

US009811599B2

(12) United States Patent

Shyamsunder et al.

(54) METHODS AND SYSTEMS FOR PROVIDING CONTENT PROVIDER-SPECIFIED URL KEYWORD NAVIGATION

(71) Applicants: Karthik Shyamsunder, Winchester, VA (US); Daniel Schonfeld, Reston, VA (US); Burton S. Kaliski, Jr., McLean, VA (US)

(72) Inventors: **Karthik Shyamsunder**, Winchester, VA (US); **Daniel Schonfeld**, Reston, VA (US); **Burton S. Kaliski, Jr.**, McLean, VA (US)

(73) Assignee: VERISIGN, INC., Reston, VA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 888 days.

(21) Appl. No.: 13/622,541

(22) Filed: **Sep. 19, 2012**

(65) Prior Publication Data

US 2013/0018944 A1 Jan. 17, 2013

Related U.S. Application Data

- (63) Continuation-in-part of application No. 13/250,864, filed on Sep. 30, 2011.
- (60) Provisional application No. 61/452,516, filed on Mar. 14, 2011.
- (51) Int. Cl.

 G06F 15/16 (2006.01)

 G06F 17/30 (2006.01)

(10) Patent No.: US 9,811,599 B2

(45) **Date of Patent:** Nov. 7, 2017

(56) References Cited

U.S. PATENT DOCUMENTS

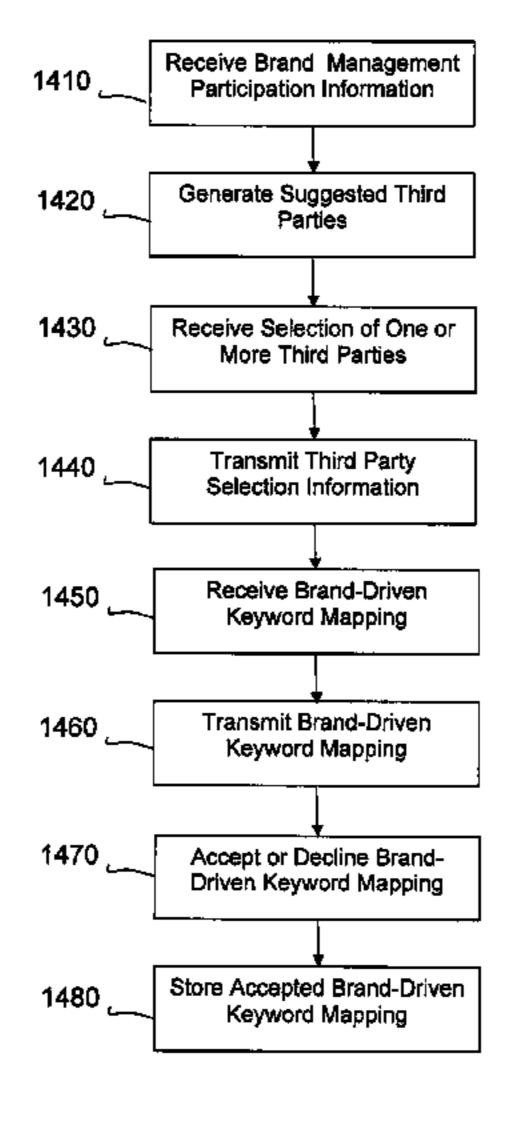
6,115,754 A	* 9/2000	Landgren	709/249			
6,424,980 B1	7/2002	Iizuka et al.				
6,625,644 B1	9/2003	Zaras				
6,654,741 B1	11/2003	Cohen et al.				
(Continued)						

FOREIGN PATENT DOCUMENTS

JP	H11-328079 A	11/1999	
WO	9803923 A1	1/1998	
	(Conti	ontinued)	

OTHER PUBLICATIONS

Wolfgang Konig (Examiner), Extended European Search Report dated Feb. 12, 2014 issued in European Application No. 13182268.6 filed Aug. 29, 2013, 5 pages.


(Continued)

Primary Examiner — Bryan Lee
Assistant Examiner — Oluwatosin Gidado
(74) Attorney, Agent, or Firm — MH2 Technology Law
Group, LLP

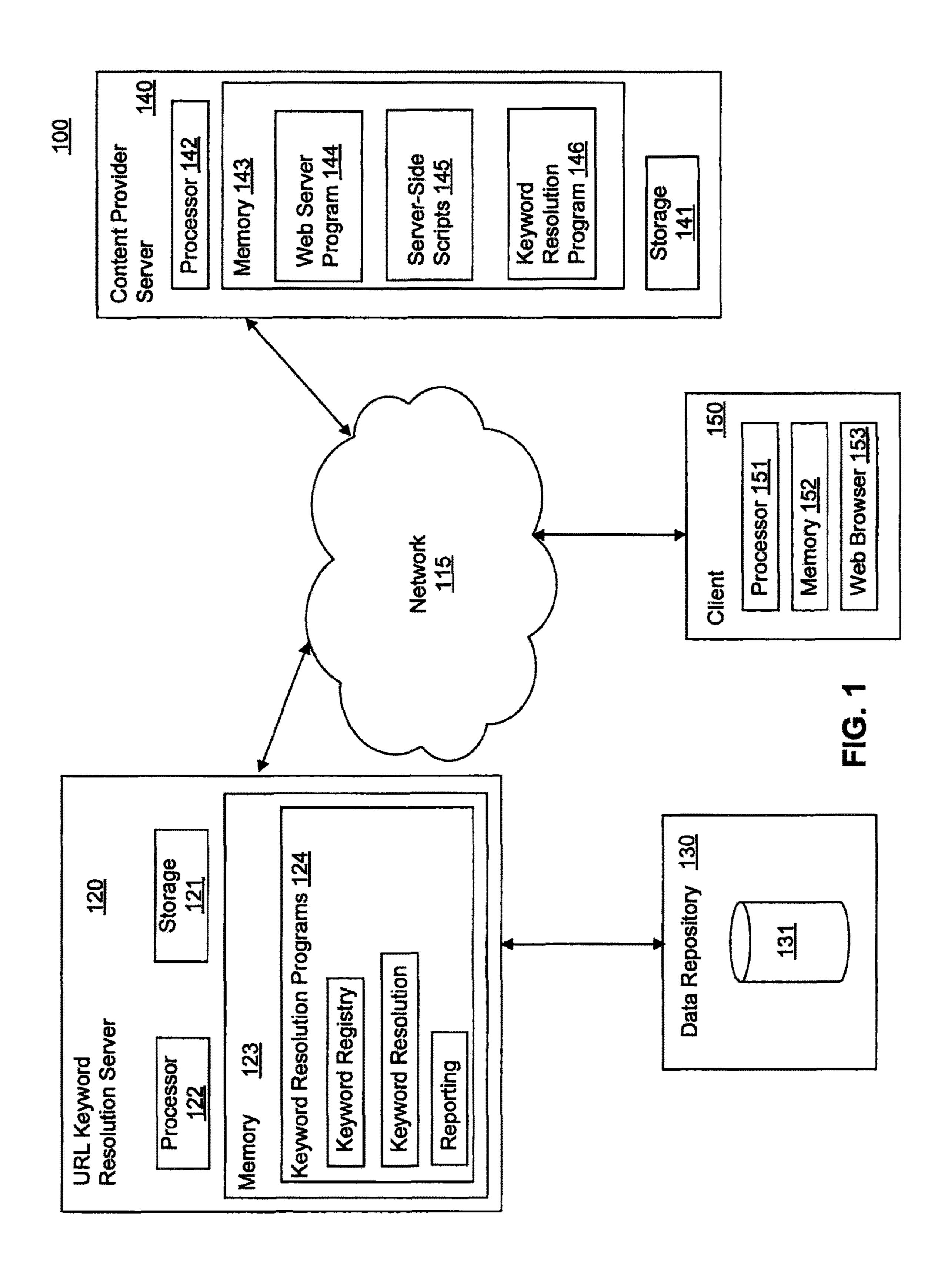
(57) ABSTRACT

An apparatus and a non-transitory computer-readable medium may perform a method for providing brand-driven URL keyword navigation. The method may comprise: receiving a user selection of an accepted third party; transmitting third party selection information to the accepted third party, the third party selection information being based on the user selection; and receiving brand-driven keyword data from the accepted third party in response to the transmission of the third party selection information, the brand-driven keyword data mapping a keyword to a particular URL.

22 Claims, 14 Drawing Sheets

(56) References Cited		ces Cited	FOREIGN PATENT DOCUMENTS
U.S.	PATENT	DOCUMENTS	WO 1327195 A 12/2001 WO 2005001628 A2 1/2005
6,901,436 B1	5/2005	Schneider	WO 2005001628 A2 1/2005 WO 2005/031613 A1 4/2005
, ,		Megiddo et al.	WO 2010/002603 A1 1/2010
		McNeely et al.	WO 2012/151752 A1 11/2012
7,315,902 B2			
7,634,532 B2 7,894,986 B2		Kawamura et al. Hegedue et al.	OTHER PUBLICATIONS
7,908,317 B2	3/2011	•	
, ,		Dandekar et al.	T.V. Raman, "Usage Patterns for Client-Side URI parameters,"
8,001,013 B2 8,060,601 B1		Serbanescu Brown et al.	W3C Working Draft, Apr. 15, 2009, pp. 1-7, http://www.w3.org/
8,073,850 B1		Hubbard et al.	TR/2009NVD-hash-in-uri-20090415, accessed Jun. 12, 2012.
8,082,491 B1		Abdelaziz et al.	Olga Aviles Parrales (Examiner), International Search Report and Written Opinion, dated Jun. 12, 2012, for PCT Application No.
8,224,994 B1 8,381,276 B2		Schneider Costinsky	PCT/US2012/028848, filed Mar. 13, 2012, pp. 1-15.
8,463,877 B1		Richardson et al.	Barbara Burgess (Examiner), Non-Final Office Action dated Oct.
8,510,348 B2		Hancock	22, 2013, U.S. Appl. No. 13/250,864, filed Sep. 30, 2011, pp. 1-15.
8,630,200 B2 2002/0010709 A1		St. Jean et al. Culbert et al.	Barbara N. Burgess (Examiner), Non-Final Office Action dated Jun.
2002/0010709 A1 2002/0046257 A1		Killmer	6, 2014, U.S. Appl. No. 14/176,723, filed Feb. 10, 2014, pp. 1-21.
2002/0193986 A1	12/2002	Schirris	Barbara N. Burgess (Examiner) Non-Final Office Action dated Feb.
2003/0208472 A1	11/2003		13, 2015, U.S. Appl. No. 13/250,864, filed Sep. 30, 2011, pp. 1-17. Barbara N. Burgess (Examiner), Non-Final Office Action dated Sep.
2004/0039798 A1 2005/0060291 A1		Hotz et al. Kirkland et al.	14, 2015, U.S. Appl. No. 14/176,723, pp. 1-17.
2005/0071834 A1*		Gates et al 717/153	Barbara N. Burgess (Examiner), Non-Final Office Action dated Sep.
2006/0101005 A1		Yang et al.	14, 2015, U.S. Appl. No. 14/611,707, pp. 1-19.
2007/0094727 A1 2007/0100795 A1	4/2007 5/2007	Davies	Demetris Antoniades et al., "we.b: The web of short URLs",
2007/0130109 A1		King et al.	Proceedings of the 20th International Conference on World Wide
2007/0150342 A1		Law et al.	Web, ACM, Mar. 28-Apr. 1, 2011, pp. 715-724. Anonymous, "Semantic URL—Wikipedia, the free encyclopedia",
2007/0180147 A1 2007/0250468 A1	8/2007 10/2007		Jan. 29, 2015, Retrieved from the Internet on Jun. 2, 2016: http://
2007/0255731 A1	11/2007	1	web.archive.org/web/20150129082609/http://en.wikipedia.org/
2007/0273518 A1		Lupoli et al.	wiki/Semantic_URL, pp. 1-3.
2008/0005194 A1 2008/0086555 A1*		Smolen et al. Feinleib 709/224	Anonymous, "URL redirection—Wikipedia, the free encyclopedia",
2008/0201413 A1	8/2008	Sullivan et al.	Jan. 17, 2015, Retrieved from the Internet on Jun. 2, 2016: http://
2008/0228719 A1		Abhyanker et al.	web.archive.org/web/20150117115508/http://en.wikipedia.org/
2008/0228720 A1 2008/0281816 A1	9/2008	Mukherjee et al. Kim	wiki/URL_redirection, pp. 1-10. Azzurra Chinzer (Examiner), Extended European Search Report
2008/0306913 A1		Newman et al.	dated Jun. 23, 2016, European Application No. 16153508.0, pp.
2009/0228557 A1*		Ganz et al	1-12.
2009/0254425 A1 2009/0254427 A1		Horowitz et al. Garrison	Barbara N. Burgess (Examiner), Final Office Action dated May 5,
2010/0031369 A1		Grummt	2016, U.S. Appl. No. 14/176,723, pp. 1-30.
2010/0036797 A1		Wong et al.	Barbara N. Burgess (Examiner) Final Office Action dated May 6, 2016, U.S. Appl. No. 14/611,707, pp. 1-28.
2010/0077323 A1* 2010/0097634 A1		Hunter 715/760 Meyers et al.	Xiaofang Zhang (Examiner), First Chinese Office Action dated Apr.
2010/0198837 A1	8/2010	Wu et al.	1, 2016, Chinese Application No. 201280014226.6, pp. 1-32.
2010/0287191 A1 2010/0325101 A1		Price et al. Beal et al.	Shane Thomas (Examiner), International Search Report and Written
2010/0323101 A1 2011/0055314 A1*		Rosenstein et al 709/203	Opinion of the International Searching Authority dated Nov. 30,
2011/0078553 A1		Reimann et al.	2015, International Application No. PCT/US2015/046705, pp. 1-9. Alexadru Berlea (Examiner), Extended European Search Report
2011/0113112 A1*		Ganz et al 709/206	dated Dec. 22, 2015, European Application No. 15182432.3, pp.
2011/0119243 A1 2011/0137789 A1*		Diamond et al. Kortina et al 705/38	1-6.
2011/0179154 A1*		Ravichandran et al 709/223	Cristina Dumitrescu (Examiner), Extended European Search Report
2011/0238584 A1		Ikavalko et al.	dated Aug. 5, 2016, European Application No. 14783257.0, pp. 1-8. Second Office Action dated Jan. 16, 2017, Chinese Patent Appli-
2011/0258204 A1*		Hubbard et al 707/749	cation No. 201280014226.6, pp. 1-7.
2011/0307432 A1 2012/0079368 A1		Yao et al. Abdelaziz et al.	Barbara N. Burgess (Examiner), Non-Final Office Action dated Jan.
2012/0173565 A1		Jacobs et al.	26, 2017, U.S. Appl. No. 14/611,707, pp. 1-18.
2012/0173692 A1		Lakes et al.	Barbara N. Burgess (Examiner), Final Office Action dated Feb. 24, 2017, U.S. Appl. No. 14/176,723, pp. 1-17.
2012/0204224 A1		Wang et al.	Shin Hon Chen (Examiner) Non-Final Office Action dated Apr. 20,
2012/0239731 A1 2012/0278467 A1		Shyamsunder Schneider	2017, U.S. Appl. No. 14/834,198, pp. 1-46.
2012/0323912 A1		Stephens, Jr.	Arbara Burgess Anyan (Examiner), Non-Final Office Action dated
2013/0067115 A1		Lapanc	Jul. 12, 2017, U.S. Appl. No. 14/176,723, pp. 1-31. Mike Thelyyall et al. "Custom Interfaces for Advanced Queries in
2014/0040312 A1 2014/0136572 A1		Gorman et al. Miller et al.	Mike Thelwall et al., "Custom Interfaces for Advanced Queries in Search Engines", 2001, ASLIB Proceedings, 53 (10), pp. 413-422.
2014/0130372 A1 2014/0143337 A1		McIntosh et al.	XDI Organization, History—xdi.org, Retrieved from the Internet
2014/0156702 A1	6/2014	Shyumsunder et al.	Sep. 6, 2017: http://xdi.org/?page_id=13, pp. 1-3.
2014/0181256 A1		Trifa et al.	Bill H. Washburn, "OASIS Extensible Resource Identifier (XRI)
2014/0245193 A1 2015/0296230 A1		Brindley Barton	TC", Retrieved from the Internet Sep. 6, 2017: https://www.oasis-open.org/committees/xri/ipr.php, pp. 1-3.
			-r

(56) References Cited


OTHER PUBLICATIONS

United States Court of Appeals, Federal Circuit, *Cordance Corporation* v. *Amazon Com Inc*, Retrieved from be Internet on Sep. 6, 2017: http://caselaw.findlaw.com/us-federal-circuit/1581016.html, pp. 1-7.

Mark Little "XRI versus LIRI?" May 22, 2005. Retrieved from the

Mark Little, "XRI versus URI?", May 22, 2005, Retrieved from the Internet Sep. 6, 2017: https://www.infoq.com/news/2008/05/xsiurl, pp. 1-8.

^{*} cited by examiner

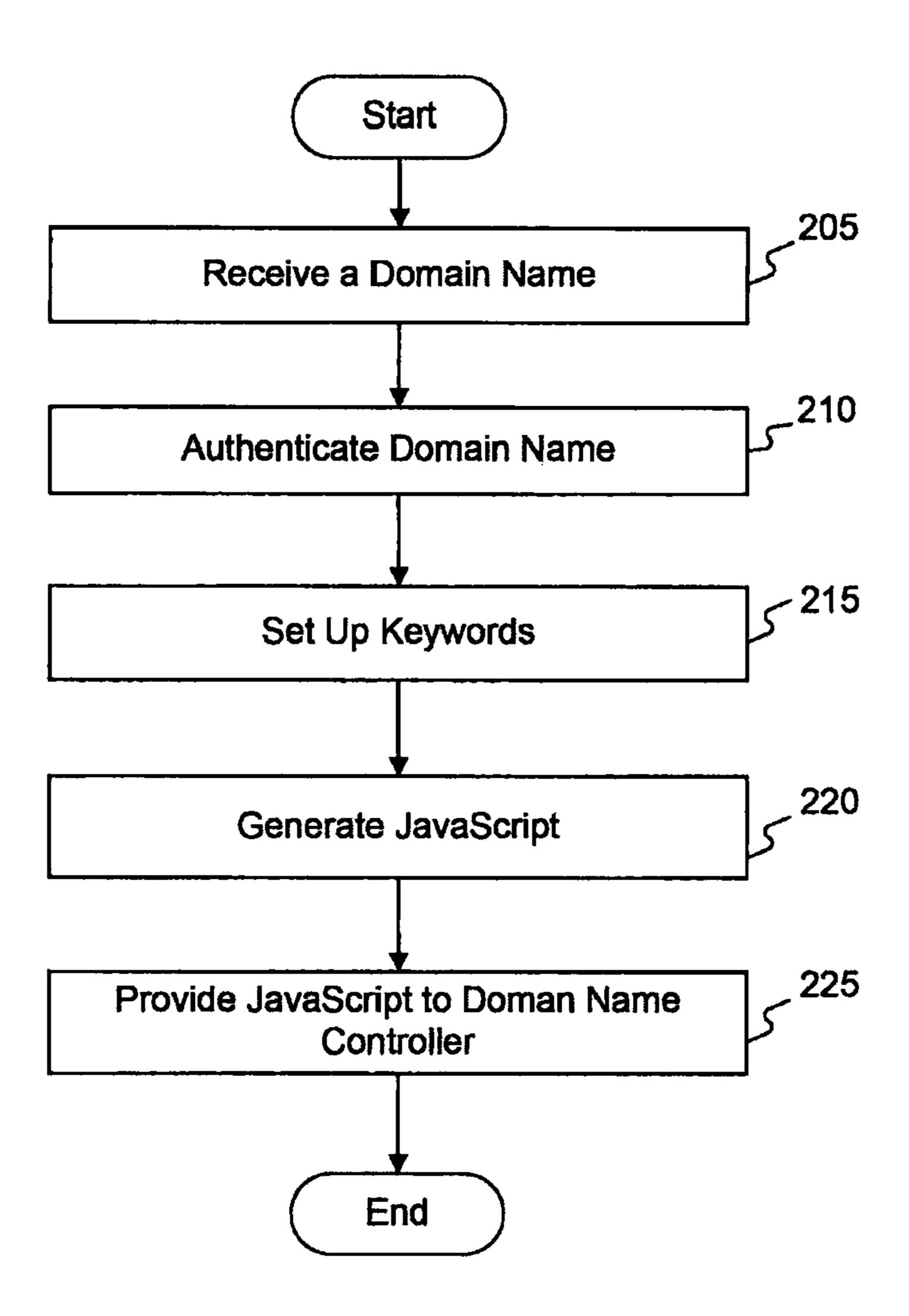
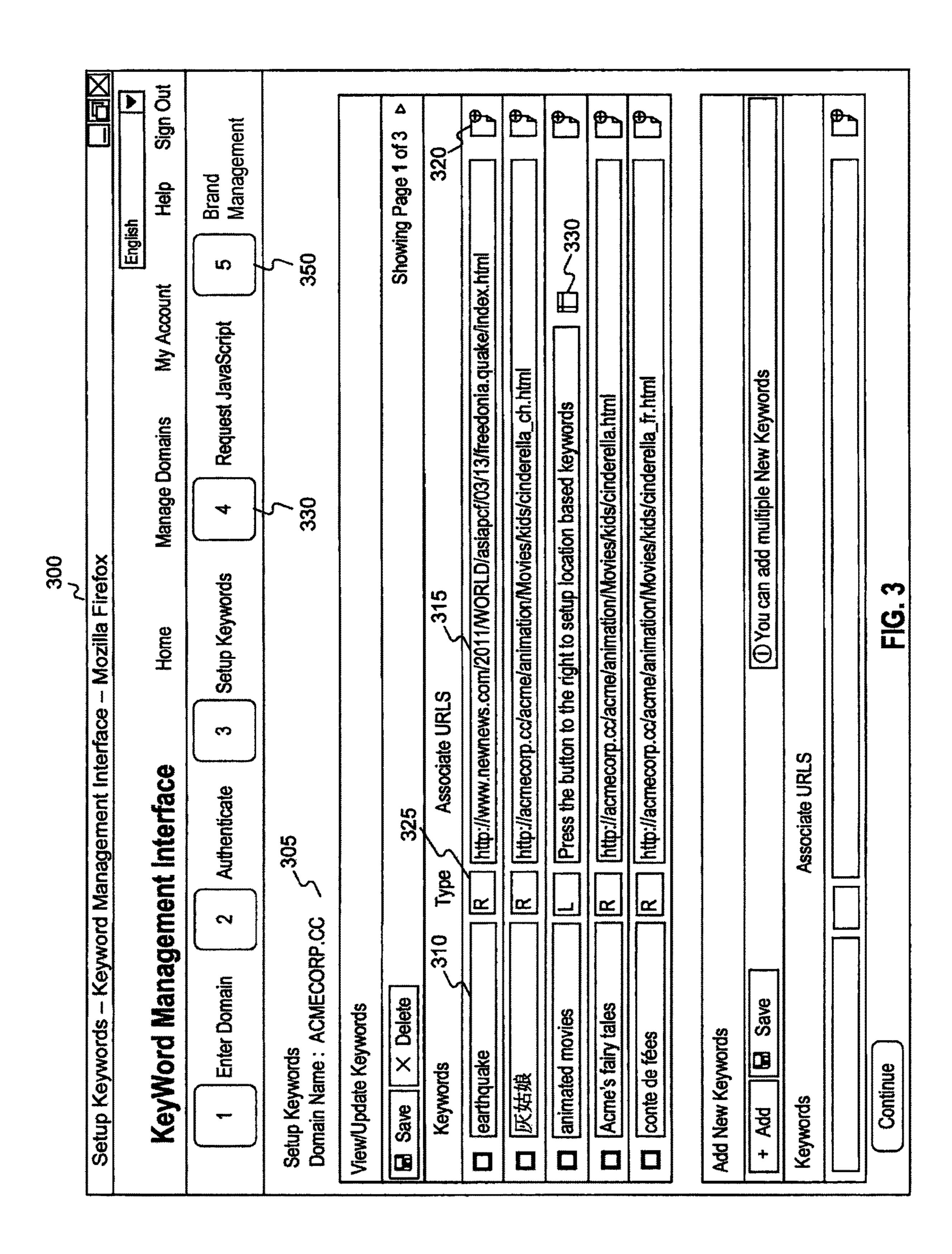
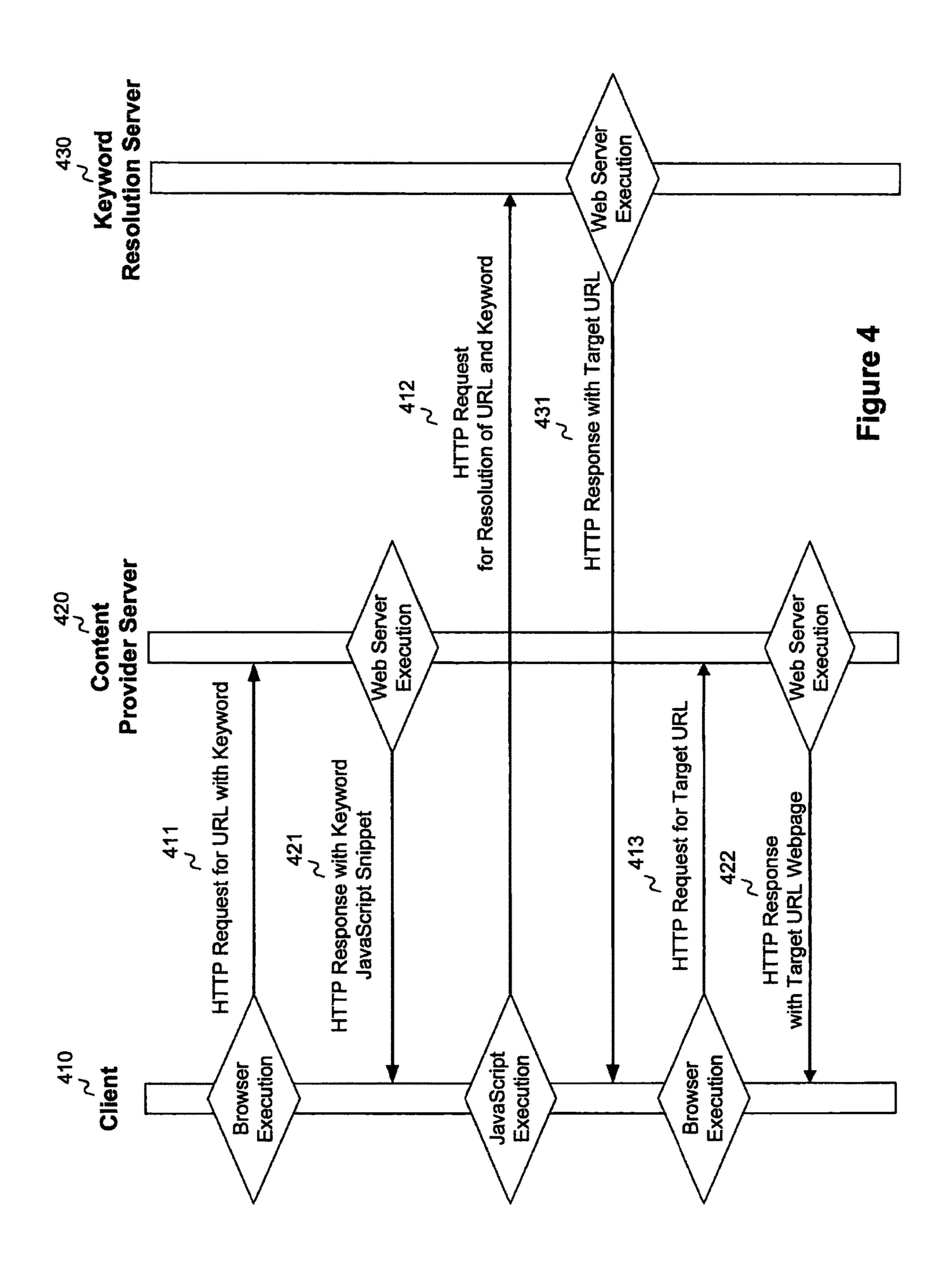
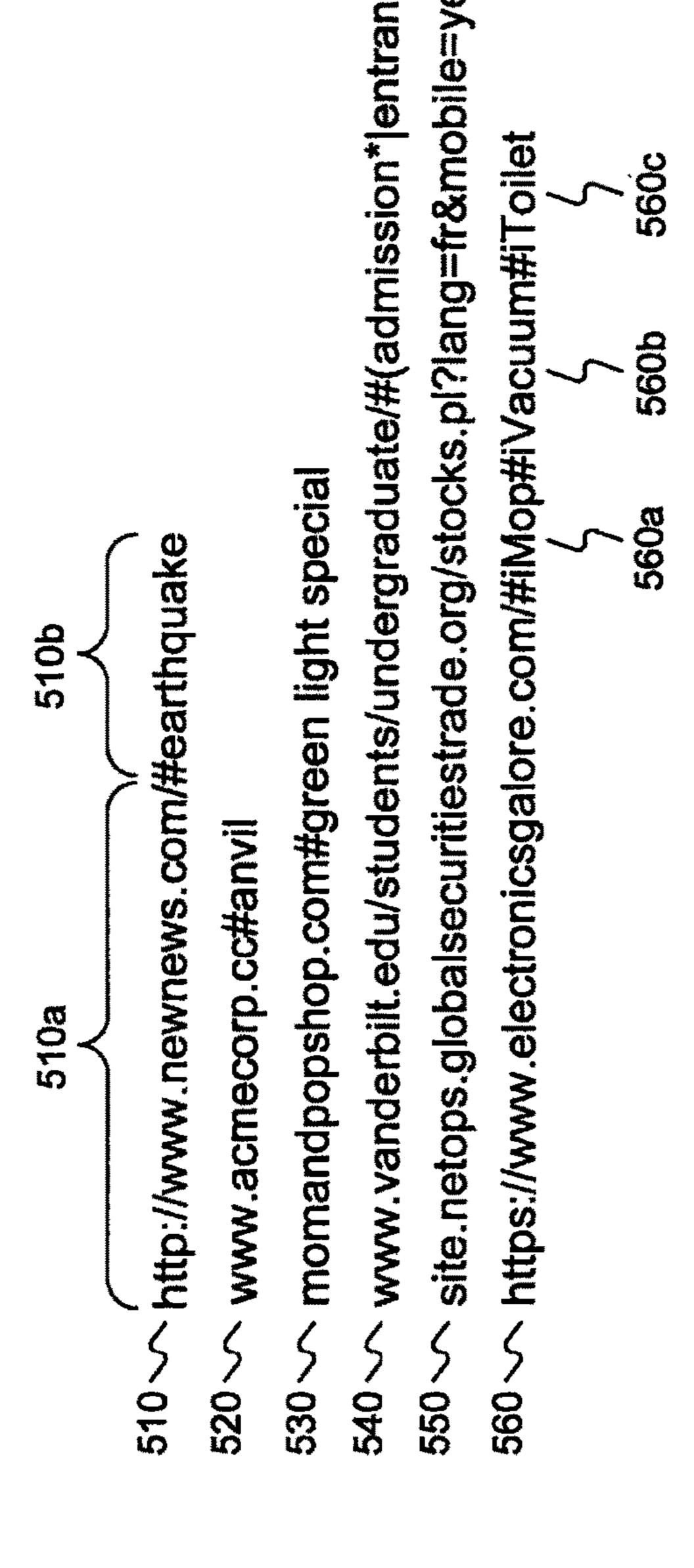
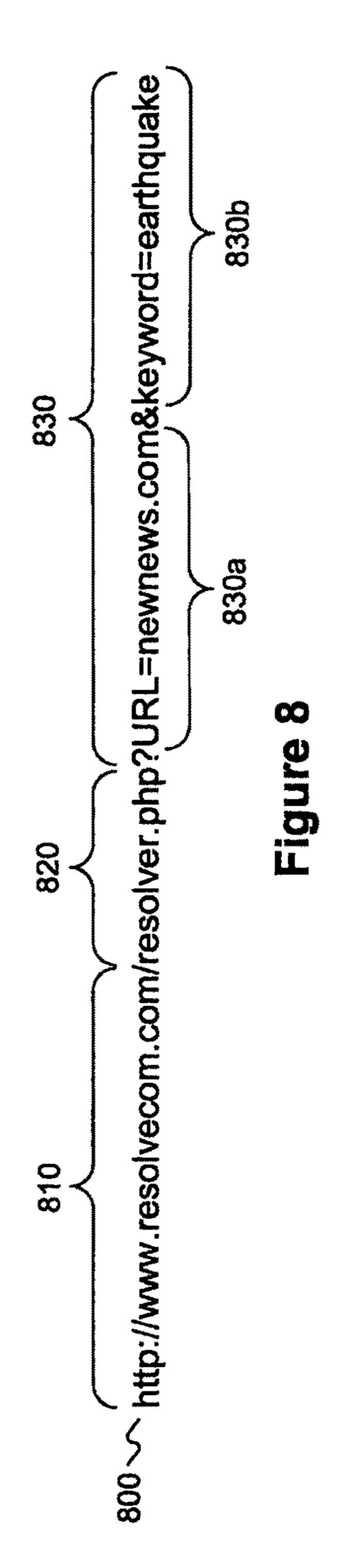
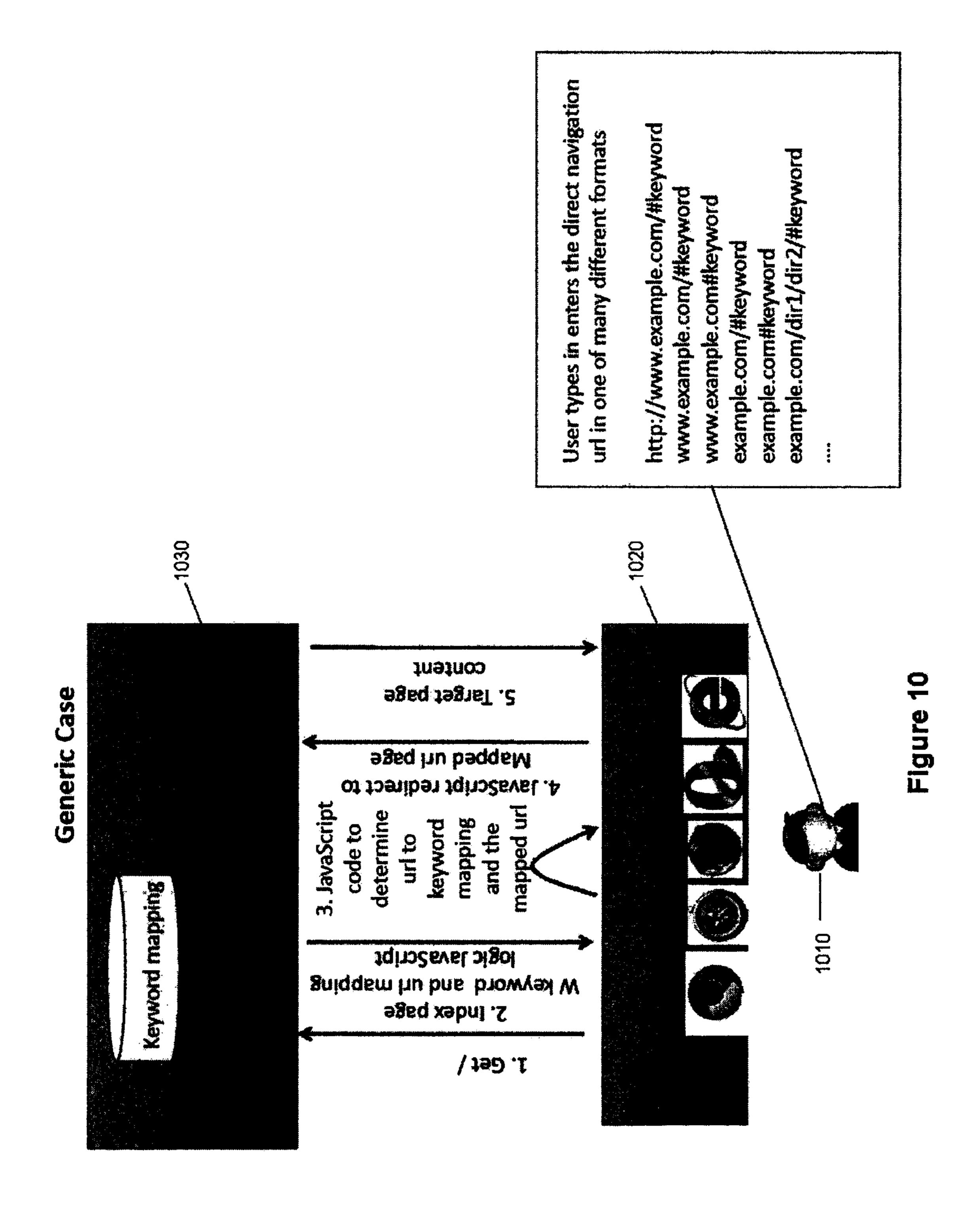





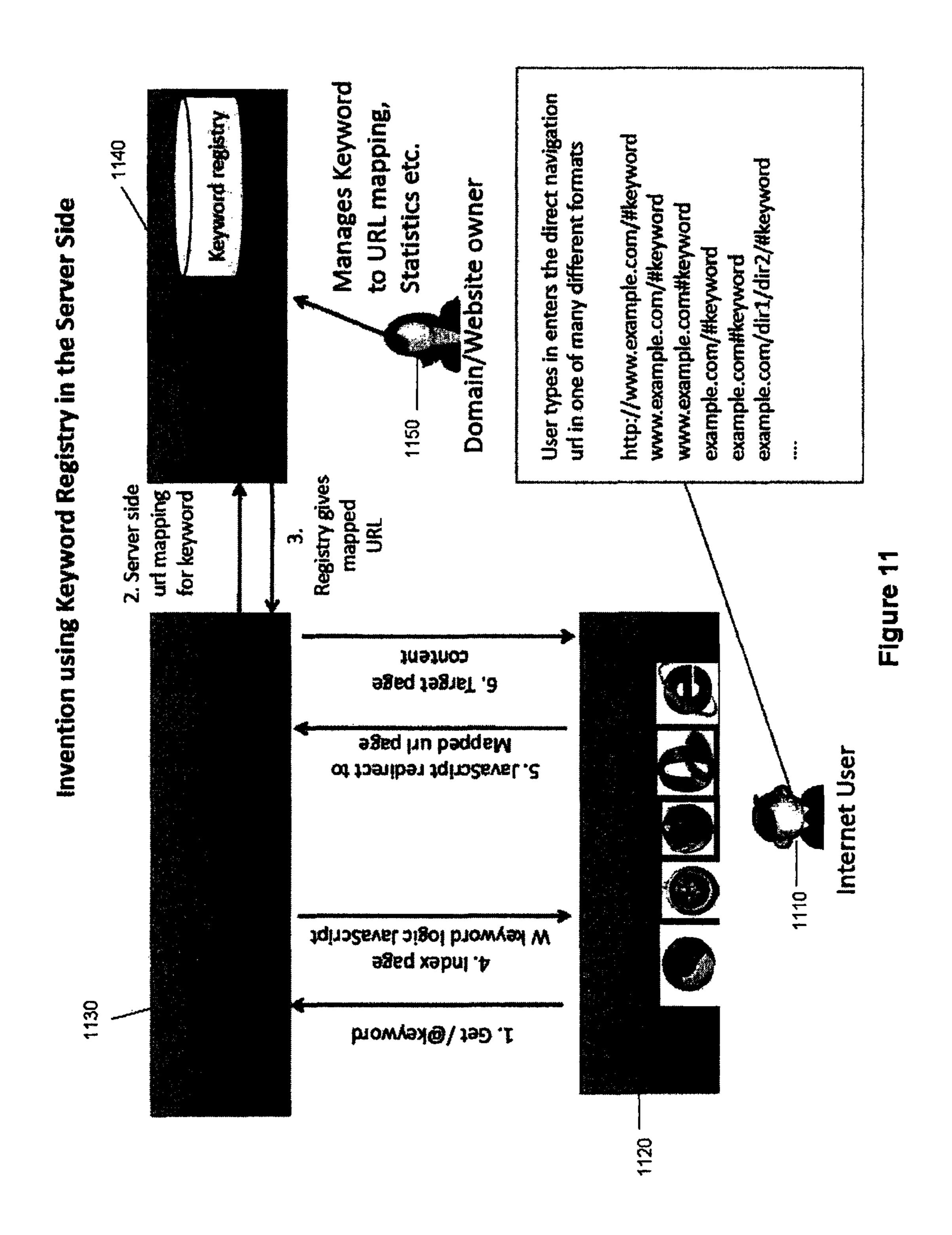
FIG. 2

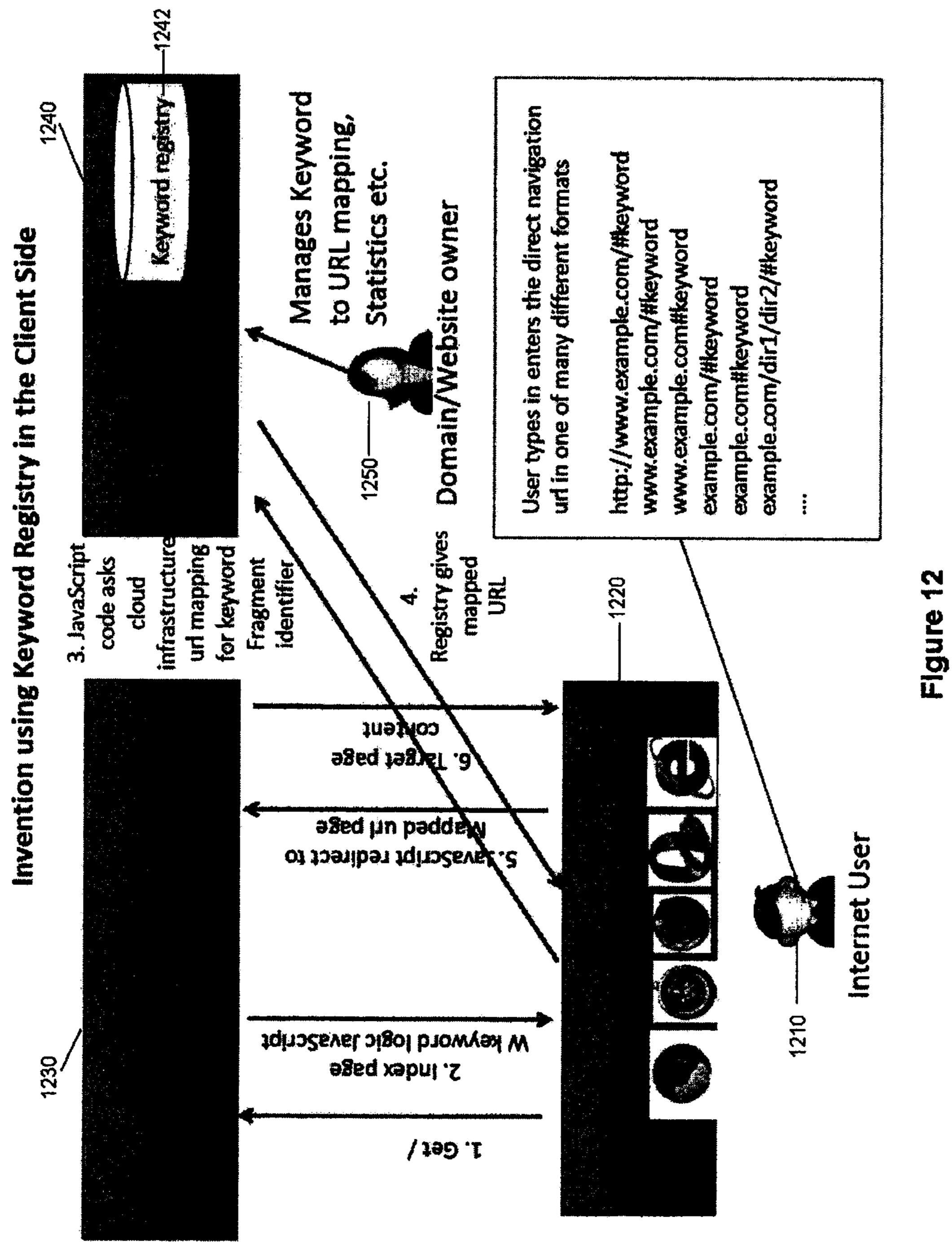
Figure .

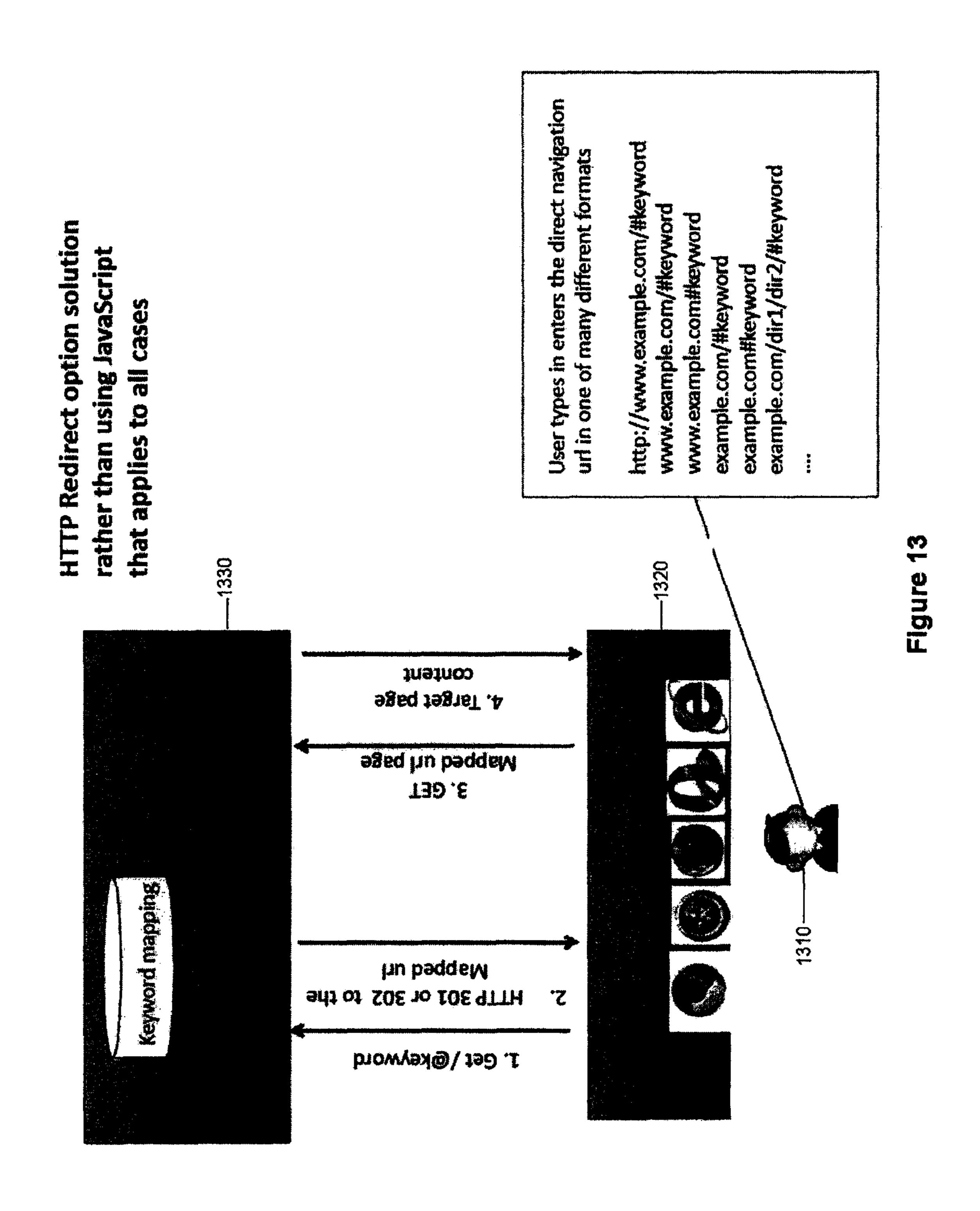

610

application Accept-Encoding: gzip, deflate User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 2.0.50727; .NI 3.0.04506.30; .NET CLR 1.1.4322; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-fla application/x-ms-xbap, application/x-ms-appli application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, xaml+xml, application/vnd.ms-xpsdocument, Host: www.newnews.com Accept-Language: en-us Connection: Keep-Alive GET / HTTP// 1 UA-CPU: x86


Figure 6


```
<u>700</u>
              HTTP/1.1 200 OK
              Date: Sun, 13 Mar 2011 20:52:58 GMT
              Server: Apache
              Set-Cookie: user_id=06242010
              Accept-Ranges: bytes
              Cache-Control: max-age=60, private, private
     710 <
              Expires: Sun, 13 Mar 2011 20:53:54 GMT
              Content-Type: text/html
              Vary: User-Agent, Accept-Encoding
              Content-Length: 24359
              Keep-Alive: timeout=2, max=10
             Connection: Keep-Alive
              <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//</pre>
              EN""http://www.w3.org/TR/html4/loose.dtd"><html lang="en">
              <head>
                    <title>NewNews.com - All the News That's Fit To Be Tied</title>
                    <meta http-equiv="refresh" content="1800;url=?refresh=1">
                    <script src="http://www.resolvecom.com/scripts/keyworddetector.js"</pre>
            721a-
                           type="text/javascript"></script>
                    <script >
      721
                      keywordRedirect();
                      function keywordRedirect() {
             721b <
                    </script>
              </head>
720 <
              <body id="NewNewsMainPage">
              <h2>Welcome to NewNews.com</h2>
              Your source for the most cutting edge and up to date news
              <div id="breaking_news">
              <u|>
      722
                    <a href="/world/freedonia/events.rb?article_id=07021974">8.9</a>
              Magnitude Earthquake Rocks Freedonia</a>
                    <a href="/local/US_IN_Granger/</a>
             events.rb?article_id=02131980">Village Idiot Wins Lottery, Loses Ticket</a>
```


Figure 7



http://www.newnews.com/2011/WORLD/asiapcf/03/13/freedonia.quake/index.html

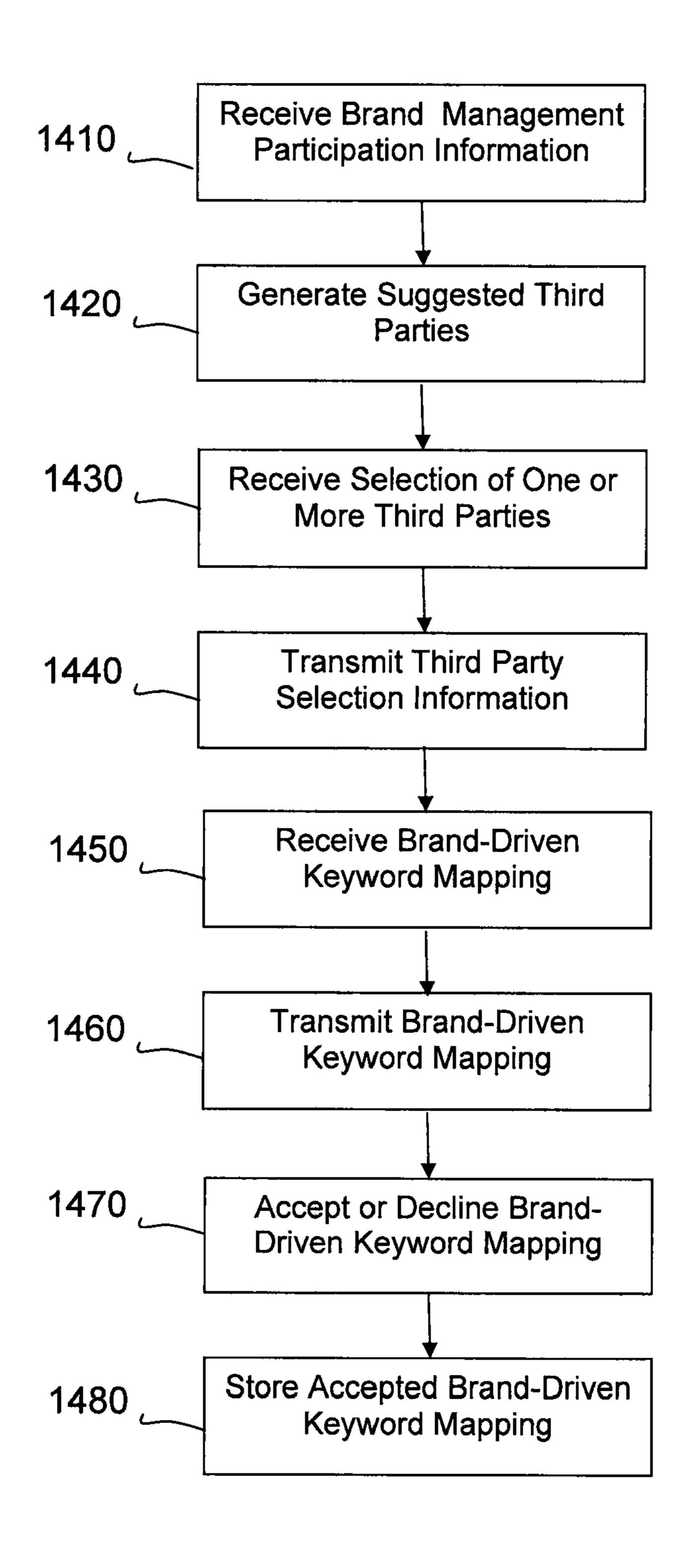
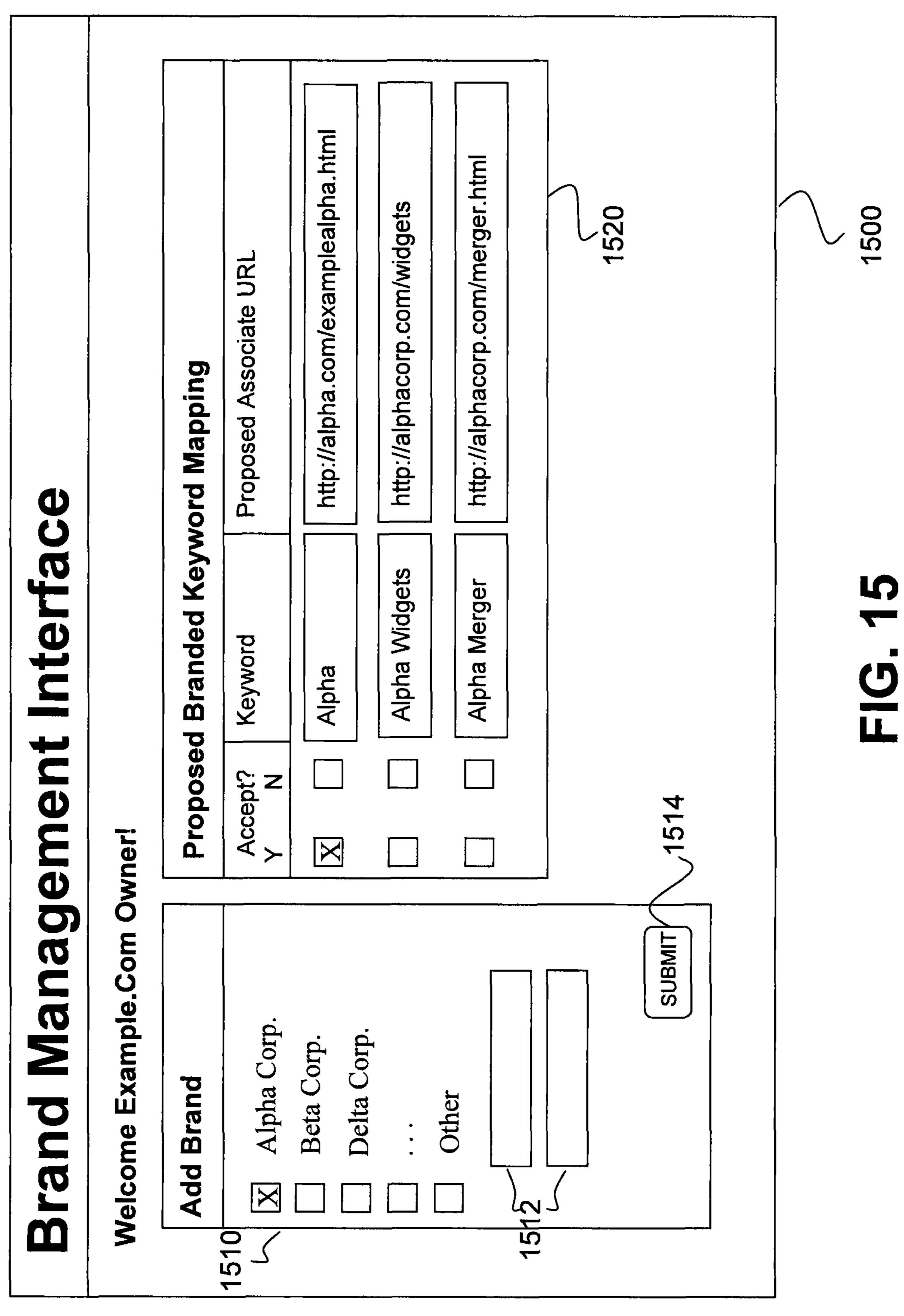
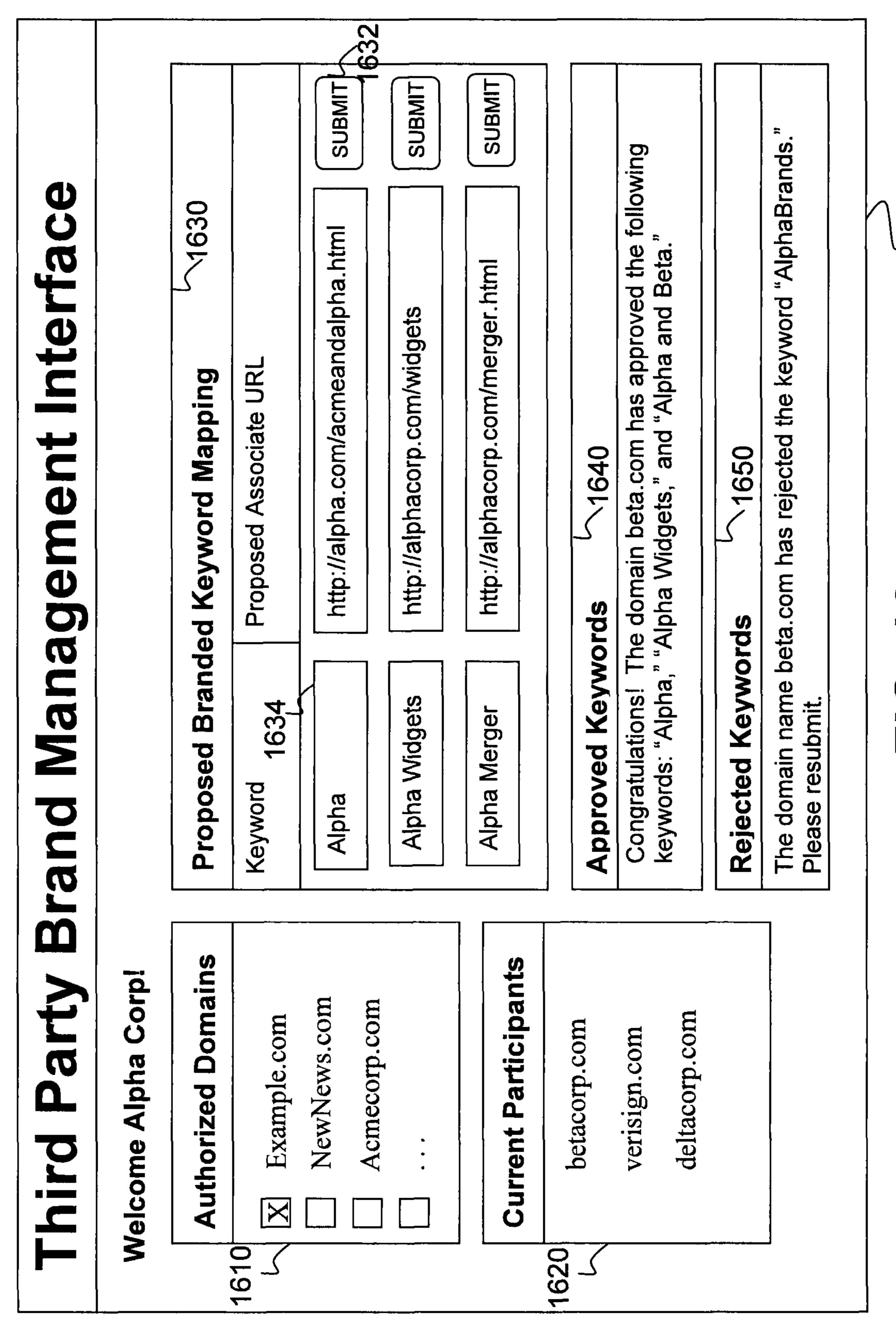




FIG. 14

Nov. 7, 2017

16

METHODS AND SYSTEMS FOR PROVIDING CONTENT PROVIDER-SPECIFIED URL KEYWORD NAVIGATION

This application is a continuation in part of U.S. application Ser. No. 13/250,864, filed Sep. 30, 2011, and claims priority to U.S. Provisional Patent Application No. 61/452, 516, filed Mar. 14, 2011, both of which are incorporated herein by reference in their entireties.

TECHNICAL FIELD

The present disclosure relates generally to methods and systems for providing webpages in response to keywords embedded in uniform resource locators requested by clients.

BACKGROUND

Currently, end users have essentially two options for locating content relevant to a particular topic. Users may search for webpages relevant to a topic by entering keywords associated with the topic into a search engine and reviewing the search engine's results. However, because search engines typically index, and thus search, many mil- 25 lions of different webpages, users may have to review many search results in order to find webpages relevant to the topic they are searching for. For example, the information a user seeks may be located near the end of a long result list, and the user may give up before reaching it. Moreover, search 30 engines typically determine webpages that are relevant to keywords through machine algorithms based primarily on textual analysis and rankings of pages based on the number of links to such pages from other webpages, rather than by human judgment.

Alternatively, if a user wishes to locate a webpage relevant to a given topic within a particular content provider's website—such as product or promotion being offered by an online retailer—the user may instead navigate directly to the content provider's website in order to search for relevant 40 webpages. If the content provider's website provides search functionality, then the user may perform a search on the content provider's website for one or more keywords descriptive of the topic. However, often the user must still wade through search results in which webpages are listed 45 based on machine algorithms, rather than a predetermined decision by the content provider as to which webpage should be definitively associated with a given topic. Or, if no such search functionality exists on the content provider's website, the user may need to simply explore the website through 50 traditional web-navigation techniques, in which case the information sought may be buried under several menus or links, and thus may difficult for the user to find.

One solution to the above problem is the use of domain-specific, or in-site, keywords, as described in U.S. patent 55 application Ser. No. 12/982,145, which is presently assigned to the same assignee as the current application, and constitutes a part of this application as though set forth within. Through the use of in-site keywords, a content provider, such as a domain name owner, may compile in advance a list 60 of keywords mapped to specific webpages on the content provider's website. For example, a user may enter a search tem—e.g., "dynamite"—in a navigation or keyword box provided on the "acmecorp.cc" website. Acme Corp. may have created a keyword "dynamite" that maps the search 65 tem "dynamite" directly to a webpage that provides a list of explosives-related items available for purchase—e.g.,

2

"http://acmecorp.cc/acme/products/road_runner_accessories/weaponry/explosives.aspx".

Thus, rather than presenting the user with a traditional list of search results for all webpages across the Acme Corp. website that contain the text "dynamite," the user may instead be taken directly to the "explosives.aspx" webpage in response to entering the search term "dynamite" in the navigation or keyword box. This technique has advantage that the content provider itself may determine which webpage is most relevant to a given topic, which web users may rely on when searching a website for a particular product or promotion. It also has the advantage that it is not dependent on machine algorithms or keyword similarities, as the "explosives.aspx" webpage may not even contain the text "dynamite," but instead may offer only TNT-related products. And, as further described in U.S. patent application Ser. No. 12/982,145, search terms entered into such a navigation or keyword box may, in some circumstances, be serviced by 20 a third-party service provider or resolution server, thus obviating the need for special configuration on the content provider's web servers.

However, even using the above approach, in some circumstances, users may still need to first navigate to the homepage or other webpage within the content provider's website in order to locate an in-site keywords box, and would also need to be able to determine whether a given search box utilizes the above approach or merely provides traditional text-based searching functionality. Therefore, a need exists for methods and systems for enabling users to request webpages using content provider- or domain-specific keywords in a more direct manner that may easily be employed for any website that implements site-specific keywords and that will have no impact on navigation within websites to that do not implement site-specific keywords.

BRIEF SUMMARY

Consistent with an exemplary embodiment of the present invention, there is provided an apparatus for retrieving a webpage associated with a domain-specific keyword, comprising: a memory; and a processor communicatively coupled to the memory, the processor being configured to: receive an instruction from a client to request a first resource defined by a first URL, wherein the first URL includes a keyword in the form of a fragment identifier; send a first HTTP request to a first web server associated with a domain specified by the first URL; receive a first HTTP response from the first web server, wherein the first HTTP response communicates a client-executable program; and execute the client-executable program, wherein executing the clientexecutable program comprises: determining a second URL associated with the first URL, the second URL being associated with a target page and being established by a third party not associated with the domain.

Consistent with a further exemplary embodiment of the present invention, there is provided a non-transitory computer-readable medium encoded with instructions which, when executed on a processor, perform a method, the method comprising: receiving a user selection of an accepted third party; transmitting third party selection information to the accepted third party, the third party selection information being based on the user selection; and receiving brand-driven keyword data from the accepted third party in response to the transmission of the third party selection information, the brand-driven keyword data mapping a keyword to a particular URL.

Consistent with a further exemplary embodiment of the present invention, there is provided an apparatus for retrieving a webpage associated with a brand-specific keyword, comprising: a memory; and a processor communicatively coupled to the memory, the processor being configured to: receive a user selection of an accepted third party; transmit third party selection information to the accepted third party, the third party selection information being based on the user selection; receive brand-driven keyword data from the accepted third party in response to the transmission of the third party selection information, the brand-driven keyword data mapping a brand-driven keyword to a particular branddriven URL; receive an instruction to obtain information sufficient to access a second URL, the instruction being 15 based on a second keyword; and provide a response with information sufficient to access the second URL, the second URL being determined based on an evaluation of the second keyword and the brand-driven keyword data.

Additional objects and advantages will be set forth in part in the description that follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various embodiments of the invention and together with the descrip- 35 tion, serve to explain the principles of the invention. In the drawings:

- FIG. 1 is a diagram illustrating an exemplary keyword navigation system, consistent with certain disclosed embodiments;
- FIG. 2 is a flow diagram illustrating exemplary processes performed by a keyword management server, consistent with certain disclosed embodiments;
- FIG. 3 is an exemplary interface provided by a keyword resolution server to enable a content provider to create, 45 modify, and delete keyword-webpage mappings, consistent with certain disclosed embodiments;
- FIG. 4 is a flow diagram illustrating an exemplary method of resolving a user-supplied keyword to a content provider-specified webpage, consistent with certain disclosed 50 embodiments;
- FIG. 5 is list of exemplary URLs containing URL keywords, consistent with certain disclosed embodiments;
- FIG. 6 is an exemplary HTTP request resulting from the entry of a URL containing a URL keyword, consistent with 55 certain disclosed embodiments;
- FIG. 7 is an exemplary HTTP response from keyword-enabled web server, consistent with certain disclosed embodiments;
- FIG. **8** is an exemplary URL for requesting resolution of 60 a URL keyword, consistent with certain disclosed embodiments;
- FIG. 9 is an exemplary URL corresponding to a content provider-specified keyword-webpage mapping, consistent with certain disclosed embodiments;
- FIG. 10 is an exemplary implementation of an exemplary embodiment consistent with the present invention;

4

- FIG. 11 is an exemplary implementation of keyword/URL mapping on the server side consistent with the present invention;
- FIG. 12 is an exemplary implementation of keyword/URL mapping on the client side consistent with the present invention; and
- FIG. 13 is an exemplary implementation of keyword/URL mapping using HTTP redirect.
- FIG. 14 is flow diagram illustrating exemplary brand management processes performed by a brand management component of the keyword management server, consistent with certain disclosed embodiments.
- FIG. 15 is an exemplary interlace provided by a keyword resolution server to enable a content provider to manage brand-driven keyword mapping, consistent with certain disclosed embodiments.
- FIG. 16 is an exemplary interface provided by a keyword resolution server to enable a third party to participate in brand-driven keyword mapping, consistent with certain disclosed embodiments.

DETAILED DESCRIPTION

The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers afire used in the drawings and the following description to refer to the same or similar parts. While several exemplary embodiments and features of the invention are described herein, modifications, adaptations, and other implementations are possible, without departing from the spirit and scope of the invention. Accordingly, the following detailed description does not limit the invention. Instead, the proper scope of the invention is defined by the appended claims.

FIG. 1 is a diagram illustrating an exemplary URL keyword resolution system 100 that may be used to implement disclosed embodiments, including exemplary system components. The components and arrangement, however, may be varied. URL keyword resolution server 120 may 40 include a processor 122, a memory 123, input/output (I/O) devices (not shown), and storage 121. URL keyword resolution server **120** may be implemented in various ways. For example, URL keyword resolution server 120 may be a general purpose computer, a server, a mainframe computer, or any combination of these components. URL keyword resolution server 120 may communicate over a link with network 115. For example, the link may be a direct communication link, a LAN, a WAN, or other suitable connection. Network 115 may include the Internet. URL keyword resolution server 120 may be standalone or it may be part of a subsystem, which may, in turn, be part of a larger system, such as a legacy domain registration system.

Processor 122 may include one or more known processing devices, such as a microprocessor from the PentiumTM or XeonTM family manufactured by IntelTM, the TurionTM family manufactured by AMDTM, or any of various processors manufactured by Sun Microsystems. Memory 123 may include one or more storage devices configured to store information used by processor 122 to perform certain functions related to disclosed embodiments. Storage 121 may include a volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, nonremovable, or other type of storage device or computer-readable medium.

In one embodiment, memory 123 may include one or more keyword resolution programs or subprograms 124 loaded from storage 121 or elsewhere that, when executed by URL keyword resolution server 120, perform various

procedures, operations, or processes consistent with disclosed embodiments. For example, memory 123 may include a keyword registry program that authenticates a domain name and allows a domain name controller to set up and maintain keywords for the domain name; a keyword 5 resolution program that receives user requests to resolve one or more keywords within a domain, matches the keyword/ domain name combination to, a target URL, and provides the target URL to the user; a reporting program that displays statistics about keyword usage, resolution requests, and 10 other metrics; an integrative support program that links the other programs and allows them to use a common database, provides a common user interface, performs basic bookkeeping tasks, (such as storing the user's input, etc.), and provides user guidance and help; and a brand management 15 program that allows a domain name controller to enable a third party to provide keywords for the domain. Memory 123 may also include other programs that perform other functions and processes, such as programs that provide communication support, Internet access, etc.

Methods, systems, and articles of manufacture consistent with disclosed embodiments are not limited to separate programs or computers configured to perform dedicated tasks. For example, memory 123 may be configured with a keyword resolution program **124** that performs several func- 25 tions when executed by processor 122. For example, memory 123 may include a single program 124 that performs the functions of the keyword resolution system, or program 124 could comprise multiple programs. Moreover, processor 122 may execute one or more programs located 30 remotely from URL keyword resolution server 120. For example, URL keyword resolution server 120 may access one or more remote programs that, when executed, perform functions related to disclosed embodiments.

system (not shown) that performs several functions well known in the art when executed by URL keyword resolution server 120. By way of example, the operating system may be Microsoft WindowsTM, UnixTM, LinuxTM, SolarisTM, an Apple Computers operating system, Personal Digital Assis- 40 tant operating system such as Microsoft CETM, or some other operating system. The choice of operating system, and even the use of an operating system, is not critical to any embodiment.

URL keyword resolution server **120** may include one or 45 more I/O devices (not shown) that allow data to be received and/or transmitted by URL keyword resolution server **120**. I/O devices may also include one or more digital and/or analog communication input/output devices that allow URL keyword resolution server **120** to communicate with other 50 machines and devices, such as web server 140 or client computer 150. URL keyword resolution server 120 may receive data from external machines and devices and output data to external machines and devices via I/O devices. The configuration and number of input and/or output devices 55 incorporated in I/O devices may vary as appropriate for certain embodiments.

URL keyword resolution server 120 may also be communicatively connected to one or more data repositories include one or more files or databases 131 that store information and are accessed and/or managed through URL keyword resolution server 120. By way of example, the databases may be OracleTM databases, SybaseTM databases, or other relational databases, or non-relational databases, 65 such as HBase or Cassandra. The databases or other files may include, for example, data and information related to

domain names, keywords for domain names, descriptions, statistics, and other data related to keywords, etc. Systems and methods of disclosed embodiments, however, are not limited to separate databases.

URL keyword resolution server 120 may also be communicatively connected to one or more client computers 150 through network 115. Client computer 150 may include a processor 151, a memory 152, and a web browser 153 to communicate with URL keyword resolution server 120 and/or web server 140. Client computer 150 may also be communicatively connected to web server 140 through Network 115. In some embodiments, URL keyword resolution server 120 may send data to processor 151 and web browser 153, and web browser 153 may display the data as a keyword registration interface. In some embodiments, a client computer 150 may communicate with web server 140 using the HTTP protocol to retrieve and display webpages provided by web server 140. In some embodiments, a client computer 150 may transmit URL and keyword data to URL 20 keyword resolution server **120** and may receive back target URL data corresponding to a URL designated by a content provider for particular domain/keyword pairs.

Web server 140 may be owned or operated by a content provider or domain name controller and may store web pages and other Internet resources associated with one or more domain names. Web server 140 may include a processor 142, a storage 141, and a memory 143. Storage 141 may be a volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, nonremovable, or other type of storage device or computer-readable medium and may contain data used to display individual web pages. In disclosed embodiments, memory 143 may include one or more web server programs for receiving and responding to HTTP requests; one or more server-side scripts 145 for providing Memory 123 may be also be configured with an operating 35 dynamic webpages; and one or more keyword resolution programs **146** for receiving and resolving requests for URL/ keyword pairs. Each such program, for example, may be loaded from storage 141 or elsewhere.

> FIG. 2 is flow diagram illustrating exemplary processes performed by a keyword management server, consistent with disclosed embodiments. A keyword resolution service provider may provide the majority of technical infrastructure for enabling a content provider to implement URL keyword functionality consistent with the present invention. For example, the keyword resolution service provider may use a keyword management server to provide content providers with an interface, such as the interface depicted in FIG. 3, for registering and managing URL keywords.

In step 205, after a user acting on behalf of a content provider logs into the keyword management interface 300, the keyword management server receives a domain name (which may include path or query string information as well) from the user indicating a domain name for which the user wishes to register a keyword. A domain name identifies a realm of authority or control of Internet resources. Domain names are often hostnames that identify websites. For example, acmecorp.cc may be a domain name used by the Acme Corporation. Domain names are often registered through domain name Registrars to signify an exclusive 130, e.g., through network 115. Data repository 130 may 60 right to use the Internet resources associated with the domain names.

> In step 210, for security purposes, the keyword management server may first require the user to authenticate the entered domain name by demonstrating that the user has authority to register keywords for it. For example, the keyword management server may create a meta tag for the user to insert into the home page of the domain. Such a meta

tag may look like "<meta name="keyword-verification" content="djkaoieiosldisa"/>." The keyword management server may store the domain name and the value of the content field in a database or other file. After the meta tag has been inserted into the home page, the user may return to the 5 authentication process. The keyword management server may then examine the home page of the domain in order to detect the presence of the meta tag. If the meta tag exists and has a content value matching the value stored by the keyword management server, then the user may be verified 10 as having control over the domain name.

In alternate embodiments, a user may be requested to set up a CNAME record in the domain name system (DNS). A DNS record stores information used to resolve Internet address requests into a physical resource. A CNAME record 15 specifies that a domain name is an alias of another domain. The keyword management server may, for example, instruct the domain name controller to add a CNAME Host of "djkaoieiosldisa" and a CNAME Text of "www.resolvecom-.com" to the DNS. The keyword management server may 20 store the CNAME Host with the domain name in a local database. After the CNAME record has been set up, the user may return to the authentication process. The keyword management server may then query the DNS of the domain to look for the CNAME Host and, if it is found and matches 25 the stored CNAME Host, the user may be verified as the owner of the domain name.

For authenticated domain names, in Step 215, the keyword management server may allow a domain name controller to provide keywords for the domain. The keyword 30 management server may provide an interface, such as the interface shown in FIG. 3, that allows a content provider or domain name controller to set up keywords. Keywords may be associated with a domain name, and the keyword management server may display the current domain name 305 in 35 the interface. As shown in FIG. 3, the keyword management server may receive at least keyword 310 and URL 315 from the domain name controller, forming a keyword-URL pair. The URL identifies a specific web page that the domain name controller desires to associate with the keyword, such 40 that a properly formatted to request to the domain name 305 that also includes the keyword 310 will automatically redirect the user to URL 315.

URL 315 may be a web page hosted at domain 305, but it need not be. URL 315 may be the address of any web page 45 of any domain that the domain name controller chooses. After receiving the keyword and URL, the keyword management server may store the keyword-URL pair in a database or other file. The keyword-URL pair is associated with the current domain name 305.

In addition to this information, the keyword management server may also gather additional information, or metadata, related to a keyword through, for example, icon **320**. This additional information may include, but is not limited to, a description of the URL or a description of the keyword. A 55 URL description may be a business description of the URL that the domain name controller chooses. The description may also be used on keyword statistic reports and other reports generated by the keyword management server.

The interface may also include a brand management 60 component that allows the domain name controller to enable one or more third parties that do not own the domain to provide keywords for the domain. For example, the user may press button 350 to request that the keyword management server generate a suggested list of third parties. The 65 keyword management server may display this list to the domain name controller. The domain name controller may

8

also provide suggested third parties to the keyword management server that are not on the generated list. The brand management component is further described in detail below.

A keyword-URL pair may also be mapped to a location. A location may specify a zip code, a state, an area code, a country, a geo-location code, or some other geographic identifier. For example, a domain name controller may desire to have a different web page display for website visitors located in Hawaii than for website visitors located in Minnesota. A keyword resolution server may receive a geo-location code from a device supporting GPS or may use a source IP address of the website visitor to determine the location of the website visitor. The keyword resolution server may use this information to select a keyword-URL pair. The location allows a domain name controller to run regional advertising campaigns and direct website visitors to the appropriate regional offers.

A keyword may also have associated device metadata. The device may represent, for example, a personal digital assistant (PDA), a smart phone, a laptop, a tablet, etc. The device may enable the keyword resolution server to redirect a website visitor to the web page appropriate for the device type. For example, a domain may have one web page for mobile devices, such as a PDA or smart phone, and another web page for all other devices. The keyword resolution server may be configured to determine the type of device that initiated the keyword resolution request for the provided domain/keyword and use the device type to choose an appropriate keyword-URL pair.

The keyword management server may use keyword type 325 of FIG. 3 to identify keywords with locations or devices. For example, a keyword with a type of "R" may not have any associated locations or devices. A keyword with a type of "L" may have locations associated with the keyword and a keyword with a type of "D" may have devices associated with the keyword.

In step 220, after the content provider or domain name controller has registered, modified, or deleted keyword mapping as necessary, the user may press button 330 to request that the keyword management server generate an appropriate client-executable program for embedding within content provider HTTP responses to enable user-provided URL keywords to be detected and resolved, as further described below. And, in step 225 the appropriate client-executable program, such as a JavaScript program, may be displayed for the user to copy and to place within the content provider's server logic.

FIG. 14 is flow diagram illustrating exemplary brand management processes performed by a brand management 50 component of the keyword management server, consistent with disclosed embodiments. In step 1410, the keyword management server may receive brand management participation information indicating that a user acting on behalf of a content provider, such as a domain name controller, wants to participate in brand management by enabling a third party to provide keywords for the domain name. The user may submit the brand management participation information to the keyword management server by clicking on button 350 of keyword management interface 300, or may use any other known method to transmit the brand management participation information to the keyword management server. Clicking on button 350 may redirect the user from keyword management interface 300 to a domain owner brand management interface. An exemplary domain owner brand management interface is shown in FIG. 15. While the domain owner brand management interface is separate from the keyword management interface in this exemplary embodi-

ment, the brand management interface and the domain owner keyword management interface may be combined into a single interface or may be separated into more than two interfaces.

In step 1420, the keyword management server may gen- 5 erate a list of suggested third parties. The list may be generated automatically from the domain name registry or from third parties who have provided information to the keyword management server indicating that the third parties are interested in participating in brand management. The list 10 may be displayed to the user on the domain owner brand management interface, such as section 1510 of interface 1500 shown in FIG. 15. The domain name controller may review the list of available third parties and select one or more of those third parties to enable the third party to 15 may review each revised keyword mapping, or may "opt propose brand-driven keyword mapping for the domain. If the domain name controller wishes to enable a third party that wasn't displayed on section 1510, the domain name controller may enter the name of that third party using one or more text boxes **1515**. The domain name controller may submit the selection of the third party to the keyword management server. For example, the domain name controller may submit the selection to keyword management server by clicking submit button 1514 on interface 1500.

In step 1430, the keyword management server may 25 receive the domain name controller's selection of one or more third parties. The keyword management server may receive the domain name controller's selection of one or more third parties using any known method of receiving data.

In step 1440, the keyword management server may transmit third party selection information to the third parties. The third party selection information may include information relating to the domain name that has authorized the third party to submit proposed brand-driven keyword mappings. 35 For example, the third party selection information may include the domain name, the owner of the domain name, the type of site, and the date and time of the third party authorization. The keyword management server may display the third party selection information on a third party brand 40 management interface, such as the exemplary third party brand management interface shown in FIG. 16.

As shown in FIG. 16, the third party brand management interface may include sections **1610**, **1620**, **1630**, **1640**, and **1650**. They keyword management server may display 45 domain names that recently authorized the third party to propose brand-driven keyword mappings in section 1610, and may display the names of one or more participants that have accepted one or more of the third party's brand-driven keyword mappings in section 1620. The keyword management server may also display section 1630, which allows a third party to enter a proposed keyword and proposed associated URL to submit to the user as a brand-driven keyword mapping by, for example, pushing submit button **1632**. In the example shown in FIG. **16**, third party "Alpha 55 Corp." is in the process of submitting the keywords "Alpha," "Alpha Widgets" and "Alpha Merger" and associated URLs to the domain name controller for "Acmecorp.com."

The keyword management server may display keywords approved by one or more domain names in section **1640** and 60 may display brand-driven keyword mappings that were rejected by one or more domain name controllers in section 1650. While not shown in FIG. 16, section 1650 may also include reasons why the domain name controller rejected the brand-driven keyword mapping. For example, the domain 65 name controller may have rejected the brand-driven keyword mapping because the keyword or the associated URL

10

was inappropriate. As another example, the domain name controller may have rejected the brand-driven keyword mapping with the keyword was already in use by the user or by another third party.

Returning to FIG. 14, in step 1450 the keyword management server receives the brand-driven keyword mapping from the third parties. For example, the third party may enter a keyword **1634** and an associated URL **1636** (show in FIG. 16) and submit the brand-driven keyword mapping to the keyword management server by pressing submit button 1632. If the third party wishes to change the brand-driven keyword mapping, the third party would submit the new mapping to the keyword management server for reapproval by the domain name owner. The domain name controller out" of approval for trusted third parties. Additionally, the domain name controller may disable the third party from providing keyword mapping at any time.

In step 1460, the keyword management server may transmit the brand-driven keyword mapping to the domain name controller. The keyword management server may then display the brand-driven keyword mapping on the domain owner brand management interface, such as on section 1520 of brand management interface 1500 in FIG. 15. The domain name controller may then determine whether to accept or reject the brand-driven keyword mapping. For example, as shown in FIG. 15, the domain name controller may select a button corresponding to "yes" if the domain name controller accepts the keyword mapping, or a button corresponding to 30 "no" if the domain name controller rejects the keyword mapping. Although not shown in FIG. 15, the domain name controller may also enter comments indicating the reason why the domain name controller chooses to reject a keyword mapping or may also provide proposed alternate keywords or associated URLs to the keyword management server or third party. Additionally, the domain name controller may auto-enable selection by requesting that keyword management server compare the name of the third party to the proposed keywords. If the third party name and the proposed keyword are similar or identical, the domain name controller may direct the keyword management server to automatically accept the proposed keyword mapping. Similarly, the domain name controller may direct the keyword management server to automatically decline the proposed keyword mapping if the name of the third party and the keyword do not match, or if the keyword matches a list of prohibited keywords that is generated by the keyword management server and/or by the domain name controller.

In step 1470, the keyword management server accepts or declines the brand-driven keyword mapping based on the selection of the domain name controller. Once the keyword is accepted or declined, the keyword management server notifies the third party. For example, the keyword management server may display information relating to the approved or rejected brand-drive keyword mapping on third party brand management interface 1600, such as on sections 1640 or 1650.

In step 1480, the keyword management server stores the brand-driven keyword mappings accepted by the domain name controller in a brand-driven keyword registry database. The brand-driven keyword mapping is used to direct a client to a webpage in response to a user-supplied URL keyword that is the same as or similar to the keyword in the brand-driven keyword mapping. The brand-driven keyword registry database may also store additional information related to the brand-driven keyword mapping, such as the identity of the third party, whether the third party has been

given permission to automatically update the brand-driven keyword mapping, statistical information, and various other information associated with the brand-driven keyword mapping.

While FIG. 14 shows a process performed using particular steps, embodiments consistent with the invention need not perform all the steps shown in FIG. 14, may perform additional steps, or may perform the steps in a different order.

FIG. 4 is a flow diagram depicting an exemplary method of directing a client to a webpage in response to a user-supplied URL keyword, consistent with certain disclosed embodiments. In the embodiment depicted in FIG. 4, a client 410, such as an end user, may send an HTTP request to a content provider server 420 for a webpage associated with a 15 URL (step 411).

For example, as depicted in FIG. **5**, a user may type the URL **510** "http://www.newnews.com/#earthquake" into the address bar of a browser, which may cause the browser to make an HTTP GET request **600**, as depicted in FIG. **6**, to 20 a web server **420** that hosts the "www.newnews.com" domain name. Specifically, in response to the user specifying URL **510**, the HTTP request **600** from the user's browser may request the resource **610**, which corresponds to the root "/" directory from the web server **420** that hosts the domain 25 name **620** "www.newnews.com". Typically, web servers will be configured by to transmit a default HTML file, such as "index.html", in response to a request for the root directory.

URL **510** may comprise a resource string **510***a* and a 30 keyword **510***b*, as indicated by the pound or hash symbol "#". This technique of demarcating URL keywords using hash symbols is similar, for purposes of syntax, to the use of fragment identifiers in URLs, which are defined by the Internet Engineering Task Force's RFC 3986 URL specifi- 35 cation.

In conventional use, a fragment identifier may be used to identify a specific section within an HTML page received from a web server and to instruct the browser to navigate directly to that section when rendering the HTML page. For 40 example, within the HTML text of a webpage, the author of the webpage may logically divide the content of the webpage into an "introduction" section, an "analysis" section, and a "conclusion" section. The author may further place the HTML anchor tags '', '<a 45 href="#analysis">', and '', before the content of the corresponding section. If a user requests a URL that includes the fragment identifier "#analysis" and there exists an HTML anchor tag for the "#analysis" fragment identifier, then the user's browser will not only download and render the HTML of the retrieved HTML document, but will also automatically scroll directly to the section of the HTML document that is preceded by the "#analysis" fragment identifier. Thus, conventionally fragment identifiers are processed entirely within the browser, as 55 depicted in FIG. 6, are not included in the specified resource 610 of the browser's HTTP request 600 to the web server, and are processed after the content is retrieved via HTTP request 600. Furthermore, the conventional use of fragment identifiers does not generate additional HTTP requests and 60 is only used to decide what portion of the content returned is displayed to the user when rendering is performed in the browser.

As further described below, however, the syntax of the fragment identifier may be used instead to indicate a URL 65 keyword in accordance with the present invention. That is, the fragment identifier 510b "#earthquake" may not indicate

12

that the user is specifying to the browser an initial scrolling focus on a section of the webpage anchored by the text "earthquake", but rather that the user is requesting that content provider server 420 respond by directing the user to whatever specific webpage the content provider has designated for the keyword "earthquake", which may be a webpage different from the webpage that was initially requested. In situations in which there is a conflict such as when the content provider is using the fragment identifier as both an anchor to an initial page and as a method to direct users to a specific webpage, the content provider and/or the keyword resolution service may determine whether or not to make the anchor or the keyword dominant. For example, the keyword resolution service may automatically honor the anchor if there is no conflict with a keyword, and if there is a conflict, the keyword may take precedence. Thus, the client would be directed to the specific webpage.

Continuing with this particular example, the user may have heard of a recent significant world event involving an earthquake in some foreign country. And, the user may further have desired to consult the website www.newnews. com for information about the event. However, rather than first going to the newnews.com homepage and either searching for articles discussing earthquakes, which might range from scientific explanations of earthquakes to historical summaries of earthquakes, or attempting to navigate through traditional navigation techniques, such as menus and subdirectories to find information on the recent earthquake (for which the user might not have enough information, such as the relevant country, to even know where to begin looking), the user may instead simply specify a base domain name 510a and a keyword 510b for the topic sought in a URL.

By causing a browser to make an HTTP request to this base domain name/keyword combination, the user is essentially requesting that a web server that hosts the www.newnews.com domain name provide the user with whatever specific webpage that the NewNews content provider has designated for that keyword. For example, once the NewNews content provider becomes aware of a major foreign earthquake, its editorial staff may create a webpage that details all of the pertinent information that it believes users would seek if looking for a webpage that provides a basic overview of the recent earthquake news event. Once that webpage is created and assigned a URL, such as URL 315 of FIG. 3, editorial, or other non-technical, content providers may log into the keyword system interface 300 to register the new keyword "earthquake" for the www. newnews.com domain name and to associate it with URL **315**.

FIG. 5 depicts other potential forms of URLs in which keywords may be embedded consistent with embodiments of the present invention. For example, as in URL 520, which may be a preferred embodiment, a keyword (here, "anvil") may be embedded in any form of URL for which a browser may have sufficient information to make an HTTP request, and therefore the scheme or mechanism (here, "http") may not be present, and the root directory "V" symbol may also be omitted between the domain name and the keyword. In the example of URL 520, a user may append a keyword to the domain name of an online retailer (here, "acmecorp.cc") in order to request a content provider-designated webpage for a particular type of product for purchase (here, "anvil").

As shown in URL 530, a keyword may comprise non-allowed URL characters, such as spaces, which may undergo URI encoding prior to transmission in an HTTP response in order to use separate, space-delimited words or to include special characters, such as non-ASCII characters. In the

example of URL **530**, a user may append a keyword to the domain name of a local business (here "momandpopshop. com") in order to request a content provider-designated webpage for information about a particular promotion or event (here, "green light special") that is occurring at the 5 local business.

As shown in URL **540**, a keyword may also include wildcard, regular expression, or other characters to allow for flexible string matching of keywords; or may include alternative keywords, for example, in which alternatives are 10 separated by a pipe "|" character. URL **540** also demonstrates that a keyword need not follow a domain name directly, but may instead be placed within a directory structure or other path within the URL. A keyword placed within a path may be handled in a variety of ways. For 15 example, the keyword may be given preference over any path information such that any path in the URL is simply ignored if a keyword is found.

Alternatively, any path that precedes a keyword may limit the scope or otherwise provide a relevant namespace for that 20 keyword. For example, a content provider may designate a first webpage for the keyword "admission" if it is placed within the "/students/undergraduate/" path in a URL (e.g., providing admissions information for undergraduate students) and a second webpage for the keyword "admission" 25 if it is placed within the "/students/graduate/" path in a URL (e.g., providing admission information for graduate students). Similar techniques may be employed for content providers that offer "vanity" URLs within a single domain name to various different companies or organizations. For 30 example, in the case of Facebook.com, which offers vanity URLs, such as "www.facebook.com/cocacola" or "www.facebook.com/toyota", the same keyword (e.g., "#2011challenge") may be linked to different webpages depending on whether it occurs within the "/cocacola" path or the 35 "/toyota" path.

In the example of URL **540**, a user may append a keyword to the domain name of a university (here, "www.vanderbilt. edu") or other non-profit organization (and further within a path following the domain name) to request a content 40 provider-designated webpage for general information (e.g., a table of contents) about a particular subject (here, "admissions").

As shown in URL **550**, a keyword may also be embedded within or appended to a query string within a URL. Similar 45 to URL **540**, the query string within URL **550** may be either ignored once a keyword is detected or may provide a namespace within which the keyword has a separate or distinct meaning. In some embodiments, a URL query string may simply provide additional parameters to be applied to 50 any webpage returned in response to a user-specified keyword, such as an instruction that such a webpage should be provided in a particular language (here, "fr" for French) or in a particular format (here, formatted for a display on a mobile device). In the example of URL **550**, a user may 55 append a keyword to the domain name of an online information service provider (here, "site.netops.globalsecuritiestrade.org") to request a content provider-designated webpage that provides status or real-time information about a particular topic (here, "ETFs").

As shown in URL **550**, a keyword may be appended to a domain name that includes multiple sub-domain names. And, similar to the path of URL **540**, the specificity of the preceding domain name may define a namespace within which the keyword has a separate or distinct meaning. For 65 example, a content provider may designate a first webpage for the keyword "ETFs" if it follows the more generic

14

second-level domain name "globalsecuritiestrade.org" (e.g., providing information about ETF products in general) and a second webpage for the keyword "ETFs" if it follows the more specific sub-domain "netops.globalsecuritiestrade. org" or any other sub-domain within that sub-domain (e.g., providing real-time trading prices for various exchange traded funds). While FIG. 5 shows URLs including top-level domains, second-level domains, third-level domains, and fourth-level domains with the fragment identifier and keyword following the top-level domain, embodiments consistent with the present invention may implement the fragment identifier and keyword at any domain level within the URL and/or implement the fragment identifier in URLs including one or more of any domain level.

And, as shown in URL 560, multiple keywords 560a, **560**b, and **560**c may be placed in a URL. In the example of URL 560, a user may append multiple keywords to the domain name of an online retailer to request one or more content provider-designated webpages for particular product names. Various techniques could be employed for processing multiple keywords, including processing each keyword to determine whether a match exists and providing a webpage in response to the first keyword that has a designated webpage; assigning priority orderings for various keywords and providing the webpage designated for the highest ranked keyword in the URL; or providing specific webpage mappings for distinct keyword combinations (e.g., a first webpage for keyword 560a, a second webpage for keyword **560**b, a third webpage for keyword **560**c, and a fourth webpage for the combination of keywords 560a, 560b, and **560***c*).

Other techniques or syntax may be used to identify URL keywords. For example, a URL keyword may alternatively be identified by one or more characters, such as "\$", "|", or "@", that are not valid URL characters unless converted to hexadecimal format. However, since such characters may also be used to define file names or valid paths within a URL, in some embodiments it may be preferable to use the hash symbol instead, since most web browsers are configured to omit any fragment identifiers (identified by the hash symbol) from an HTTP request, and thus there may be no danger that a web server that did not provide functionality for domain-specific keywords would attempt to locate a file that actually contained the keyword text in its file name.

A URL keyword of the present invention may also include international or special characters that are otherwise disallowed for URLs, since any such characters may simply be converted to hexadecimal form by the user's browser prior to transmission in an HTTP request. For example, a content provider, such as a bookseller that desires to create a keyword webpage for books directed to rësumë drafting may create a keyword that uses the appropriate international characters, knowing that users may similarly specify the keyword "#rësumë", which may be subjected to URI encoding to become "#r % C3% A9sum % C3% A9" by users' browsers when HTTP requests are made.

Returning to FIG. 4, in step 421, content provider server 420 receives HTTP request 610 and responds by transmitting an HTTP response 700, as depicted in FIG. 7. HTTP response 700 includes both header information 710 and payload data 720. Because keyword 510b may not be included in HTTP request 600 to content provider server 420 (since, when formatted as a fragment identifier, it may be omitted by the client's browser), at this point, content provider server 420 may not know whether the request for "www.newnews.com/" is meant as an actual request for a the root webpage at www.newnews.com or was merely used to

specify the domain name for a domain-specific keyword. Therefore, content provider server 420 may transmit a payload 720 that includes the HTML text for the "index.html" file on the server.

However, in order to allow for the possibility that client 5 410 may be requesting a domain-specific keyword, content provider server 420 may also include a small amount of client-executable code within the HTML document/payload 720, such as, for example, "<head>" section 721. While in this exemplary embodiment the client-executable code is 10 included within the "<head>" section, the client-executable code may be included anywhere in the HTML document. The client-executable code may comprise a JavaScript or other client-executable program 721b the contents of which are provided directly by content provider server **420**. Alter- 15 natively, content provider server 420 may include only a link 721a to a program file that resides on another server, such as keyword resolution server 430. Using this approach, client 410 may make a separate HTTP request to keyword resolution server 430 for the program file specified by link 721a, 20 and, once the program file is received, may execute the program file within the client's browser program.

In step 412, client 410 may execute the client-executable program, for example, under a browser rule that any scripts contained within the "<head>" section 721 are to be 25 executed prior to parsing or rendering any content in the "<body>" 722 section of the HTML document 720. The client-executable program may identify any URL keywords that the user included in the requested URL. For example, if keywords are formatted as fragment identifiers, because the 30 client-executable program is executed within client 410, as opposed to on the content provider server 420, the client-executable program may have access to such fragment identifiers. In the example of URL 510, the client-executable program would identify the "#earthquake" fragment identi- 35 fier as a domain-specific keyword.

In step 412, in response to identifying the presence of one or more domain-specific keywords, the client-executable program may cause client 410 to make a separate HTTP request to a separate keyword resolution server 430 to 40 request the URL for the specific content provider-designated webpage for the keyword or keywords. For example, as depicted in FIG. 8, in the case of URL 510, client 410 may make an HTTP GET request to keyword resolution server 430 using URL 800. URL 800 may include the domain name 45 810 of the keyword resolution server; the path 820 of a server-side script on keyword resolution server 430 capable of performing keyword-lookup operations; and a query string 830 that specifies both the original URL 830a and the domain-specific keyword 830b requested by client 410.

For example, the client-executable program may make a synchronous or an asynchronous HTTP request to the keyword resolution server 430 using Asynchronous JavaScript and XML ("AJAX") or JQuery techniques known by those skilled in the art. The client-executable program may also 55 make an HTTP request to the keyword resolution server using an HTML "<IFrame>" element or an HTML "<script>" element that has a target pointing to a URL hosted by the resolution server. Those skilled in the art will appreciate other means for providing the user-requested 60 URL and domain-specific keyword to keyword resolution server 430 for resolution.

In 431, keyword resolution server 430 may determine which specific webpage, if any, on the content provider's website has been designated to be served for the requested 65 keyword, and provide the target URL corresponding to that specific webpage back to the client. For example, in the case

16

of URL 510, keyword resolution server 430 may provide client 410 with the URL 900, as depicted in FIG. 9, which is the same URL that the content provider had specified as URL 315 in the keyword specification interface 300. Keyword resolution server 430 may provide URL 900 to client 410 as a simple text string in an AJAX response. Alternatively, keyword resolution server 430 may redirect client 410 to URL 900, for example using an HTTP 301 or 302 Redirect.

In step 413, client 410 may make a new HTTP request to content provider server 420 for the target URL provided by the keyword resolution server. For example, client 410 may make an HTTP request to content provider server 420 for the webpage associated with URL 900. And, in response, content provider server 420 may provide an HTTP response that includes the HTML text for the webpage specified by URL 900, thus providing client 410 with the webpage that the content provider has designated for the keyword "earthquake." The client may then render and display the webpage specified by URL 900 in the main browser window for the user to see and interact with.

The foregoing technique for providing content provider-designated webpages in response to user-specified keywords presents several additional benefits that merit brief treatment here. Clients may use existing browser programs request domain-specific keyword webpages without any need to modify or enhance the functionality of the browser programs, such as by browser plugin or add-on. Rather, to practice the present invention, browsers need only provide users with the ability to include fragment identifiers in URLs and include basic functionality for executing client-executable programs such as JavaScript®.

Content providers may likewise implement domain-specific keyword functionality in response to HTTP requests with only trivial modifications to existing server-side scripts or programs. Specifically, a content provider need only include a small amount of client-executable code within each webpage in a domain for which the content provider wishes to provide domain-specific keyword functionality. The content provider may then leave it to the client's browser and the relevant keyword resolution server to perform the actual keyword resolution operations. In fact, provided the content provider includes the requisite clientexecutable program in HTTP responses for webpages, the content provider's servers may remain completely agnostic as to whether a client has either requested a domain-specific keyword or is making a request for a specific webpage in response to a previous keyword resolution. Because the content provider server always returns any requested web-50 pages along with the client-executable keyword resolution program, the content provider can ensure that clients that requested webpages in order to actually render them receive such webpages, whereas clients that request webpages merely as a means of specifying a domain namespace for a particular URL keyword are provided with the client-executable program necessary to resolve the keyword.

Similarly, by using the syntax of fragment identifiers to specify domain-specific keywords, users can make HTTP requests that include URL keywords to any content provider, whether or not that content provider is keyword-capable, without any danger of generating server response errors. Because browsers do not transmit fragment identifier text to web servers, the inclusion of a domain-specific URL keyword in an HTTP request to a web server that is not keyword-capable should not generate any errors, but should instead simply result in the webpage of the URL, without the fragment identifier, being downloaded and displayed. And,

even for web servers that are keyword-capable, if the user specifies a domain-specific keyword for which the content provider has not designated a webpage, the keyword resolution server may simply provide an empty string in response to a resolution query, once again resulting in the 5 webpage of the base URL being downloaded and displayed.

In the case where a keyword is found to correspond to a content provider-designated webpage, because the executable code for requesting a resolution of the keyword and redirecting the client to the resolved target URL is within the "<head>" section of the original HTML document returned by the content provider server, such code may be executed before any rendering of the original HTML document takes place. Thus, user should never see the originally requested HTML document displayed, even if only briefly, but it 15 should appear to the user as though he or she went straight to the webpage associated with keyword.

Also, the use of a separate keyword resolution server, along with a keyword management interface 300, allows non-technical employees of a content provider to create, 20 modify, or delete keyword-webpage mappings as business needs dictate without the need to involve technical employees such as IT personnel. Indeed, since the content provider itself can maintain the keywords without the need for any specific IT skills, costs can be reduced. Furthermore, content 25 changes quickly and existing traditional navigation techniques would require an IT professional to reconfigure the web server.

In another embodiment, a content provider itself may perform the role of keyword resolution service provider. In 30 particular, the client-executable program provided by the content provider server to the client may instruct the client, after identifying one or more URL keywords, to query the content provider itself, rather than a separate keyword resolution server, for the content provider-designated web- 35 pages corresponding to the identified keywords.

The present invention is not limited to circumstances in which a user manually types a domain-specific keyword into a URL. Rather, the domain-specific keyword may be included in a requested URL in any manner, such as being 40 specified within a hyperlink in an existing HTML document, being included in navigation "bookmark", being provided by a web server, such as in the form of an HTTP Redirect, or being included within a native mobile phone application.

The present invention may also allow users to use wild-45 cards or regular expressions in keywords, such as "engineer*", which may resolve to "engineer," "engineers," "engineering," "engineering schools," etc. In some embodiments, if there are a sufficient number of potential resolutions for a wildcard or regular expression keyword, the user 50 may be prompted with a list of choices.

Those skilled in the art will also appreciate that although both the originally requested base URL of step **411** and target URL of step 413 may be hosted by the same content provider entity, the resources hosted by the respective URLs 55 may be hosted by separate web servers. Also, although described predominantly in this application as "domainspecific" keywords, those skilled in the art that the concept may be expanded to provider-specific keywords. For example, a single content provider may own and host the 60 distinct domain names "zulumail.tv" and "zmail.tv", both of which are directed to the same hosting service or are hosted by the same web servers. And, the content provider may designate a single webpage for the keyword "#forwarding", regardless of whether it is requested by a user as part of a 65 URL based on either domain. That is, both "http:// zulumail.tv/#forwarding" and "http://zmail.tv/#forwarding"

18

might resolve to the URL "http://zmail.tv/user_options/mail_handling/automatic_forwarding.htm".

Similarly, the concept may be expanded to allow a first content provider to designate another content provider's webpage for a given keyword. For example, if a number of smaller weather-related websites rely on a larger service provider to supply real-time weather information, the content provider responsible for each smaller website may designate a webpage hosted by the larger service provider for the keyword "#storms".

In other words, a content provider is not limited in any way to the specific webpage that it may designate for a given keyword. However, as described with respect to FIG. 2, a content provider may be limited in that it may not designate keywords for websites or domains that it does not either own or control or have authority over. And moreover, a given content provider-designated keyword may have a meaning only within a specific domain name, which also may include a URL path, a query string, and/or a port number.

Furthermore, there are a number of implementation options for embodiments of keyword/URL mappings. As shown in FIG. 10, in the generic case, a user 1010 may input a direct navigation URL, such as "example.com#keyword," into a browser 1020, causing the browser 1020 to make an HTTP GET request to the example.com server 1030. In response to the user specifying the direct navigation URL, the GET request from the browser 1020 may request the resource that corresponds to the root "/" directory from the server 1030 that hosts the domain name "example.com." Generally, web servers transmit a default HTML file, such as "index.html," in response to a request for the root directory, along with the requisite keyword/URL mapping and keyword resolution program, such as, for example, a JavaScript code. Browser 1020 may then implement the keyword resolution program to determine the URL to keyword mapping and the mapped URL. The Browser 1020 may then transmit a request to the server 1030 for the mapped URL page, and in response to the request, the server may return the target page (i.e., the page associated with the keyword). Alternatively, the content provider server could request resolution, or instruct the client to request resolution, of the keyword from a separate server, such as a keyword resolution server.

The keyword/URL mapping can be performed in a number of ways. For example, the keyword/URL mapping can be performed on the server side, be cloud-based, or performed on the client side. FIG. 11 is an exemplary implementation of keyword/URL mapping performed on the server side. As shown in FIG. 11, there may be an internet user 1110, a browser 1020, a server 1130, and a keyword registry 1140. The keyword registry 1140 may be configured by a domain owner 1150 in a way that the domain owner 1150 associates the keyword to a particular website in the domain, and may be a separate server or may be part of server 1130 itself. Additionally, a brand-driven keyword registry (not shown) may be separately provided, or may be combined keyword registry 1140.

As shown in FIG. 11, user 1110 may input a direct navigation URL, such as "example.com#keyword" into browser 1120. The browser 1120 may translate the "#" to some other character, such as "@" and make a request to the server side using the keyword and the new character. Server 1130 may then communicate with keyword registry 1140 to determine the URL mapped to the keyword, and the server 1130 may transmit a default HTML file, such as "index.html," in response to the request along with a keyword resolution program, such as, for example, a JavaScript

code. Browser 1020 may then transmit a request to the server 1130 for the mapped URL page, and in response to the request, the server may return the target page.

FIG. 12 is an exemplary implementation of keyword/URL mapping performed on the client side. As shown in FIG. 12, 5 a user 1210 may input a direct navigation URL, such as "example.com#keyword" into browser 1220, causing the browser 1220 to make an HTTP GET request to the example.com server 1230. In response to the user specifying the direct navigation URL, the GET request from the 10 browser 1220 may request the resource that corresponds to the root "/" directory from the server 1230 that hosts the domain name "example.com." Generally, web servers transmit a default HTML file, such as "index.html," in response to a request for the root directory, along with the requisite 15 keyword/URL mapping and keyword resolution program, such as, for example, a JavaScript code. Browser 1220 may then implement the keyword resolution program to communicate with a cloud infrastructure 1240 that may include a keyword registry 1242. The cloud infrastructure 1240 will 20 determine the URL to keyword mapping and the mapped URL, and will transmit the mapped URL to browser 1220. The browser 1220 may then transmit a request to the server 1230 for the mapped URL page, and in response to the request, the server may return the target page.

Keyword/URL mapping may also be performed entirely on the client side. In some embodiments, a client may maintain a local file system or database for the resolution of URL keywords, rather than relying on either the content provider or a third-party resolution service provider to 30 a search service page. resolve keyword/URL mappings. For example, HTML 5 allows for client-executable code, such as JavaScript®, to access or query a local database in order to retrieve data or content. The client-executable program received from the up the mapping between a keyword and URL, and, once the relevant URL is located, may direct the browser directly to the URL, thus cutting out at least one HTTP request from the client to a remote server from the process. In other embodiments, the client-executable code can itself generate the 40 local file system or database for the resolution of URL keywords.

In another embodiment, URL keyword resolution operations may be performed entirely on the server side without relying on the client to execute any client-executable code. For example, as shown in FIG. 13, a user 1310 may input a direct navigation URL, such as "example.com#keyword," into browser 1320. If the URL keyword is delimited by a character other than a hash symbol (e.g., a "@" character), then, unlike the fragment identifier, the keyword may be 50 transmitted to the content provider server 1330 as part of the client's 1320 initial HTTP request. The content provider server 1330, for example, may identify the keyword, determine the appropriate URL mapping for the keyword, and redirect the client 1320 (e.g., using an HTTP 301 Redirect 55 instruction) to the appropriate URL for the keyword, all without relying on the client 1320 to execute any clientexecutable code. Alternatively, the content provider server could request resolution, or instruct the client to request resolution, of the keyword from a separate server, such as a 60 keyword resolution server.

In another embodiment, if a client requests a keyword that has not been created or designated by a content provider, the client-executable program, keyword resolution server, or content provider server may provide for certain default 65 options. For example, in response to a request for a nonexistent keyword, the client may simply render the webpage

20

identified by the base URL of the initial HTTP request. Alternatively, the client may be provided with a webpage, JavaScript alert, or other notification that the user has requested a non-existent keyword. The user may also be provided with a list of potentially similar existing keywords that the user may select in lieu of the non-existent, originally requested keyword. The user may also be provided with a traditional list of webpages generated using traditional keyword searching techniques. The user may also be prompted with a list of potential matching keywords from which the user may select.

In yet another embodiment, if a user inputs the hash tag to request a keyword the content provider, a hash module may provide a list of all of the available keywords associated with a particular domain. For example, the hash module may be a browser add-on or plugin that determines in real-time whether or not a user has entered a hash tag into the address bar of a browser. If so, the auto completion module will communicate with one or more of the content provider, client-executable program, keyword resolution server, or content provider server to determine whether any keywords associated with that particular domain. The more alphanumeric characters entered by the user into the browser, the 25 narrower the list of available keywords associated with the particular domain. If there are keywords associated with the domain, the hash module may generate a pop-up list including those key words. If there aren't keywords associated with the domain, the hash module may redirect the user to

In another embodiment, a smart navigation module may be provided to inform a user if a particular domain has keyword smart navigation. For example, the smart navigation module may be a browser add-on or plugin that reviews, content provider may rely on such a local database to look 35 in real-time, a domain input into an address and determines whether or not that particular domain has associated keywords by communicating with one or more of the content provider, client-executable program, keyword resolution server, or content provider server. If so, the smart navigation module may provide an indication that the domain has associated keywords such as, for example, changing the color of the address bar or inserting a particular graphic into the browser or associated webpage.

The resolution service provider, in addition to providing a keyword management interface and/or keyword resolution service, may also provide content providers with access to rich metrics and statistics concerning keyword resolution requests from clients. For example, the interface 300 of FIG. 3 may also allow a user and/or content provider to view and/or download the number of times that each created keyword has been requested from clients. As another example, the resolution service provider could track how many times keywords have been used, who used the keywords, the type of keyword used, the websites visited, and various other information using, for example, cookies. Interface 300 may also provide information about the number of requests for various non-existent keywords by users, thus allowing the content provider to determine the need for creating additional keywords as a result of user demand. Such non-existent keyword information may also comprise information about misspellings of existent keywords to inform the content provider of the need to create additional keywords to account for misspellings or homophones of existing keywords or to improve upon permissible wildcard or regular expression matching functionality. Similar information may be provided to third parties in the brand-driven approach.

The resolution service provider may also provide malware-free secure navigation. Since the number of websites available on the internet is so large, it's practically impossible to scan all of them for malware. However, since the resolution service provider knows the URL associated with a particular keyword, the resolution service provider could scan the URL to determine whether its free of malware using, for example, the systems and methods for malware detection and scanning disclosed in U.S. patent application Ser. Nos. 12/982,508 and 12/982,540, the entire contents of which are incorporated herein by reference in their entireties. Accordingly, when a user enters a direct navigation URL such as "example.com#keyword" into a browser, the user has a high level guarantee that the URL is safe for browsing and doesn't include malicious content.

In another embodiment, one or more of the content provider, the client-executable program, keyword resolution server, or content provider server may automatically optimize a particular website based on an identification of the client device. For example, the client-executable program 20 may identify the user's device (e.g., a mobile phone) to forward the user to the particular device's version of the website. The client executable program may automatically optimize the website using, for example, the method discussed in U.S. patent application Ser. No. 13/078,680 filed 25 on Apr. 1, 2011 entitled "Systems, Apparatus, and Methods for Mobile Device Detection", which is hereby incorporated by reference in its entirety.

The foregoing description of the invention, along with its associated embodiments, has been presented for purposes of 30 illustration only. It is not exhaustive and does not limit the invention to the precise form disclosed. Those skilled in the art will appreciate from the foregoing description that modifications and variations are possible in light of the above teachings or may be acquired from practicing the invention. 35 For example, the steps described need not be performed in the same sequence discussed or with the same degree of separation. Likewise various steps may be omitted, repeated, or combined, as necessary, to achieve the same or similar objectives. As another example, while a user may type a 40 URL into a browser, the URL can be provided by any number of means such as, for example, by speaking a URL and using voice recognition associated with the domain and/or the keyword to input the URL-related information.

The invention claimed is:

- 1. An apparatus for retrieving a webpage associated with a domain-specific keyword, comprising:
 - a memory; and
 - a processor communicatively coupled to the memory, the processor being configured to:
 - receive an instruction from a client to request a first resource defined by a first URL, wherein the first URL includes a keyword in the form of a fragment identifier, wherein the keyword is specified by the client;
 - send a first HTTP request to a first web server associated with a domain specified by the first URL;
 - receive a first HTTP response from the first web server, wherein the first HTTP response communicates a client-executable program; and
 - execute the client-executable program upon receipt without further client input, wherein executing the client-executable program comprises:
 - determining a second URL associated with the first URL, the second URL being associated with a 65 target page and being established by a third party not associated with the domain.

22

- 2. The apparatus of claim 1, wherein the first HTTP response includes the client-executable program.
- 3. The apparatus of claim 1, wherein executing the client-executable program further comprises:
 - obtaining from a second server information sufficient to access the second URL.
- 4. The apparatus of claim 1, wherein the second URL is determined based on data included in a brand-driven keyword registry database, the data mapping the keyword to a particular URL based on the domain.
- 5. The apparatus of claim 4, wherein the third party maintains the brand-driven keyword registry database.
- 6. The apparatus of claim 1, wherein determining the second URL associated with the first URL comprises:
 - determining whether a domain associated with the first URL and the keyword is included in a brand-driven keyword registry database, the brand-driven keyword registry database including data mapping database keywords created by the third party to database URLs;
 - if the domain and the keyword are included in the brand-driven keyword registry database, matching the keyword to one of the database keywords and selecting the second URL from the database URLs based on the match; and
 - if the domain and the keyword are not included in the brand-driven keyword registry database, selecting the second URL based on a default option.
- 7. The apparatus of claim 1, wherein the second URL is selected based on a location of the client.
- **8**. The apparatus of claim **1**, wherein the second URL is selected based on device metadata associated with the client.
- 9. A non-transitory computer-readable medium encoded with instructions which, when executed on a processor, perform a method for establishing brand-driven URL navigation, the method comprising:

receiving a user selection of an accepted third party; transmitting third party selection information to the

- transmitting third party selection information to the accepted third party, the third party selection information being based on the user selection; and
- receiving brand-driven keyword data from the accepted third party in response to the transmission of the third party selection information, the brand-driven keyword data mapping a keyword to a particular URL;
- whereby, in response to receiving an instruction from a client for information sufficient to access the particular URL, the method provides to the client a response comprising a client-executable program configured to execute upon receipt without further client input and determine the particular URL based at least in part on an evaluation of a client-specified keyword and on the brand-driven keyword data.
- 10. The non-transitory computer-readable medium according to claim 9, the method further comprising:
 - receiving brand management participation information from one or more participating third parties, the one or more participating third parties not being associated with a domain;
 - generating a list of suggested third parties based on the received brand management participation information, wherein the user selection is based on the list of suggested third parties.
- 11. The non-transitory computer-readable medium according to claim 10, wherein the list of suggested third parties is generated based on a domain name registry.

12. The non-transitory computer-readable medium of claim 9, the method further comprising:

transmitting the brand-driven keyword data to the user; receiving acceptance information indicating whether the user accepts or declines the brand-driven keyword data; 5 and

storing the brand-driven keyword data if the user accepts the brand-driven keyword data.

13. The non-transitory computer-readable medium of claim 12, the method further comprising:

receiving trusted user information from the user indicating whether the third party is designated as a trusted user; and

determining whether the third party is a trusted user based on the trusted user information,

wherein the user automatically accepts the brand-driven keyword data if it is determined that the third party is a trusted user, and

wherein the user automatically declines the brand-driven keyword data if it is determined that the third party is not a trusted user.

14. The non-transitory computer-readable medium of claim 12, the method further comprising:

determining whether the keyword matches a prohibited ²⁵ keyword,

wherein the user automatically declines the brand-driven keyword data if it is determined that the keyword matches a prohibited keyword.

15. The non-transitory computer-readable medium of ³⁰ claim 12, wherein the acceptance information includes reasons why the user accepts or declines the brand-driven keyword data.

16. The non-transitory computer-readable medium of 35 claim 12, the method further comprising:

transmitting rejection information to the third party if the user declines the brand-driven keyword data.

17. An apparatus for retrieving a webpage associated with a brand-specific keyword, comprising:

a memory; and

a processor communicatively coupled to the memory, the processor being configured to:

24

receive a user selection of an accepted third party; transmit third party selection information to the accepted third party, the third party selection information being based on the user selection;

receive brand-driven keyword data from the accepted third party in response to the transmission of the third party selection information, the brand-driven keyword data mapping a brand-driven keyword to a particular brand-driven URL;

receive an instruction from a client to obtain information sufficient to access the particular brand-driven URL; and

provide a response comprising a client-executable program configured to execute upon receipt without further client input and determine information sufficient to access the particular brand-driven URL, the particular brand-driven URL being determined based at least in part on an evaluation of a client-specified keyword and the brand-driven keyword data.

18. The apparatus of claim 17, wherein the particular brand-driven URL is based on the location of the client.

19. The apparatus of claim 17, wherein the particular brand-driven URL is based on device metadata associated with the client.

20. The apparatus of claim 17, the processor further being configured to:

receive brand management participation information from one or more participating third parties; and

generate a list of suggested third parties based on the received brand management participation information, wherein the user selection is based on the list of suggested third parties.

21. The apparatus of claim 17, wherein the list of suggested third parties is generated based on a domain name registry.

22. The apparatus of claim 17, the processor further being configured to:

transmit the brand-driven keyword data to the user;

receive acceptance information indicating whether the user accepts or declines the brand-driven keyword data; and

store the brand-driven keyword data if the user accepts the brand-driven keyword data.

* * * * *