12 United States Patent

US009794232B2

(10) Patent No.: US 9,794,232 B2

Shaw 45) Date of Patent: *Oct. 17, 2017
(54) METHOD FOR DATA PRIVACY IN A FIXED (358) Field of Classification Search
CONTENT DISTRIBUTED DATA STORAGE CPC ... HO4L 63/0428; HO4L 9/085; HO4L 9/0897;
GO6F 21/6218; GO6F 21/79
(71) Applicant: HITACHI DATA SYSTEMS (Continued)
CORPORATION, Santa Clara, CA
(US) (56) References Cited
(72) Inventor: David M. Shaw, Newton, MA (US) U.S. PATENT DOCUMENTS
: /2002 Hardjono
(73) Assignee: HITACHI DATA SYSTEMS 0,565,481 BL 3 Ard)
CORPORATION, Santa Clara, CA 0842523 BLT 12005 NIWa oo RS
(US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by O days. European Search Report received in European Application No.
This patent is subject to a terminal dis- 08769315 dated Jul. 30, 2014.
claimer. (Continued)
(21) Appl. No.: 14/812,297 Primary Examiner — Had1 Armouche
Assistant Examiner — Angela Holmes
(22) Filed: Jul. 29, 2015 (74) Attorney, Agent, or Firm — Mattingly & Malur, PC
(65) Prior Publication Data (57) ABSTRACT
US 2015/0341323 Al Nov. 26, 2015 A storage cluster of symmetric nodes includes a data privacy
scheme that implements key management through secret
Related U.S. Application Data sharing. The protection scheme preferably 1s implemented at
_ _ o install time. At install, an encryption key 1s generated, split,
(63) Continuation of application No. 13/908,002, _ﬁle(_l on and the constituent pieces written to respective archive
Jun. 3, 2013, now Pat. No. 9,143,485, which 1s a nodes. The key 1s not written to a drive to ensure that 1t
(Continued) cannot be stolen. Due to the secret sharing, any t of the n
nodes must be present before the cluster can mount the
(531) Int. CL drives. To un-share the secret, a process runs betore the
HO4L 29/06 (2006.01) cluster comes up. It contacts as many nodes as possible to
HO4L 9/08 (2006.01) attempt to reach a suflicient t value. Once it does, the process
: un-shares the secret and mounts the drives locally. Given
(Continued) e S .
) US. Cl bidirectional communication, this mount occurs more or less
(52) e | at the same time on all t nodes. Once the drives are mounted,
CPC ... HO4L 63/0428 (2013.01); GOoF 21/6218 the cluster can continue 1o hoot as normal.

(2013.01); GoO6r 21/79 (2013.01);

(Continued) 18 Claims, 4 Drawing Sheets
MDD DLeWARE
300
507 334 310 312 314
N \ N /
GATEWAY 1 | ’ ”
PROTOCOLS NES sMB ; Llrs HITP l 3’{, : ?, v
304~ AcCESS LAYER 0 N FIXED CONTENT FiLE SYSTEM WEB Ul SNMP
FILE TRANSACTION REQUEST MANAGER ADMINISTRATIVE ENGINE 322
AND ADMINISTRATION 394 -1 FILE TRANSACTION AND THROUGHPUT SYSTEM CONFIGURATION
3()% CORE SYSTEM STORAGE METADATA POLICY
COMPCNENTS MANAGER MANAGER NIANACER ™ 306
r// H(" - - - - -~ \m - - —
308 330 328
OPERATING SYSTEM *\ 136
[=E I/.llm‘f T = R | AR
[=HM)- (=Hm) (=HErmp (=]
=Em) (=Emp (=Ermp =)

332

US 9,794,232 B2
Page 2

(60)

(1)

(52)

(58)

(56)

2002/0129246 Al

Related U.S. Application Data

continuation of application No. 12/116,274, filed on
May 7, 2008, now Pat. No. 8,457,317.

Provisional application No. 60/916,478, filed on May
7, 2007,

Int. CIL.

GO6F 21/62
GO6F 21/79
GI11B 20/00

U.S. CL
CPC ... HO4L 9/085 (2013.01); HO4L 9/0897
(2013.01); G1IB 20/00086 (2013.01); GI1IB
2220/41 (2013.01); HO4L 63/0414 (2013.01);
HO4L 63/062 (2013.01); HO4L 2209/60
(2013.01)

(2013.01)
(2013.01)
(2006.01)

Field of Classification Search
U S P i e e et e e re s e aran 3R0/278

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
7,155,466 B2 12/2006 Rodriguez et al.
7,577,250 B2 8/2009 Damgaard et al.

9/2002 Blumenau et al.

2003/0074319 Al* 4/2003 Jaquette GOO6F 21/6218
705/51
2003/0084290 Al* 5/2003 Murty HO4L 63/0428
713/168

8/2003 Nadooshan et al.
6/2006 Zimmer et al.
11/2007 Merzlikine GO6F 12/1408

713/193

2003/0147535 Al
2006/0136713 Al
2007/0271471 Al*

OTHER PUBLICATTONS

Shamir et al., “How to Share a Secret”, ip.com Journal, West

Henrietta, NY, US, Mar. 30, 2007.

G.R. Blakley: American Federation of Information Processing Soci-
eties: “Safegaurding Cryptographic Keys”, Proceedings of the
National Computer Conference, New York, vol. 48, Jan. 1, 1979, pp.
313-317.

Singleton, J.P. et al.; “Data access within the Information Ware-

house framework”; IBM Systems Journal vol. 33 , Issue: 2; DOI:
10.1147/51.332.0300, Publication Year: 1994, pp. 300-325.

Dutta, K. et al.;*STORM: An Approach to Database Storage Man-
agement 1n Clustered Storage Environments™; Cluster Computing
and the Gnid, 2007. CCGRID 2007. Seventh IEEE International
Symposium on; DOIL: 10.1109/CCGRID.2007.110, Publication
Year: 2007, pp. 565-574.

Communication pursuant to Article 94(3) EPC received 1n corre-
sponding European Application No. 08 769 315.6 dated Nov. 27,
2015.

Menezes, A. et al., “Handbook of Applied Cryptography”, Oct. 1,
1996, pp. 489-541, Florida, US ISBN: 978-0-8493-8523-0, URL.:
www.cacr.math.uwaterloo.ca/hac.

Menezes, A. et al., “Handbook of Applied Cryptography”, Oct. 1,

1996, pp. 543-590, Florida, US ISBN: 978-0-8493-8523-0, URL.:
www.cacr.math uwaterloo.ca/hac.

* cited by examiner

U.S. Patent Oct. 17, 2017 Sheet 1 of 4 US 9,794,232 B2

EMAIL
ARCHIVE
l lll“ﬂEh AUDIO/ CHECK DOCUMENT CUSTOM
VIDED IMAGING MANAGEMENT APPLICATION
=]]
il e)

FILE SYSTEM

CLUSTER OF
HETEROGENEOUS HARDWARE | =BT} IIHIIIH FIG. |

U.S. Patent Oct. 17, 2017 Sheet 2 of 4 US 9,794,232 B2

200~ — 207

W 204

206

=B B =Tl

=l =l
02 —

|| |l

=B Bl _%l

=0 208

=F00n FIG. 2

|| |l
|| |l
602 KEY GENERATION
(keygen)
604 KEY WRITING
(keywrite)
KEY SERVING
006 (keyserv)
KEY CONFIGURATION
608 (keyconfig)

FIG. 6

US 9,794,232 B2

Sheet 3 of 4

Oct. 17,2017

U.S. Patent

AR
IR G _...m.m.l__
ITTE | __....m‘___
MR RS ___...m!__\;_...mﬂ__
Jet NILSAS DNILYHIAO
82¢ \ \ DEt 80¢
. /

9Z€ ~| HIOYNYIA HIOVNYIA HIOYNYA SININOJADD
A0 VLVAY1IN JOVHOLS NILSAS JHOD \@\om
NOILYHNSIANOD WILSAS LNdHONOHHL ANV NOLLOVSNYHL 314 L~ 728 NOILVHLISININGY ONY
270 INIONT JALLYHLISININGY HIOVYNYIN 1SINDIY NOILOVSNYHL T
JAINS N 9IM NILSAS 3114 INIINOD QIXi4 g BV SSIOOV~_ e
e _ B _ . N
028 gle | dUH SHI0 | 8INS SN AVAM3LYD
7 S S)
pLE ZLE 0LE pee 440
008 S ODOIA HIDYNVIN SNG

JUYMATGUIN

S DIA

Qv 110-87 1 Buisn pajdAioua s aaiyoly [E2

o, L St abesn 8beio)g m

snielg 1a1snyn |

US 9,794,232 B2

Ajjadoid Buiuoioun) Si siempley WalsAg m

TNV VATIRSREI o [e R I SNIBIS SJEMpIE]
M3IAID
- 50T WalSAS | .a SBUMBS | a UY2IBaS | a ADIjOY | & SABMAIED) | a SOPON | M/
.4
>
P
e .
7 vy DJH
SOPOU 910U UD UOWIaBD AJIaSAdY Duljielsul ¢z¢ aull Ad JapuBLLIWLOD 1B 04Nl 8/ 1880291 /1-¥0-/00¢
I~
= 082GY9£/006703/VV80079090781 2444 © [BUON Jneyd] UOoHBWIUOD 10} UMOUS SB AjJ0BX9 Ul Ay 8yl 3dAlal 3Sea|d
g
~
Y
> 08¢GY49E/006v03/VVEI2¥9090v 91444
- TUBAD AJBAODA) 13)SESIP B 0 95eD al)

U1 91GISSa22BUI JB]ISND By} UC Blep 2y}l Japusal ABw Asy Siul Jo
SSO7 "SUOIIONJISUI MOJISE AdY 3y} Jad JawW0ISnNd aul 0} JuaLwnoop aul
Alddns pue sA9y 9sal] 10] SUOIIONIISUL MOIISS PaJUBWINICD auy} Jad
UMOD A3y SIU] 911m asea|d ‘Aay u0ndAIous IN0A sI Buimol]io) ay|

apou [,G91 vy 1891261, | uo uoneiouabAay 03dA10 BuliNoaxa /| aul Ad'Jepuewiwod 18 O4NI ¥EL'80:61:9L Z1-¥0-2002
SaPOU 2]OUUB UO JEAI3S muﬁt\skﬂmx :oz&bocm mc_tﬂm (1 dUl] \ma.thcmEEou 1B O4N] mmmhmomawr /L L-70-007

U.S. Patent

US 9,794,232 B2

1

METHOD FOR DATA PRIVACY IN A FIXED
CONTENT DISTRIBUTED DATA STORAGE

BACKGROUND

Technical Field

The present mnvention relates generally to techniques for
highly available, reliable, and persistent data storage in a
distributed computer network.

Description of the Related Art

A need has developed for the archival storage of “fixed
content” 1n a highly available, reliable and persistent manner
that replaces or supplements traditional tape and optical
storage solutions. The term “fixed content” typically refers
to any type of digital information that 1s expected to be
retained without change for reference or other purposes.
Examples of such fixed content include, among many others,
¢-mail, documents, diagnostic images, check 1images, voice
recordings, film and video, and the like. The traditional
Redundant Array of Independent Nodes (RAIN) storage
approach has emerged as the architecture of choice for
creating large online archives for the storage of such fixed
content information assets. By allowing nodes to join and
ex1it from a cluster as needed, RAIN architectures insulate a
storage cluster from the failure of one or more nodes. By
replicating data on multiple nodes, RAIN-type archives can
automatically compensate for node failure or removal. Typi-
cally, RAIN systems are largely delivered as hardware
appliances designed from identical components within a
closed system.

FIG. 1 illustrates one such scalable disk-based archival
storage management system. The nodes may comprise dif-
ferent hardware and thus may be considered “heteroge-
neous.” A node typically has access to one or more storage
disks, which may be actual physical storage disks, or virtual
storage disks, as 1n a storage area network (SAN). The
archive cluster application (and, optionally, the underlying
operating system on which that application executes) that 1s
supported on each node may be the same or substantially the
same. The soltware stack (which may include the operating
system) on each node 1s symmetric, whereas the hardware
may be heterogeneous. Using the system, as illustrated in
FIG. 1, enterprises can create permanent storage for many
different types of fixed content information such as docu-
ments, e-mail, satellite 1mages, diagnostic 1mages, check
images, voice recordings, video, and the like, among others.
These types are merely 1llustrative, of course. High levels of
reliability are achieved by replicating data on 1independent
servers, or so-called storage nodes. Preferably, each node 1s
symmetric with its peers. Thus, because preferably any

given node can perform all functions, the failure of any one
node has little impact on the archive’s availability.

As described mm commonly-owned U.S. Pat. No. 7,153,
466, 1t 1s known 1 a RAIN-based archival system to
incorporate a distributed software application executed on
cach node that captures, preserves, manages, and retrieves
digital assets. FI1G. 2 1llustrates one such system. A physical
boundary of an 1individual archive 1s referred to as a cluster.
Typically, a cluster 1s not a single device, but rather a
collection of devices. Devices may be homogeneous or
heterogeneous. A typical device 1s a computer or machine
running an operating system such as Linux. Clusters of
Linux-based systems hosted on commodity hardware pro-
vide an archive that can be scaled from a few storage node
servers to many nodes that store thousands of terabytes of

10

15

20

25

30

35

40

45

50

55

60

65

2

data. This architecture ensures that storage capacity can
always keep pace with an organization’s increasing archive

requirements.

BRIEF SUMMARY

This disclosure provides a technique to improve data
privacy 1n a scalable disk-based archival storage manage-
ment system. In one embodiment, this object 1s achieved by
transparently encrypting content (and, if desired, metadata)
stored to the archive. This operation protects against the
content (and/or metadata) being recovered from stolen
archive media (e.g., a disk), or from being obtained improp-
erly by third parties (e.g., technicians, or other service
personnel) who have been granted access to the archive.

In an 1illustrative embodiment, the protection scheme
using a distributed key management solution based on a
“secret sharing” protocol. The basic i1dea behind secret
sharing 1s that a secret (i.e., a key) 1s broken into n pieces,
any t of which can be used to reconstruct the key. Preferably,
the protection scheme 1s implemented at install time. In
particular, at this time, the encryption key 1s generated, split,
and the constituent pieces written to the archive nodes. After
sharing, the key may be printed out but, typically, 1t will not
be stored to disk anywhere 1n the cluster. This ensures that
the key 1s not written to a drive that may be stolen or
otherwise compromised. Thus, 1n this embodiment, the key
1s generated and split into a set of shares, which shares are
then each sent to individual nodes. As noted above, due to
the secret sharing scheme, any t of the n nodes must be
present before the cluster can mount the drnives. Thus, to
un-share the secret, a process runs before the cluster comes
up. It contacts as many nodes as possible to attempt to reach
a suilicient t value. Once 1t does, the process un-shares the
secret and mounts the drives locally. Given bidirectional
communication, this mount occurs more or less at the same
time on all t nodes. Once the drives are mounted, the cluster
can continue to boot as normal.

The foregoing has outlined some of the more pertinent
features of the subject matter. These features should be
construed to be merely illustrative. Many other beneficial
results can be attained by applying the disclosed subject
matter 1n a different manner or by modifying the subject
matter as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the subject matter
and the advantages thereol, reference 1s now made to the
following descriptions taken 1n conjunction with the accom-
panying drawings, in which:

FIG. 1 1s a simplified block diagram of a fixed content
storage archive in which the disclosed subject matter may be
implemented;

FIG. 2 1s a simplified representation of a redundant array
of independent nodes each of which 1s symmetric and
supports an archive cluster application according to the
present 1nvention;

FIG. 3 1s a high level representation of the wvarious
components of the archive cluster application executing on
a given node;

FIG. 4 1llustrates an output of a key generation program
according to this disclosure;

FIG. 5 1llustrates how the system provides an indication
of the encryption according to this disclosure; and

US 9,794,232 B2

3

FIG. 6 1illustrates the programs that comprise an 1llustra-
tive embodiment.

DETAILED DESCRIPTION

As seen 1n FIG. 2, an illustrative cluster in which the
subject matter herein 1s implemented preferably comprises
the following general categories of components: nodes 202,

a pair ol network switches 204, power distribution units
(PDUs) 206, and uninterruptible power supplies (UPSs) 208.

A node 202 typically comprises one or more commodity
servers and contains a CPU (e.g., Intel x86, suitable random
access memory (RAM), one or more hard drives (e.g.,

standard IDE/SATA, SCSI, or the like), and two or more
network nterface (NIC) cards. A typical node 1s a 2 U rack
mounted unit with a 2.4 GHz chip, 512 MB RAM, and six
(6) 200 GB hard drives. This 1s not a limitation, however.
The network switches 204 typically comprise an internal
switch 205 that enables peer-to-peer communication
between nodes, and an external switch 207 that allows
extra-cluster access to each node. Each switch requires
enough ports to handle all potential nodes 1n a cluster.
Ethernet or GigE switches may be used for this purpose.
PDUs 206 are used to power all nodes and switches, and the
UPSs 208 are used that protect all nodes and switches.
Although not meant to be limiting, typically a cluster 1s
connectable to a network, such as the public Internet, an
enterprise 1ntranet, or other wide area or local area network.
In an 1illustrative embodiment, the cluster 1s implemented
within an enterprise environment. It may be reached, for
example, by navigating through a site’s corporate domain
name system (DNS) name server. Thus, for example, the
cluster’s domain may be a new sub-domain of an existing
domain. In a representative implementation, the sub-domain
1s delegated in the corporate DNS server to the name servers
in the cluster itself. End users access the cluster using any
conventional interface or access tool. Thus, for example,
access to the cluster may be carried out over any IP-based
protocol (HTTP, FTP, NFS, AFS, SMB, a Web service, or
the like), via an API, or through any other known or
later-developed access method, service, program or tool.

Client applications access the cluster through one or more
types of external gateways such as standard UNIX file
protocols, or HT'TP APIs. The archive preferably 1s exposed
through a virtual file system that can optionally sit under any
standard UNIX file protocol-oriented facility. These include:
NES, FTP, SMB/CIFS, or the like.

In one embodiment, the archive cluster application runs
on a redundant array of independent nodes (H-RAIN) that
are networked together (e.g., via Ethernet) as a cluster. The
hardware of given nodes may be heterogeneous. For maxi-
mum reliability, however, preferably each node runs an
instance 300 of the distributed application (which may be
the same 1nstance, or substantially the same instance), which
1s comprised of several runtime components as now 1llus-
trated i FIG. 3. Thus, while hardware may be heteroge-
neous, the software stack on the nodes (at least as 1t relates
to the present invention) i1s the same. These software com-
ponents comprise a gateway protocol layer 302, an access
layer 304, a file transaction and administration layer 306,
and a core components layer 308. The “layer” designation 1s
provided for explanatory purposes, as one of ordinary skaill
will appreciate that the functions may be characterized in
other meaningful ways. One or more of the layers (or the
components therein) may be integrated or otherwise. Some
components may be shared across layers.

10

15

20

25

30

35

40

45

50

55

60

65

4

The gateway protocols 1n the gateway protocol layer 302
provide transparency to existing applications. In particular,
the gateways provide native file services such as NFS 310
and SMB/CIFS 312, as well as a Web services API to build
custom applications. HI'TP support 314 is also provided.
The access layer 304 provides access to the archive. In
particular, according to the invention, a Fixed Content File
System (FCFS) 316 emulates a native file system to provide
tull access to archive objects. FCFES gives applications direct
access to the archive contents as i1 they were ordinary files.
Preferably, archived content i1s rendered 1n 1ts original for-
mat, while metadata 1s exposed as files. FCFS 316 provides
conventional views of directories and permissions and rou-
tine file-level calls, so that administrators can provision
fixed-content data in a way that 1s familiar to them. File
access calls preferably are intercepted by a user-space dae-
mon and routed to the appropnate core component (1n layer
308), which dynamically creates the appropriate view to the
calling application. FCFS calls preferably are constrained by
archive policies to facilitate autonomous archive manage-
ment. Thus, 1n one example, an administrator or application
cannot delete an archive object whose retention period (a
given policy) 1s still 1in force.

The access layer 304 preferably also includes a Web user
intertace (UIl) 318 and an SNMP gateway 320. The Web user
interface 318 preferably 1s implemented as an administrator
console that provides interactive access to an administration
engine 322 1n the file transaction and administration layer
306. The administrative console 318 preferably 1s a pass-
word-protected, Web-based GUI that provides a dynamic
view ol the archive, including archive objects and individual
nodes. The SNMP gateway 320 oflers storage management
applications easy access to the administration engine 322,
enabling them to securely monitor and control cluster activ-
ity. The administration engine monitors cluster activity,
including system and policy events. The file transaction and
administration layer 306 also includes a request manager
process 324. The request manager 324 orchestrates all
requests from the external world (through the access layer
304), as well as internal requests from a policy manager 326
in the core components layer 308.

In addition to the policy manager 326, the core compo-
nents also include a metadata manager 328, and one or more
instances of a storage manager 330. A metadata manager 328
preferably 1s installed on each node. Collectively, the meta-
data managers 1n a cluster act as a distributed database,
managing all archive objects. On a given node, the metadata
manager 328 manages a subset of archive objects, where
preferably each object maps between an external file (“EF,”
the data that entered the archive for storage) and a set of
internal files (each an “IF”) where the archive data 1is
physically located. The same metadata manager 328 also
manages a set of archive objects replicated from other nodes.
Thus, the current state of every external file 1s always
available to multiple metadata managers on several nodes.
In the event of node failure, the metadata managers on other
nodes continue to provide access to the data previously
managed by the failed node. This operation 1s described in
more detail below. The storage manager 330 provides a file
system layer available to all other components 1n the dis-
tributed application. Preferably, 1t stores the data objects in
a node’s local file system. Each drive 1 a given node
preferably has 1ts own storage manager. This allows the node
to remove individual drives and to optimize throughput. The
storage manager 330 also provides system information,
integrity checks on the data, and the ability to traverse local
directly structures.

US 9,794,232 B2

S

As also illustrated in FIG. 3, the cluster manages internal
and external communication through a communications

middleware layer 332 and a DNS manager 334. The inira-

structure 332 1s an eilicient and reliable message-based
middleware layer that enables communication among
archive components. In an 1llustrated embodiment, the layer
supports multicast and point-to-point communications. The
DNS manager 334 runs distributed name services that
connect all nodes to the enterprise server. Preferably, the
DNS manager (either alone or 1n conjunction with a DNS
service) load balances requests across all nodes to ensure
maximum cluster throughput and availability.

In an 1illustrated embodiment, the ArC application
instance executes on a base operating system 336, such as

Red Hat Linux 9.0, Fedora Core 6, or the like. The com-

munications middleware 1s any convenient distributed com-
munication mechanism. Other components may include

FUSE (Filesystem in USErspace), which may be used for
the Fixed Content File System (FCFS) 316. The NFS
gateway 310 may be implemented by a standard nisd Linux
Kermnel NFS driver. The database in each node may be
implemented, for example, PostgreSQL (also referred to
herein as Postgres), which 1s an object-relational database
management system (ORDBMS). The node may include a
Web server, such as Jetty, which 1s a Java HTTP server and
servlet container. Of course, the above mechanisms are
merely 1llustrative.

The storage manager 330 on a given node 1s responsible
for managing the physical storage devices. Preferably, each
storage manager 1nstance 1s responsible for a single root
directory into which all files are placed according to 1ts
placement algorithm. Multiple storage manager instances
can be running on a node at the same time, and each usually
represents a different physical disk in the system. The
storage manager abstracts the drive and interface technology
being used from the rest of the system. When the storage
manager instance 1s asked to write a file 1t generates a full
path and file name for the representation for which 1t will be
responsible. In a representative embodiment, each object to
be stored on a storage manager 1s recerved as raw data to be
stored, with the storage manager then adding its own meta-
data to the file as 1t stores 1t to keep track of different types
of mmformation. By way of example, this metadata includes:
EF length (length of external file 1n bytes), IF Segment size
(size ol this piece of the Internal File), EF Protection
representation (EF protection mode), IF protection role
(representation of this internal file), EF Creation timestamp
(external file timestamp), Signature (signature of the internal
file at the time of the write (PUT), including a signature
type) and EF Filename (external file filename). Storing this
additional metadata with the internal file data provides for
additional levels of protection. In particular, scavenging can
create external file records 1n the database from the metadata
stored 1n the internal files. Other policies can wvalidate
internal file hash against the internal file to validate that the
internal file remains intact.

Internal files may be “chunks” of data representing a
portion of the original ““file” 1n the archive object, and they
may be placed on different nodes to achieve striping and
protection blocks. This breaking apart of an external file 1nto
smaller chunked units 1s not a requirement, however; 1n the
alternative, internal files may be complete copies of the
external file. Typically, one external file entry 1s present in a
metadata manager for each archive object, while there may
be many internal file entries for each external file entry.
Typically, mternal file layout depends on the system. In a

10

15

20

25

30

35

40

45

50

55

60

65

6

grven implementation, the actual physical format of this data
on disk 1s stored 1n a series of variable length records.

The request manager 324 1s responsible for executing the
set of operations needed to perform archive actions by
interacting with other components within the system. The
request manager supports many simultancous actions of
different types, 1s able to roll-back any failed transactions,
and supports transactions that can take a long time to
execute. The request manager also ensures that read/write
operations 1n the archive are handled properly and guaran-
tees all requests are 1 a known state at all times. It also
provides transaction control for coordinating multiple read/
write operations across nodes to satisfy a given client
request. In addition, the request manager caches metadata
manager entries for recently used files and provides bufler-
ing for sessions as well as data blocks.

A cluster’s primary responsibility is to store an unlimited
number of files on disk reliably. A given node may be
thought of as being “unreliable,” 1n the sense that 1t may be
unrcachable or otherwise unavailable for any reason. A
collection of such potentially unreliable nodes collaborate to
create reliable and highly available storage. Generally, there
are two types of information that need to be stored: the files
themselves and the metadata about the files.

Data Protection

According to the subject matter described herein, a data
privacy scheme encrypts content and metadata written to an
individual node in the archive. The technique preferably
implements key management through secret sharing. In one
embodiment, the protection scheme 1s implemented at install
time. At install, an encryption key 1s generated, split, and the
constituent pieces written to respective archive nodes. The
key 1s not written to a drive to ensure that it cannot be stolen
or otherwise compromised. Due to the secret sharing
scheme, any t of the n nodes must be present before the
cluster can mount the drives. Thus, to un-share the secret, a
process runs before the cluster comes up. It contacts as many
nodes as possible to attempt to reach a suflicient t value.
Once it does, the process un-shares the secret and mounts the
drives locally. Given bidirectional communication, this
mount occurs more or less at the same time on all t nodes.
Once the drives are mounted, the cluster can continue to
boot as normal.

In one embodiment, the encryption key 1s broken up and
distributed across a configurable number of nodes in the
archive. Preferably, a given drive has a key share associated
therewith, although there may not be a 1:1 correspondence
between key shares and drives. At a particular drive, the key
share transparently encrypts all content and metadata written
to the drive. Also, preferably a search index for the drive 1s
also encrypted. This technique provides data protection, and
it has an advantage of not requirement content to be
encrypted (e.g., using a third party application) external to
the archive itsell. In this manner, the encryption 1s transpar-
ent to the user.

During install, preferably the generated key 1s displayed
so that the user can write the key down and save 1t 1n a sale
location (preferably external to the archive). The key can be
used to recover data from any disk in the archive, but
preferably it 1s not stored in the archive disks. Thus, pref-
erably the key 1s never written to disk but i1t only displayed
(and then only during initial install). The key preferably 1s
not available via the user interface or otherwise during use.
The key may be kept in locked memory (1.e., memory that
cannot be swapped) 1n the system and, as noted above, the
key can only be reconstructed by the system with a quorum
(e.g., n/2+1) of the drives. If the key cannot be reconstructed

US 9,794,232 B2

7

the cluster will not start and the data will not be accessible.
Preferably, the swap space on encrypted systems 1s also
encrypted to avoid data exposure.

The present invention protects against hardware (i.e.,
disk) thett, and/or entities that exceed permitted access to the
archive. Thus, for example, the feature 1s mntended to protect
against a thiel who can arrange physical access to the cluster,
removing hard drives (or even complete nodes) and leaving
with them. A goal 1s to render these stolen hard drives
useless to the thief.

On startup, before the disks are mounted, the key 1s
required. Rather than requiring manual or automated entry
of a passphrase (or the like), as noted above, the present
invention preferably implements a secret sharing protocol.
Secret sharing 1s a known cryptographic protocol, wherein a
secret 1s broken 1nto n pieces, any t of which can be used to
reconstruct the key. Preferably, each drive 1s installed with
one piece of the key. A thief (or other unauthorized person
or entity) would have to steal (or exceed access rights with
respect to) t drives before he or she could get access to usetul
data. Of course, the archive also 1s unable to come up
without t drives being present, so 1t 1s in the interest of the
archive user to balance t between convenience and security.
To un-share the secret, a process 1s executed before the
cluster comes up, but this sequence 1s not required. This
process should be run before the disks are mounted. The
process contacts as many other nodes as possible. Once 1t
reaches a suflicient t value, the process un-shares the secret
and mounts the drives locally. Using bidirectional commu-
nication (e.g. multicast or broadcast over a set of backend
links), this mount may take place at more or less the same
time on all t nodes. Once the drives are mounted, the cluster
continues to boot normally.

At a given disk, preferably an encrypted block device
driver 1s layered on top of an existing device. By layering the
driver on top of a disk partition, that partition becomes
encrypted as data 1s written. Likewise, data cannot be read
without the key.

The following provides additional details of the tech-
nique.

Details regarding secret sharing are described several
well-known publications, which are incorporated herein by
reference. These include: Shamir, “How to share a secret,”
Communications of the ACM, volume 22, pp. 612-613,
ACM, 1979, Blakley, “Sateguarding cryptographic keys,” in
Proceedings of AFIPS 1979, volume 48, pp. 313-317, June
1979.

A key 1s generated with a key generation (keygen) pro-
gram. The keygen program 602 (FIG. 6) reads a configura-
tion file to determine an appropriate key length (e.g., 32
bytes for a 256-bit key). Keys are random data. Keygen 602
takes several command line arguments, including a thresh-
old, which defines a minimum number of nodes that must be
present before the split key can be rejoined. If a threshold 1s
not provided, preferably a default 1s set equal to the number
of shares generated (1.e., the number of nodes). After thresh-
old, kevgen takes one or more IP addresses ol nodes to
which the key share(s) are to be sent. After sharing the key,
keygen prints out and/or displays (but does not store) the
generated key for escrow purposes. FIG. 4 1s illustrative of
this operation. As noted above, preferably neither the key
nor any key data i1s stored on any disk, where 1t might
otherwise be stolen or compromised. For example, the

tollowing represents a set of command line arguments:
Keygen—threshold 2 {10.1.1.10, 10.1.1.11, 10.1.1.1,

10.1113}

10

15

20

25

30

35

40

45

50

55

60

65

8

In this example, the key 1s split into four (4) shares that are
then sent to the four 1dentified nodes. Of course, 1n practice
there may be many more key shares. According to the key
sharing protocol, 1n this example, any two (2) of the nodes
are all that must be present before the cluster can mount the
drives. In practice, the threshold will be set at a higher value.

The key data sent by the keygen program 1s listened for
on each node by a second program that manages key writing.
This program, called keywrite 604, writes the key data to a
given configuration file (e.g., /crypt-share on the node.
Preferably, keywrite 1s started by the install and once 1t
writes the share file, the program exits. As keywrite 604
preferably does not run under normal circumstances (1.e., at
other than install), this provides an extra barrier against
accidental re-keying of the cluster. In effect, keywrite 1s
essentially a file copy program. Preferably, and as with the
other programs that facilitate the encryption scheme, the
keywrite program 604 cannot perform a memory swap.
Once the share data 1s dropped ofl, keywrite exits.

At boot-time, a daemon process, called keyserve, is
started. The keyserv process 606 preferably communicates
over multicast to send messages to other keyserv processes
on the cluster. Keyserv 606 reads the /crypt-share configu-
ration file and, like the keygen program, takes a threshold
argument. The keygen may or may not store the threshold 1n
the configuration file.

On the individual disk, an initialization script handles disk
mounting. According to the inventive scheme, an additional
initialization script 1s added and assigned a higher priority
(1.e., to run earlier). This script may be stored in a key
configuration (keyconfig) program 608. The keyconfig pro-

gram may also be used to specily which cryptographic
cipher (e.g., AES (also known as Rijndael), Anubis, Arc4,

Blowfish, Cast5, Cast6, DES, TripleDES, Khazad, Serpent,
TEA/XTEA/XETA, Twofish, and the like) to use for the
encryption. The encryption mode, regardless of cipher or
key length, preferably i1s cipher block chaining (CBC),
although this 1s not a requirement. In normal use, keyconfig
takes two arguments: the original device, and a new device
name. Keyconflg contacts keyserv and requests the key. IT
keyserv has the key already unshared, keyserv returns 1t. I
keyserv does not yet have the key, keyserv sends out a
multicast message to the other nodes asking for their shares,
which are then rejoined into the full key. One 1t has the key,
keyconfig creates a device-mapper entry, €.g., using a crypt
target. The new device name becomes the block device that
can then be used by the disk mounting script to mount the
drives. From that point onwards, this new device can be used
in any way that any block device can.

In general, there are no user or soltware visible changes
when encryption 1s on. Preferably, and as illustrated 1n FIG.
5, an indication 1s provided that the archive 1s encrypted,
along with the type of encryption. Preferably, mounted
drives go through the device mapper rather than mounting
the block device directly, although this 1s not generally
visible. Typically, an encrypted drive must go through the
device mapper to be useable.

Preferably, all programs that handle keys disable swap for
themselves to eliminate the possibility that key data may end
up 1n a swap partition. It 1s not required that programs run
as root.

Preferably, there are at least several nodes. This 1s because
the secret sharing algorithm requires at least two shares to
properly reconstruct and, further, because an encrypted
single node 1s likely to have enough keying information such
if the drive were stolen, the attacker could find the key. Keys
should be escrowed for emergencies, e.g., where the cluster

US 9,794,232 B2

9

tails below threshold. Of course, the data 1s only as secure
as the escrowed key, so secure storage of that key 1is
required. If desired, the system may include a key destruc-
tion routine or function. Thus, e.g., the system may incor-
porate a control switch or operation that, upon activation,
destroys the key shares (or some of them). The archive 1s
then shut down until the key shares can be restored from
backup. Of course, once the key 1s gone, the archive 1s not

then readable.

There are several variants that may be implemented
including, for example, encrypted swap, and encrypting the
above-identified programs.

Additionally, 1t 1s desired to provide a way to avoid
having to re-key the entire archive (or portions thereof) in
the event a key 1s compromised. To address this issue, the
system may use an encrypted key architecture, in eflect, a
session key. In particular, the technique described above
jo1ns together the various key shares into a single key, which
1s the one and only master key. According to this variant, the
various shares are joined into a session key, and that session
key 1s then used to decrypt the real key. Once decrypted, the
real key 1s used to mount the disks. The real key then 1s never
seen external to the archive. If there 1s a compromise of the
session key, that key 1s removed and another session key 1s
generated. A benefit of this approach 1s that the system can
be provided to a user with one session key, but that key then
can be changed by the user at will.

The subject matter herein facilitates the provision of an
archive management solution that i1s designed to capture,
preserve, manage, and retrieve digital assets. The design
addresses numerous requirements: unlimited storage, high
reliability, self-management, regulatory compliance, hard-
ware independence, and ease ol integration with existing
applications. Clusters of commodity hardware running
Linux (for example) provide a robust platform and a virtu-
ally unlimited archive. The system can scale, e.g., from a
few storage node servers to many nodes that store thousands
of terabytes of data. The unique architecture ensures that
storage capacity can always keep pace with an organiza-
tion’s increasing archive requirements.

While the above describes a particular order of operations
performed by certain embodiments, 1t should be understood
that such order 1s exemplary, as alternative embodiments
may perform the operations in a different order, combine
certain operations, overlap certain operations, or the like.
References 1 the specification to a given embodiment
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic.

While the subject matter has been described 1n the context
of a method or process, the subject matter also relates to
apparatus for performing the operations herein. This appa-
ratus may be specially constructed for the required purposes,
or 1t may comprise a general-purpose computer selectively
activated or reconfigured by a computer program stored 1n
the computer. Such a computer program may be stored 1n a
computer readable storage medium, such as, but 1s not
limited to, any type of disk including optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), magnetic or
optical cards, or any type of media suitable for storing
clectronic 1nstructions, and each coupled to a computer
system bus.

While given components of the system have been
described separately, one of ordinary skill will appreciate

10

15

20

25

30

35

40

45

50

55

60

65

10

that some of the functions may be combined or shared in
given 1nstructions, program sequences, code portions, and
the like.
As described above, the request manager component uses
the protection manager on ibound writes to archive and
also to fulfill policy repair operations when policy violations
are detected. While the request manager 1s preferred, other
components of the application may be used to support or
provide the protection manager functionality.
Having described the invention, what I now claim 1s as
follows.
What 1s claimed 1s:
1. A method for a system having a plurality of servers and
storing a plurality of content data and a plurality of meta-
data, the method comprising the steps of:
storing a first piece of an encryption key 1n a server of the
plurality of servers and one or more second pieces of
the encryption key 1n other servers of the plurality of
SeIvers;

sending, by the server, a message, which requests the one
or more second pieces of the encryption keys, to the
other servers;

recerving, by the server, the one or more second pieces of

the encryption key from the other servers;
reconstructing, by the server, the encryption key by using
the first piece stored in the server and the one or more
second pieces received from the other servers;
mounting, by the server, storage spaces of a drive using
the reconstructed encryption key; and
encrypting, by the server, the plurality of content data and
the plurality of metadata by using the reconstructed
encryption key.

2. The method according to claim 1, further comprising:

completing, by the server, to which the storage spaces of

the drive are mounted, a boot of 1tself.

3. The method according to claim 1, wherein the encryp-
tion key 1s associated with a given cipher.

4. The method according to claim 1, wherein the encryp-
tion key 1s not stored to a drive.

5. The method according to claim 1, wherein the encryp-
tion key 1s stored 1n a non-swappable memory.

6. A server, 1n a system having a plurality of servers and
storing the plurality of content data and the plurality of
metadata, the server comprising:

a memory being configured to store a first piece of an

encryption key;

a processor being configured to:

send a message, which requests one or more second

pieces of the encryption keys, to the other servers;
recerve the one or more second pieces of the encryption
key from the other servers;

reconstruct the encryption key by using the first piece of

the encryption key and the one or more second pieces
received from the other servers:

mount storage spaces of a drive using the reconstructed

encryption key; and

encrypt the plurality of content data and the plurality of

metadata by using the reconstructed encryption key.

7. The server according to claim 6, wherein the processor,
to which the storage spaces of the drive are mounted, 1s
configured to complete a boot of the server.

8. The server according to claim 6, wherein the encryption
key 1s associated with a given cipher.

9. The server according to claim 6, wherein the encryption
key 1s not stored to a drive.

10. The server according to claim 6, wherein the encryp-
tion key 1s stored in a non-swappable memory.

US 9,794,232 B2

11

11. A system storing a plurality of content data and a

plurality of metadata, the system comprising:

a plurality of servers, each of which includes a processor
and a memory, the memory being configured to store a
piece ol an encryption key;

wherein each of the servers 1s configured to:

send a message, which requests a plurality of pieces of the
encryption key, to the other storage nodes

receive the plurality of pieces of the encryption key from
the other servers;

reconstruct the encryption key by using the piece stored 1n
its own memory and the plurality of pieces received
from the other servers;

mount storage spaces ol a drive by using the reconstructed
encryption key; and

encrypt the plurality of content data and the plurality of
metadata by using the reconstructed encryption key.

12. The system according to claim 11, wherein each of the

servers, to which the storage spaces of the drive are
mounted, 1s configured to complete a boot of itsell.

10

15

12

13. The system according to claim 11, wherein the encryp-
tion key 1s associated with a given cipher.
14. The system according to claim 11, wherein the encryp-
tion key 1s not stored to a drive.
15. The system according to claim 11, wherein the encryp-
tion key 1s stored in a non-swappable memory.
16. The method according to claim 1, further comprising:
encrypting, by the server, a plurality of search indexes of
the plurality of content data and the plurality of meta-
data by using the reconstructed encryption key.
17. The server according to claim 6, wherein the processor
1s configured to encrypt a plurality of search indexes of the

plurality of content data and the plurality of metadata by
using the reconstructed encryption key.

18. The system according to claim 11, wherein each of the
servers 1s configured to encrypt a plurality of search indexes
of the plurality of content data and the plurality of metadata
by using the reconstructed encryption key.

¥ ¥ * ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

