US009811104B2 # (12) United States Patent # **Doorenbos** # (10) Patent No.: US 9,811,104 B2 # (45) Date of Patent: # Nov. 7, 2017 # (54) REFERENCE VOLTAGE GENERATOR SYSTEM FOR REDUCING NOISE (71) Applicant: TEXAS INSTRUMENTS INCORPORATED, Dallas, TX (US) (72) Inventor: Jerry L. Doorenbos, Tucson, AZ (US) (73) Assignee: TEXAS INSTRUMENTS INCORPORATED, Dallas, TX (US) Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 187 days. (21) Appl. No.: 14/644,788 Notice: (22) Filed: Mar. 11, 2015 # (65) Prior Publication Data US 2015/0261246 A1 Sep. 17, 2015 #### Related U.S. Application Data (60) Provisional application No. 61/951,300, filed on Mar. 11, 2014. | (51) | Int. Cl. | | |------|-----------|-----------| | | G05F 3/02 | (2006.01) | | | G05F 3/20 | (2006.01) | | | G05F 3/30 | (2006.01) | | | G05F 3/22 | (2006.01) | 2) **U.S. Cl.** CPC *G05F 3/02* (2013.01); *G05F 3/205* (2013.01); *G05F 3/30* (2013.01); *G05F 3/225* (2013.01) (58) Field of Classification Search CPC ... G05F 3/02; G05F 3/30; G05F 3/205; G05F 3/225 ### (56) References Cited #### U.S. PATENT DOCUMENTS | 5,229,711 A * | 7/1993 | Inoue G05F 3/30 | |------------------|---------|--------------------| | 7 452 252 D1 # | 11/2000 | 323/313
Manager | | 7,455,252 B1 ° | 11/2008 | Megaw | | 2004/0257150 A1* | 12/2004 | Farooqui | | 2008/0297131_A1* | 12/2008 | Peng G05F 3/30 | | | | 323/313 | | 2012/0206192 A1* | 8/2012 | Fletcher | | | | 321/339 | ^{*} cited by examiner Primary Examiner — Jue Zhang Assistant Examiner — Jye-June Lee (74) Attorney, Agent, or Firm — John R. Pessetto; Charles A. Brill; Frank D. Cimino ### (57) ABSTRACT One example includes an reference voltage generator system. The system includes an amplifier configured to generate a reference voltage based on a respective input voltage provided at each of at least one input of the amplifier. The system also includes at least one input transistor that is coupled to the at least one input of the amplifier and is statically-biased to conduct a current to set an amplitude of the respective input voltage provided at each of the at least one input transistor includes an input terminal that is coupled in series with an input resistor. # 20 Claims, 3 Drawing Sheets # REFERENCE VOLTAGE GENERATOR SYSTEM FOR REDUCING NOISE # CROSS-REFERENCE TO RELATED APPLICATION This application claims the benefit of U.S. Provisional Patent Application No. 61/951,300, filed Mar. 11, 2014, and entitled "METHOD FOR FLICKER AND BURST NOISE REDUCTION AND BASE CURRENT CORRECTION IN ¹⁰ BAND GAP REFERENCE CIRCUIT", which is incorporated herein by reference in its entirety. ### TECHNICAL FIELD This disclosure relates to a reference voltage generator system. #### BACKGROUND Amplifier circuits can be implemented in a variety of applications. One example is a reference voltage generator system (e.g., a bandgap reference voltage system) that can be implemented to generate a substantially stable reference voltage for a variety of circuit applications. Reference 25 voltage generator systems can typically implement an arrangement of transistors and/or resistors to set an input voltage at an amplifier, with the amplifier generating the reference voltage. For example, reference voltage generator systems can be configured in a variety of processes, such as 30 complementary metal-oxide semiconductor (CMOS) processes, and can include optimized arrangements of transistors and resistors. However, resistors that are implemented to set the input voltage for the amplifier can typically contribute to thermal noise in the generation of the reference 35 voltage. Similarly, the transistors can likewise contribute to a number of noise sources, such as thermal noise, shot noise, flicker noise, and/or burst noise. Such noise sources can contribute to a degradation of stability of the reference voltage. # SUMMARY One example includes a reference voltage generator system. The system includes an amplifier configured to generate 45 a reference voltage based on a respective input voltage provided at each of at least one input of the amplifier. The system also includes at least one input transistor that is coupled to the at least one input of the amplifier and is statically-biased to conduct a current to set an amplitude of 50 the respective input voltage provided at each of the at least one input transistor includes an input terminal that is coupled in series with an input resistor. Another example includes a circuit. The circuit includes an amplifier configured to generate a reference voltage based on a respective input voltage provided at each of at least one input of the amplifier. The circuit further includes at least one input transistor that is coupled to the at least one input of the amplifier and is statically-biased to conduct a current to set an amplitude of the respective input voltage provided at each of the at least one input of the amplifier. Each of the at least one input transistor includes an input terminal that is coupled in series with an input resistor. The input resistor can have a resistance value that is selected based on an error 65 term of a current associated with the input terminal of the respective at least one transistor. The current associated with 2 the input terminal can be associated with an activation voltage of the at least one transistor to set the amplitude of the respective input voltage. Another example includes amplifier reference voltage generator system. The system includes an amplifier configured to generate a reference voltage based on a respective input voltage provided at each of at least one input of the amplifier. The system also includes at least one input bipolar junction transistor (BJT) that is coupled to the at least one input of the amplifier and is statically-biased to conduct a current to set an amplitude of the respective input voltage provided at each of the at least one input of the amplifier. Each of the at least one input BJT includes an input resistor interconnecting a base and a collector of the respective at least one input BJT. The system further includes at least one feedback circuit component associated with a feedback arrangement of the amplifier to set the amplitude of the at least one input voltage. The at least one feedback circuit component can be fabricated as a matched component of the at least one input resistor or of an output transistor that is controlled via the amplifier, such that the reference voltage is approximately insensitive to temperature variation. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an example of a reference voltage generator system. FIG. 2 illustrates an example of a reference voltage generator circuit. FIG. 3 illustrates another example of a reference voltage generator circuit. FIG. 4 illustrates yet another example of a reference voltage generator circuit. FIG. 5 illustrates yet a further example of a reference voltage generator circuit. # DETAILED DESCRIPTION This disclosure relates generally to electronic circuits, and 40 more specifically to a reference voltage generator system. The circuit system can include an amplifier configured to generate a reference voltage based on a feedback arrangement based on at least one input voltage at an input of the amplifier. Additionally, the reference voltage generator system can include an arrangement of resistors and input transistors, such as bipolar junction transistors (BJTs), that can be implemented to set an amplitude of the input voltage(s) at the input of the amplifier. As an example, the input transistors can be statically biased, such as based on being diode-connected. Additionally, to provide an amplitude of the reference voltage that is substantially stable, such as based on mitigation of noise sources (e.g., thermal noise, burst noise, and/or flicker noise), the input transistors can include an input resistor coupled in series at an input terminal (e.g., a base) of the respective input transistor to mitigate errors associated with the respective noise sources. For example, the input resistor can have a resistance value that is selected based on an error term associated with an input current (e.g., base current) of the respective input transistor. The input current can be associated with an activation voltage of the input transistor(s) that sets the amplitude of the respective input voltage of the amplifier. Therefore, the resistance value of the resistor can be selected to mitigate the error term, such that the activation voltage of the input transistor can be substantially more stable to provide a respective voltage across the input transistor(s) that can likewise be substantially more stable. Accordingly, the reference voltage generated by the amplifier can be generated at a substantially more stable amplitude. The reference voltage generator system can be implemented in a variety of ways, such as based on a variety of feedback arrangements and/or arrangements of the input transistor(s). FIG. 1 illustrates an example of an reference voltage generator system 10. The reference voltage generator system 10 can be implemented as a reference voltage generator system, such as implemented in a variety of circuit applications (e.g., as a bandgap voltage generator) to generate a substantially stable reference voltage V_{REF} . As an example, the reference voltage generator system 10 can be formed as or as part of an integrated circuit (IC) chip. The reference voltage generator system 10 includes an amplifier 12 (e.g., 15 an operational amplifier (OP-AMP)) that is configured to generate the reference voltage V_{REF} at an output based on an input voltage provided to at least one input of the amplifier 12. The input voltage can be set based on a feedback arrangement of the amplifier 12 in a variety of ways. 20 Additionally, the reference voltage generator system 10 includes at least one input transistor 14 that is likewise
configured to set an amplitude of the input voltage at the respective input(s) of the amplifier 12. As described herein, the term "transistor" describes one or more transistor 25 devices arranged to function as a transistor. For example, each of the input transistor(s) 14 can be arranged as a bipolar junction transistor (BJT) that is diode-connected based on having a base coupled to a collector (e.g., via an interconnecting input resistor, as described in greater detail herein), 30 and is thus statically biased. As described herein, the term "statically biased" refers to an arrangement of the input transistor(s) 14 in which the activation of respective input transistor(s) 14 is unaffected by dynamic external signals, and is thus configured to maintain a substantially consistent 35 activation to maintain a substantially stable and static current flow through the respective input transistor(s) 14, and thus a substantially stable and static resistance across the respective input transistor(s) 14. One example of a statically biased transistor is a diode-connected transistor. As used 40 herein, the term "substantially" is intended to convey that although an effect or result is intended, in practice, there may be a small amount of variation, such as due to component tolerances and/or processing variations. As described herein, the reference voltage generator system 10 can be arranged in 45 a variety of ways with respect to the feedback arrangement of the amplifier 12 and the input transistor(s) 14. In the example of FIG. 1, each of the input transistor(s) 14 includes an input resistor 16 that is coupled in series with an input terminal of the respective input transistor(s) 14. As 50 described herein, the term "resistor" refers to one or more resistive elements that provide a collective resistance. For example, the input resistor 16 can be coupled in series with a base of the input transistor(s) 14 that are configured as BJT(s), such as based on interconnecting the base and the 55 collector of the diode-connected input transistor(s) 14. As an example, the input resistor 16 of each of the input transistor(s) 14 can have a resistance value that is selected based on an error term associated with an input current (e.g., base current) of the respective input transistor(s) 14. The 60 input current can be associated with an activation voltage of the input transistor(s) 14 that sets the amplitude of the respective input voltage of the amplifier 12. Therefore, the resistance value of the resistor can be selected to mitigate the error term, such that the activation voltage of the input 65 transistor can be substantially more stable to provide a respective voltage across the input transistor(s) 14 that can 4 likewise be substantially more stable, such as based on mitigating sources of noise, such as thermal noise, flicker noise, and/or burst noise. FIG. 2 illustrates an example of a reference voltage generator circuit 50. The reference voltage generator circuit 50 can correspond to the reference voltage generator system 10, and is thus demonstrated as a first example of the reference voltage generator system 10. The reference voltage generator circuit 50 includes an amplifier **52** arranged as an OP-AMP that is configured to generate the reference voltage V_{REF} with reference to a low-voltage rail, demonstrated in the example of FIG. 2 as ground. The amplifier 52 receives a first input voltage V_{IN1} on a node 54 at a non-inverting input and a second input voltage V_{IN2} on a node **56** at an inverting input. The node **54** is arranged between a resistor R₁ and an emitter of a first input transistor Q_1 , demonstrated in the example of FIG. 2 as a PNP-type BJT. The node **56** is arranged between a resistor R_2 and a resistor R_3 , with the resistor R_3 interconnecting the node 56 and an emitter of a second input transistor Q₂, demonstrated in the example of FIG. 2 as a PNP-type BJT. The input transistors Q_1 and Q_2 each have collectors that are coupled to the low-voltage rail. As an example, the input transistors Q_1 and Q_2 can be substratecoupled BJTs based on having a collector that is coupled to or forms a substrate of an associated IC chip, and can have sizes that differ with respect to each other to achieve a desired gain of the reference voltage V_{REF} . The resistors R_1 and R_2 interconnect the reference voltage V_{RFF} and the respective nodes **54** and **56**. Therefore, the amplifier **52** is demonstrated in the example of FIG. 2 in a feedback arrangement, such that the reference voltage V_{REF} provided at an output of the amplifier 52 is implemented to set the input voltages V_{IN1} and V_{IN2} at the respective inputs of the amplifier 52. As an example, the reference voltage V_{REF} can be generated as a bandgap voltage based on a summation of a V_{be} voltage and a scaled difference of the V_{be} voltages of the input transistors Q_1 and Q_2 . The V_{he} voltage can have a negative variation with increasing temperature, and the difference between the two V_{be} voltages can have a positive variation with increasing temperature (e.g., proportional-toabsolute-temperature (PTAT)). Appropriate scaling of the difference between the two V_{be} voltages of the input transistors Q_1 and Q_2 relative to the V_{be} voltage in the summation can result in a substantially zero variation with respect to temperature variation. The difference in the V_{be} voltages can be generated by choosing static biasing currents in the input transistors Q_1 and Q_2 , such as to provide a constant ratio between operating current densities of the input transistors Q_1 and Q_2 . For example, the constant ratio can be accomplished based on same magnitude bias currents in both of the input transistors Q_1 and Q_2 with one of the input transistors Q_1 and Q_2 having larger area than the other, both of the input transistors Q_1 and Q_2 having the same size but with a fixed ratio of bias current, or a combination thereof. In the example of FIG. 2, the input transistors Q_1 and Q_2 are each demonstrated as diode-connected, such that the base of each of the input transistors Q_1 and Q_2 are coupled to the collector of each of the input transistors Q_1 and Q_2 at the low-voltage rail. Therefore, the input transistors Q_1 and Q_2 are statically biased to provide a substantially static activation of the respective Q_1 and Q_2 to provide current flow through the input transistors Q_1 and Q_2 . Additionally, in the example of FIG. 2, the input transistor Q_1 includes an input resistor Q_1 that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_1 . Similarly, the input transistor Q_2 includes an input resistor R_{IN2} that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_2 . Therefore, the diode-connection of the input transistors Q_1 and Q_2 is via the respective input resistors R_{IN1} and R_{IN2} . The amplitude of the input voltages V_{IN1} and V_{IN2} can thus depend on the resistance in series with the respective input transistors Q_1 and Q_2 the voltage across the input resistors R_{IN1} and R_{IN2} , and the respective activation of the input transistors Q₁ and Q₂ to provide a current flow through the respective input transistors Q_1 and Q_2 . The activation of the input transistors Q_1 and Q_2 is based on a emitter-base voltage V_{eb} of the respective input transistors Q_1 and Q_2 , defined as: $$V_{eb} = V_T \ln \left[\frac{I_e - I_b}{I_s} \right]$$ Equation 1 $$V_{eb} = V_T \ln \left[\left(\frac{I_e}{I_s} \right) \left(1 - \frac{I_b}{I_e} \right) \right] = V_T \left[\ln \left(\frac{I_e}{I_s} \right) + \ln \left(1 - \frac{I_b}{I_e} \right) \right]$$ Equation 2 Where: V_T is a thermal voltage defined by k*T/q; I_e is an emitter current of the respective input transistor; I_b is a base current of the respective input transistor; I_c is a collector current of the respective input transistor; and I_s is a saturation current of the respective input transistor. 30 As demonstrated in Equation 2, the emitter-base voltage V_{eb} includes an error term associated with the base current I_b based on the emitter-base voltage V_{eb} being a function of the emitter current I_e and the saturation current I_s . As a result, with the input resistors R_{IN1} and R_{IN2} being coupled in series 35 with the base of the respective input transistors Q_1 and Q_2 , the respective resistance value of the input resistors R_{TN1} and R_{IN2} can be selected based on the base current I_b to calculate a sum of the emitter-base voltage V_{eb} and the voltage drop of the respective one of the input resistors R_{IN1} and R_{IN2} to 40 achieve an emitter-base voltage V_{eh} that is a function of the emitter current I_e and the saturation current I_s , as follows: $$R_b = \frac{-V_T \ln \left[1 - \frac{I_b}{I_e}\right]}{L}$$ Equation 3 Equation 4 $V_{ebr} = V_{eb} + I_b R_b =$ $$V_T \ln \left[\frac{I_e}{I_s}\right] + V_T \ln \left[1 - \frac{I_b}{I_e}\right] - \frac{I_b V_T \ln \left[1 - \frac{I_b}{I_e}\right]}{I_b} = V_T \ln \left[\frac{I_e}{I_s}\right]$$ By implementing the input resistors R_{IN1} and R_{IN2} in series with the base of the respective input transistors Q_1 and 55 Q_2 , the reference voltage generator circuit 50 can compensate for errors based on controlling the emitter current I_e instead of the collector current I_c . Since the error term associated with the base current I_b in the calculation of the emitter-base voltage V_{eb} can contribute to error effects based 60 on transistor β , base current shot noise, flicker noise, and/or burst noise, the error effects can be substantially mitigated based on controlling the emitter
current I_e instead of the collector current I_c in response to implementing the input resistors R_{IN1} and R_{IN2} . Accordingly, the inclusion of the 65 input resistors R_{IN1} and R_{IN2} in the reference voltage generator circuit 50 can substantially mitigate noise (e.g., low- frequency noise) in the reference voltage V_{REF} , resulting in a more stable reference voltage V_{REF} . It is to be understood that the implementation of the resistors R_{IN1} and R_{IN2} can be sufficient to substantially mitigate noise (e.g., low-frequency noise) over a large variation of transistor β associated with the input transistors Q_1 and Q_2 , particularly with larger values of transistor β . Additionally, the emitter current I_e of the input transistors Q_1 and Q_2 can be set to be proportional-to-absolute-temperature (PTAT). Additionally, the input resistors R_{IN1} and R_{IN2} can be fabricated as the same type of resistors as the resistors R_1 , R_2 , and R_3 , and thus fabricated as matched components, such that the input resistors R_{IN1} and R_{IN2} and the resistors R₁, R₂, and R₃ can have approximately equal temperature 15 coefficients. For example, the difference between the $V_{h\rho}$ voltages of the input transistors Q_1 and Q_2 is across the resistor R₃ coupled between the input transistor Q₂ and the node **56** since the feedback configuration of the amplifier **52** can result in a very near zero voltage difference between the Equation 2 20 two inputs of the amplifier 52. The difference in the V_{be} voltages can be scaled by the voltage divider formed by the resistors R_2 and R_3 such that the reference voltage V_{REF} can be substantially constant with temperature. The resistor R₁ interconnecting the reference voltage V_{REF} and the input 25 transistor Q₁ can cause the current flow in the input transistors Q_1 and Q_2 to be approximately equal or to be scaled by the resistor ratio. As an example, the input transistors Q_1 and Q_2 can be scaled in size to generate the V_{he} voltage difference. The biasing of the input transistors Q_1 and Q_2 can be set by a difference between the V_{be} voltages impressed across a resistor (e.g., the resistor R_6 in FIG. 3) resulting in a PTAT/R current. > Additionally, the resistors R_1 , R_2 , and R_3 can be appropriately scaled in resistance value with respect to each other to provide a substantially constant amplitude of the reference voltage V_{REF} with respect to temperature. Therefore, the emitter current I_e can be provided in a PTAT/R manner, such that an effective resistance value of the respective input resistors R_{IN1} and R_{IN2} can be substantially constant as a function of temperature. Furthermore, it is to be understood that the reference voltage generator circuit **50** is not limited to as demonstrated in the example of FIG. 2. For example, the feedback arrangement of the amplifier 52 is not limited to the use of Equation 3 45 the resistors R₁, R₂, and R₃, such as described in greater detail herein, but could implement a variety of other ways to generate the reference voltage V_{REF} in the feedback arrangement. Additionally, the input transistors Q_1 and Q_2 can be implemented as NPN-type transistors instead of PNP-type transistors, as demonstrated in the example of FIG. 3. > FIG. 3 illustrates another example of a reference voltage generator circuit 100. The reference voltage generator circuit 100 can correspond to the reference voltage generator system 10, and is thus demonstrated as a second example of the reference voltage generator system 10. > The reference voltage generator circuit 100 includes an amplifier 102 arranged as an OP-AMP that is configured to generate the reference voltage V_{REF} with reference to a low-voltage rail, demonstrated in the example of FIG. 3 as ground. The amplifier 102 receives a first input voltage V_{IN3} on a node 104 at a non-inverting input and a second input voltage V_{IN4} on a node 106 at an inverting input. The node 104 is arranged between a resistor R₄ and a collector of a first input transistor Q_3 , demonstrated in the example of FIG. 3 as an NPN-type BJT. The node 106 is arranged between a resistor R_5 and a resistor R_6 , with the resistor R_6 interconnecting the node 106 and a collector of a second input transistor Q_4 , demonstrated in the example of FIG. 3 as an NPN-type BJT. The input transistors Q_3 and Q_4 each have emitters that are coupled to the low-voltage rail. As an example, the input transistors Q_3 and Q_4 can have sizes that differ with respect to each other to achieve a desired gain of 5 the reference voltage V_{REF} . The resistors R_4 and R_5 interconnect the reference voltage V_{REF} and the respective nodes 104 and 106. Therefore, the amplifier 102 is demonstrated in the example of FIG. 3 in a feedback arrangement, such that the reference voltage V_{REF} provided at an output of the 10 amplifier 102 is implemented to set the input voltages V_{IV3} and V_{IV4} at the respective inputs of the amplifier 102. In the example of FIG. 3, the input transistors Q_3 and Q_4 are each demonstrated as diode-connected, such that the base of each of the input transistors Q_3 and Q_4 are coupled 15 to the collector of each of the input transistors Q_3 and Q_4 . Therefore, the input transistors Q_3 and Q_4 are statically biased to provide a substantially static activation of the respective Q_3 and Q_4 to provide current flow through the input transistors Q_3 and Q_4 . Additionally, in the example of 20 FIG. 3, the input transistor Q_3 includes an input resistor R_{IN3} that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_3 . Similarly, the input transistor Q_4 includes an input resistor R_{7N4} that is coupled in series with the base to interconnect the base and 25 the collector of the input transistor Q_4 . Therefore, the diode-connection of the input transistors Q_3 and Q_4 is via the respective input resistors R_{IN3} and R_{IN4} . Similar to as described previously regarding the example of FIG. 2, based on the input resistors R_{IN3} and R_{IN4} being 30 coupled in series with the base of the respective input transistors Q_3 and Q_4 , the reference voltage generator circuit 100 can compensate for errors based on controlling the emitter current I_c instead of the collector current I_c. For example, a base-emitter voltage V_{be} can be controlled based 35 on the emitter current I_e instead of the collector current I_e, such as demonstrated in Equations 2-4. Since the error term associated with the base current I_b in the calculation of the base-emitter voltage V_{be} can contribute to error effects based on transistor β , base current shot noise, flicker noise, and/or 40 burst noise, the error effects can be substantially mitigated based on controlling the emitter current I_e instead of the collector current I_c in response to implementing the input resistors R_{IN3} and R_{IN4} . Accordingly, the inclusion of the input resistors R_{IN3} and R_{IN4} in the reference voltage gen- 45 erator circuit 100 can substantially mitigate low frequency noise in the reference voltage V_{REF} , resulting in a more stable reference voltage V_{REF} . FIG. 4 illustrates yet another example of a reference voltage generator circuit 150. The reference voltage generator circuit 150 can correspond to the reference voltage generator system 10, and is thus demonstrated as a third example of the reference voltage generator system 10. The reference voltage generator circuit **150** includes an amplifier **152** arranged as an OP-AMP that is configured to 55 generate the reference voltage V_{REF} with reference to a low-voltage rail, demonstrated in the example of FIG. **4** as ground. The amplifier **152** receives a first input voltage V_{IN5} on a node **154** at a non-inverting input and a second input voltage V_{IN6} on a node **156** at an inverting input. The node **154** is arranged between a resistor R_7 and an emitter of a first input transistor Q_5 that is coupled in series with a second input transistor Q_6 . The node **156** is arranged between a resistor R_9 and a resistor R_9 , with the resistor R_9 interconnecting the node **156** and an emitter of a third input transistor Q_5 . In the example of FIG. **4**, the input transistors Q_5 , Q_6 , Q_7 , 8 and Q₈ are each demonstrated in the example of FIG. 4 as PNP-type BJTs. The input transistors Q_6 and Q_8 each have collectors that are coupled to the low-voltage rail. As an example, the input transistors Q_6 and Q_8 can be substratecoupled BJTs, and the input transistors Q_5 and Q_6 can have sizes that differ with respect to the input transistors Q_7 and Q_8 to achieve a desired gain of the reference voltage V_{REF} . The resistors R_7 and R_8 interconnect the reference voltage V_{REF} and the respective nodes 154 and 156. Therefore, the series-connected input transistors Q_5 and Q_6 can set an amplitude of the input voltage V_{IN5} based on the current flow of the input transistors Q_5 and Q_6 along with the resistor R_7 . Similarly, the series-connected input transistors Q_7 and Q_8 can set an amplitude of the input voltage V_{IN6} based on the current flow of the input transistors Q_7 and Q_8 along with the resistors R_8 and R_9 . Therefore, the amplifier 152 is demonstrated in the example of FIG. 4 in a feedback arrangement similar to the examples of FIGS. 2 and 3. In the example of FIG. 4, the input transistors Q_5 , Q_6 , Q_7 , and Q₈ are each demonstrated as diode-connected, such that the base of each of the input transistors Q_5 , Q_6 , Q_7 , and Q_8 are coupled to the collector of each of
the input transistors Q_5 , Q_6 , Q_7 , and Q_8 . Therefore, the input transistors Q_5 , Q_6 , Q_7 , and Q_8 are statically biased to provide a substantially static activation of the respective Q_5 , Q_6 , Q_7 , and Q_8 to provide current flow through the input transistors Q_5 , Q_6 , Q_7 , and Q_8 . Additionally, in the example of FIG. 4, the input transistor Q_5 includes an input resistor R_{7N5} that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_5 , and the input transistor Q_6 includes an input resistor R_{IN6} that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_6 . Similarly, the input transistor Q_7 includes an input resistor R_{IN7} that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_7 , and the input transistor Q_8 includes an input resistor R_{TNR} that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_8 . Therefore, the diode-connection of the input transistors Q_5 , Q_6 , Q_7 , and Q_8 is via the respective input resistors R_{7N5} , R_{IN6} , R_{IN7} , and R_{IN8} . Similar to as described previously regarding the example of FIG. 2, based on the input resistors R_{IN5} , R_{IN6} , R_{IN7} , and R_{IN8} being coupled in series with the base of the respective input transistors Q_5 , Q_6 , Q_7 , and Q_8 , the reference voltage generator circuit 150 can compensate for errors based on controlling the emitter current I_e instead of the collector current I_c . For example, a base-emitter voltage V_{be} can be controlled based on the emitter current I_e instead of the collector current I_c, such as demonstrated in Equations 2-4. Since the error term associated with the base current I_b in the calculation of the base-emitter voltage V_{be} can contribute to error effects based on transistor β , base current shot noise, flicker noise, and/or burst noise, the error effects can be substantially mitigated based on controlling the emitter current I_c instead of the collector current I_c in response to implementing the input resistors R_{IN5} , R_{IN6} , R_{IN7} , and R_{IN8} . Accordingly, the inclusion of the input resistors R_{IN5} , R_{IN6} , R_{IN7} , and R_{IN8} in the reference voltage generator circuit 150 can substantially mitigate low frequency noise in the reference voltage V_{REF} , resulting in a more stable reference voltage V_{REF} . FIG. 5 illustrates yet a further example of a reference voltage generator circuit 200. The reference voltage generator circuit 200 can correspond to the reference voltage generator system 10, and is thus demonstrated as a fourth example of the reference voltage generator system 10. The reference voltage generator circuit 200 includes an amplifier 202 arranged as an OP-AMP that is configured to generate a voltage V_{BIAS} with reference to a low-voltage rail, demonstrated in the example of FIG. 5 as ground. The amplifier 202 receives a first input voltage V_{IN7} on a node 5 **204** at a non-inverting input and a second input voltage V_{IV8} on a node 206 at an inverting input. The node 204 is arranged between a collector of a transistor Q₉ and an emitter of a first input transistor Q_{10} , as well as a resistor R_{10} that interconnects the node **204** and the low-voltage rail. The 10 node 206 is arranged between a collector of a transistor Q_{11} and a resistor R_{11} , with the resistor R_{11} interconnecting the node 206 and an emitter of a second input transistor Q_{12} , as well as a resistor R_{12} that interconnects the node 206 and the low-voltage rail. In the example of FIG. 5, the transistors Q_{9 15} and Q_{11} and the input transistors Q_{10} and Q_{12} are each demonstrated in the example of FIG. 5 as PNP-type BJTs. The input transistors Q_{10} and Q_{12} each have collectors that are coupled to the low-voltage rail. As an example, the input transistors Q_{10} and Q_{12} can be substrate-coupled BJTs, and the input transistors Q_{10} and Q_{12} can have sizes that differ with respect to each other to achieve a desired gain of the reference voltage V_{REF} . The transistors Q_9 and Q_{11} interconnect a power voltage V_{CC} at an emitter and the respective nodes 204 and 206 at a collector, and are controlled by the bias voltage V_{RIAS} at a 25 respective base. Additionally, the bias voltage V_{BIAS} controls an output transistor Q_{13} that interconnects the power voltage V_{CC} at an emitter and an output node 208 at a collector. As an example, the output transistor Q_{13} can be fabricated as a matched component with respect to the transistors Q₉ and 30 Q_{11} . A resistor R_{13} interconnects the output node 208 and the low-voltage rail, such that the output transistor Q_{13} generates the reference voltage V_{REF} on the output node 208. Therefore, the input transistor Q_{10} can set an amplitude of the input voltage V_{IN7} based on the resistance across the $_{35}$ input transistor Q_{10} along with the transistor Q_9 . Similarly, the input transistor Q_{12} can set an amplitude of the input voltage V_{TNS} based on the resistance across the input transistor Q_{12} along with the resistor R_{11} and the transistor Q_{11} . Therefore, the amplifier 202 is demonstrated in the example of FIG. 5 in a feedback arrangement based on the control of 40 the transistors Q_9 and Q_{11} via the bias voltage V_{BIAS} generated by the amplifier. In the example of FIG. 5, the current ratio of the input transistors Q_{10} and Q_{12} is set by the transistors Q_9 and Q_{11} and the V_{be} voltage of the input transistors Q_{10} and Q_{12} is converted to current by the 45 resistors R_{10} and R_{12} . Thus, when the current through the resistor R_{11} (e.g., $(\Delta V_{be})/R$) is summed with the current through the resistor R_{12} (e.g., V_{be}/R), the summed current through a resistor of same type (e.g., the resistor R_{13} in the example of FIG. 5) and through the current mirror transistor 50 Q_{13} results in the reference voltage V_{REF} being substantially constant with temperature (e.g., based also on the fabrication of the transistors Q_9 and Q_{11} and the output transistor Q_{13} as matched components). While the transistors demonstrated in the reference voltage generator system 200 (e.g., the transistors Q_9 , Q_{11} , and Q_{13}) are demonstrated as PNP-type BJT transistors, it is to be understood that the reference voltage generator system 200 could instead include other types of transistors, such as P-type metal oxide semiconductor fieldeffect transistors (MOSFETs). In the example of FIG. **5**, the input transistors Q_{10} and Q_{12} are each demonstrated as diode-connected, such that the base of each of the input transistors Q_{10} and Q_{12} are coupled to the collector of each of the input transistors Q_{10} and Q_{12} . Therefore, the input transistors Q_{10} and Q_{12} are statically biased to provide a substantially static activation of the 65 respective Q_{10} and Q_{12} to provide current flow through the input transistors Q_{10} and Q_{12} . Additionally, in the example **10** of FIG. 5, the input transistor Q_{10} includes an input resistor R_{IN9} that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_{10} , and the input transistor Q_{12} includes an input resistor R_{IN10} that is coupled in series with the base to interconnect the base and the collector of the input transistor Q_{12} . Therefore, the diode-connection of the input transistors Q_{10} and Q_{12} is via the respective input resistors R_{IN9} and R_{IN10} . Similar to as described previously regarding the example of FIG. 2, based on the input resistors R_{IN9} and R_{IN10} being coupled in series with the base of the respective input transistors Q_{10} and Q_{12} , the reference voltage generator circuit 200 can compensate for errors based on controlling the emitter current I_e instead of the collector current I_e. For example, a base-emitter voltage V_{be} can be controlled based on the emitter current I instead of the collector current I, such as demonstrated in Equations 2-4. Since the error term associated with the base current I_b in the calculation of the base-emitter voltage V_{be} can contribute to error effects based on transistor β , base current shot noise, flicker noise, and/or burst noise, the error effects can be substantially mitigated based on controlling the emitter current I instead of the collector current I_c in response to implementing the input resistors R_{IN9} and R_{IN10} . Accordingly, the inclusion of the input resistors R_{IN9} and R_{IN10} in the reference voltage generator circuit 200 can substantially mitigate low fre- quency noise in the reference voltage V_{REF} , resulting in a more stable reference voltage V_{REF} . While the systems and principles described herein are with reference to a reference voltage generator (e.g., a bandgap voltage generator), it is to be understood that the inclusion of the resistor in series with the base of the input transistors is not limited to the circuits described herein. For example, any of a variety of other circuits can implement input voltage control of an amplifier in a manner that it is substantially insensitive to temperature variations and which substantially mitigates noise sources, such as shot noise, flicker noise, and/or burst noise. As an example, a temperature sensor can implement an amplifier having input voltages that are controlled via input transistors (e.g., BJT transistors) having
series-connected resistors to implement control of a base-emitter voltage V_{be} based on the emitter current I_c instead of the collector current I_c, such as demonstrated in Equations 2-4. Therefore, the circuits described What have been described above are examples of the invention. It is, of course, not possible to describe every conceivable combination of components or method for purposes of describing the invention, but one of ordinary skill in the art will recognize that many further combinations and permutations of the invention are possible. As used herein, the term "based on" means based at least in part on. Additionally, where the disclosure or claims recite "a," "an," "a first," or "another" element, or the equivalent thereof, it should be interpreted to include one or more than one such element, neither requiring nor excluding two or more such elements. Accordingly, the invention is intended to embrace all such alterations, modifications, and variations that fall within the scope of this application, including the appended claims. herein can be implemented for a variety of applications. What is claimed is: - 1. A reference voltage generator system comprising: - an amplifier configured to generate a reference voltage based on a respective input voltage provided at each of at least one input of the amplifier; and - at least one input transistor configured as a bipolar junction transistor (BJT) and coupled to the at least one input of the amplifier, the at least one input transistor biased to conduct a current to set an amplitude of the respective input voltage provided at each of the at least one input of the amplifier, each of the at least one input transistor comprising a base terminal that is coupled in series with an input resistor, wherein a resistance value R_b of the input resistor is selected based on: $$R_b = \frac{-V_T \ln \left[1 - \frac{I_b}{I_e}\right]}{I_b},$$ where: - V_T is a thermal voltage associated with the at least one input transistor, - I_b is a base current associated with the at least one input transistor, and - I_e is an emitter current associated with the at least one input transistor. - 2. The system of claim 1, wherein each of the at least one input transistor is biased to conduct the current based on 20 being diode-connected, such that the input resistor interconnects the base terminal and a second terminal of each respective one of the at least one input transistor. - 3. The system of claim 1, wherein the BJT input transistor is a substrate-coupled BJT. - 4. The system of claim 1, wherein the at least one input transistor comprises: - a first input transistor comprising a first terminal that is coupled to a low-voltage rail and a second terminal that is coupled to a first input of the amplifier; and - a second input transistor comprising a first terminal that is coupled to the low-voltage rail and a second terminal that is coupled to a second input of the amplifier via an interconnecting resistor. - 5. The system of claim 4, wherein the interconnecting 35 resistor is a first interconnecting resistor, the system further comprising: - a second interconnecting resistor interconnecting the second input of the amplifier and the reference voltage, such that the first and second interconnecting resistors 40 form a voltage-divider; and - a third interconnecting resistor interconnecting the first input of the amplifier and the reference voltage. - 6. The system of claim 1, wherein the at least one input transistor comprises: - a first pair of input transistors that are coupled in series with respect to each other to conduct a first current to set an amplitude of a first input voltage provided to a first input of the amplifier, each of the first pair of input transistors comprising a base terminal that is coupled in 50 series with a respective input resistor; and - a second pair of input transistors that are coupled in series with respect to each other to conduct a second current to set an amplitude of a second input voltage provided to a second input of the amplifier, each of the second 55 pair of input transistors comprising a base terminal that is coupled in series with another respective input resistor. - 7. The system of claim 1, further comprising: - an output transistor that is controlled by an output of the amplifier, the output transistor interconnecting a power voltage node and an output node on which the reference voltage is generated, the reference voltage generated based on an output current flowing through the output transistor; and - at least one feedback transistor that is controlled by the output of the amplifier, the at least one feedback 12 transistor interconnecting the power voltage node and the respective at least one input of the amplifier to provide the input voltage at the respective at least one input of the amplifier in a feedback arrangement. - 8. The system of claim 1, wherein the resistance value of the input resistor is selected based on an error term of a current associated with the base terminal of the respective at least one input transistor, the current associated with the base terminal being associated with an activation voltage of the at least one input transistor to set the amplitude of the respective input voltage. - 9. The system of claim 1 further comprising: - at least one feedback circuit component associated with a feedback arrangement of the amplifier to set the amplitude of the at least one input voltage, wherein the at least one input transistor is configured to conduct a proportional-to-absolute-temperature (PTAT) current, and wherein the at least one feedback circuit component is fabricated as a matched component of the at least one input resistor or the at least one input transistor, such that the reference voltage is substantially insensitive to temperature variation. - 10. A reference voltage generator system comprising: - an amplifier configured to generate a reference voltage based on a respective input voltage provided at each of at least one input of the amplifier; and - at least one input bipolar junction transistor (BJT) that is coupled to the at least one input of the amplifier and is biased to conduct a proportional-to-absolute-temperature (PTAT) current to set an amplitude of the respective input voltage provided at each of the at least one input of the amplifier, each of the at least one input BJT comprising an input resistor interconnecting a base terminal and a collector terminal of the respective at least one input BJT, wherein a resistance value R_b of the input resistor is selected based on: $$R_b = \frac{-V_T \ln \left[1 - \frac{I_b}{I_e}\right]}{I_b},$$ where: - V_T is a thermal voltage associated with the at least one BJT, - I_b is a base current associated with the at least one BJT, and - I_e is an emitter current associated with the at least one BJT. - 11. The system of claim 10, wherein the at least one input BJT comprises: - a first input BJT comprising a base terminal that is coupled to a low-voltage rail and an emitter terminal that is coupled to a first input of the amplifier; and - a second input BJT comprising a base terminal that is coupled to the low-voltage rail and an emitter terminal that is coupled to a second input of the amplifier via an interconnecting resistor. - 12. The system of claim 11, further comprising: - an output transistor that is controlled by an output of the amplifier, the output transistor interconnecting a power voltage node and an output node on which the reference voltage is generated, the reference voltage generated based on an output current flowing through the output transistor; and at least one feedback transistor that is controlled by the output of the amplifier, the at least one feedback transistor interconnecting the power voltage node and the respective at least one input of the amplifier to provide the input voltage at the respective at least one 5 input of the amplifier in a feedback arrangement. 13. The system of claim 11, wherein the resistance value of the input resistor is selected based on an error term of a current associated with the base terminal of the respective at least one input BJT to set an activation voltage of the at least one input BJT to set the amplitude of the respective input voltage. 14. The system of claim 10, wherein the at least one input BJT comprises: a first pair of input BJTs that are coupled in series with respect to each other to conduct a first current to set an amplitude of a first input voltage provided to a first input of the amplifier, each of the first pair of input BJTs comprising an input resistor interconnecting a base terminal and a collector terminal of each of the respective first pair of input BJTs; and a second pair of input BJTs that are coupled in series with respect to each other to conduct a second current to set an amplitude of a second input voltage provided to a second input of the amplifier, each of the second pair of input BJTs comprising an input resistor interconnecting a base terminal and a collector terminal of each of the respective second pair of input BJTs. 15. The system of claim 10, further comprising: at least one feedback circuit component associated with a feedback arrangement of the amplifier to set the amplitude of the at least one input voltage, the at least one feedback circuit component being fabricated as a matched component of the at least one input resistor or the at least one input BJT such that the reference voltage is substantially insensitive to temperature ³⁵ variation. 16. A reference voltage generator system comprising: an amplifier configured to generate a reference voltage based on a respective input voltage provided at each of two inputs of the amplifier; a first input transistor coupled to the first input of the amplifier, the first input transistor biased to conduct a current for setting an amplitude of the respective input voltage provided at the first input
of the amplifier, the first input transistor comprising an input terminal coupled in series with a first input resistor, a current passing through the first input resistor is same as a current passing through the input terminal of the first input transistor; and **14** a second input transistor coupled to the second input of the amplifier, the second input transistor biased to conduct a current for setting an amplitude of the respective input voltage provided at the second input of the amplifier, the second input transistor comprising an input terminal coupled in series with a second input resistor, a current passing through the second input resistor is same as a current passing through the input terminal of the second input transistor, the first input resistor and the second input resistor having substantially similar second-order temperature coefficient. 17. The system of claim 16, wherein each of the input terminals of the first and second input transistors is a first input terminal of the first and second input transistors, and wherein the first transistor is biased to conduct the current based on being diode-connected such that the first input resistor interconnects the first input terminal of the first input transistor and a second terminal of the first input transistor, and wherein the second transistor is biased to conduct the current based on being diode-connected such that the second input resistor interconnects the first input terminal of the second input transistor and a second terminal of the second input transistor. 18. The system of claim 16, wherein each of the first and second input transistors is configured as a bipolar junction transistor (BJT) comprising a base terminal that is coupled in series with each of the first and second input resistors respectively. 19. The system of claim 18, wherein a resistance value R_b for each of the first and second input resistors is selected based on: $$R_b = \frac{-V_T \ln \left[1 - \frac{I_b}{I_e}\right]}{I_b},$$ where: V_T is a thermal voltage associated with each of the first and second input transistors respectively, I_b is a base current associated with each of the first and second input transistors respectively, and I_e is an emitter current associated with each of the first and second input transistors respectively. 20. The system of claim 16, wherein the first input resistor has substantially similar first-order temperature coefficient as that of the second input resistor. * * * * *