncol. 1991; 117(4):321-5.
- 14. van derJagt K, Munn S, Tørsløv J, Bruijn Jd. Alternative Approaches can reduce the use of test animals under REACH: Addendum to the report "Assessment of additional testing needs under REACH. Effects of (Q)SARS, risk based testing and voluntary industry initiatives". EUROPEAN COMMISSION, DIRECTORATE GENERAL JRC, JOINT RESEARCH CENTRE, Institute for Health and Consumer Protection. 2004 November.

 3. The method according gene set further comprises the group consisting of group consisting consisting consisting consisting consisting consisting consisting consi
- 15. Jennen D G, Magkoufopoulou C, Ketelslegers H B, van Herwijnen M H, Kleinjans J C, van Delft J H. Comparison of HepG2 and HepaRG by whole genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 Jan. 27.
- 16. Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, et al. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998 Jun. 18; 402(1-2):185-202.
- 17. Jennen D G, Magkoufopoulou C, Ketelslegers H B, van Herwijnen M H, Kleinjans J C, van Delft J H. Comparison

24

- of HepG2 and HepaRG by whole genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. January 27.
- 18. Dai M, Wang P, Boyd A D, Kostov G, Athey B, Jones E G, et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 2005; 33(20):e175.
- 19. Irizarry R A, Hobbs B, Collin F, Beazer-Barclay Y D, Antonellis K J, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003 April; 4(2):249-64.
- 20. De Groot P J, Reiff C, Mayer C, Muller M. NuGO contributions to GenePattern. Genes Nutr. 2008 December; 3(3-4):143-6.

The invention claimed is:

- 1. A method of gene expression profiling, the method comprising:
 - exposing a HepG2 cell to a compound for a period of time between 12 and 48 hours,
 - processing the exposed HepG2 cell to produce a cell extract comprising mRNA;
 - measuring a level of mRNA in the cell extract for each of the members of a first gene set comprising at least genes NR0B2, PWWP2B and LOC100131914, or
 - measuring a level of mRNA for each of the members of a second gene set, comprising at least genes SLC40A1, PNMA6A and C10orf65.
- 2. The method according to claim 1, wherein the first gene set further comprises at least one gene selected from the group consisting of genes CEACAM1, SLC27A1, TTR, UBE2E2, NAT8, GMFG, RBPMS, C10orf10, PROSC, TBC1D9, OR10H1, APOM, C1orf128, AVEN, ZNRF3 and SNORD8.
- 3. The method according to claim 1, wherein the second gene set further comprises at least one gene selected from the group consisting of genes SGK1, SLC64A, ANXA6, BTD, FGA, NDUFA10, NFATC3, MTMR15, ANAPC5, ZNF767, SCRN2 and GSTK1.
- 4. The method according to claim 1, wherein said period of time is about 24 hours
- 5. A method of measuring gene expression performing quantitative PCR, the method comprising:
 - exposing a HepG2 cell to a compound for a period of time between 12 and 48 hours,
 - producing a cell extract comprising mRNA from the exposed HepG2 cell; and
 - performing quantitative PCR on the cell extract for the members of a first gene set comprising at least genes NR0B2, PWWP2B and LOC100131914 and/or a second gene set comprising at least genes SLC40A1, PNMA6A and C10orf65.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 9,822,414 B2
APPLICATION NO. : 14/117731

DATED : November 21, 2017 INVENTOR(S) : Van Delft et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Claim 5, Column 24, Line 41, change "of measuring gene expression performing" to --of performing--

Signed and Sealed this

Twenty-fourth Day of July, 2018

Andrei Iancu

Director of the United States Patent and Trademark Office