12 United States Patent

Shribman et al.

US009804964B2

US 9.804.964 B2
Oct. 31, 2017

(10) Patent No.:
45) Date of Patent:

(54) METHOD FOR INCREASING CACHE SIZE

(71) Applicant: HOLA NETWORKS LTD., Netanya
(L)

(72) Inventors: Derry Shribman, Tel Aviv (IL); Ofer
Vilenski, Moshav Hadar Am (IL)

(73) Assignee: Hola Networks Ltd., Netanya (IL)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 15/350,056

(22) Filed: Nov. 13, 2016

(65) Prior Publication Data
US 2017/0060747 Al Mar. 2, 2017

Related U.S. Application Data

(63) Continuation of application No. 14/925,437, filed on
Oct. 28, 2013, now Pat. No. 9,519,593, which 1s a

(Continued)
(51) Int. CL
GO6l 12/12 (2016.01)
GO6F 12/0846 (2016.01)
(Continued)

(52) U.S. CL
CPC ... GOG6F 12/0846 (2013.01); GO6F 12/023
(2013.01); GO6F 12/0851 (2013.01); GO6F
12/0871 (2013.01); GO6F 12/0875 (2013.01);
GO6F 12/12 (2013.01); GO6F 12/128
(2013.01); GO6F 17/30132 (2013.01); GOG6F
12/0842 (2013.01); GO6F 2212/1044
(2013.01); GO6F 2212/403 (2013.01); GO6F
2212/452 (2013.01); GO6F 2212/604

" PARSE FILE |
| SYSTEM

COMMAND
320
r NG . ISCOMMAND FORA ™.
 REEBLOCK Lk DETERMINISTIC
. 329 “.. BLOCK OPERATION?
P MARK BLOCK AS
" FOUNDA . SEMIFREE AND
<" FREEBLOCK? > ® ALLOCATE THE
T 330 Ty BLOCK
- P ES e

NO

T , 5, BLOCK MARKED

(2013.01); GOOF 2212/6042 (2013.01); GO6F
2212/621 (2013.01); GO6F 2212/69 (2013.01)

(58) Field of Classification Search
CPC GO6F 12/0804; GO6F 12/0875; GO6F
12/128; GO6F 12/12; GO6F 2212/1044;
GO6F 12/023; GO6F 12/0897; GO6F
12/0846; GO6F 12/0851; GO6F 2212/452;
GO6F 12/0842; GO6F 12/0866; GO6F
12/0871; GO6F 17/30132; GO6F 2212/403

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

11/1996 Sherwood et al.
3/2012 Shribman et al.

(Continued)

5,577,243 A
8,135,912 B2

OTHER PUBLICATTIONS

International Search Report of PCT/US2010/034072 dated Jul. 1,
2010.

Primary Examiner — Thong Q Le
(74) Attorney, Agent, or Firm — May Patents Ltd.

(57) ABSTRACT

A method for increasing storage space in a system contain-
ing a block data storage device, a memory, and a processor
1s provided. Generally, the processor 1s configured by the
memory to tag metadata of a data block of the block storage
device indicating the block as free, used, or semifree. The
free tag indicates the data block 1s available to the system for
storing data when needed, the used tag indicates the data
block contains application data, and the semiiree tag indi-
cates the data block contains cache data and is available to
the system for storing application data type if no blocks
marked with the free tag are available to the system.

22 Claims, 17 Drawing Sheets

319

YES | LOOKFORA

AS FREE
.. =22
" FOUNDA -
. FREEBLOCK?
S 323 7 YES
NO
)
. LOOK FOR A
" BLOCK MARKED
' AS SEMIFREE
' 324
b
._.--"'----Jf .h.- M'“-u_
" FOUNDA ™. MARK BLOCK AS
SEMIFREE S, |USED AND ALLOCATE
BLOCK? " YES THE BLOCK
325 326

T NO
o _l%! -..
/ RETURN

pis ERROR

US 9,804,964 B2
Page 2

Related U.S. Application Data

continuation of application No. 14/210,993, filed on
Mar. 14, 2014, now Pat. No. 9,201,808, which 1s a
continuation of application No. 14/024,977, filed on
Sep. 12, 2013, now Pat. No. 8,719,505, which 1s a
continuation of application No. 13/363,784, filed on
Feb. 1, 2012, now Pat. No. 8,578,098, which 1s a

continuation of application No. 12/467,814, filed on
May 18, 2009, now Pat. No. 8,135,912.

(51) Int. CL
GO6F 17/30 (2006.01)
GO6F 12/128 (2016.01)
GO6l’ 12/02 (2006.01)
GO6F 12/0871 (2016.01)
GO6F 12/0875 (2016.01)
GO6F 12/0842 (2016.01)

(56) References Cited

U.S. PATENT DOCUMENTS

8,719,505 B2 5/2014 Shribman et al.
9,201,808 B2* 12/2015 Shribman GOoF 12/128
2004/0254907 Al 12/2004 Crow et al.
2005/0015552 Al 1/2005 So et al.
2005/0228964 Al 10/2005 Sechrest et al.
2006/0259728 Al 11/2006 Chandrasekaran et al.
A
A

2008/0086730 4/2008 Vertes
2012/0191911 7/2012 Shribman et al.

* cited by examiner

U.S. Patent Oct. 31, 2017 Sheet 1 of 17 US 9,804,964 B2

FIG. 1 (PRIOR ART)

-~ 100

D L R L L L
<

OPERATING SYSTEM HARDWARE

RS S — e o

R E R e R

O o A W P SR St S

[RSE T R EPRIT JE SV S S S L R RPN P p P e }

APPLICATION A
101

R -
. - . 3 o o

N P S PR PURC NPT (RS (g

B LY
-
'

T Tl e e e R Rttt e Rt R N Rt R N TN R Rt e A TR et e -
w e e e e e L e TR

~ e e,

FILE SYSTEM
DRIVER

ey

BLOCK

i i
3]
i :
i : "
i i g
H M =, :
] 3 " . Y
- d - .t
K ’ 1, -
p i e e e e mmamem feemmmameee \ LI e .
; e : A LA AR AL LA A AL AR R S A N S P)
H H ﬂ'\.-: ' ¥ i e B e mram oy
H = : b e, L
i i i Ve v
e o
H —— M I ey pr b an s
H H
i &
b B
H H
H :
! i

e S BN |

SYSTEM API o

116 . HANDLER AND

;E_--.-i. w-mvwvwvww.-vwvwv% .:.r,‘.?' i P
: Gy

............. e e e m i maam g s rs m s ren g e e ———————————— e

&

ey

b A e bl e A e e

e L L L L T A L T P

104 105 DEVICEDRIVER S ~ STORAGE
T 106 DEVICE

. P R

o

[%
-,
"
-~
;
H
"

. - Tt Lt
: K " e .-

—— -
e st m e man mag

‘2

R N e N NI N R R A R S e e e e A A “k.

APPLICATION N 2 S

T ik als Lo L T A (LS U Ut PR PR PR I LR AT R R o Tl R L ey

-

L S

FIG. 2 (PRIOR ART)

STORAGE SPACE

e

—aly,,

e <

US 9,804,964 B2

0S
S32IA3A O/l

09 IOVAHILNI VOO

Sheet 2 of 17

0¢ _
AdONIN 0F

Oct. 31, 2017

J0INA3A
- JOVd0LS
8
S/O
L

0
0

E

U.S. Patent

(114
40853004 d

L.,

U.S. Patent Oct. 31, 2017 Sheet 3 of 17 US 9,804,964 B2

BLOCK STORAGE BLOCK STORAGE
FILE SYSS; =M AP API DEVICE DRIVER
T 84 86

OPERATING SYSTEM 80

FIG. 4

U.S. Patent

FIG. 5

APPLICATION

Oct. 31, 2017

Sheet 4 of 17

US 9,804,964 B2

200

QPERATING SYSTEM

HARDWARE

A | -
201

—_—

APPLICATION e
B
202

APPLICATION
N
203

FIG. 6

e

~ OPERATING

. SYSTEM'S FILE

SYSTEM API
204

N DETERMINISTIC
FILE SYSTEM CALLS
205

o mm— P PP m—

o el Pt ol Il et it 'l Bl 7l e e e Bt

BLOCK

MANIPULATION
SYSTEM

207

NON |
. 4 DETERMINISTIC |
FILE SYSTEM CALLS

oy

BLOCK STORAGE
<4 DEVICE DRIVER
208

e PARARSARSARSARSAAIRSATARARSAR

BLOCK

STORAGE
DEVICE

40

A

"

AN

206 ~

ERECTEEY TUELEE TEETPErs | E

STORAGE SPACE
NON DETERMINISTIC STORAGE

i
i '\'.."15}}_ 1_',:._:"' +"E
S e '@%ﬁrﬁ?
e e e
SRk

oy
it
*

.

o

o ‘
A q{ -|'R‘- o 5}%%‘ 2k e
£ atd "-'-“:'n-"-: 3
G aﬁ”‘ﬁ\fﬁ‘;ﬁ {ﬁ;ﬁ;‘ﬁ;v i
.

SR e
et ;ﬁ&:‘%ﬁ%&}&#@% Eehind +ﬁ¢¥‘\¢f "‘-"'1-",;#%11‘

o
-
_',5:-
+'I-
]
5
b,
.,-:‘?
ﬂ%
P
%
“:‘\";"'ﬁ
|
=~,+
i
T
T

" E
: oy

+++

o

Bl

- 40

e

o

U.S. Patent Oct. 31, 2017 Sheet 5 of 17 US 9,804,964 B2

FIG. 7

.-lﬁv_.-..\,....\,....\,....\,....\,...._....\,...._....\,....\,....\,....\,....\,...._..-.\,...._....\,....\,...._....\,....\,....\,....\,...._....\,....\,...._....\,...._....\,....\,....\,....\,....\,....\H_ e Ao e, I St

- ™ e

s % 5 1
f i +

| NON- | . DETERMINISTIC
: : 1 M W= :
307

: : , !

?\-\. : ..'n\.- _-\.-"--.

I.""H.. ..-""'I
-'\-\.--\?-\.--\.--\.-vvvvvm—vvvvvvm—vvvvvvv-\.--\.--\.--\.--\.--\.--\.--\.--\.--\.--\.--\.ﬁ :
FILE SYSTEM
A “ 5: @
“~= - WAS ANYBLOCK IN ' AND BLOCK I/0
" RETURN ERROR

'HE FILE 304 |
| (DATA NO =

OVERWRITTEN BY
~ LONGER EXISTS) RELIABLE DATA?
309 .
Y 308

T T
RUL LI TELELE g

4
H
H
4
<
4
<
<
I
<
<
I
L4
4

n
»
» H
- ~ P » 1
L . .t H :
e
et pnn et . e : i
- -
e .
" -
~ e
.. . - .
" -
. . » H
. - : i
" e H
. o H i
" o H H
st

P

H

H

:
: » H
; : H
i :- H
: » —————— H
H H H
i LT T T, IO T T T IO TP ML T Auninhnm LTI QLD LTI T T

¥

R R R R N N R N R e N S T N S R R N R R R

> L1
- <
- <
> L1
- <
- <
> L1
- <
- <
> L1
- <
- <
> L1
- <
- <
> L1
- <
i i
i — i
o R AR 8 A R A AR R R 1 8 i A R AR R np

4

4

e e i e e e e e e e e e e o e e e e e

- =<
> <
- =<
- =<
> <
- =<
- =<
- =<
- =<
> <
- =<
- =<
{ 311 i
Y — i
et 8 9 9 8 8 i 8 A8 888 8 8888 8 8

U.S. Patent Oct. 31, 2017 Sheet 6 of 17 US 9,804,964 B2

FIG. 8

" PARSE FILE
SYSTEM

COMMAND 319

. 320 a
)é <
\\.
/ \ mmmmmmmmmm

/ IS COMMAND FORA - . YES | LOOKFORA

DETERMINISTIC ., BLOCK MARKED
BLOCK OPERATION? / . AS FREE

_N ../

LOOKFORA |NO -~
FREE BLOCK [<
329 h

\ 321 e 322
PN ey

MARK BLOCK AS ~
" FOUNDA ™ SEMIFREE AND (/ FOUNDA ™

Q\\ FREE BLOCK? | ALLOCATE THE FREE BLOCK?
~_ 330 YES BLOCK 323 / YES

S~ B V’/
,

NO

. LOOKFORA
BLOCK MARKED
. AS SEMIFREE
324

i g f
/ﬁﬂ,ﬂj\ g
ey
" FOUNDA ™. MARK BLOCK AS |
e SEMIFREE . USED AND ALLOCATE!

i“\\ BLOCK? e YES THE BLOCK

325 326
. ~ “

7

-

@(RETURN
ERROR

\ =

U.S. Patent Oct. 31, 2017 Sheet 7 of 17 US 9.804.964 B2

R - FRIEL] R R R R R R S R R S R R S S N S N N R R R S N

- s

PARSE FILE |
SYSTEM _

COMMAND

. 332

e,
FT L

e nae e

HHENNE
B+

"‘\."\r:.,_q\

u, o
- .
o - e e e e e e i e e P e P e e e e e e e e e e e e e e e e P P e e B e N
=
kg
-
=
kg
-
u
Fq
-
-
Fq
kg
-
=
u
-
PELET
. -
R b
- - S . .
. ta.
_"--' - - LT .
st - AR -
-'" “'-
st - Mo,
et e,
- - h -
. —
e M
o .
. -
Lo ",
i e .
- b
. s LTS .
M. ta.
R "o
o e
- ” \' -
ot "
M .
P - ~ o
'l M
ey .
et o
n "
e
o
i
r
- -
. - -
';'\. o nfinm LG LTI fofihoan aTLTTL T
e . - - -
RS s FCLha
-
Y .. =
.
'||~ Ll Al
- Rl LT - - -
. .
[. e - §
el ae E
S .- A o -
' '
- -
et
e et
.. L
A . il
-, e
Y . il
", !
R [T -t
S e :
. .
.. Rt i
trel st -
", o
b 19 It -
el et
h " - I -
bl 99 - i
" -
- -
o
-
u
Fq
-
- =
Fq x
- =
-
Fq
u
-
=
kg
-
=
kg
=
x
=
LT
0 - - " 0
-t ARIS s
et .
.- - . - Rl .
-"--' - b LT .
P S
st - Mo,
n ",
- - - T -
. —
- - S . e
- .
il e -
ETRA TS
r L
W u,
- e
- b Cma . LT CL T e, LTI T DLITLITL T CITL TG T LTI LTI

o WRITE TO THE
- Jor . BLOCK
336

. - [T [T TN IETTTTrPrN T [T FETTTPPTTT

2
>
e
x
m
U
>

.
H
i
W
Ee s

NN NN NN NN XX

ey o e e e e e e e e S e e e T e e s
R N L
"

RETURN ERROR

BLOCK DATA DOES
; NOT EXIST)

335

.

—
ey,
L] e
e o e i e e i o e e e e e o e o e e e e e e e e e o e e e e e o e e e e e

U.S. Patent Oct. 31, 2017 Sheet 8 of 17 US 9,804,964 B2

FIG. 10

v__...-ﬁ'“'
.'-:l
.v."\-"\."\."\."\."\."\."\."\."\-"\.'VVVFVVVN’VVN‘VVVVVVV'\-"\."\."\."\."\."\."\."\."\-"\."\."\-"\."\."\."\-"\."\."\."\."\."\-"\."\."\-"\."\."\-"\."\."\."\-"\."\."\."\."\."\-"\."\."\-"\.' '\."\."\."\."\."\.'_.\-. ..'-
- ™ ¢
K ;
H b P
£ i :
i
H
< :
E
-
H H
i H
i H
i H
: 3 5 2 lc
g i
= £
A
e
R L S O S S PP SO
"
-
*
"
r
-
*
-
-
>
-
-
H
"
-
*
"
-
*
"
L
e S,
e
"--"..-' ﬁ\'\'\.'_
P - ﬁ‘*-ﬁv
-
o e,
o e
- - “ﬂk."“'\-\.
e -
el " -
- i x"'_
vy -
- S
o T
w'fﬁ "
.
0 e,
~
. x._x"
vﬁ-'"'ﬁ 'x._x
- -
- x._x"
uﬁ-*’" 'x."\
o 2
e S,
o i P —— P A
""“*-..k o
. 7 -~
x._x - :
T, K :
[- H
x'-'\-.\\ s :
o -
- -
. __,.f-'"'ﬁ
.x__x. ,_,»'"'-".
m"".-\.v e :
S o :
e, o :
%_% Lo
e e
., .
e, 4
e P :
o o H
M, f_.,-*"
%'% _..-'
ot
H
: H
H >
H -
H -
H >
B -
"
-
*
"
-
*
"
H
: H
-
- H
-
>
7 -
PO
o M, :
'\-'-ﬁ LS . >
e e, :
e e e e e i . .,-'-'v'ﬂ " :
e ¥ Mt . -
o S, " .
- e, . .
L ra .
a.?""ﬁ . K S,
vﬁ-““ .H‘"x
. ". _-\.-'ﬁ .
; -, - S _— - .
- L, - .. Z z
E . o " b :

- -, . -

B " T x'"\." Y Z
£ 5, o e ; i
& H l_.-"' n =

Hd -
> =
Hd -
Hd -
> =
(DATA NO LONGER * |

x e
&
by
",
'-..,' ~
~
L
-
" -
* o
LR F
P

N 355 / S 35 o

PR TLUECEL LT FErE RN,
B e

H
n o -, m_..-\."'".". o et T, ; [T T S SRS U S SO SRR
S, s :
. -
: . ., " :
. ol e 7 :
., N s - H
. - e, - H
— _ s o :
e e o o R R R R R R SRR pen e T u-h.-\.-"' ;
L . L
. ._.-"-'"-ﬁ ;
P, . »
- - H
- v-.'\. ;
x‘"'..k _..-""' »
S
g PR M.ﬁﬁﬁﬁnﬁﬁﬁﬁﬁﬁhﬁﬁﬁmmuumﬂ
o T,
*‘x
.'.- -"'H.
-._.-' H
.-". :\'
g ¥,
> b
H
1 :
N %
: ;
H B
H 1
i i
% 4
H H
N 4
i 7
1 f
. ¥
:\._ >
> ,:-'
A -
'
“‘nx /
S T

'
e EATRE R, R T T

U.S. Patent Oct. 31, 2017 Sheet 9 of 17 US 9,804,964 B2

FIG. 11

o N R A A R - - e - - N
b

Ve
e
<

PARSE FILE
SYSTEM
COMMAND
a. 372

%
" -~

e v
"""’ﬁﬁﬁﬁ-ﬂﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁ - - LT - - .'\.-'\."'""'"

S
b

’Qﬁ‘%m S, P T R ceeaneis cetenteeeis S coeeeneien donetventiens cetrendonein ceteedoends N
g

g e 8 8 R AR R
PR

- s
Teusne st m e e na e e na s nm e s et s s g e nm e

ERCEAEIIEY

ENERREY
ENERREY

ENERREY

%,
¢
4

K g,
Frﬁg g,

.

B,
o e
it s
e T, e
e P,
L e,
.»*’":d. %'“w..
..-'-""ﬁ T
. o e
e e A st e e R S e s e
& H ﬂwﬂwﬁ _}ﬁuﬂ. H
R o
o 'ﬁ.:-"‘:'?‘
M, | e

i Y
ﬂlﬂvﬂ ::E!= ::i" .ﬁlﬁ
. e
qu fﬁﬁ
Ty, -
B -

ERCEAEIIEY

ENERREY
[LITILEr)
ERCEAEIIEY

ERERIE
[LITILEVIELr}
ERCEAEIIEY

ERERIE
[LITILEVIELr}
ERCEAEIIEY

i
K
5,
e
P

ERERIE

e e e e e e

ERERIE
.

[LITILEVIELr}

ERCEAEIIEY

&

ERAE
n
.
B
EE R

wp* M“w e e e e e e e [ERTTPryree) e

o 1“-a< :

P IS BLOCK ‘DO THE REGULAR FS
ARKED Ty ACTIVITIES FOR
MIFREE? - RELEASING A BLOCK

R «* i
s 3 qﬁfﬁ#ﬁ | 3 5
h, ? ‘I - : 7
h '
hc.h:_ o
. ™

Ha it EEE S EEFEINS EE T, EEFEINS EEFEINS EEE S PEEE S EETEErS}

ERERIE
LLLELEL LA
ERCEAEIIEY

ERERIE
LLLELEL LA
ERCEAEIIEY

ERERIE
LLLELEL LA
ERCEAEIIEY

ERCEAEIIEY

ERERIE

A e
ERCEAEIIEY

B
RAmAAAA AN

L N N O W A 0 M N U N W N A e S N M Y - - ERER Y

EEERT Y EF EEERT Y EEERT Y e e e e e

MARK BLOCK
AS FREE
376 |

ERCEAEIIEY EATRE R, ERCEAEIIEY ERCEAEIIEY L L N S N N A

[LICLLEVERLe)
EXERCR
ERCEAEIIEY

[LICLLEVERLe)
EXERCR

FRIEL]

U.S. Patent

FIG. 12

R T TN T T R T R T T TN ST SR BT SN ST T
H H
H H
v v
H H
H H
H L
D B
; :
H i
H H
]]
3 3
H
H
H
r
H
: :
: H
i
H 3 E
i oz H"._
B [-
R "
F
— o ™.
. -
o -
H . .,
H H -]
P = [P] P P By P B =T N et =i = P—1 "
=
H ~
- ~
' .
- 1
B L A L A L R L R R A R R R R A L R A L L .
H H . -
H H H
n : ~ ™
1 P \
: : : R
P : ; .,
H E - s
i H : -
L i :
£ £ '
1 i H
H H
H H L
¥ H .
H r .
L []
H S b
: 5
i i, S
E 5 by e,
H
L
! e
] I -
r P H .
H H H . b
H H L :
H H H
H H [H
H H -
H — H . -
1 1 . :
H H H
H H "
H H = .
Dot m A d m e L m e e m e i e e | e e e P e d e d B H
H =
- H
i H
% s
I'\.
-
= "
= K
" i
. M
s B
H :
FIE2E
A g g g e Dy "
h & i
i H - i
- - s H
H L :
1 B . H
H H 1
H H - .
H r . .
B H . -
s L
- t
H
=
L
b
: H
H
v
H
H H
i H -
H -u
H H .
£ {
£ — E R
i i -
H H ",
1 1 .
PP)

I

3
=
e

[PR TP P LT P L Ay LY PO PLPY EEE LY PR

i

Qe gt

L e s p B e e e e e Dy

o
L

FILE SYSTEM API

Oct. 31, 2017 Sheet 10 of 17 US 9,804,964 B2

e
f
-'-.
;"
i
x
:
H
<
0
h
+
'
r
._.'
D
H
g R . L P A A SRR e A SRREn SRR AR R A SRR AR AR R AR R RSN S AR RS N RR R EeRREmAE RN SN Re = AR R RS e . R e g e
L L o T S
K "
-
o .
;
h
-
I +
— H
.
T e S T S S TS S S U SR S S R B U 3o, -
A E T A A A S S T Ty [oo e el e el e ol ol e r 1 - .
z 4 . ! A o~
: : : 3 - et
t : : i e, o
! i : i " "‘"""\-'r.--...h__ I..\l,.-.-.-"\"""'
] H i i e
T 4 H 4
H H 1 H
: : : :
'] H > 4
H i H
1 < -
L H :-
F < -
H i &
1 L] -
- < - <
: : : :
1 H i H
- '\."\.-r'\.-'\.-vl

% STORAGE

P
T

®
r
=
1
-
-
.
-
-
-
-

AND DEVICE DRIVER

PEUTI-TT.SPF - PP R, PRF PP e PRE e P S ..!:\al...l...?...l.. P, T SPPE S B N T e e T
[

a
i D
R R R R A R o R R R R R A R R R R R R R R R R R R R e g e e e D

4
H L]
: :
H :-
4 1
H H
H :-
i H
4 r
e H T
i H &
¥ H &
B 4 i
H ——— H i
1 H H H
e ——— H H i i
™ i 1 :- i
i : L v
I H H H
L 4 1 4
: : : :
mm Ry
o im0 Lt 8 8 R R A A A A N A AL 8 R 8 N H
: :
H = H
N H :- i i
1 H L o e L e D A e A e e A o e e e e A e e A L A B LA A LA AL Bt A AT i
i H ——
! H
i ™ -
K i ' E
i 'L'-«. o
1 ""U.._ o
1 o, el
1 —— e
? il T TR
i
-
<
<
H
1
i

-

et e e s e Anme e RprEn ey

LISTENER

MODULE
409

rmnpm g e g e

H
L
i

b e P A gy A e T A A b e b d ey g Py ey

AT SUR NN N .

=

- - -
(YL L TVRVL TPL L PRLVIT IVEVE PULe] R X T LY P T ppp——y |

NON
DETERMINISTIC

L T o N Ul Y [N My N N o Y
e s A, b

4
H
<
<
i
;
:
i
:
i
:
"
;
;
.
+
i
;
:

Y. 4

ETAIIEL R TP

R R R P Pl R L A R L E o Pl P e e e e n R PR P L P A Y R PV A R L L P P L Y -\.1.'\.-\.-\.&;

ALTERNATIVE
IMPLEMENTATION
MODULE
410

pTRLLLTELELY

408

A W P N T A M T L A A A e P T A N S A N A A AT MY Ufr’ﬁ\'-l'i'h-ﬁ'i'h-'h’l’r'-c

S b Ay

E

-'\.-u-:%:
a
K
ﬂ'%?u
TR A N T R RSO U SRS [PR R S A R A

ey

B e e e e e e e e e e B e e g o e e e e e e e e e g e B o e e e e e e

e L v

£
'S
P AT

.

&h

A e A A A A R

L L L L L D R

LLLALE R R ELLLEY DAL AR LY EUP S LU

U.S. Patent Oct. 31, 2017 Sheet 11 of 17 US 9,804,964 B2

FIG. 13A FIG. 13B

o NDPESWTEMDE O osocsomeens

5

FILE_NAME BLOCK_NUMBER |BLOCK CHECKSUM BLOCK_NUMBER ;BLGCK__CHECKSUM VERIFIED?
PAGEL CACHE 122| AL092E392FF2332FA 122 ALOS2E392FF2332FA IVES

123 EFA392767BC39280E _ 123| EFA392767BC3928DE |YES
124; 89A3927678(3928DE _ 124| 89A392767BC3928DE [NO
526/ 89BC3928DEBC3928D 125 991FEAA392767BC39 |YES

927] BL3923DEBL3I28DE] 126) A1092E392FF2332AA (NO
PAGE2_CACHE 392} A109BC3G28DEFF233 127, EFA392767BC3928DE [NO

3931 BC3928DEFEAA392T1 128| A1092E392FF2332FF INO
PAGE3_CACHE 12} BC3928DEBC39Z8DEE 129, EFA392767B(3928DE (YES

1301 89A392/6/BL3928DL INO
131 991FEAA382767BC3S INO

FIG. 14

L L L L e L L L e L T TR e L U L P L,

I -

H

+ -

; X

L H

r B

% : -
"?}" - - .]

P A R AR A SRS AR A e R A A el AR A A Theot, ;.-\.;.% P P e S P S P SN S Y e
= LR = <
: - : H
H] ' L3 H] - 4
- - - .
) N) H
: ' : :
z H z i
H v H H
i E] i H
A ' A H
B 1 B .
= r ; <

=

:

B

=

H

M

£

Fi

s

__

......
' .
-'\-"". "
?H'I

e e R o o R L R T o e L B o e L o B o R A R N
- -_
o [

A_“ MARK BLOCK AS
" 16 ACOMMAND OF ALLOCATED, RECORD ITS
THE REGULAR FILE ... CHECKSUM, AND MARK AS
SYSTEM "HEARD"? 77 ™JERIFIED" IN THE TABLE
413 7 YES OF FIG. 13B

ur
L

ﬁ"-'\-c.__
T,
ar, i
%ﬁ"h: :‘_,.:""' o+ T
wy, - =
ﬁ"""-.'\-: .:_:_:.I'""b L
e ,.-*""'ﬁ ‘&-;_h I 1 I
"
.\\-l.-."\'"\..... EE EEE mEAE AN RN EEEEAEE S mAEE SEE AN EEE R SR EES RN SEAESSES EEES ASESSAEE AN SESSESE SEM EESS NAMA S S8 N EE 8 % EES ESEEESES RAS MEAE AE EESE SASE SN % MEAE AEE EESEEESE SEE EEEAEESAAAmESSE SN SN NES RSSSESSMESE RESSESE GEEEE

ﬁﬁﬁﬁﬁﬁﬁ
.......
L%]

eeeeeeeeeeeeeeeeeeeee

i
!

'''''

=i .
......

el L L, R Rl e Rl e o e e e e e i e e | e e e e D e e e e e e R e D

S. Patent

N N L A A S AN N S N

ENERRER R

ERERCRER R

ERERCRER R

ERERCRER R ERERCRER R

ERERCRER R

ERERCRER R

ERERCRER R

ERERCRER R

e e e e

e e A e A e g e

FIG. 15

-

e e e e i e e e o e D e e e e e e e e e e e

lE‘.

-

R S N N L N S N S N L N NN N N S

_-'""

-

e R R R R R R R R R R R R R L R R R R R R S R RS RS A 1 " "

LOOP THROUGH
EACH BLOCK THAT
THE FILE REQUIRES
TO ALLOCATE
422

T o
.
Mot E R Y p gy \HH.'\H.'UUHHH.'\H.'UUUUUUUUUUUUUUUUF?UUUUUU LU UL oy S,

e AL LN LN LN LN RN LULELY LU LN LR NN RN NN NN Ry LALELA LI LR L LI L) LAY

,
H
'd

w

.f’

o

ALLOCATE_BLOCK
423

", o

L R R R R R A R R
T e e

' e
N e e o e e e e e B B e P B e B e e g B e B e - - e
H
E
-
H
E
R P R P P P R P P s PR . . P
- .

ADD BLOCK AND
CHECKSUM TO
ND_FILE_SYSTEM_DB
424

I D W N N N N N N A N S N W W - -

Pl

AR

FINISHED e
ALL BLOCKS?
425

B N N N N
L

o
- "

" RETURN HANDLE
TO THE FILE
424

e

e

e

Ll
P L LT 0 LA L LA LA L IR 8 R 8 R g g

o

A A A R S R A e e

ct. 31, 2017

\

Sheet 12 of 17

T RS EAERCRE R

i
E
- —
<
<
%
'E
Y
H
i
i
i
i
;
i
i
ettt Pt
i
H
i
i
i
i
;
i
;
:-'

e e e e e S e

"
4
H
-
:
]
i
H
S
i
I S e i
-
H
H
-
:
]
i
H
ks
]
e e e e
A P e AR
.
=
e W

R R A R A e A A A A A e R s,

/

LT
R A S S R

] AP P

ENERCIER R

LTI

EATRE R,

ERCEAEIIEY

US 9,804,964 B2

ERCEAEIIEY EAERCRE R

FIND "BEST"
FOR ALLOCATION,
ACCORDING

ERERERER e EATRE R,

LETEF P T T

EMPTY BLOCK

"

T

TO HEURISTIC
27

A AR A LALLM AL AR

R

il
e e

[ELERFLrIrEn]

EFE S

[LICLLEVERLe)

EF TS

[LICLLEVERLe) [LLELELFRrRe]

ELICLLEVEELERe)

[ELERFLrIrEn]

[T TR S A S N A S

EF TS

IR Y

ADD BLOCK AND CHECKSUM TO
ND_BLOCK_STORAGE_DB AND
MARK BLOCK

EREE EF RS EEERT Y

AR R
-

w

AS "VERIFIED"
28

ETPEF

ﬂv""\."\."\.-'\."\."\."\."\."\."\."\.-VVVVVVV\.’VV?VV?V\FVVVVV‘"

-

Ll

-
P TTE T T S ST AN U M S

T PR LT PP

U.S. Patent Sheet 13 of 17

Oct. 31, 2017 US 9,804,964 B2

FIG. 16A

L ‘ l
- 3 1
B
i
N
-
i
P
H
a
L
A
b
=
e ————— i ———— i ——————————— R T N x
/‘/‘ ﬁ? .)
: 4 e
¥ H e o
i B v‘%
& *
H H
i F -
& -
? r
H — — i
2 v
: E
H H
; 3 2 :
:- ‘ I *
H -
3 5
:- >
i v
] *
: £
'\3— .
I‘.\"“"i..'\....\:....'\...:....'\....'\..-\:\....'\....'\....'\...:.m'\....'\..-\.l.....l...:...?....'\..u'\....'\.-\..'\....'\...:-\..u'\.....l.-\...'\....'\..-\..'\.. i
:
r
*
-
-
L
-
-
*
-
H
*
B
H
‘;%w?
it
:,.:"‘"' '-..'._h‘.
o M,
.,:"‘"\". h"‘q__
- b
:_.e.'l"ﬂ T
- .
. "\I-:._,?
- .
v_.-\.'\-"' .
o T, 1 e P e T e T e e o e
o wi ﬂ‘_-" v__,.m Iw""'?-c
- o S -
.:-“'?‘ T, '
'

" IS_FILE VALID . s ~N

i LI £ =
e e, ; RE ' u R N 3
- s : 5
™ e T, 2 :
i, f:,:.-__-\.q,.q_._.-\.-\.-_-_-\.-\..-\. _&3—"?3 :
. o L :
. > o L i
ﬂh":-\.. ™ .:-"":'-e * r
e -.-'“"": L :
= gt N s
Mo Lt W e i
., e e 7
., . - . .
R e *“C-l..h'_ e -
Mo, o~ e PP IR L
.\P-H"-h; e
e, o
kq"“\.. o~
"'-\.-% },.p"'"-
“y F
I wi
"‘\-c..,\ll e
e n -\.-"""-'
%____u"
H
i
:
H
v
-
[
- NO
&
-
-
&
-
.,:-‘-"':.
B
-\.-ﬂ.r.-.v"
M el e e e P e e i B e i P 2 e e e e e e e B 2 e e 8 i e e e B e e e e e
_l"""ﬁ _l'"‘w) ﬁh"':'\-:.
‘,:.:-""" N, .-".]
e ﬁ“'“'ru_,q AR LA AR AR R R A A LA SR R R R A R i i
.}.-c"‘l "‘h:.h: - e, - %
o e : z 4
" M + -)
u,ﬁ""'ﬁ p K ';;: = ;'
Ry B, : : £ b
- e : : £ v
et e 1 : £ T
- o -. I : : :
s . 4 5 .. >
- - 1 H } [by
ot h:xv-\.vvvvavvvvvvvv\-_ ik . . r funs v e warseneninnd o 3
ey T i i 5 R i
'\"“"-.‘{ P ! % Fy i
e L : : ; 5
e, ’ o] H L -
g F M 1 i i I l ' F s
Ny i i o ¥
e, - waa : : 2 v
S, e L ; £ 3
~ s : £ =.: 3
Ty ,.-'-':"{ o PP FEE = 1 T a
", - P F
M K.k o s P R A g -t ¥ J
““'h.: _._.h-\.i-"c S F
%ﬁ“' ..l'“'-\"-“r H ‘{L{-' ._r"
%ﬁ‘" _-""v-ﬁ - l‘l\'L"\':"‘"'ﬂr.-|r\..-.-\.r.-||-\..-|r\.ra.-\.rr\.r\..-|r\..-| FulaFaldlal ﬂhrﬁ'\.ﬂhﬂhﬂ'\-'\.rﬁ-’ﬁrﬁ'\.ﬂr\.rﬁ"-'r"-d
R e £ L
"y - wi i .
T, .:-"-':...i i el
T, e £ 3
B - : L
T __,r-""" : o h‘-‘
-\-"'.\,: U__'..r"' H L ""\-'n'-_
1"”'» o ; .--"‘"-_r %"v
i z 0 W
i H Ia,.-:""-c "‘1.5,'_.
- H ¥ .
H - _:..1 ‘":“'\{
= ; ,.;-'\l" ur,
H 3 v
i H -\.-""r -,
+ H - T
H .
i i o n
2 : ar s
3 5 :-"':ﬁ. ﬁ“":-\.:_
x o i o~ Mg,
AR ; = o,
F ; J‘l_;.l-"‘ .l\.l.lhv
] - n
R R R R A U RSTS84 R R R A R R g v_ﬁ__.'\-"'ﬁ "'-..-_._._
J-r"‘ﬁ T, H L M
o i e "y
- i aF k"l\.‘..
!-'I : ; L N s Ml U LATERE TR TE TR TET RN N T I TR TIN FTE A T o __,._.1":" "":-h:__
! 3 B A LA A e A A et s
£ 1 T, o
: : e, e
i H T,] ™
*- s g -
- ° ok
B h'h.; L
g " ?":l""
H "-:.:.h_ ,,.*‘-"":.
: i %ﬂ"‘\' —— ,.-'-"‘""
: : s .
H M e -
:] '\'\l"' e
H R L s
i i :-“L"'H.; o
1 4 "l £
— — — ;ﬁ}%-quwﬁ 1, - .\ll-__\l.\,.-*-:--‘c
Hak H i,_
5 1 . -
: : ", o
: H i M, o
: : : T,
: a '> e
" H 1
-§ | E H 'E
i L . 3 ¥
: : : E
< - L]
: : : £
: : > :
5 ¢ ; 3
—_— ¢ > :

R W RELE LY AV B I o e e T e et e e e Y R e I R e o e R Y R Y Y R Y R R N Y R e R

-\."'I.
*,
-

LS

Sy -
e e e e B e e e e e P e e e e e e e e e e A el e e e e P e L e e e e e e e e B e B e e

Sheet 14 of 17 US 9.804.964 B2

.S. Patent ct. 31, 2017

FIG. 16B

oL oy oy S L kL UL UL L L L UL L L L L L L L L L L L L P L L L L L L L L L UUUUUUUW‘U_N_‘_?W A
e e

LOOP THROUGH ALL
BLOCKS OF THE FILE IN
THE ND_FILE_SYSTEM_DB
442

L T T T T,

A

oy
e,

L O A ST A

e e e e e e e e

i
B

e e e e

L L L N N L L A A 0 N U L N S o

412
FOR EACH BLOCK, CHECK THAT THE

o
—

= H
B i
H i
A R R .3 i
H
&
i
&
&
i
&
: — — —
= = H
:- :- :
: : ;
: : :
= = H
H
i i
L ¥
)
k)
= l"“'-\.
:- -
H e .
: “*' " " " o L
H
i H
4
&
H
: i
:-
H
i
4 H
i
:-
i
&
:-
i
& .
m
et
L - J_ﬁwﬁ..--\.--\.--\.--\.--\.--\.--\.-v-\.- [ERTTPryree) e [ETTETEITren e [RITITErIrLn) vvvvvvvvvvvvv\-vvvvvv\hﬁwﬁ.x
L = 0 .
e .
e .
N -t " \ "
, - y :
H Lt L. <
i -t " I3
& . [A
: et .. i
& IR i
ot -
Lt e
ar - ™ b
e e
et T
' -
& et Men, i
H . . i
- S -
i o [¥ H
H L A AR AR A A A R A . i
. ? i H]
H M e b i
= o
e, Lt
e o
e . L
e e
' '
: e, L L :
B Tl el & H
- ARt B 4
& .. "
H .. .] i
5 e, LT : -
= . . % e
" o
e L 4 4
e e “\\ e
m.""-\.. R . ."-""l
e .t " .
A L T e L
", N o A A W A W A WA A A A
= e ks =
:- - Lo :-
i B, i
H % H
:- H :-
i H i
& i &
H H
H &
H i
H &
H &
H i
H &
i &
'
H
H i
H
i
4 H
:-
: P - S B S — — R S R
[u ",
e B P e e P o e B e e e B o o e BB P B B e e B o BB BB o -,
T e, &
.
n " “
= LT e, < H H
B FIL e H & i
.- -~ :- :
& . - H
: L T . i 4 H
= PR R < H H
L L
-t "
T e
e e
- " .
a e,
. m
4 Lt [Bt Bt et £
:- . - :
i t T H H
H —~ R 5 H
H L el = H
Lo - :- i
& . . d
P .
o ! ' . — — —
ol L e
L .
... L
S .] e
Tl e
' "
.. .
. . N :-
H T et i i
i LI Lo H k)
& e ARt
:- el Lo i %
i " L H
& . . .
.'\.- - ' I-
S e . L
M, P T e [T [T e e [T [T [T P e
" -t
e Lt
Tl .
' .
:- e e]
:- " .t i
» el . :
& " .
B " e T i
H T et i
' " - - '
H
H
4
H
H
4
i : AR AR it i s s s it i .
H H i R T,
B H H et .
4 H 4 .
H i i -
B H H .
& H i -
i i]
i 4 %
&
H -
ki - -
i -
; -
. .
H - . i A -
:- . " i * ' =
] . . : = -
& . H - =
:- - i * =
i . H - =
& - -
.t »
E »
A -
Lot Taa -
e, e -
. LN .
H . L. L 5 — — — 2
:- L .. R =
i .t Tl - =
H L i H -
: Lt . E E
= P R . - -
s T s
et LT -
R T -
L e -
w' T 3
. . .
H . R H -
:- . e * =
i L L - — — — =
e N N N N - o ._:'H.- ; ;
Tl e % r
" ' H H
S Lt b El
.. . -, J
L et i
L m B . K

. - . .
- . .
' "w ", r
. et e, s
. L N s i i i R AR [[T sy e e s [et
artt :-
. - -
. . . L . >
", Lt
.. L.
- ¥
bl . . -
... L d
T - e LT LT LG LD T T
. . - .
T e Pl """\-'.-_.x
. ot ",
S aa . e "
. s .
s ..-- "
™ ""\...\. .."l" - .'.
T e e,
Mo e ! ",
: ; t
H & =
i ; s
i H k
i H
<

ERROR

RETURN %, T

SUCCESS | o
447

LTI e
P S Y

R W g N T

e e N N A S N R N NN R R R N N S R N
e .

S
e

-.
=
H
.
e
e
-
':‘:-\.

i T PO PR e [EELEPEE)

e g en?

[

US 9,804,964 B2

.S. Patent ct. 31, 2017 Sheet 15 of 17

FIG. 17A

¥
]
Z
¥
4
&
&
H
#
#
e
L
.
A B e A e i oy b B A A A T AL A A e A A A P e PSP = P == A A A AT A,
-~ Lo
ik "':-
H 4
H H
< H
H H
i i
i ;
T i
< H
H H
H H
ey, L i
b e o e o o e P e e e o e e e e e e P e e e P e e e e o e Sk H
i 1 i
- +]
] £ H
H H [
H i H
M < H
: < H
H i H
i i i
H a e
H a H
¥ £
t : i
] 5 i
H <
i - o
.
i i
E T o S S S S S o S 1L
v
:
]
: i
4 H
E i
- H
- H
E H
2 -
v H
i H
H H
i .
i i
H
H
4
i
JERLE
- .
i e
M .- .o,
E -t -
H ar a
- L
4 - e,
3 S - EEEEETET nrrer rRRRISSASAAAAA nRRRRR ~ L T T T T e e e e e e P s P T L e T T EEIrs ARR AR —
i - e, -.ﬁ',..- .
. " - . - "
: ween” T - -
H om . -
ks .t AR L]
H et . :
4 et s L ')
I Lot . £
T R - <
H o L H
3 L4 ., b
i .t i, <
H] .- <
F T el <
- . e <
- et - <
< - I I "o +
- -
; S . i
= T e 4
H T — — — 1
H el - B
- i
: e, | L :
. .
;] "o, et :
- . - <
i e rl H
= M - -
- - — — —
: E 5
] . e v I
[- e] i,
L LI e o) %
i LT . = -
., '
[T , L * ———————— 7
: e, R
r ", yul
L " [-
H e, et
i e W bt e b B bt o R ke Ao he g B e e e e e e . i e g s e R e ARl e e e e Rk 1 Rt
LF]
i o, et Y
p [L r
' ' <
] L o z
- - o b
H LIC TR L i
H b
- H I
- H s
:
d i]
i H
H H
i H
= H
i H
: : e —————————— — . S — S —G—
: i -
= H -'"l.
H .
: 3 i
- L £ -,
] i [
: . - . - e - i %
: e i i
y R H I
L n 4 | v
5 - H ¥
3 a k) h
H H
H . :
: i t
T
] f L H
: H z
i : :
{ L
1 ! : R N : E el i
H - . '
: H x
i H I
N H & H
i : : ; i
H = = H z
H - H =
H -
: i
: o
e a L —] H s
: Y b E
% i “
. . A
= T, -
H - o e e P e PP P s P Pe e e e AL A r. PP . e Pe P e P FueaFam Pt P P o e e e e e 2w e e e e
H e L Y LY Ees " ARALRLARRALALAAAAS A ARAA A AS <
] H i
r E -
= -,
. ; s
H
e
H
[
H
4
e
r .
4
P H
£ P v anana Vg,
‘ " -, .
H - .
! .-‘, : ..
E: .{‘* <.
b Fa =
3 o F -
; et = =
. =z 1
= e = by
i R =
i ARl = = I
H e ., =
[et T b i
] - " =
- -y
-t " o
- ———————
b -
a .
el e R R A T TS L by e et a m E -
o
Rt ot
d Sl - s
- ry A e A A A= b, e e e i e A A A AR A R A A YT A
s i
e
"
'
M
\ !
L LT .t
. e
e e
- .. Rl -
. L
N ., a -
Tl L
e
-t
Lt
e AT AAAL LIS L L o T
i T

406

.Wﬁ'“..

B T S S S SRy

U.S. Patent Oct. 31, 2017 Sheet 16 of 17 US 9,804,964 B2

FIG. 1 7B

o
2
A
H
:‘;‘-‘#IF _____ LT - T e o v.\'\"'\"h'll‘\c §
£ .f
: H iy
M F wi
: - e
=
i i
i
-
i
-
=
i
i
B-E =
i i
i
=
i
i
-
H =
. o
h\cirqﬂ -\.-4"'#
e - sy e PR
e o ~ e e B e o B i B e e e Fued fe e e e —)
o g
& s
' %,
b I ®
- =
-
i i
b ®
- =
H I ; 3 :
| ,fj
ey vt
- Mas LT - B O O L N N NV R T O O O O O O A O O e Y -
;
i ""\-':-\..h
ey - ﬂ"""\-'.-\.._w:
___,L..-.--"“": Mo, N
:""z‘ﬁ?ﬁ s
Ity "'""-\-.-\,._H_
i ..,
ot
e ..
__..:-"-"ﬁ "\-':-\..h_
- = "‘\-'.-\.._\:
R g,
..-\.:-""""'\'ILI'\I e,
...-'"'":.ﬁ) s .
o .
-\.-'\-"'"v':ﬁ ﬂh"‘:-x.
o S
a e,
v_...-'"" "‘*-'.-\..ﬁ_
‘___h..-c'\-""‘"‘: d'\"""\-:.-\..___‘\.
- " "“"'\..:v
s h""“-'h.-
“ -
et i
it T e A R S S NS A A 8 SN AR A SRS APPSR 5
e, i :
ﬂ"‘"'\..h_h | }_N:_.-\.:-""""w
. -
h""“'w-ﬁ.ﬁ: _-__:,,.:-.-'"'"
e T
M, ol
o i
ot ww“wﬁ
b .
M, _____,..:-ﬁ"‘“':" i
g -a.; - o i
-\\'"‘-\..." _.\.-\.-"-'\'.lc
e, R
""\-'ﬁ{ﬁ\{ v{'\-‘"""
e, _h_.\,-\.-'\-""‘q
"
B, o
., e
"‘\-:.-\.:_‘\c _‘..-t'\-'"
e, e

AR TITRTTITITY
-
ML PRI P P

BLOCK IS
VALID |
E‘*a___ 4 7 7 f’f

(. s Fu,
et . “ et e

EXERCRE R ERCRREA RS LA

aan’’
b
P

vvvvvvvv

anr T
v

e T
B g I

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

S. Patent

e e e e e e e e e e e e

FI1G.

e

BRERHT R,
Y

ct. 31, 2017

18

e e R R R R R R R R R R R R R R R R R R R L T L N R e R R R S R R N R R R S
-

LOOP THROUGH ALL
BELOCKS OF THE FILE

Sheet 17 of 17

Tor e
£
L

:‘::nb:-::-c'\-"‘x"?-

B

.
)53&%%% Y R e e L Mﬁm-.ﬁmmm.mmm-.m-.ﬁng

i
®
F i
=
S %
" kg
2 i
i P
H
i i
b %
b kg
¥ #
H =
3
ii 1
=
S %
" kg
2 i
o H
H] | | E
E i
H M
5‘ kg
% #
%, i i
-
v
" - ;
.y - é
— -
o e L R R e R R R A A R T R L A R e e R e e m A n g e
a %
E E
" 1 “mign
L ye
e
=
H
H
=
i
3
=
] | | =
3
=
=
i
=
H
! %
% %
H
H
=
i
=
| | | #
: %
.7 E
.-"’:F
o
-
L M.
Rt L
s BT,
e .
-
aan
Lt
-
s
e
-
e
}ﬁ__...---“"" T
.,
- S
- o L
_..,--'\-"":'ﬁ S, .
wmm T,
nir T,
e "\""'\{
l'H'."\-"\.
o
'\....ﬂ{ -%
ﬂ:_:'.--\.-'\.--'\.-'\.--\.-.-uv-vvvam—v-vvvam—v'\.vvvav'\.-'\.'\.-'\.--\.-.-'\.--\.-'\.'\.-'\.-'\.-.-'\.--\.-'\.'\.-'\.--\.-.-vumvvvavumvvv-vvmvvv-vv e e
-
"
A
vy -t e
""'-'h.-_.\,_ _.-"u.;\.""
E e
R et
e e
T, cn
o am
RS .
e,
g .
Pl
g L P o R Ym0 e P L Y R P L P
- ey

485

REMOVE THE FILE
FROM
ND_FILE SYSTEM_ DB

- -
et A = AR 8 A i = 8 i S S e i R S 8 i i R U e A i T 8 R i e T R R e 8 8 R R R A i i R R = AN = i i B

e "
ol
__J__..-ﬁ""
.t
o
i
{
1]
%\-E.
=
'\-c.__v.
\v"“'\-':.\,..
e,

g

L e e B o

186

RETURIN
SUCCESS

o
e o et e e e e e PP e e e i e e e e e e e e e e e e e e e e P e e e

e

kb T
—

i

.

e

g
Ty
.

US 9,804,964 B2

L s
PrE L
RS

LS

US 9,804,964 B2

1
METHOD FOR INCREASING CACHE SIZE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation application, and

claims priority to, co-pending U.S. patent application Ser.
No. 14/925,437 filed on Oct. 28, 20135, and having the title

“METHOD FOR INCREASING CACHE SIZE”, which 1s
a continuation of, and claims priority to, U.S. patent appli-
cation Ser. No. 14/210,993, filed on Mar. 14, 2014, and
having the title “METHOD FOR INCREASING CACHE
SIZE”, now patented as U.S. Pat. No. 9,201,802, 1ssued on
Dec. 1 20135, which 1s a continuation of, and claims priority
to, U.S. patent application Ser. No. 14/024,977, filed on Sep.
12, 2013, and having the title “METHOD FOR INCREAS-
ING CACHE SIZE”, now patented as U.S. Pat. No. 8,719,
505, 1ssued on May 6, 2014, which 1s a continuation of, and
claims priority to, U.S. patent application Ser. No. 13/363,

784, filed on Feb. 1, 2012, and having the title “SYSTEM
AND METHOD FOR INCREASING CACHE SIZE.” now
patented as U.S. Pat. No. 8,578,098, 1ssued on Nov. 5, 2013,
which 1s a continuation of, and claims priority to U.S. patent
application Ser. No. 12/467,814, filed on May 18, 2009, and
having the fitle “SYSTEM AND METHOD FOR
INCREASING CACHE SIZE,” now patented as U.S. Pat.

No. 8,135,912, 1ssued on Mar. 13, 2012, all of which are
incorporated herein by reference 1n their entirety.

FIELD OF THE INVENTION

The present mvention 1s generally related to electronic
storage, and more particularly 1s related to maximizing
cache size.

BACKGROUND OF THE INVENTION

Information stored by applications may be viewed as two
types, namely, application data and cached data. Application
data 1s data that an application, or its users, depends on for
normal operation. Examples of application data may include
bank account information stored by a bank application, or a
document saved by a word processing application. Appli-
cation data may be regarded as requiring “100% storage
reliability”, because application data that 1s written to a
storage device must always be retrievable.

Unlike application data, cached data 1s data that the
application does not depend on for normal operation, but
that 1s stored in order to possibly benefit from for purposes
ol accelerating application operation. Specifically, a cache 1s
a temporary storage arca where frequently used data can be
stored for rapid access. This data 1s referred to as cached
data. Once the data 1s stored 1n the cache, future use by an
application can be made by accessing the cached copy rather
than re-fetching or re-computing the original data, so that the
average access time 1s shorter. An example of cached data
may be pages stored by a Web browser after the pages were
viewed, just 1n case the user wants to view the pages again.
In this example, 1 the user wants to view the pages again,
but the cached copies of the pages which were written to the
cache are no longer found, the browser will maintain 1ts
normal mode of operation, by bringing that information
from the web site 1tselt

FIG. 1 1s a block diagram 1llustrating a basic prior art file
system. For exemplary purposes, FIG. 1 shows that there are
multiple applications, 1llustrated as application blocks 101,
102, and 103, that wish to manipulate files (store, write,

10

15

20

25

30

35

40

45

50

55

60

65

2

read, delete, or other function calls). The applications 101,
102, 103, call on a common, operating system level file
system application programming 1nterface (API) 104 that 1s
capable of implementing the manipulation commands. The
file system API 104 1s implemented by a file system driver
105, which uses smaller blocks of data as the basic building
blocks of the files. These blocks of data, are manipulated by
a block storage handler and device driver 106. It 1s noted that
the file system API 104, file system driver 103, and the block

storage handler and device driver 106 are each provided by
an operating system. The actual data 1s stored on a physical
block storage device 107, which may be a hard disk, flash
memory, solid state disk, or a different storage device.

As 1s known by those having ordinary skill in the art, for
cach memory block, the block storage handler and device
driver maintain data that describes the memory block. This
information about the block may contain the address of the
memory block, size, or other characteristics of the memory
block. As 1s also known, a file system typically has two types
of blocks, namely, “used,” which are blocks that currently
contain data which 1s to be kept, and “ifree,” which are
blocks that may be used by the file system to store data in
the future. A memory block typically has metadata associ-

ated with 1t, where the metadata that may include any type
ol information related to the block that 1s useful for the
operating system.

FIG. 2 15 a schematic diagram illustrating a prior art block
storage device 110. As shown by FIG. 2, the block storage
device 110 has blocks that are classified as either “ifree” or
“used.”

Unfortunately, file systems today treat “reliable data™
(application data) in the same way that the “non-reliable
data” (cached data) 1s treated. Specifically, both application
data and cached data are stored into “free” memory blocks,
after which the block 1s categorized as “used.” This brings
about a reality where applications are careful about how
much cached data 1s saved, so that enough room 1s left on a
storage device for the application data. The result 1s lower
performance for the overall system than may theoretically be
achieved.

Thus, a heretofore unaddressed need exists 1n the industry
to address the aforementioned deficiencies and nadequa-
Cies.

SUMMARY OF THE

INVENTION

Embodiments of the present invention provide a system
and method for increasing cache size. Briefly described, 1n
architecture, one embodiment of the system, among others,
can be implemented as follows. The system contains a
memory and a processor, wherein the processor 1s config-
ured by the memory to perform the steps of: categorizing
storage blocks within the storage device within a first
category of storage blocks 11 the storage blocks are available
to the system for storing data when needed; categorizing
storage blocks within the storage device within a second
category of storage blocks 1f the storage blocks contain
application data therein; and categorizing storage blocks
within the storage device within a third category of storage
blocks 1f the storage blocks are storing cached data and are
available for storing application data 1f no first category of
storage blocks are available to the system.

Other systems, methods, and features of the present
invention will be or become apparent to one with skill 1n the
art upon examination of the following drawings and detailed
description. It 1s itended that all such additional systems,

US 9,804,964 B2

3

methods, and features be included within this description, be
within the scope of the present invention, and be protected
by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the invention can be better understood
with reference to the following drawings. The components
in the drawings are not necessarily to scale, emphasis instead
being placed upon clearly illustrating the principles of the
present invention. Moreover, in the drawings, like reference
numerals designate corresponding parts throughout the sev-
eral views.

FIG. 1 1s a block diagram 1llustrating a basic prior art file
system.

FI1G. 2 1s a schematic diagram 1llustrating a prior art block
storage device.

FIG. 3 1s a block diagram illustrating a general-purpose
computer architecture that can implement the caching sys-
tem of the present invention.

FI1G. 4 1s a block diagram illustrating certain elements of
the operating system of FIG. 3.

FIG. 5 15 a block diagram illustrating a non-deterministic
file system 1n accordance with the present caching system.

FIG. 6 1s a schematic diagram illustrating the block
storage device of the computer.

FIG. 7 1s a flowchart illustrating high level functions
performed by the caching system 1n receirving and handling
deterministic and non-deterministic commands, 1n accor-
dance with the first exemplary embodiment of the invention.

FIG. 8 1s a flowchart specifically illustrating how the
block manipulation system handles an allocation of a new
block within the block storage device.

FIG. 9 1s a flowchart 1llustrating how the block manipu-
lating system writes data to an existing block within the
block storage.

FIG. 10 15 a flowchart illustrating how the block manipu-
lating system reads data from an existing block within the
block storage.

FI1G. 11 1s a flowchart illustrating how the block manipu-
lating system releases a block of data from the block storage
device.

FIG. 12 1s a block diagram 1illustrating a file system, in
accordance with a second exemplary embodiment of the
invention.

FIG. 13 A 1s an example of a table located within a storage
device prior to updating.

FIG. 13B 1s an example of a table located within a storage
device after updating.

FIG. 14 1s a flowchart illustrating implementation of a
listener module.

FIG. 15 1s a flowchart illustrating actions performed by
the system of FIG. 12 when a new non-deterministic file 1s
created.

FIG. 16A 1s a tlowchart illustrating actions performed by
the system of FIG. 12 when writing to an existing {ile.

FIG. 16B 1s a flowchart further illustrating the step of
determining whether the file being written to 1s still valid.

FIG. 17A 1s a flowchart 1llustrating actions taken by the
system when a non-deterministic “file read” command 1s
recerved.

FIG. 17B 1s a flowchart further illustrating the step of
determining 11 a block 1s still valid.

FIG. 18 1s a flowchart illustrating the process of releasing
a file (deleting a file) from the non-deterministic file system.

DETAILED DESCRIPTION

The present system and method provides for increasing
the total amount of cached data that may be stored on a

10

15

20

25

30

35

40

45

50

55

60

65

4

storage device, without diminishing from the storage space
available for normal application data, by allowing for non-
deterministic file handling. Specifically, cached data 1is
stored on the free space of a storage device, however, the
space on which cached data 1s stored 1s still regarded as free
space for application data. By providing for non-determin-
istic file handling, much more cache data can be stored than
in regular file systems, since there 1s no concern about
‘conserving’ space for future application data. It should be
noted that a non-deterministic file or block is the same as a
non-reliable file or block, and a deterministic file or block 1s
the same as a reliable file or block.

While the following describes the present system and
method 1n detail 1t 1s beneficial to provide certain definitions
that are known to those having ordinary skill in the art.

Cache: Cache 1s a collection of data duplicating original
values stored elsewhere or computed earlier, where the
original data 1s expensive to fetch (owing to longer access
time) or to compute, compared to the cost of reading the
cache. In other words, a cache 1s a temporary storage area
where frequently accessed data can be stored for rapid
access. Once the data 1s stored in the cache, future use can
be made by accessing the cached copy rather than re-
fetching or re-computing the original data, so that the
average access time 1s shorter. Cache has proven to be
extremely eflective in many areas ol computing because
access patterns 1n typical computer applications have local-
ity of reference.

Data Storage Device: A data storage device 1s a device for
recording (storing) information (data). Recording can be
done using virtually any form of energy, spanning from
manual muscle power 1n handwriting, to acoustic vibrations
in phonographic recording, to electromagnetic energy
modulating magnetic tape and optical discs. A storage
device may hold information, process mformation, or both.
A device that only holds information 1s a recording medium.
Devices that process information (data storage equipment)
may either access a separate portable (removable) recording,
medium or a permanent component to store and retrieve
information.

Block: In computing, specifically data transmission and
data storage, a block 1s a sequence of bytes or bits, having
a nominal length (a block size). Data thus structured 1s said
to be blocked. The process of putting data into blocks 1s
referred to as blocking. Blocking 1s used to facilitate the
handling of the data-stream by a computer program receiv-
ing the data. Blocked data 1s normally read a whole block at
a time. Blocking 1s almost universally employed when
storing data to 9-track magnetic tape, to rotating media such
as tloppy disks, hard disks, optical discs, and to NAND flash
memory. Most file systems are based on a block device,
which 1s a level of abstraction for the hardware responsible
for storing and retrieving specified blocks of data, though the
block size 1n file systems may be a multiple of the physical
block size. It should be noted that 1n classical file systems,
a single block may only contain a part of a single file.

File System: Most file systems make use of an underlying,
data storage device that oflers access to an array of fixed-size
blocks, sometimes referred to as sectors, generally a power
of 2 1 si1ze (512 bytes or 1, 2, or 4 Kb are most common).
File system soltware 1s responsible for organizing these
sectors 1nto files and directories, and keeping track of which
sectors belong to which file and which sectors are not being
used. Most file systems address data 1n fixed-sized units
called “clusters™ or “blocks” which contain a certain number
of disk sectors (usually 1-64). This 1s the smallest logical
amount of disk space that can be allocated to hold a file.

US 9,804,964 B2

S

However, 1t 1s noted that file systems need not make use of
a storage device at all. A file system can be used to organize
and represent access to any data, whether 1t be stored or
dynamically generated.

Metadata: Metadata 1s bookkeeping information typically
associated with each file within a file system. The length of
the data contained 1n a file may be stored as the number of
blocks allocated for the file or as an exact byte count. The
time that the file was last modified may be stored as the
timestamp of the file. Some {file systems also store the file
creation time, the time i1t was last accessed, and the time that
the metadata of the file was changed. Other information can
include the device type (e.g., block, character, socket, sub-
directory, or other device types), owner user-ID and group-
ID, and access permission settings of the file (e.g., whether
the file 1s read-only, executable, or other properties).

The present system and method, also referred to herein as
a caching system and method, can be implemented 1n
software, firmware, hardware, or a combination thereof. In
a first exemplary embodiment, the caching system 10 1is
provided by a special or general-purpose digital computer,
such as a personal computer, workstation, minicomputer,
PDA, mobile computing platform, or mainirame computer.
The first exemplary embodiment of a general-purpose com-
puter architecture that can implement the caching system 10
1s shown 1n FIG. 3.

Generally, in terms of hardware architecture, as shown in
FIG. 3, the computer 10 includes a processor 20, memory
30, storage device 40, and one or more mput and/or output
(I/0) devices 50 (or peripherals) that are communicatively
coupled via a local interface 60. The local mterface 60 can
be, for example but not limited to, one or more buses or other
wired or wireless connections, as 1s known in the art. The
local interface 60 may have additional elements, which are
omitted for simplicity, such as controllers, builers (caches),
drivers, repeaters, and recervers, to enable communications.
Further, the local interface 60 may include address, control,
and/or data connections to enable appropriate communica-
tions among the aforementioned components.

The processor 20 1s a hardware device for executing
software, particularly that stored in the memory 30. The
processor 20 can be any custom made or commercially
available processor, a central processing unit (CPU), an
auxiliary processor among several processors associated
with the computer 10, a semiconductor based microproces-
sor (1n the form of a microchip or chip set), a macroproces-
sor, or generally any device for executing software instruc-
tions.

The memory 30 can include any one or combination of
volatile memory elements (e.g., random access memory
(RAM, such as DRAM, SRAM, SDRAM, etc.)) and non-
volatile memory elements (e.g., ROM, hard drive, tape,
CDROM, etc.). Moreover, the memory 30 may incorporate
clectronic, magnetic, optical, and/or other types of storage
media. Note that the memory 30 can have a distributed
architecture, where various components are situated remote
from one another, but can be accessed by the processor 20.

Software 70 in the memory 30 may include one or more
separate programs, each of which comprises an ordered
listing of executable instructions for implementing logical
tfunctions of the caching system 10, as described below. In
the example of FIG. 3, the software 70 in the memory 30
defines certain functionality of the caching system 10 1n
accordance with the present imnvention, as 1s described 1n
detail herein. In addition, the memory 30 contains an oper-
ating system (O/S) 80. The operating system 80 essentially
controls the execution of computer programs and provides

5

10

15

20

25

30

35

40

45

50

55

60

65

6

scheduling, input-output control, file and data management,
memory management, and communication control and
related services. FIG. 3 turther 1llustrates certain elements of
the O/S 80, as 1s described below.

Returning to FIG. 3, the caching system 10 may be
provided by a source program, executable program (object
code), script, or any other entity containing a set of mstruc-
tions to be performed. When a source program, then the
program needs to be translated via a compiler, assembler,
interpreter, or the like, which may or may not be included
within the memory 30, so as to operate properly in connec-
tion with the O/S 80. Furthermore, the caching system 10
can be written as (a) an object oriented programming
language, which has classes of data and methods, or (b) a
procedure programming language, which has routines, sub-
routines, and/or functions.

The I/O devices 50 may include mput devices, for
example but not limited to, a keyboard, mouse, scanner,
microphone, or other mput device. Furthermore, the L/O
devices 50 may also include output devices, for example but
not limited to, a printer, display, or other output device.
Finally, the I/O devices 50 may further include devices that
communicate via both mputs and outputs, for mstance but
not limited to, a modulator/demodulator (modem; ifor
accessing another device, system, or network), a radio
frequency (RF) or other transceiver, a telephonic interface,
a bridge, a router, or other device.

The storage device 40 may be any block data storage
device, such as, but not limited to, floppy disks, hard disks
or hard drives, optical discs, NAND flash memories, or any
storage device capable of maintaining a sequence of bytes or
bits having a nominal length (block size).

When the caching system 10 1s 1in operation, the processor
20 15 configured to execute the software 70 stored within the
memory 30, to communicate data to and from the memory
30, and to generally control operations of the computer 10
pursuant to the software 70. The software 70 and the O/S 80,
in whole or 1n part, but typically the latter, are read by the
processor 20, perhaps bufllered within the processor 20, and
then executed.

When the caching system 10 1s implemented 1n soiftware,
it should be noted that the caching system 10 can be stored
on any computer readable medium for use by or 1n connec-
tion with any computer related system or method. In the
context of this document, a computer readable medium 1s an
clectronic, magnetic, optical, or other physical device or
means that can contain or store a computer program for use
by or in connection with a computer related system or
method. The caching system 10 can be embodied 1n any
computer-readable medium for use by or 1n connection with
an 1nstruction execution system, apparatus, or device, such
as a computer-based system, processor-containing system,
or other system that can fetch the instructions from the
instruction execution system, apparatus, or device and
execute the instructions. In the context of this document, a
“computer-readable medium” can be any means that can
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution
system, apparatus, or device.

The computer readable medium can be, for example but
not limited to, an electronic, magnetic, optical, electromag-
netic, inirared, or semiconductor system, apparatus, device,
or propagation medium. More specific examples (a non-
exhaustive list) of the computer-readable medium would
include the following: an electrical connection (electronic)
having one or more wires, a portable computer diskette
(magnetic), a random access memory (RAM) (electronic), a

US 9,804,964 B2

7

read-only memory (ROM) (electronic), an erasable pro-
grammable read-only memory (EPROM, EEPROM, or
Flash memory) (electronic), an optical fiber (optical), and a
portable compact disc read-only memory (CDROM) (opti-
cal). Note that the computer-readable medium could even be
paper or another suitable medium upon which the program
1s printed, as the program can be electronically captured, via
for mstance optical scanning of the paper or other medium,
then compiled, iterpreted or otherwise processed 1 a
suitable manner 1f necessary, and then stored 1n a computer
memory.

In an alternative embodiment, where the caching system
10 1s implemented 1n hardware, the caching system 10 can
be implemented with any or a combination of the following
technologies, which are each well known in the art: a
discrete logic circuit(s) having logic gates for implementing
logic functions upon data signals, an application specific
integrated circuit (ASIC) having appropriate combinational
logic gates, a programmable gate array(s) (PGA), a field
programmable gate array (FPGA), or other technologies.

As previously mentioned, FIG. 4 further illustrates certain
clements of the O/S 80. As shown by the block diagram of
FIG. 4 the O/S 80 contains a file system application pro-
gramming interface (API) 82, a block storage API 84, and a
block storage device driver 86. The file system API 82
provides a programming interface for data storage manipu-
lation and the block storage API 84 provides a programming
interface to the file system, for storing discrete elements on
the storage device 40. In addition, the block storage device
driver 86 1s a piece of soltware stored within the O/S 80 that
manipulates the block storage device 40 of the computer 10
to provide the functionality of the O/S 80.

Contrary to the prior art, which only provides a “free” and
“used” category for storage blocks, the present caching
system and method adds a third category for storage blocks,
namely, “semifree.” A “semiiree” block 1s one that is storing,
cached data, and which may be consumed by application
data 1 no *“free” blocks are available for the application data.
To provide this new category type, the file system 1s modi-
fied to add this type of data tag to the metadata of each block
of data. This tag marks each data block of the storage device
40 as either “free,” “semiiree,” or “used,” and 1s continu-
ously updated by the file system of the computer 10 as
required. It should be noted that the modification to the file
system 1s not only in tagging the blocks, but also manipu-
lating them differently the blocks differently, as 1s described
herein 1n detail.

In accordance with the present caching system and
method, as 1s explained 1n more detaill below, when an
application stores data, the application requests from the
operating system 80 that this data be stored in a deterministic
fashion, or 1 a non-determimstic fashion. Storing i1n a
deterministic fashion means that the data must be stored 1n
a manner so that the application must be able to retrieve the
data 1n the future. Alternatively, storing in a non-determin-
1stic fashion means that 1t 1s not mandatory that the data be
stored 1n a manner so that the application 1s able to retrieve
the data 1n the future.

The present system and method uses deterministic storage
for storing application data, and non-deterministic storage
for storing cached data. The method of storage 1s selected by
the application when calling the file system API 82 of the
operating system 80. When deterministic storage 1s called
for, meaming that a call 1s made by an application to save
application data, the O/S 82 looks for storage blocks that are
free, meaning that the storage blocks are not being used for
application data, or cached data, and allocates those blocks

10

15

20

25

30

35

40

45

50

55

60

65

8

for the new data stored. If no such blocks are found, then the
O/S 80 will use blocks 1dentified as “semiiree,” meaning that
the blocks are storing cached data, and thus will decrease the
total size of the cached data to provide the required space for
the application data.

Alternatively, when non-deterministic storage 1s called
for, meaning that a call 1s made by an application to save
cache data, the file system looks for “free” storage blocks to
use for this purpose. If no such “free” blocks are found, the
file system returns an error code, to which an application
may respond by asking to free other cached data (*semiiree”™
blocks) that are less important to the application.

Fortunately, the abovementioned process, which 1s
described 1n detail below, provides applications with the
ability to use all of the available space on a storage device
for cached data, without compromising application data.
This increases the size available to caching systems, thereby
potentially increasing performance of applications.

FIG. 5 1s a block diagram 1llustrating a non-deterministic
file system 1n accordance with the present caching system
10. For exemplary purposes, FIG. 5 shows that there are
multiple applications, 1llustrated as application blocks 201,
202, and 203, that wish to manipulate files (store, write,
read, delete, or other function calls). The applications 201,
202, 203, call on a common, operating system level file
system application programming interface (API) 204 that 1s
capable of implementing the manipulation commands. In
addition to this API 204, for every such function call exists
a non-deterministic function call. The applications 201, 202,
203 call non-deterministic function calls for storing data that
may be overwritten by other data stored on the storage
device 40, for example, cache data.

Non-deterministic file system calls 206 allocate “iree”
blocks and mark them as “semiiree” for the duration of their
use as cache data storage blocks on the storage device 40,
while these blocks may be overwritten by deterministic file
system calls 205. Both types of files use a block manipula-
tion system 207 for handling both deterministic and non-
deterministic files. A block storage handler and device driver
208, which manipulates blocks of data, 1s the same as in the
prior art and 1s 1n communication with the storage device 40.

For each block of data on the storage device 40, there
exists metadata that 1s used by the O/S 80. For each block
within the storage device 40 metadata 1s stored. In addition
to the metadata stored, a block status marker 1s added to each
block of the storage device 40. The block status marker may
be one of “free,” “semifree,” or “used.”

In comparison to the prior art, FIG. 6 1s a schematic
diagram 1llustrating the block storage device 40 of the
computer 10. As shown by FIG. 6, the free space on the
storage device 40 1s partitioned as either totally free space,
which 1s marked as “free,” space that 1s used for caching, but
1s free to the user to use, which 1s marked as “semitree,” or
space used by applications for deterministic storage, which
1s marked as “used.”

Having described the structure of the present caching
system 10, the following further describes functionality
performed by the caching system 10. FIG. 7 1s a flowchart
301 illustrating high level functions performed by the cach-
ing system 10 in recerving and handling deterministic and
non-deterministic commands, 1n accordance with a first
exemplary embodiment of the mvention. Specifically, the
file system of the present invention determines whether a
command received from an application 1s deterministic
(reliable file manipulation) or not, and calls on the block
mampulation system 207, the functions of which are out-

lined in FIG. 7.

US 9,804,964 B2

9

It should be noted that any process descriptions or blocks
in flowcharts should be understood as representing modules,
segments, portions of code, or steps that include one or more
instructions for implementing specific logical tunctions 1n
the process, and alternative implementations are included
within the scope of the present invention 1n which functions
may be executed out of order from that shown or discussed,
including substantially concurrently or in reverse order,
depending on the functionality mnvolved, as would be under-
stood by those reasonably skilled in the art of the present
invention.

Deterministic file system calls are called directly to the
deterministic file system driver 205 (FIG. 5), while non-
deterministic calls are made directly to the non-deterministic
file system call driver 206 (FIG. 3§). I a received command
1s deterministic, then regular block I/O and file system
manipulation 1s performed (block 304), and the relevant
block within the storage device 40 used for storing of the
data 1s updated to be marked as “used” as long as the data
1s stored within the block, or “free” 1t the block was released
by the file system (block 305) It should be noted that if
release 1s called through a deterministic file system call, such
as for deterministic data, then the regular release process 1s
done. If release 1s called through the non-deterministic
system call, then all the blocks in the file that is being
released (a cache file), are marked as “ifree” and removed
from the metadata of the system. The system 10 then awaits
additional commands.

Alternatively, 1f the block manipulation system 207 deter-
mines that a command 1s not deterministic (non-determin-
1stic), the block manipulation system 207 determines 1f any
block from the file was over-written by the file system with
reliable data (application data) (block 308) by checking the
status of the block. As an example, 11 the block i1s still
marked as “semifree” then the block was not overwritten
with application data. If the block was overwritten with
application data, the block manipulation system 207 returns
an error message showing that the block no longer exists
309, specifically, that the block was overwritten by appli-
cation data, and therefore, does not exist for caching. If the
block was not overwritten with application data, then the
block still contains the information originally saved on it. In
such a case, regular block handling 1s performed 310. The
status of the block 1n the storage device 40 1s set to “Iree”
if the block was released and to “semifree” if the block
continues to store cached data (block 311). The system 10
then awaits additional commands.

FIG. 8 1s a flowchart 319 specifically illustrating how the
block manipulation system 207 handles an allocation of a
new block within the block storage device 40. As shown by
block 320, the block manipulation system 207 parses the
received file system command. The block manipulation
system 207 then checks whether the command i1s for a
deterministic block operation or a non-deterministic block
operation (block 321).

If the command 1s for a non-deterministic block alloca-
tion, the block manipulation system 207 looks for a “free”
block 1n the storage device 40 (block 329). If during
searching for a “free” block (block 330) a “free” block of
storage 1s not found, the function returns an error message
since there 1s no more free space to allocate (block 327).

Alternatively, 11 a “free” block 1s found, the block 1s marked
as “semiiree” (block 331).

It the command 1s for a deterministic block allocation, the

block manipulation system 207 looks for a block marked as
“free” (block 322). If during looking for a “free” block

(block 323) a “free” block 1s found, the block mampulation

10

15

20

25

30

35

40

45

50

55

60

65

10

system 207 marks the “ifree” block as “used” (block 326). It
should be noted that FIG. 8 provides an illustration of
allocation of a new block. As a result, once a “iree” or
“semifree” block 1s found, the block 1s allocated, but not
necessarily written to. Instead, the block gets written to
when a write command 1s 1ssued on this allocated block. If,
however, a free block 1s not found, the block manipulation
system 207 looks for a block marked as “semifree” (block
324) that 1s currently being used for the non-deterministic

storage (for cached data). If during looking for a “semifree”
block (block 325) a “semifree” block 1s found currently
being used for non-deterministic storage, the block manipu-
lating system 207 marks the block as “used” (block 326) and
allocates the block. Alternatively, 11 no “semifree” block 1s
found, an error message 1s returned to the user (block 327).

FIG. 9 1s a flowchart 331 illustrating how the block
mampulating system 207 writes data to an existing block
within the block storage 40 and allocates the block. As
shown by block 332, the block manipulation system 207
parses the received file system command. The block

mampulation system 207 then checks whether the command
1s for reliable block operation (block 333).

If the command 1s for non-deterministic block operation
the block manipulation system 207 determines whether the
block still belongs to the non-deterministic file system by
checking 11 the block status 1s still “semifree” (block 334).
If the block 1s still “semiiree,” the block manipulation
system 207 writes to the “semifree” block (block 336).
Alternatively, 1 the block 1s not “semiiree,” the block
mampulation system 207 returns an error meaning that the
block no longer exists (block 335). It should be noted that a
block no longer existing means that the block no longer
belongs to the non-deterministic file system, namely, that the
block was allocated to a deterministic file and i1s no longer
relevant for our needs and cannot be written to.

FIG. 10 1s a flowchart 351 illustrating how the block
mampulating system 207 reads data from an existing block
within the block storage 40. As shown by block 352, the
block manipulation system 207 parses the received file
system command. The block manipulation system 207 then
checks whether the command 1s for reliable block operation
(block 353)

If the command i1s not for reliable block operation,
namely, for non-deterministic block operation, the block
mampulation system 207 determines whether the block still
belongs to the non-deterministic file system by checking it
the block status 1s still “semifree” (block 354). It the block
1s still “semiiree,” the block manipulation system 207 reads
the “semifree” block (block 356) and returns the read data
from the read block to the user of the system 10 (block 357).
Alternatively, 11 the block 1s not “semiiree,” the block
mampulation system 207 returns an error meaning that the
block no longer exists (block 355).

FIG. 11 1s a flowchart 371 illustrating how the block
mampulating system 207 releases a block of data from the
block storage device 40. As shown by block 372, the block
mampulation system 207 parses the received file system
command. The block manipulation system 207 then checks
whether the command 1s for reliable operation (block 373).

If the command 1s not for reliable block operation,
namely, for non-deterministic block operation, the block
mampulation system 207 determines whether the block still
belongs to the non-deterministic file system by checking it
the block status 1s still “semifree” (block 374) and returns an
error (block 378). It the block 1s still “semifree.” the block

mampulation system 207 performs normal file system activi-

US 9,804,964 B2

11

ties for releasing a block (block 375). The block 1s then
marked as free for future use (block 376).

If the command 1s for determimstic file operation, the
block manipulation system 207 performs regular file system
activities for releasing a block (block 375). The block 1s then
marked as free for future use (block 376) and success 1s
returned (block 377).

In accordance with the first exemplary embodiment of the
invention, as described above, the file system 1s required to
be replaced, including the block storage handler of the prior
art. It should be noted, however, that 1n accordance with a
second exemplary embodiment of the invention, the present
cache system and method 1s implemented by a separate
method that does not involve the replacing of the file system.
The second exemplary embodiment of the invention 1is
described 1n detail below.

In this system of the second exemplary embodiment,
regular file system calls, namely, calls for reliable data
storage, are called directly to the existing file system API of
the prior art. The applications that require cache storage may
call a non-deterministic file system API (408), which acts 1n
parallel to the existing file system API. There also exists a
“listener module” (409), which listens on the standard
communication of the file system driver, while the alterna-
tive implementation module (410) uses the block device
driver to read and write directly to the storage device 40,
based on the information that the listener module collects.
As 1s known by those having ordinary skill in the art, a
module 1s a separate piece of software that 1s referred to as
an entity for simplicity.

FIG. 12 1s a block diagram illustrating a file system 400
in accordance with the second exemplary embodiment of the
invention. For exemplary purposes, FIG. 12 shows that there
are multiple applications, illustrated as application blocks
401, 402, and 403, that wish to manipulate files (store, write,
read, delete, or other function calls). The applications 401,
402, 403, call on a common, operating system level file
system API 404 that 1s capable of implementing the manipu-
lation commands. In addition to this API 404, the file system
400 contains the non-deterministic file system API 408 for
handling non-deterministic function calls. The applications
401, 402, 403 call non-deterministic function calls for
storing data that may be overwritten by other data stored on
a storage device 407, for example, cache data.

A file system driver 405, similar to the file system dniver
105 (FIG. 1) of the prior art, 1s called by the operating
system file system API 404. A listener module 409 creates a
map of the storage blocks in use by listening on the mnput of
a block storage handler and device driver 406 405 and by
querying the file system driver 405 for information regard-
ing data blocks. It should be noted that the listener module’s
role 1s to understand which blocks have been written to by
the operating system, and which are free, so that the alter-
native file system can operate 1n a correct fashion.

The listener module 409 keeps track of the data blocks
that the file system i1s using. For each read and write
command received, the listener module 409 updates a table
located within this 1s a table of metadata which 1s stored 1n
the storage device referred to heremn as the ND BLOCK
STORAGE DB, with a checksum of the block that 1s being
written or written to, and updates the table as “vernfied.” A
verified block 1s a block for which the non-deterministic
system 1s sure about the contents of the block. It should be
noted that imitially all blocks are marked as “unverified.”

FIG. 13 A provides a table of files, and FIG. 13B provides
a table of blocks, wherein each file 1s comprised of one or
more blocks. FIG. 13 A shows an example file called “pagel

10

15

20

25

30

35

40

45

50

55

60

65

12

cache,” which 1s comprised of 5 blocks (122, 123, 124, 926,
927). These blocks are listed 1n the table of FIG. 13B, where
for each such block a checksum 1s stored and a verified
“flag” exists. If the verified tlag 1s “YES,” 1t means that this
alternative file system knows that the checksum listed for the
block 1s correct. The alternative file system knows this by
either having read the block directly from the disk using the
block storage device, or by having listened to the regular file
accessing this block and computing 1ts checksum. If the
checksum 1s not verified, then prior to using this block 1n a
file manipulation, the system needs to read 1t from memory
to verily 1ts checksum. The checksum also exists in the table
of FIG. 13A for the following reason: FIG. 13B contains a
list of all the blocks that this alternative system has listened
to, whether they are part of a non-deterministic file or not.
The table of FIG. 13A lists the blocks of the non-determin-
1stic blocks, and their expected checksum. When accessing
a file, the system compares the checksum of each block 1n
FIG. 13A to the checksum of that block in FIG. 13B,

assuming that 1t 1s verified, since 11 1t 1s not—it first reads 1t
from the hard drive. Specifically, FIG. 13A and FIG. 13B

illustrate how the alternative embodiment stores information
regarding non-deterministic files and maps the file system.
FIG. 13A illustrates a mapping between file names to block
numbers and storing the checksum of each block for validity
checks. FIG. 13B illustrates a mapping between block
numbers that are in use by the table of FIG. 13A to their
checksum. The blocks of FIG. 13B are initially marked as
un-verified and as the checksum of the block numbers 1s
verified, the blocks are marked as verified. A verified block
1s a block whose checksum 1s known to the system and
marked 1n the table.

FIG. 14 1s a flowchart 411 illustrating the implementation
of the listener module 409. As shown by block 412, the
listener module 409 listens on the operating system file
system API 404 and continues to determine 1f a command of
a regular file system 1s received by the listening module 409
(block 413). There are various methods that may be used for
the listener module 409 to listen on the operating system,
one of them being to insert software between various
operating system components as a transparent proxy (i.e.,
piece of solftware that does nothing but relay messages back
and forth without modifying them), which listens to the
traflic going through the operating system. Upon seeing a
block command on a block that 1s of relevance to the system,
namely that appears as a block owned by a file in the table
of FIG. 13A, the listing module 409 marks the block as
verifled and stores 1ts checksum 1in the table of FIG. 13B
(block 414).

FIG. 15 15 a flowchart 421 illustrating actions performed
by the system of FIG. 12 when a new non-deterministic file
1s created. The number of blocks required for the new file 1s
calculated and each block that the file requires to allocate 1s
looped through (block 422). It should be noted that looped
through means that for each such block, the rest of the
actions are performed. As an example, 1f there are 10 blocks
to allocate, then 423, 424 and 425 are performed for each of
the 10 blocks. The blocks that are required for the new file
are then allocated (block 423). The allocated blocks are then
added to the table of FIG. 13A (ND FILE SYSTEM DB)
(block 424) 1n order to keep track of the blocks related to that
specific file. A determination 1s then made as to whether all
blocks that were required for the new file have been allo-

cated (block 425).
During allocation of the blocks (block 423), the block
storage device 407 1s asked to allocate a “best” space for an

empty block for the system (block 427). It should be noted

US 9,804,964 B2

13

that 1n systems where the block storage device can be asked
to allocate a block 1n a specific storage location, the heuristic
determines where the best place for the block would be by
learning the previous allocation patterns of the operating
system. In systems where the block device cannot be asked
to allocate 1n a specific storage location, the heuristic 1s not
active. In accordance with the alternative embodiment of the
invention, the “best” space 1s found by applying the heuristic
whose primary goal 1s to find a space for this block that 1s
assumed to be less likely to be overwritten soon by the
known file system, as an example, finding a space that 1s
distanced from other spaces that have recently been written
to. As shown by block 428, when each block 1s written, the
block 1t 1s added to the table of FIG. 13B (ND BLOCK
STORAGE DB) and marked as “verified.”

FIG. 16 A 1s a tlowchart 431 illustrating actions performed
by the system of FIG. 12 when wrnting to an existing
non-deterministic file. As shown by block 432, it 1s first
determined whether the file being written to 1s still valid. It
should be noted “valid” refers to all of the “semifree” blocks
that belong to the file not being overwritten/used by the
regular file system.

FI1G. 16B 1s a flowchart 441 further illustrating the step of
determining whether the file being written to 1s still valid. As
shown by block 442, all data blocks of the existing file, as
listed 1n the table of FIG. 13A (ND FILE SYSTEM DB) are
looped through. For each block, the system checks that the
checksum for the block matches the checksum in the table
of FIG. 13A (ND FILE SYSTEM DB) and that the block 1s
verified (block 443). During determining whether a block 1s
verified (block 444), 11 it 1s determined that the block 1s not
verified, the block 1s verified by reading the checksum of the
block through the file system driver 405 (block 448). The
checksum 1n the table of FIG. 13B (ND BLOCK STORAGE
DB) can then be updated (block 449).

As shown by block 445, a determination 1s then made as
to whether the checksum in the table of FIG. 13A (ND FILE
SYSTEM DB), which 1s the checksum that 1s expected to be
stored 1n the block, matches the checksum of the block 1n the
table of FIG. 13B (ND BLOCK STORAGE DB). If there 1s
a match, 1t means that the block physically stored contains
the data that was expected for the file. A determination 1s
then made to determine 1f all blocks of the file have been
verified (block 446). If all blocks have not been venfied the
process continues until all blocks have been verified, after
which the user 1s provided with confirmation of success
(block 447). Alternatively, as shown by block 450, if the
checksum 1s not the same, the block 1s removed from the
storage device 407 and an error 1s returned to the user (block
451).

Returming to FIG. 16A, a determination 1s made as to
whether when checking 11 the file was valid, an error was
returned (block 433). As 1s shown by block 434, 11 the file
1s not valid, an error 1s returned. If instead, the file 1s valid,
a determination 1s then made to determine if the size of the
file needs to be increased for the “write” action (block 435).
As shown by block 436, 1f the file size does need to be
increased, the increase 1s performed by allocating new
blocks. Then the blocks are added to the list of blocks
associated with the specific file (block 437). After creating
cach new block a determination 1s made as to whether more
new blocks are required (block 438). If the system has not
completed the creation of new block, new blocks are added.
Alternatively, data 1s written to all related blocks and the
table of FIG. 13B (ND_BLOCK_STORAGE_DB) 1s
updated with the checksum of the related blocks, after which
verification of the blocks 1s set to “yes” (block 439).

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 17A 1s a flowchart 461 1llustrating actions taken by
the system when a non-deterministic “file read” command 1s
received. As shown by block 462, all data blocks of the file
being read are looped through and each data block 1s
checked to see i1f 1t 1s still valid (block 463), meaning
whether the block still contains the data in which the user 1s
interested. FIG. 17B 1s a flowchart further illustrating the
step of determiming if a block 1s still valid.

Returning to FIG. 17A, 11 the block does not contain data
in which the user 1s interested 1n, all of the blocks of that file
are released from the tables of the database 407 (block 467),
the file 1s deleted from the table of FIG. 13A (ND_FILE-
_SYSTEM_DB) (block 468), and an error message 1s
returned to the user (block 469).

Alternatively, 1f the block does contain data 1in which the
user 1s 1nterested, the block 1s read and added to a bufler
(block 464). It should be noted that the non-deterministic file
may contain a number of blocks. When reading the file, all
blocks have to be read, and their aggregate content 1s the file
that the application wants to get from the system. For this
purpose, a buller 1s allocated at the onset of this action in
FIG. 17A, and 1ts contents are then returned to the user. A
determination 1s then made to see if all blocks of the file
being read have been considered (block 4635) and 1f so, a
completion notification 1s returned to the user (block 466).

As previously mentioned, the process of determining 1t a
block 1s valid 1s 1llustrated by the flowchart 471 of FIG. 17B.
As shown by block 472, the block of the file 1s read and the
checksum of the block 1s calculated. The calculated check-
sum of the block 1s compared to the recorded checksum of
the block (block 473). When comparing the checksums
(block 474), 1f the checksums are the same, the system
knows that the block 1s valid (block 477). Alternatively, i
the checksums are not the same, the block 1s known not to
be valid (block 476).

FIG. 18 1s a flowchart 481 illustrating the process of
releasing a file (deleting a file) from the non-deterministic
file system. As shown by block 482 the blocks of the file 1n
the table of FIG. 14A that are being released are looped
through. Each block of the file 1s removed from the table of
FIG. 13A and the table of FIG. 13B so that the blocks have
been removed from the storage device (block 483). A
determination 1s then made to see 11 all blocks have been

removed (block 484). If all blocks have not been removed,

blocks of the file in the table of FIG. 13A continue to be
released (block 482). Alternatively, 11 all blocks have been
removed, the file 1s removed from the table of FIG. 13 (block
485), after which the user 1s notified of successiul comple-
tion of the process of {ile releasing (block 486).

It should be noted that the present invention 1s intended to
cover other ways of implementing storage of cache on free
portions of the disk (storage device). As an example, the
names “free”, “used”, and *“‘semifree” need not be used, but
instead, other designations for blocks may be used, such as,
for example, but not limited to, a first, second, and third
category of storage blocks. As such, the first category of
storage blocks includes storage blocks that are available to
the system for storing data when needed, the second cat-
cgory of storage blocks includes storage blocks containing
application data therein, and storage blocks within the third
category of storage blocks includes storage blocks that are
storing cached data and that are available for storing appli-
cation data 11 no {irst category of storage blocks are available
to the system. One having ordinary skill in the art waill
appreciate that non-used blocks, as categorized by the pres-
ent system and method, are viewed by the user and appli-

cation as iree space.

US 9,804,964 B2

15

In addition to the abovementioned, 1t 1s noted that in
accordance with the present invention, 1t 1s possible for a
block to be 1n use by the non-deterministic system (1.¢.,
marked “semifree”), then used and released by the deter-
mimstic system (1.e., marked as used then free), and then
allocated again by the non-deterministic system (i.e.,
marked as “semifree” now). As a result, when the non-
deterministic system wants to read the data from this block,
the system would see that the block 1s “still” marked as
“semifree”, and the system would assume that the informa-
tion on the block 1s correct. In accordance with an alternative
embodiment of the mnvention, this situation can be fixed by
either storing the checksum of the block as metadata, or by
marking blocks as obsolete 1n the non-deterministic system
once the blocks been overwritten by the deterministic file
system.

It should be emphasized that the above-described embodi-
ments of the present invention are merely possible examples
of implementations, merely set forth for a clear understand-
ing of the principles of the invention. Many variations and
modifications may be made to the above-described embodi-
ments of the mvention without departing substantially from
the spirit and principles of the invention. All such modifi-
cations and variations are intended to be included herein
within the scope of this disclosure and the present invention
and protected by the following claims.

The 1nvention claimed 1s:

1. A method for using a resource by one or more appli-
cations, the resource comprising multiple resource compo-
nents that are individually accessed and controlled by an
operating system for being used by the one or more appli-
cations, each of the resource components 1s tagged using a
first tag, a second tag, or a third tag, and each of the resource
components 1s capable of being used by the one or more
applications for a first purpose and a second purpose, the
method comprising the steps of:

receiving, from an application by an operating system, a

request to use a resource component for the first
purpose; and

determining, by the operating system, 1f a first resource

component associated with the first tag 1s available 1n
the resource;

if a first resource component associated with the first tag

1s available, then:

selecting the first resource component associated with the

first tag;

using the selected first resource component by the appli-

cation for the first purpose; and

tagging the first resource component with the third tag;

receiving, from an application by an operating system, a

request to use a resource component for the second
purpose; and

determining, by the operating system, 1f a third resource

component associated with the first tag 1s available 1n
the resource;

i a third resource component associated with the first tag

1s available, then:

selecting the third resource component associated with the

first tag;

using the third resource component by the application for

the second purpose; and

tagging the third resource component with the second tag.

2. The method according to claim 1, further comprising
the step of changing a resource component tag from the
second or third tag to the first tag.

3. The method according to claim 1, further comprising
the steps of 1n response to the determining, by the operating,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

system, 1f the first resource component associated with the
first tag 1s available 1in the resource;

11 a first resource component associated with the first tag

1s not available in the resource, then:

selecting a second resource component associated with

the second tag; and

using the selected second resource component by the

application for the first purpose;

and tagging the second resource component with the third

tag.
4. The method according to claim 1, further comprising
the steps of:
determiming 1f a resource component associated with the
first tag or with the second tag 1s available for use; and

notifying the application if no resource component in the
resource 1s associated with the first tag or with the
second tag.

5. The method according to claim 4, wherein the notifying
includes returning an error code.

6. The method according to claim 1, wherein the resource
1s a data storage device, the resource components are data
storage blocks 1n the data storage device, and the first
purpose 1s storing data in the data storage blocks.

7. The method according to claim 6, wherein the second
purpose 1s storing cache data 1n the data storage blocks.

8. The method according to claim 6, wherein the first tag
1s associated with a data block available for storing data by
the application.

9. The method according to claim 6, wherein the second
and third tags are associated with a data block not available
for storing data by the application.

10. The method according to claim 1, wherein each
resource component 1s associated with an entry that com-
prises a component 1dentifier.

11. The method according to claim 10, wherein the
resource 1s a data storage device and the resource compo-
nents are data storage blocks 1n the data storage device, and
wherein each entry comprises a block index, a block check-
sum, and a verification field that indicates 1f the block
corresponding to the entry 1s verified.

12. The method according to claim 11, further comprising
the step of obtaining the entry associated with at least one of
the resource components entries.

13. The method according to claim 11, further comprising
the step of calculating a checksum for at least one of the
resource components.

14. The method according to claim 13, further comprising
the step of storing the calculated checksum for at least one
of the resource components.

15. The method according to claim 13, further comprising
the step of comparing a stored calculated checksum to the
calculated checksum.

16. The method according to claim 15 wherein if the
stored calculated checksum of a resource component
matches the calculated checksum of the resource compo-
nent, tagging the respective resource component as verified.

17. The method according to claim 15, wherein if the
stored calculated checksum of a resource component does
not match the calculated checksum of the resource compo-
nent, tagging the respective resource component as non-
verified.

18. The method according to claim 1, wherein at least part
of the steps interfaces an operating system using an oper-
ating system Application Programming Interface (API).

19. The method according to claim 1, wherein at least part
of the steps are based on, or use, intercepting a communi-
cation with an operating system.

US 9,804,964 B2
17

20. The method according to claim 19, wherein at least
part of the steps include using transparent proxy to the
operating system.

21. The method according to claim 19, wherein at least
part of the steps include communicating with a file system 5
of the operating system.

22. A non-transitory computer readable medium contain-
ing computer istructions that, when executed or interpreted
by a processor, cause the processor to perform the steps of
claim 1. 10

18

	Front Page
	Drawings
	Specification
	Claims

