12 United States Patent

Stich et al.

US009817699B2

US 9,817,699 B2
Nov. 14, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

(58)

ADAPTIVE AUTOSCALING FOR
VIRTUALIZED APPLICATIONS

Applicant: ELASTICBOX INC., Mountain View,
CA (US)

Inventors: Slater Stich, Sunnyvale, CA (US);
Alberto Arias Maestro, Mountain
View, CA (US); Ravi Srivatsav, San
Jose, CA (US)

Assignee: ElasticBox Inc., Mountain View, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 60 days.

Appl. No.: 14/206,333

Filed: Mar. 12, 2014

Prior Publication Data

US 2014/0282591 Al Sep. 18, 2014

Related U.S. Application Data

Provisional application No. 61/780,384, filed on Mar.
13, 2013.

Int. CL.
GOol 9/455 (2006.01)
GOol 9/46 (2006.01)
(Continued)
U.S. CL
CPC ... GO6I" 9/50 (2013.01); GO6F 9/5005
(2013.01); GO6F 97505 (2013.01); GO6F
9/5011 (2013.01);
(Continued)
Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,459,682 B1 10/2002 Ellesson et al.
6,560,717 Bl * 5/2003 Scoftooevvvvnnnnenn, GO6F 9/505
714/4.1
(Continued)
FOREIGN PATENT DOCUMENTS
CN 101986274 A 3/2011
CN 102567119 A 7/2012
(Continued)

OTHER PUBLICATTIONS

Gong et al., “Press: PRedictive Elastic ReSource Scaling for Cloud

Systems”, International Conference on Network and Service Man-
agement (CNSM), Oct. 25-29, 2010, pp. 9-16.

(Continued)

Primary Examiner — Charles Swilt

(74) Attorney, Agent, or Firm — Swanson & Bratschun,
L.L.C.

(57) ABSTRACT

Virtualized applications are autoscaled by receiving perfor-
mance data 1 time-series format from a running virtualized
application, computationally analyzing the performance
data to determine a pattern therein, and extending the
performance data to a time 1n the future based at least on the
determined pattern. The extended performance data 1s ana-
lyzed to determine 1f resources allocated to the virtualized
application are under-utilized or over-utilized, and a sched-
ule for re-allocating resources to the virtualized application
based at least in part on a result of the analysis of the
extended performance data 1s created.

18 Claims, 2 Drawing Sheets

Monitoring Node
162

Performance Data

104

Time-Series Extension Node

Predicted Performance Data

106

5ca

Performance Data Translation Node

s, e e e 3 = L e e

ling Advice

Past
Performance
e 1 Data and Past
© | Advice

I

Advice Node

External Broadcast

 JEEPII. JpE

—
ons et shanpal e g e pe e e Reps pale P s Lol s s el

US 9,817,699 B2

Page 2

(51) Int. CL

GO6F 15/173

GO6F 9/50

(52) U.S. CL

CPC ...

(56)

GO6F 9/5016 (2013.01); GO6F 9/5027
(2013.01); GO6F 9/5061 (2013.01); GO6F

(2006.01)
(2006.01)

9/5077 (2013.01); GO6F 9/5083 (2013.01);

GO6F 2209/508 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

8,145,455
8,200,603
8,341,624
8,495,627
8,499,000
8,572,623
8,621,080
8,621,477
8,738,972
2002/0131386
2005/0289540

2009/0183218
2010/0076925

2010/0191854
2010/0199285
2010/0242045

2011/0004574
2011/0099267

2012/0233315
2012/0310376
2013/0007259

2013/0080142
2013/0138816
2013/0166486
2013/0174149

2013/0218547

B2
B2
Bl
B2
Bl *

B2
B2
B2 *

Bl *

Al*

Al*

Al
Al*

Al*

Al*

Al*

Al
Al*

AN AN A s

3/201
9/201
12/201
7/201
7/201

e W 2 2 D2

10/201
12/201
12/201

L D

5/2014
9/2002
12/2005

7/2009
3/2010

7/2010
8/2010
9/2010

1/2011
4/2011

9/2012
12/2012
1/2013

3/201
5/201
6/201
7/201

L

8/2013

Cherkasova et al.
Cherkasova et al.

Hobbs

Barsness et al.

Zhang HO41. 47/823
709/200

Bhogal et al.

Iyoob et al.

Ferdous GO6F 11/3442
718/104

Bakman GO6F 11/0712
714/47.1

GWONooeevvnen. HO4W 36/0011
370/338

Nguyen GOO6F 9/45558

718/1

[1 et al.

Honigfort GO6F 17/30306
707/609

[SCL v, G06F 1/3203
709/226

Medovich (GGO6F 9/45533
718/104

SWaAMYycoeeeeeenn GO6F 9/455
718/104

Jeong et al.

SUIM oo GO6F 9/4856
709/224

Hoffman et al.

Krumm et al.

Pacheco-Sanchez GO6F 11/3447
709/224

Gangemi et al.

Kuo et al.

Kim

Dasgupta GO6F 9/5077

718/1

Ostermeyer et al.

2013/0275974 Al*

2013/0346969 Al*

2014/0089495 Al*

2014/0229614 Al*

2015/0095432 Al*

2015/0178120 AlL*

CN
EP
EP
GB
KR
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO

10/2013

12/2013

3/2014

8/2014

4/2015

6/2015

FOREIGN PATENT DOCUM

103164279 A
1909182 Al
2187567 Al
2475897 A

10-1262679 Bl

2008/119929 A2
2009/061432
2009/108344
2010/058989
2011/031459
2012/066604
2013/0096635
2013/082119
2013/169903
2013/192059 A2

AAA A AN

Cao ..cooovvenriiiiiinnnnn, GO6F 9/5077
718/1

Shanmuganathan . GO6F 9/4856
718/1

Akolkar HO4L 41/147
709/224

Aggarwal HO04M 3/2227
709/224

Soundararajan HO4L 51/32
709/206

Prasek GO6F 9/45558
718/1

6/2013
4/2008
5/2010
6/2011
5/2013
10/2008
5/2009
9/2009
5/2010
3/2011
5/201
1/201
6/201
11/201
12/201

L L Lo o N

ENTTS

OTHER PUBLICATIONS

Kundu et al., “Application Performance Modeling in a Virtualized

Environment”, IEEE 16th International Symposium on High Per-

formance Computer Architecture (HPCA), Bangalore, India, Jan.
9-14, 2010, 10 pages.
Mozafar et al., “Resource and Performance Prediction for Building
a Next Generation Database Cloud”, 6th Biennial Conference on
Innovative Data Systems Research (CIDR O13), Asilomar, Califor-
nia, USA, Jan. 6-9, 2013, 4 pages.
Wood et al., “Predicting Application Resource Requirements in

Virtual Environments™, Proceedings of the ACM/IFIP/USEN]

X 9th

International Middleware Conference (Middleware’2008), Leuven,
Belgium, Dec. 1-5, 2008, 24 pages.
Wood et al., “Profiling and Modeling Resource Usage of Virtualized

Applications”, Middleware 2008, Lecture Notes in Computer Sci-
ence, vol. 5346, 2008, pp. 366-387.

* cited by examiner

U.S. Patent Nov. 14, 2017 Sheet 1 of 2 US 9,817,699 B2

100

\ Monitoring Node
102

Performance Data

Time-Series Extension Node
104

R S I R R R

Predicted Performance Data

Past
Performance
- _: Data and Past
| Advice

Performance Data Translation Node
106

Iy e

Scaling Advice 'L

Advice Node
108

&.. :_.l] N . i o "_r"_r.l} ; Ele . .1?- =} : ..__.:5' L rRr - r . "‘5,- ;.-.- I..“.| . ; -"rl_ -"1_‘& .I} -
&{1 s 3«”‘@% m&ﬁ&' o ﬁ&%&m&m R, o -L. EA %:-&-&m%ﬁ”‘ﬁ AR ?wm Jiﬁk‘wm.&&mh R hc&% i -&Q‘}{Q LA

External Broadcast
110

N
o
.
%
\
N

T T T T e

[

FIG. 1

U.S. Patent Nov. 14, 2017 Sheet 2 of 2 US 9,817,699 B2

200

ERE R R R o T R R T e T R LI R L L R R R R T L I L R L R R R L R R T T e R R R R T T i i T ER TR I T R R T T B R R R R R R A O E A A A)

=
- -
- <
= TP T T T T T T T T T T T T T Y T T T T T T T L T
= -
- -
- -
- <,
" <
: :
4
L
- -
~
z <
4

Z

Processor

.E-a:-::-ar-
et

A

o

S

Memory 208
OS/other 210 -

T
EaEar
Y

202

: .‘-:. - ?
E '.l'x:-\.xjx:-\.f:::- .“-'l‘- .'r-\.':-'rh

s

SRR A R

o

p
R

Monitoring Node 212 | §

T
I
g

P
T

Storage |
204

W&;f

G
=

=
-

R

St A A A A

Pl

\ |

: : % X N

Time-Series Y R .

» %r; R e R

Extension Node | |

: %2‘\? 3 :
214 N —
h \ N

AR

..

et

7

Py

Network
Interface

P

S
A

Performance Data
Translation Node

i
e
N
-
)
s

o '._ _____________ e)

Syl

R R T R

NI
W)
@)
22
e,

il S e e
: : -t o L PR
P

P

i
-

-
A

Advice Node

B

N
s
9o
e

s

iR
2

T s

3 R e e

Ao A A P

R

SN

Y
“
LR R R WM N NN M NN M NN NN Lk WA M NN MM NNNNNNNHY WOMOW MM NN MM NN MM T WA N NN NN HNNNNNNNMNX WOMR MM NN MMM N NN N MDD N MMM N MM NNNNENNNNX R R R e R I R R R I R R R R S R A

FIG. 2

US 9,817,699 B2

1

ADAPTIVE AUTOSCALING FOR
VIRTUALIZED APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to and the benefit of U.S.
Provisional Patent Application Ser. No. 61/780,384, filed on
Mar. 13, 2013, which 1s hereby incorporated herein by
reference in 1ts entirety.

TECHNICAL FIELD

Embodiments of the present invention relate generally to
virtualized applications and, more particularly, allocating
and re-allocating resources to virtualized applications.

BACKGROUND

The emergence of cloud-computing resource providers
and management tools for private virtualization clusters has
allowed virtualized applications to be deployed on resources
that may be changed or re-provisioned on an as-needed
basis. For example, a developer who knows that his or her
deployed application will receive only modest workloads
may choose to run the application on an instance having
allocated only a modest amount of resources. As time goes
on, however, the developer may discover that the application
1s now receiving larger workloads and may consequently
decide to upgrade larger instance and/or create a cluster of
a plurality of small instances behind a load balancer. Should
demand {fall in the future, the developer may downgrade
back to the single, small instance. The ability to provision
and re-provision compute resources 1s thus a fundamental
benelit of cloud computing and of virtualization 1n general;
it allows one to ‘right-scale’ an application so that the
resources upon which it 1s deployed match the computa-
tional demands 1t experiences and thus avoid paying for
un-needed resources.

The task of right-scaling a virtualized application 1s,
however, diflicult 1n practice. For example, scaling an appli-
cation based on instantancous demand (sometimes called
autoscaling) 1s often an iapproprnate resource-allocation
scheme; amongst other things, such scaling does not allow
the advance provision of resources, and 1t 1s necessarily
blind to long-term usage patterns. Consequently, it 1s desir-
able to have a resource-provisioning plan having a longer
horizon. The task of forecasting an application’s usage
patterns, however, even when restricted to simply extending,
performance-metric time series (e.g., percent CPU utiliza-
tion over time, disk IO over time, etc.), may be a labor-
intensive process. Furthermore, even 1 performance metrics
could be predicted in advance, one still faces the problem of
translating this knowledge into intelligent decisions to
upgrade or downgrade a deployment. For example, suppose
someone has an application running on three small
instances, and that he or she knows with certainty that over
the next month, these instances will respectively run con-
stantly at 20%, 60%, and 80% CPU utilization. If, say, the
application 1s instead deployed on two medium 1instances,
these CPU utilization numbers would change unpredictably.
In other words, 1t may be dithcult to determine how perfor-
mance metrics on one deployment will translate into per-
formance metrics on another deployment of the same appli-
cation on a different resource set.

This problem may be exacerbated by the fact that perfor-
mance patterns are often application-specific. For example,

10

15

20

25

30

35

40

45

50

55

60

65

2

suppose there are two applications, A and B, and two
resource deployment patterns (e.g. three small nstances or
two medium 1nstances), X and Y. Suppose that on the
resource pattern X, application A’s memory utilization fluc-
tuates between 70% and 80% and that on resource pattern Y,
it fluctuates between 40% and 50%. Suppose further that
application B’s memory utilization on resource pattern X
also fluctuates between 70% and 80%. Given this informa-
tion, 1t cannot be determined with certainty that application
B’s utilization on Y will also be between 40% and 50%, even
though application A behaved that way, because of potential
differences between the needs of applications A and B. The
way that an application performs on a resource 1s often very
specific to that application, making it extremely diflicult to
predict how other applications will perform when deployed
on different resource types. A need therefore exists for a
more eflicient way to scale resource allocations for appli-
cations.

SUMMARY

In general, various aspects of the systems and methods
described herein monitor performance data and/or resource
utilization of one or more virtualized applications and pro-
vide the performance data in a time-series format. The
collected data 1s analyzed to extend the time series into the
future (1.e., to predict the future performance of the virtu
alized application). If an under- or over-allocation of
resources 1s detected, advice 1s given to the virtualized
application and/or a system upon which it 1s running to
re-allocate the resources. The detection of the under- or
over-allocation of resources may be based on the perfor-
mance data, previously collected performance data, or by
noting the eflects of a previous re-allocation of resources on
the virtualized application (or a similar application).

In one aspect, a method for autoscaling virtualized appli-
cations includes electronically recerving performance data
in time-series format from a running virtualized application;
computationally analyzing the performance data to deter-
mine a pattern therein; storing the extended performance
data 1n a computer database; extending the performance data
to a time 1n the future based at least on the determined
pattern; computationally analyzing the extended perior-
mance data to determine 1f resources allocated to the virtu-
alized application are under-utilized or over-utilized; and
creating a schedule for re-allocating resources to the virtu-
alized application based at least 1n part on a result of the
analysis of the extended performance data.

Previously collected performance data for the virtualized
application or a similar virtualized application may be
analyzed, wherein determining 11 resources allocated to the
virtualized application are under-utilized or over-utilized 1s
turther based on the previously collected performance data.
The previously collected performance data may include a
point 1n time at which a resource re-allocation occurred, and
wherein determining 1f resources allocated to the virtualized
application are under-utilized or over-utilized 1s further
based an eflect of the re-allocation. The similar virtualized
application may share a name, type, class or behavior pattern
with the virtualized application. The pattern may include a
fitted curve, line, or periodic function. The time in the future
may include one hour, twelve hours, one day, or one month.
Information regarding events external to the wvirtualized
application may be received, wherein determining 1f
resources allocated to the virtualized application are under-
utilized or over-utilized 1s further based the external events.

US 9,817,699 B2

3

The external events may include a time of day, week, month,
or year, a soltware launch, or a marketing event.

In another aspect, a system for autoscaling virtualized
applications 1ncludes a computer processor configured for
executing computer mnstructions for computationally execut-
ing the steps of: receiving performance data in time-series
format from a running virtualized application; analyzing the
performance data to determine a pattern therein; extending
the performance data to a time 1n the future based at least on
the determined pattern; analyzing the extended performance
data to determine if resources allocated to the virtualized
application are under-utilized or over-utilized; and creating
a schedule for re-allocating resources to the virtualized
application based at least 1n part on a result of the analysis
of the extended performance data; and a database for storing
performance data related to the execution of the plurality of
virtual machines.

Previously collected performance data for the virtualized
application or a similar virtualized application may be
analyzed, wherein determining 11 resources allocated to the
virtualized application are under-utilized or over-utilized 1s
turther based on the previously collected performance data.
The previously collected performance data may include a
point 1n time at which a resource re-allocation occurred, and
wherein determining 1f resources allocated to the virtualized
application are under-utilized or over-utilized 1s further
based an eflect of the re-allocation. The similar virtualized
application may share a name, type, class or behavior pattern
with the virtualized application. The pattern may include a
fitted curve, line, or periodic function. The time in the future
may include one hour, twelve hours, one day, or one month.
Information regarding events external to the virtualized
application may be received, wherein determining 1f
resources allocated to the virtualized application are under-
utilized or over-utilized 1s further based the external events.
The external events may 1nclude a time of day, week, month,
or year, a soltware launch, or a marketing event.

These and other objects, along with advantages and
features of the present invention heremn disclosed, will
become more apparent through reference to the following
description, the accompanying drawings, and the claims.
Furthermore, 1t 1s to be understood that the features of the
vartous embodiments described herein are not mutually
exclusive and can exist in various combinations and permu-
tations.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer
to the same parts throughout the different views. In the
following description, various embodiments of the present
invention are described with reference to the following
drawings, 1n which:

FIG. 1 1s a block diagram of a system for adaptively
autoscaling virtualized applications in accordance with
embodiments ol the present invention; and

FIG. 2 1s a system diagram of a system for adaptively
autoscaling virtualized applications in accordance with
embodiments of the present invention.

DETAILED DESCRIPTION

FI1G. 1 1llustrates a block diagram 100 1n accordance with
embodiments of the present invention. A monitoring node
102 collects time-dependent performance data from one or
more running virtualized applications (this data 1s herein
referred to as time-series data). A time-series extension node

5

10

15

20

25

30

35

40

45

50

55

60

65

4

104 receives the time-series data and extends it into the
future by analyzing the time-series data and predicting the
future performance of the virtualized application. A perfor-
mance-data translation node 106 receives the extended time-
series data, analyzes 1t, and determines 1f (a) the virtualized
application 1s experiencing a resource-allocation problem
(e.g., too little memory, CPU power, storage, or bandwidth)
using its current set of resources or will likely experience a
problem 1n the future, and (b) the virtualized application
would not experience a resource-allocation problem, either
now or in the future, using a diflerent set of resources. If a
different set of resources would reduce or eliminate a
resource-allocation problem with the virtualized application,
an advice node 108 receives this recommended set of
different resources and makes an external broadcast 110 of
same. The virtualized application, or the virtual server or
cloud-management service running thereon, may then
receive this advice and adjust the resources accordingly.
Each of the blocks 102, 104, 106, 108 in FIG. 1 are described
in greater below.

The monitoring node 102 gathers performance data in
time-series format from a running virtualized application.
The monitoring node may be installed locally on the same
compute resource as the virtualized application and collect
the data by communicating with the application or compute
resource via, for example, an API or an operating-system
resource-monitoring tool; the monitoring node 102 may then
push the data out to the time-series extension node 104.
Alternatively or in addition, the monitoring node 102 may be
installed remotely to the virtualized application and request
the data therefrom via a pull/polling request or similar
means.

The time-series data may include a measure of the virtu-
alized application’s usage of one or more computing
resources (e.g., memory, CPU power, storage, or bandwidth)
at a plurality of points 1n time. The data may describe the
raw amount of resource usage (e.g., number of megabytes of
storage), the percentage of a total of available resources
consumed (e.g., 50% of available disk space), or any other
such measure. The time points may be collected periodically
every, for example, 30 seconds, 60 seconds, 5 minutes, 60
minutes, or any other interval. The frequency of data col-
lection may vary i, for example, a resource limit 1is
approaching, at which time more frequent samples may be
collected. If resource use 1s well under its limit, fewer
samples may be collected. The momitoring node 102 may
send the time-series data to the time-series extension node
104 as 1t arrives from the monitored application or, 1n other
embodiments, periodically in batches.

The time-series extension node 104 receives the collected
time-series data from the monitoring node 102 and analyzes
it for behavior patterns, trends, periodicity, or other such
factors, and extends the time-series data into the future by
applying the extracted behavior patterns. For example, the
time-series extension node 104 may determine that the
utilization of one or more resources used by the virtualized
application 1s increasing linearly in time; the time-series
extension node 104 may therefore extract a best-fit line from
the time-series data relative to the identified resource and
extend the line to predict future resource needs. The time-
series extension node 104 may then create additional time-
series data representative of future resource needs in accor-
dance with the best-fit extracted line. Other curves may be
fit to the data, such as quadratic or cubic curves, periodic
wavelorms (e.g., sine waves), exponential or logarithmic
curves, or any other such curves (or combinations thereot).
The time-series extension node 104 may curve-fit a variety

US 9,817,699 B2

S

of curves or combinations of curves to the time-series data
and select the one having the best fit by, for example,
computing an error metric for each curve (e.g., sum of
absolute differences between the curve and the time-series
data). Any method for extending the time-series data is
within the scope of the present invention, however.

The time-series data may be extended to any point in the
tuture, to, e.g., one hour, twelve hours, one day, one month,
or any other such span of time. In various embodiments, the
amount of time that the time-series data 1s extended 1s a
function of the accuracy of the curve-fitting (or other method
to extract patterns from the time-series data); a more accu-
rate curve-fit, for example, may permit the time-series
extension node 104 to extend the time series further into the
future.

Other factors may be used to extend the time-series data
other than the time series received from the monitoring node
102. For example, the time-series extension node 104 may
increase or decrease the predicted utilization based on the
time of day, week, month, or year; business-based virtual-
1zed applications, such as stock-trading applications, for
example, may see heavier use and require more resources
during business hours on weekdays, while entertainment-
based virtualized applications, such as video-on-demand
applications, may see heavier use and require more
resources during evenings, weekends, and holidays. The
time-series extension node 104 may infer the type of appli-
cation based on the received time-series data, or the type
may be specified by a user or system administrator. If an
application requires heavier resources during evenings and
weekends, for example, the time-series extension node 104
may predict that the application will require even more
resources during an upcoming holiday (for example) and
adjust the predicted time-series data accordingly. The time-
series extension node 104 may be programmed (by a user or
system administrator) to adjust the predicted time-series data
for additional upcoming events, such as upcoming market-
ing campaigns associated with an application, television
events or specials, software launches, or other such events.

The performance-data translation node 106 receives the
predicted performance data, 1n the form of the extended time
series, from the time-series extension node 104. The perfor-
mance-data translation node 106 may save the extended
time-series data in a database or similar storage element or
device for later use or analysis. In one embodiment, the
performance-data translation node 106 analyzes the time-
series data to determine 1f the virtualized application 1s
experiencing, or will experience in the future, a shortfall or
over-allocation of allocated resources (e.g., memory, stor-
age, CPU power, throughput, or other such factors). The
performance-data translation node 106 may compare the
resource utilization shown by the time-series data against
one or more thresholds, such as maximum available
resources, and determine that the virtualized application 1s or
will experience a resource shortfall 11 one or more of the
resources used by the virtualized application exceeds or 1s
approaching one or more of the thresholds. The pertor-
mance-data translation node 106 may also or in addition
determine that the virtualized application 1s or will experi-
ence a resource shortfall i1f a rate of change of resource
utilization exceeds a threshold.

If the performance-data translation node 106 determines
that the virtualized application needs or will need additional
resources, the performance-data translation node 106 may
calculate an amount of additional resources to add. For
example, 1 the amount of over-utilization i1s a certain
percentage above current utilization, the performance-data

10

15

20

25

30

35

40

45

50

55

60

65

6

translation node 106 may recommend a corresponding per-
centage increase 1n resource allocation. In other embodi-
ments, the performance-data translation node 106 recom-
mends a resource increase greater than or equal to a
maximum, average, median, or mean resource utilization
seen or predicted in the time-series data. If a resource 1s
under-utilized, the performance-data translation node 106
may recommend a decrease 1n resource allotment, as well.

As described above, the performance-data translation
node 106 may analyze the time-series data collected from a
running virtualized application and determine a resource
under- or over-utilization based thereon. Particularly for
newly created virtualized applications or newly created
virtual machines upon which they run, no historical data
may be available. In some embodiments, however, previous
time-series data, past performance data, and or past advice
may be available for the virtualized application, similar
virtualized applications, and/or other applications runmng,
on the same or similar virtual machine. In these embodi-
ments, the performance-data translation node 106 may ana-
lyze not just the time-series data collected from the virtu-
alized application by the monitoring node 102, but instead or
in addition, this historical data.

In one embodiment, previously collected time-series data
1s used to augment, enhance, or extend the received time-
series data for the virtualized application. If, for example,
the received time-series data was collected over only a brief
period of time (e.g., one hour, twelve hours, or one day), 1t
may not be complete enough for the time-series extension
node 104 to accurately predict future performance. This
situation may arise for newly created or recently rebooted
virtualized applications, as well as virtualized applications
that have recently changed their workload due to external
factors. In one embodiment, the performance-data transla-
tion node 106 selects one or more previously collected time
series that are relevant to the collected time-series data and
makes a prediction about future resource requirements based
thereon. Relevant previously collected time-series data may
be selected by matching a name, type, class, or category of
the virtualized application with similar information associ-
ated with the previously collected time-series data. Instead
or 1n addition, one or more behavior characteristics of the
collected time-series data may be matched against similar
behavior characteristics 1n the collected time-series data
(1.e., stmilar sizes of resources, similar trends in changing
resources, or similar periodicity) to identily relevant previ-
ously collected time-series data.

In some embodiments, the previously collected time-
series data spans one or more times at which the resources
allocated to the virtualized application (or other, similar
application) changed. The change in resource allocation may
have been the result of advice produced by the performance-
data translation node 106 and advice node 108, or by any
other means. The performance-data translation node 106
may therefore extract the eflects of any change to a resource
allocation from the previously collected time-series data and
use this information to adjust the resources allocated to the
virtualized application. For example, 11 the same or other
virtualized application experienced a resource under- or
over-allocation 1n the past, and a re-allocation of resources
was applied 1n the past to 1t, the performance-data translation
node 106 may apply the same or similar re-allocation to the
currently monitored virtualized application.

In other words, the performance-data translation node 106
may also receive from storage some of 1ts previous input
from the time-series extension node 104, as well as 1ts own
past predictions based on that data. More formally, at a given

US 9,817,699 B2

7

time t,, the performance-data translation node 106 may
recerve a multidimensional time series on the interval [t,, t,]
from the time-series extension node 104, where t,<t,. It may
also receive a time series on the terval [t',, t',], where
t',<t,, and the predictions that the performance-data trans-
lation node 106 made based upon that time series; the
interval [t,, t',], represents a previous time series from the
time-series extension node 104. Using all or a subset of that
data, the performance-data translation node 106 may then
predict the future performance of the virtualized application
on a possibly-difierent resource deployment. Many different
resource re-allocation deployments may be considered by
the performance-data translation node 106 for a given vir-
tualized application, each adjusting some or all of available
resource parameters (e.g., memory, CPU, storage, or band-
width). Ultimately, the performance-data translation node
106 sends a schedule of resource allocation and re-allocation
advice to the advice node 108; 1t also optionally records the
advice 1t gave and the predictions 1t made for the perfor-
mance of the application 1n question following that advice.
It may further record its predictions for the performance of
the application 1n question for resource deployments that 1t
considered, but did not report to the advice node 108.)

The advice node 108 receives as mput from the pertfor-
mance-data translation node 106 a schedule of scaling
advice. It may then “publish™ (1.e., makes available 1n some
format, such as email, a web service, or some other means)
this schedule. The published presentation may take the form
ol a schedule of resource allocation and re-allocation tasks
formatted for an automatic application for scaling other
applications within a virtualized environment and/or a
schedule of resource allocation and re-allocation tasks that
are formatted for human consumption. The advice node 108
may Iurther publish a series of alerts or notifications
designed to achieve application performance standards or
benchmarks by means of resource allocation or re-alloca-
tion. Other formats in which the advice node 108 publishes
its information are within the scope of the present invention.

FIG. 2 illustrates an embodiment of a server 200 that
includes the nodes discussed above with reference to FIG. 1.
In this embodiment, the server 200 includes a processor 202,
such as an INTEL XEON, non-volatile storage 204, such as
a magnetic, solid-state, or flash disk, a network interface
206, such as ETHERNET or WI-FI, and a volatile memory
208, such as SDRAM. The storage 204 may store computer
instructions which may be read into memory 208 and
executed by the processor 202. The network interface 206
may be used to communicate with hosts 1n a cluster and/or
a client, as described above. The present invention 1s not,
however, limited to only the architecture of the server 200,
and one of skill 1n the art will understand that embodiments
of the present invention may be used with other configura-
tions of servers or other computing devices. In particular, the
nodes may be distributed across multiple servers 200.

The memory 208 may include instructions 210 for low-
level operation of the server 200, such as operating-system
instructions, device-drniver-interface instructions, or any
other type of such instructions. Any such operating system
(such as WINDOWS, LINUX, or OSX) and/or other instruc-
tions are within the scope of the present invention, which 1s
not limited to any particular type of operating system. The
memory further includes instructions for a monmitoring node
212, time-series extension node 214, performance-data
translation node 216, and advice node 218. The nodes
include computer instructions 1n accordance with their func-
tions and data discussed above; the present invention 1s not
limited to only this allocation of instructions, however, and

10

15

20

25

30

35

40

45

50

55

60

65

8

any such arrangement 1s within its scope. For example,
different nodes may be combined, and other nodes may run
on other servers (e.g., the monitoring node 212 may run on
a server hosting a monitored virtualized application).

It should also be noted that embodiments of the present
invention may be provided as one or more computer-
readable programs embodied on or 1n one or more articles of
manufacture. The article of manufacture may be any suitable

hardware apparatus, such as, for example, a floppy disk, a
hard disk, a CD ROM, a CD-RW, a CD-R, a DVD ROM, a
DVD-RW, a DVD-R, a flash memory card, a PROM, a

RAM, a ROM, or a magnetic tape. In general, the computer-
readable programs may be implemented in any program-
ming language. Some examples of languages that may be
used 1include C, C++, or JAVA. The software programs may
be further translated into machine language or virtual
machine instructions and stored in a program file in that
form. The program {file may then be stored on or 1n one or
more of the articles of manufacture.

Certain embodiments of the present mvention were
described above. It i1s, however, expressly noted that the
present mvention 1s not limited to those embodiments, but
rather the intention 1s that additions and modifications to
what was expressly described herein are also included
within the scope of the invention. Moreover, it 1s to be
understood that the features of the various embodiments
described herein were not mutually exclusive and can exist
in various combinations and permutations, even 1f such
combinations or permutations were not made express herein,
without departing from the spirit and scope of the invention.
In fact, variations, modifications, and other implementations
of what was described herein will occur to those of ordinary
skill 1n the art without departing from the spirit and the scope
of the invention. As such, the invention 1s not to be defined
only by the preceding illustrative description.

What 1s claimed 1s:
1. A method for autoscaling virtualized applications, the
method comprising:

clectronically recerving performance data in time-series
format from a runmng virtualized application, wherein
the performance data 1s collected at a frequency that
varies depending on a proximity of the running virtu-
alized application to a resource limit;

computationally analyzing the performance data to deter-
mine a pattern therein;

storing the performance data in a computer database;

extending the performance data to a time in the future
based at least on the determined pattern, wherein the
time in the future to which the performance data 1s
extended 1s based on an accuracy of a {it between the
performance data and the pattern;

receiving information regarding events external to the
virtualized application;

computationally analyzing the extended performance data
over the amount of time, wherein computationally
analyzing includes determining, based at least in part
on the information regarding events external to the
virtualized application, 1f resources allocated to the
virtualized application are under-utilized or over-uti-
lized, and adjusting at least part of the extended per-
formance data at a future time associated with events
external to the virtualized application, responsive to
determining whether resources allocated to the virtu-
alized application are under-utilized or over-utilized;
and

US 9,817,699 B2

9

creating a schedule for re-allocating resources to the
virtualized application based at least 1n part on a result
of the analysis of the extended performance data.

2. The method of claim 1, further comprising analyzing
previously collected performance data for the virtualized
application or a similar virtualized application, wherein
determining if resources allocated to the virtualized appli-
cation are under-utilized or over-utilized 1s further based on
the previously collected performance data.

3. The method of claim 2, wherein the previously col-
lected performance data comprises a point 1n time at which
a resource re-allocation occurred, and wherein determining
if resources allocated to the wvirtualized application are
under-utilized or over-utilized 1s further based on an effect of

the re-allocation.

4. The method of claim 2, wherein the similar virtualized
application shares a name, type, class or behavior pattern
with the virtualized application.

5. The method of claim 1, wherein the pattern comprises
a fitted curve, line, or periodic function.

6. The method of claim 1, wherein the time 1n the future
comprises one hour, twelve hours, one day, or one month.

7. The method of claim 1, wherein the external events
comprise a time of day, week, month, or year, a software
launch, or a marketing event.

8. The method of claim 1, wherein the performance data
1s extended based on curve fitting, the amount of time in the
tuture that the performance data 1s extended depending on
an accuracy of the curve fitting.

9. The method of claam 8, wherein the accuracy 1is
determined using an error metric.

10. A system for autoscaling virtualized applications, the
system comprising:

a computer processor configured for executing computer

instructions for computationally executing the steps of:

1. receiving performance data 1n time-series format
from a running virtualized application, wherein the
performance data i1s collected at a frequency that
varies depending on a proximity of the running
virtualized application to a resource limat;

11. analyzing the performance data to determine a
pattern therein;

111. extending the performance data to a time in the
future based at least on the determined pattern,
wherein the time 1n the future to which the perfor-
mance data 1s extended 1s based on an accuracy of a
{it between the performance data and the pattern;

5

10

15

20

25

30

35

40

45

10

1v. recerving information regarding events external to
the virtualized application;

v. analyzing the extended performance data over the
amount of time, wherein analyzing includes to deter-
miming, based at least in part on the information
regarding events external to the virtualized applica-
tion, 1f resources allocated to the virtualized appli-
cation are underutilized or over-utilized, and adjust-
ing at least part of the extended performance data at
a future time associated with events external to the
virtualized application responsive to determining
whether resources allocated to the virtualized appli-
cation are under-utilized or over-utilized; and

v1. creating a schedule for re-allocating resources to the
virtualized application based at least in part on a
result of the analysis of the extended performance
data; and

a database for storing performance data related to the

execution of the plurality of virtual machines.

11. The system of claim 10, further comprising analyzing
previously collected performance data for the virtualized
application or a similar virtualized application, wherein
determining if resources allocated to the virtualized appli-
cation are underutilized or over-utilized 1s further based on
the previously collected performance data.

12. The system of claim 11, wherein the previously
collected performance data comprises a point 1 time at
which a resource re-allocation occurred, and wherein deter-
mining 1f resources allocated to the virtualized application
are under-utilized or over-utilized 1s further based on an
ellect of the re-allocation.

13. The system of claim 11, wherein the similar virtual-
1zed application shares a name, type, class or behavior
pattern with the virtualized application.

14. The system of claim 10, wherein the pattern comprises
a fitted curve, line, or periodic function.

15. The system of claim 10, wherein the time 1n the future
comprises one hour, twelve hours, one day, or one month.

16. The system of claim 10, wherein the external events
comprise a time of day, week, month, or year, a software
launch, or a marketing event.

17. The system of claim 10, wherein the performance data
1s extended based on curve fitting, the amount of time 1n the
future that the performance data 1s extended depending on
an accuracy of the curve fitting.

18. The system of claim 17, wherein the accuracy 1s
determined using an error metric.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

