US009786272B2

12 United States Patent (10) Patent No.: US 9.786,272 B2
Nagao 45) Date of Patent: Oct. 10, 2017

(54) DECODER FOR SEARCHING A DIGRAPH (56) References Cited
AND GENERATING A LATTICE, DECODING U.S. PATENT DOCUMENTS
METHOD, AND COMPUTER PROGRAM T -

PRODUCT 4,849,905 A 7/1989 Loeb et al.
7,110,621 B1* 9/2006 Greene GO6K 9/03
(71) Applicant: KABUSHIKI KAISHA TOSHIBA, 382/310
Minato-ku, Tokyo (IP) (Continued)
(72) Inventor: Manabu Nagao, Kanagawa (IP) FOREIGN PATENT DOCUMENTS
(73) Assignee: KABUSHIKI KAISHA TOSHIBA, P O1-147725 6/1989
JP 4241771 3/2009
Tokyo (IP) _
(Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATTONS

U.S.C. 154(b) by 174 days. G. Saon, et al. “Anatomy of an extremely fast LVCSR decoder,” in

Proceedings of the INTERSPEECH, 2005, pp. 549-552, Sep. 4-8,

(21) Appl. No.: 14/574,892 2005, Lisbon, Portugal.

(22) Filed: Dec. 18, 2014 (Continued)

Primary Examiner — Qian Yang

(63) Prior Publication Data (74) Attorney, Agent, or Firm — Amin, Turocy & Watson
US 2015/0179166 Al Jun. 25, 2015 LLP

(30) Foreign Application Priority Data (57) ABSTRACT
According to an embodiment, a decoder includes a token
DeC. 24,J 2013 (JP) 2013-266007 Opera‘[ing uni‘[:J q node a(:]_d_er:j and a Comection de‘[ec‘[on The
token operating unit 1s configured to, every time a signal or
(51) Imt. CL a feature is input, propagate each of a plurality of tokens,
GI0L 15/08 (2006.01) which 1s an object assigned with a state of the of a path being
GI10L 19/00 (2013.01) searched, according to a digraph until a state or a transition
(Continued) assigned with a non-empty input symbol 1s reached. The

node adder 1s configured to, in each instance of token

| propagating, add, 1n a lattice, a node corresponding to a state
CPC e G10L 15/08 (2013.01); GO6K 9/6297 assigned to each of the plurality of tokens. The connection

(2013.01); GIOL 157142 (2013.01); GIOL detector 1s configured to reter to the digraph and detect a
2015/081 (2013.01); GIOL 2015/085 (2013.01) node that 1s connected to a node added in an 1-th instance 1n

(58) Field of Classification Search the lattice and that is added in an i+1-th instance in the
CPC . G10L 15/08; G10L 15/142; G10L 2015/085; lattice.

G10L 2015/081; GO6K 9/6297
See application file for complete search history. 18 Claims, 14 Drawing Sheets

START
¢3101

QOBTAIN FEATURE

(52) U.S. CL

15
FEATLRE SUCCESSFULLY
OBTAINED?

YES 5103 ,|, <5108

" REPEAT FOR ALL TOKENS [REPEAT FOR ALL TOKENS
<5104 <5108
PROPAGATE TOKEN -CALCLLLATE SIGNAL SCORE
' UPDATE ACCUMULATION
<S105 SCORE
ADD WEIGHT OF PASSED 5110

TRANSITION TO
ACCUMULATION SCORE OF REPEAT FOR ALL TOKENS
TOKEN
<5106 (S111

ELIMINATE TOKENS HAVING
REPEAT FOR ALL TOKENS ACCUMULATION SCORE
WORSE THAN GERTAIN SCORE
¢ 3107
ELIMINATE DUPLICATION OF 5112
TOKENS ADD NODE TO LATTICE |

v ¢S113

DETECT CONNECTION
RELATIONSHIP

¢S114

5 QUTPUT RESULT /

END

US 9,786,272 B2
Page 2

(51) Int. CL

GI0L 15/14 (2006.01)
GO6K 9/62 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

7,711,561 B2 5/2010 Hogenhout et al.
7,895,040 B2 2/2011 Sakai et al.
8,275,730 B2 9/2012 Nagao
8.311,825 B2 11/2012 Chen
8,484,154 B2 7/2013 You et al.
8,744,836 B2 6/2014 Nagao
2010/0004920 Al1* 1/2010 Macherey GO6F 17/2818
704/4
2011/0270851 A1 11/2011 Mishina et al.
2013/0073503 Al 3/2013 Nagao
2013/0073564 Al 3/2013 Nagao
2013/0179158 Al 7/2013 Nakamura et al.
2014/0236591 Al1* 8/2014 Yueoooovvvnvinnnnn, G10L 15/083
704/230
2015/0179166 Al* 6/2015 Nagaoc....... G10L 15/08
704/221

FOREIGN PATENT DOCUMENTS

JP 4322815 9/2009
JP 2011-198126 10/2011
JP 2011-233023 11/2011
JP 4956334 6/2012
JP 4977163 7/2012
JP 5121650 1/2013
JP 2013-065188 4/2013
JP 2013-164572 8/2013

OTHER PUBLICATIONS

D. Povey, et al. “Generating exact lattices in the WEST framework,”

in Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’12), pp. 4213-4216, 2012.

S. J. Young, et al. “Token passing: A simple conceptual model for
connected speech recognition systems,” Cambridge University
Engineering Department, Jul. 31, 1989, 23 pages.

S. Phillips, et al. “Parallel speech recognition,” International Journal
of Parallel Programming, vol. 27, No. 4, 1999, Plenum Publishing
Corporation, pp. 257-288.

Y. Guo, et al. “Lattice generation with accurate word boundary in
WEST framework,” 5th International Congress on Image and Signal
Processing (CISP), 2012, pp. 1592-1595.

K. You, et al. “Parallel scalability in speech recognition,” IEEE
Signal Processing Magazine, Nov. 2009, pp. 124-1335, vol. 26, Issue
6.

J. Chong, et al. “Scalable HMM based inference engine in large
vocabulary continuous speech recognition,” IEEE International
Conference on Multimedia and Expo (ICME), 2009, pp. 1797-1800.
M. Novak. “Memory eflicient approximative lattice generation for
grammar based decoding,” in Proceedings of the INTERSPEECH
2003, pp. 573-576, Sep. 4-8, 2005, Lisbon, Portugal.

A. Ljolje, et al. “Eflicient general lattice generation and rescoring,”
in Proceedings of the EUROSPEECH 1999, pp. 1251-1254, vol. 3,

1999,
A. Lee, et al. “Large vocabulary continuous speech recognition

based on muliti-pass search using word trellis index,” The IEICE
Transactions on Information and Systems (Japanese Edition), 1999,
pp. 1-9, D-11, vol. 82-DII(1).

A. Lee, et al. “An eflicient two-pass search algorithm using word
trellis index,” 1n Proceedings of the International Conference on
Spoken Language Processing (ICSLP *98), 1998, pp. 1831-1834.
K. Hanazawa, et al. “An eflicient search method for large-vocabu-
lary continuous-speech recognition,” 1n Proceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’97), 1997, pp. 1787-1790, vol. 3.

F. K. Soong, et al. “A tree-trellis based fast search for finding the N
best sentence hypotheses i1n continuous speech recognition,” in

Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing (ICASSP ’91), 1991, pp. 705-708, vol. 1.

* cited by examiner

U.S. Patent Oct. 10, 2017 Sheet 1 of 14 US 9,786,272 B2

FI1G. 1

22

STORAGE

ALGORITHM OR
DATA (SCORE DIGRAPH (WFST)

FUNCTION)

12 gIGNAL OR 20
RECOGNITION

SIGNAL FEATURE OF
A FEATURE SIGNAL RESULT
EXTRACTOR DECODER

(NOILONN4 3H0ODS)
V1vad 4O WHL1IHOD 1V

US 9,786,272 B2

HOLVYINDIVD
3409S
e
- < | ¥3INNYd
-~
&
o JOVHOLS JOVHOLS 7t
g SOILLY] 430ddv 300N NIMOL
L /€
YOLVYNIWITI
S NoILyoIdna
I~
= HO19313d
M, INIY1S | NOILDINNOD
= T08INAS —
2 “— 1 9NILYY3do
1S4M NIMOL
W L& 7€
= 0 1S4M
P
~
e~
a®
7 .
- ¢ Ol

TVNOIS
40 ddN1Vdd
dO TVNOIS

U.S. Patent

Oct. 10, 2017

Sheet 3 of 14

FIG.3

START
S101
OBTAIN FEATURE

S102
1S

FEATURE SUCCESSFULLY
OBTAINED?

NO

YES S103
REPEAT FOR ALL TOKENS

S104

PROPAGATE TOKEN

S105

ADD WEIGHT OF PASSED
TRANSITION TO

ACCUMULATION SCORE OF
TOKEN

S106

REPEAT FOR ALL TOKENS

S107

ELIMINATE DUPLICATION OF
TOKENS

S113

DETECT CONNECTION
RELATIONSHIP

S114

QUTPUT RESULT

S108
REPEAT FOR ALL TOKENS

S109

CALCULATE SIGNAL SCORE

UPDATE ACCUMULATION
SCORE

S110
REPEAT FOR ALL TOKENS

S111

ELIMINATE TOKENS HAVING
ACCUMULATION SCORE
WORSE THAN CERTAIN SCORE

S112
ADD NODE TO LATTICE

US 9,786,272 B2

U.S. Patent Oct. 10, 2017 Sheet 4 of 14 US 9,786,272 B2

FIG.4

PO+ {{q,0.0gel} . f+0
2 while there 15 8 next feature vector

3 i ged featire vector
4 I+ 9
3 foreach t & L f

6 foreach e € outgoing(state{t))
" fnew < (n{r}, tace score(t) + wie}, ()
R T e T Hyew

Q 1 < U arg max 1w
geyer LEw el

I foreach t € 4

P tarp.score(f) & am.score(y, mput{incoming(state(f)}))
{2 tacc_seore{t) < tace scovelt) + tam_score{t)

3 _
Low,)ET

4 fe Fid

15 LIf| & {t € T itace scorelt) > wypay ~ Whenm b

16w,y 2

178 | {itw+ pla),0) | (g, w,0) € eps(state(t)), g € F}

FELf]

g : L ',1
18 if & =)
19 return {g, &)
20 (front, 7 Ty) &= argmax taco score{f) + w

(¢,,0}80)
21 while f > 0
22 fef-1
23 (nesst s Ehpst, 3 ¢ select {4, e) such that ¢ € L{f], e € cutgoing{state(t)),
n{e)} = state(tpew), tace score(t) + wie) + tam_score(thes:) = tace score{fhest)

24 By 4 IRPUL{Ehest) - Ty s Tw OUEPUE{Ehent,) - Py
25 reburn {@y, &y)

US 9,786,272 B2

| ALVLS ° w

M 0/oniq #q |

e/ 3 q w

- m w
. Z mtﬁmﬁ m 0' M
Te m 0/3:%q |
o Zeu Zzu ZLu m "
3 VER: m
v o m_._.d\._.wﬁ m .o -/ 3 :¥Q w
= . oper g
: m D
= y ALVLS " ° m
— m 0/37%q
1> m 7-/usalb : 3 m
O peu peu m m

G Ol

U.S. Patent

U.S. Patent Oct. 10, 2017 Sheet 6 of 14 US 9,786,272 B2

FIG.6

10

N

101 102 103 04
109

105 106 107 108
row | [ew

(NOILONNH 3H0DS)
V1ivVad 4O WHLIHO9OTV

1S4M YOLYINDIVD

US 9,786,272 B2

J400S

£e
dOLVNINWIE

s
< - T ¥aNnyd
>
GO
e~ JOVHOLS JOVHOLS
5 3OILLV T 43dQV IAON 9 “N3viol
=
7. A
HOLVNIWITS

— 3{NoILvoIdna
= ¥0103133
N ONIM 1S | NOILOINNOD
= T08INAS '
> S | ONILYH3IdO
S 1S4M NIMOL

W L A5

- Ot 1S4M
-
®
N
<
~ .
% L Ol
-

TVNOIS
40 JdN1v3d
dO TVNOIS

U.S. Patent Oct. 10, 2017 Sheet 8 of 14 US 9,786,272 B2

FI1G.S

o 2 : \
PLULE {f hogin ?‘ el
I lor ¢ from fepd ~ 1 10 frean

2 Liii « {t & Lli] | e € outgoing(state(t)). t, € Lii + 1, n{e) = state(t,),
tace.score(l) 4 wie) + tam.score(f,) = tace score{ty)}

FIG.9

i3

L e {t & L] e € outgolngl{state(d)), £, € Li{ 4+ 11, n(e) = state{ty,)

s
fI-

(NOILONNA 3HODS)
V1va 4O WHLIHO9DTV

dO1VINO1VO

US 9,786,272 B2

J400S

£e
d3ddv 04V
JO0IL1LVT

LG
=t - T ¥3INnud
=
GE
=) JOVHOLS JOVHOLS
g 3OILLV] &30dav 3dON NIMOL
7 Lt HOLYNIWITI
3 NoILvoIdna
= ¥0103133
S HNIM IS | NOILOINNOD
= TOFNAS —
= ~] ONILYY3dO
S 1S4M NIMOL
W A A5
0S 1S4M

U.S. Patent

TVNOIS
40 JdN1vdd
dO TVNOIS

U.S. Patent Oct. 10, 2017 Sheet 10 of 14 US 9,786,272 B2

FI1G.11

I+ last frame number, % ¢ make new node
D@, R §
O« | {{t.w+p(g). 0) (g, w,0) € eps(state())),y € F}
FEL S
if © = 0
return {D, R)

tacc_score{fy) +~ wmax {tacc.score(t) + w)

{({,w,)e8 '
Do 31 {ﬁ}
foreach {f, w0} € €
9 B+ Rl te,e,0,wb}, D DL}
10 T e {t]| (. € O}

bad B e

1A o

{1 while f > 0

12 fef-1

13 T, « {1 € Lifl| e € outgoing(state{t)). nle) € state{T)}
14 D« DUT,

13 foreach ¢ € 15,

16 foreach e € outgoing{state{l))

17 if n{e) & state(")
18 tn + select £ € T such that n{e) = state{t)

19 R e RU {(t, ty, input(e), output(e), wie) -+ tam score(t,)))}
20 I Uy

-
[3

21 retwrn (D, A)

US 9,786,272 B2

.4
y—
I
-
y—
y—
~
s
2 JOVHOLS
7, 3OILLVT
I~
y—
~ H010313a
= NI 1S | NOILOINNOD
— TOINAS
. ¢
.
&
- 1S4M

U.S. Patent

d43Addv 4dON

LE

JOVHOLS

|

€

NaXMOL

d010dT100

ddIHL

d4AdlAIA
ddIHL

d010dT100
H14dNO4

d4dlAId
HLldMNO4d

d4010371100
ANODIS

79

d4AdIAIQ
ANOD4S

€9

H0103dT100
154l

d3dIAIG LSdId

L ¥ ¥ ¥ F FE rE ¥ F ¥ F ¥ F ¥ ¥ IF N ¥F F ¥F E F ¥ ¥

HOLYIND VD
3d00S (NOILONNA
I3400S) V1va
4O WHLIHOD Y
HOLYINOIVO
3d00S IVNOIS
40 IUNLY3A
HO TVNOIS
HOLVYNINITS
NOILYDI7dNd
HOLYNINITI
NOILVYOI1dNd
TINN
ONILYHIdO | |
NIMOL m
ze5 "
T 1S4M

ONILVHAJO

NIHOL

U.S. Patent Oct. 10, 2017 Sheet 12 of 14 US 9,786,272 B2

F1G.13

74

WORKER
TASK THREAD

/1 TASK

MAIN THREAD

TASK

RESULT '
QUEUE 4

RESULT WORKER
THREAD

60
72
TASK QUEUE

U.S. Patent Oct. 10, 2017 Sheet 13 of 14 US 9,786,272 B2

FIG.14

1 L0} ¢ /g, 0.0)g eI}, fe 0 ne 0
2 while there 13 a next feature vector

3 v «— get feature vector
4 foreach Tian € split{ Lif])
5 push{ Qiacie, (Phasel, (Teun))), 7t ¢ 1+ 1

T 6
while 11 > 0
L~ T Upop{llresuii), n+n—1
foreach 7oy, € split(7) such that state(77) Mstate{Ty) == ¢ for any 73, Ty € split{7T')
16 push{Qiack, (Phase?, (Ten))), 72 ¢~ n 4 1
11 T @
12 while n > 0

o S B

O

13 L T Upoplllresnin), n+ 1 — 1
14 foreach T, € split{T)
15 push{Qiacr, (Phasel, (Tegn, v))), n ¢ n 4 4
16 T e) wpax + —0C
7 while 11 > 0
18 (T3, 100} ¢ pop{ Qresult), 12+ 10— 1
19 T - T UT,, Wyae ¢ max(Wmax, W)

20 feo fbl

21 foreach Ty, € aplit{7T')

22 push(Qiaa. (phased, (T, Wmax })), 1t ¢~ 1+ 1
23 Lifi+

24 while nn >)

25 Lifl < LIFiUpop{Qeesup). 12 ¢~ n— 1

20 3, ¢

27 © « {J {{t.w + plg), 0) | {g,w, 0) € eps{state(f)}}, g € F}
PEL

2R i O =

26 retum {s,€)

30 {Thest, = Bw) £ argmax tace.score(t) + w
{i,20.0)E0Q

31 while f > 0
32 fee ol
33 (fhests Chast } ¢ select {4,) such that £ € L{fl, e € outgoing{state{f)),
n{e) = state{ipest). taccscore(t) + wie) + tam.score{tpest) = taccscore(fpest)
34 gy 4 Iput{Cpest) Ty By ¢ OWIPUE Ehost) * T
35 return (T, T,)

U.S. Patent Oct. 10, 2017 Sheet 14 of 14 US 9,786,272 B2

FIG.15

101 while decoder i3 running

102 (’un ames Udata) R PU‘P(Q ¢ msk)

103 Upame = Phasel

104 (?n} A Udatn, ?-‘;1451-1"@' N L2

105 toreach ¢ € T,

106 foreach e € outgoing(state(t))
107 brew = ({e), tace.score(t) + wie), 0)
108 -[;mw § Inew L {fmu}

109 pugh{@mﬁmi't. : ’:I‘;wwj

110 i Upame = pPhase?

111 (11) ¢ Uasia

112 puSh Q.ﬁ'_ﬁrmﬂt: U y ArgInax wo
| iq}j{’ft {({ﬁ.&h-}@}fl

113 if Ugame = phased

114 U’ ts ’1}) s Udata

115 foreach t € T}

116 tam score(t) - am score(v, input{incoming{state{f)}}))
117 tace score(t) « tace score(t) - tam_score(t)

118 Wax ¢ MAX W

(o w, YET,
119 pugh{@reﬁuih ?{Tm Winax) }
120 i Upame = phased
121 (Tz Whnax) Udata
122 push {(Qresute. 11 & 13 | tacescore{t) > Winax — Whesmn §)

US 9,786,272 B2

1

DECODER FOR SEARCHING A DIGRAPH
AND GENERATING A LATTICE, DECODING
METHOD, AND COMPUTER PROGRAM
PRODUCT

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s based upon and claims the benefit of
priority from Japanese Patent Application No. 2013-266007,
filed on Dec. 24, 2013; the entire contents of which are
incorporated herein by reference.

FIELD

Embodiments described herein relate generally to a
decoder, a decoding method, and a computer program prod-
uct.

BACKGROUND

It 1s a known technology in which the pattern of input
signals 1s recognized and the signal sequence that has been
input 1s converted 1mnto a corresponding symbol string. For
example, there are known technologies such as the technol-
ogy for recogmzing speech signals; the optical character
recognition (OCR) technology 1n which characters are rec-
ognized from an 1mage in which the characters are written;
the technology for recognizing handwritten characters; and
the technology for recognizing a gesture or sign language
from an 1image. As a device for implementing such tech-
nologies, a decoder 1s known that searches a digraph which
1s formed by adding output symbols to a weighted finite state
automaton (for example, searches a weighted finite state
transducer).

A decoder for searching a digraph, such as a weighted
finite state transducer, can also generate a lattice during the
search. However, 1n such a decoder, as the search 1s carried
on, a large number of nodes and arcs need to be added 1n a
lattice. Moreover, 1n such a decoder, as the search 1s carried
on, there 1s an increase in the pointers or arcs which
represent the inter-node connections and which need to be
appropriately destroyed. For that reason, in a decoder
capable of generating a lattice during the search, the amount
of processing during the search becomes enormous.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a pattern recognition device
according to a first embodiment;

FIG. 2 1s a block diagram of a decoder according to the
first embodiment:

FIG. 3 1s a flowchart for explaining a sequence of pro-
cesses performed 1n the pattern recognition device according
to the first embodiment;

FIG. 4 1s a diagram illustrating a pseudo code for the
processes performed 1n the decoder according to the first
embodiment;

FIG. 5 1s a transition diagram illustrating the processes
performed 1n the decoder according to the first embodiment;

FIG. 6 1s a hardware block diagram of the pattern recog-
nition device according to the first embodiment;

FIG. 7 1s a block diagram of a decoder according to a
second embodiment;

FIG. 8 1s a diagram 1illustrating a pseudo code for the
processes performed 1n the decoder according to the second
embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 9 1s a diagram 1llustrating a modification example of
the pseudo code for the processes performed 1n the decoder

according to the second embodiment;

FIG. 10 1s a block diagram of a decoder according to a
third embodiment;

FIG. 11 1s a diagram 1illustrating a pseudo code for the
processes performed in the decoder according to the third
embodiment;

FIG. 12 1s a block diagram of a decoder according to a
fourth embodiment;

FIG. 13 1s a block diagram 1illustrating threads of the
decoder according to the fourth embodiment;

FIG. 14 1s a diagram illustrating a pseudo code for the
processes performed 1 a main thread; and

FIG. 15 1s a diagram 1llustrating a pseudo code for the
processes performed 1 a worker thread.

DETAILED DESCRIPTION

According to an embodiment, a decoder searches a
digraph and generating a lattice, partially or entirely, corre-
sponding to a signal that 1s mput or corresponding to a
teature of the signal. The digraph has an mput symbol and
an output symbol assigned to a state or a transition. The
input symbol 1s a score i1dentifier that represents at least
either an algorithm or data for calculating a signal score
from the signal or the feature. The decoder includes a token
operating unit, a node adder, and a connection detector. The
token operating unit 1s configured to, every time the signal
or the feature 1s input, propagate each of a plurality of
tokens, which 1s an object assigned with a state of the head
of a path being searched, according to the digraph until a
state or a transition assigned with a non-empty mput symbol
1s reached. The node adder 1s configured to, 1n each instance
ol token propagating, add, in the lattice, a node correspond-
ing to a state assigned to each of the plurality of tokens. The
connection detector 1s configured to refer to the digraph and
detect a node that 1s connected to a node added 1n an 1-th
instance (where 1 1s an integer equal to or greater than one)
in the lattice and that 1s added 1n an 1+1-th instance in the
lattice.

Premise

Firstly, the explanation 1s given about the technology and
the definitions serving as the premise of embodiments.

WEST

In the embodiments, a search 1s performed in a weighted
finite state transducer (WFST). Meanwhile, 1n the embodi-
ments, the explanation 1s given for an example 1n which a
WFEFST 1s used as a digraph. However, as long as input
symbols, output symbols, and weights are assigned to either
states or transitions; it 1s also possible to search another
digraph having a diflerent assignment pattern. Alternatively,
it 1s also possible to search a non-weighted digraph (same as
a digraph having the weights equal to zero).

In a WFST, a transition has an input symbol, an output
symbol, and a weight assigned thereto. A WEST 1s config-
ured as a 9-tuple (Q, E, 2, I', K, I, F, A, p) including a set
Q of states, a set E of transitions, a set 2 of input symbols,
a set I' of output symbols, a set K of weights, a set I of 1nitial
states, a set F of final states, an initial weight function A, and
a final weight function p. Moreover, a transition 1s config-
ured as a S-tuple (previous state, next state, input symbol,
output symbol, weight).

Examples of the set K of weights include a set of all
integers, a set of all real numbers, a set of all complex
numbers, a matrix, and a set of Booleans (0 and 1). Besides,
the set K of weights can be a set of non-positive real

US 9,786,272 B2

3

numbers or a set ol non-negative real numbers. Meanwhile,
corresponding to an 1nitial state q.el, the imitial weight 1s
expressed as A(q,). Similarly, corresponding to a final state
q,FL, the final weight 1s expressed as p(q,). The set 2 of input
symbols and the set I' of output symbols may include an
empty symbol € too.

Acoustic Model and Signal Score

For example, consider a case 1n which speech recognition
1s performed 1n a continuous manner using a WEST. In this
case, prior to performing a recognition operation, firstly, the
tollowing 1s prepared: an acoustic model for the purpose of
converting the feature of an mmput speech signal into small
units (such as phonemes) representing speech; a lexicon for
the purpose of converting small units (such as phonemes)
representing speech into words; and a language model for
the purpose of constraining the arrangement of words. Then,
each of those models 1s converted into a WFEST; and the
models represented as WEFSTs are combined. Herein, the
models can be combined into a single model. Alternatively,
some portion of the models may not be combined, and the
noncombined portion may be combined in a dynamic man-
ner during speech recognition.

Herein, the acoustic model 1s a model for the purpose of
calculating a score (an acoustic score or an output probabil-
ity) that indicates the degree of similarity between an 1nput
speech signal and a particular phoneme or a part of a
particular phoneme. In the case of performing character
recognition or gesture recognition too, such a model 1s used
in an 1dentical manner so as to calculate a score representing
the degree of similarity; and then pattern recognition 1s
performed. In the embodiments, including the case of per-
forming speech recognition, the value calculated using such
a model, that 1s, the value indicating the degree of similarity
between an input signal and an output symbol 1s called a
signal score.

HMM, feature, score function

While performing speech recognition, 1t 1s often the case
that a hidden Markov model (HMM) 1s used as an acoustic
model. Broadly, there are two methods for converting an
HMM 1into a WFST. In the first method, 1t 1s assumed that
the HMM 1s included in the transitions of the WEFST. In the
second method, the input symbols of the transitions are
assigned with score 1dentifiers that are used in 1dentifying an
algorithm (including a function, a computer program, a
table, or an array) for calculating the signal scores, or in
identifying data (including parameters), or 1n 1identifying an
algorithm as well as data.

In the embodiments, the explanation 1s given for a case in
which the search 1s performed using a WEFST converted
according to the second method. However, 1t 1s also possible
to use a WEFST converted according to the first method.

In order to calculate the signal scores from the acoustic
model, not only the score identifiers are required, but also
the mnput signal sequence or the feature of the input signals
1s required. There are times when the feature 1s made of a
plurality of values. In such a case, the group of a plurality of
features 1s called a feature vector. In the embodiments,
including the case 1n which the feature 1s made of a plurality
of values, the term feature 1s used.

In the embodiments, as the algorithm or the data for
calculating the signal scores, a score function 1s used. The
score Tunction takes a signal or the feature of a signal and a
score 1dentifier as arguments, and outputs a signal score. In
the case of performing speech recognition, the score func-
tion 1s called, for example, an acoustic score function.
Moreover, the score 1dentifier used 1n 1dentifying an acoustic
score Tunction 1s called an acoustic score function 1dentifier.

10

15

20

25

30

35

40

45

50

55

60

65

4

Also, there are times when the acoustic score function
identifier 1s called a probabaility distribution function i1den-
tifier.

Regarding the method by which the score function cal-
culates the signal scores, i1t 1s possible to implement any
arbitrary method. For example, in the case of performing
speech recognition, the method of calculating the signal
scores varies depending on the type of the applied HMM.
For a discrete HMM, based on a code vector corresponding
to the feature and the score identifiers, the score function
obtains the signal scores recorded 1n the form of a table or
an array. For a continuous HMM, based on a plurality of
parameters used in expressing the Gaussian distribution
obtained from the score i1dentifiers and based on the feature,
the score function calculates the signal scores. Alternatively,
the score function can calculate the signal scores using other
methods such as using a neural network.

Meanwhile, herein, the explanation of the model for
calculating the signal scores 1s given with reference to an
HMM as the example. However, as long as a digraph has the
score 1dentifiers assigned to the states or the transitions, a
model other than an HMM can also be used. For example,
it 1s possible to use template matching in place of an HMM.
Then, a template can be expressed in the form of a digraph,
and a function for calculating the distance between an 1nput

feature and the template can be treated as the score function.

Search

The process of searching a WEST implies calculating
such a series (a path) consisting of states and transitions for
which the value obtained by accumulating the signal scores
and the weights according to the mput signal sequence or the
feature sequence of signals 1s the best value. This accumu-
lated value 1s called an accumulation score. In the case 1n
which the WEFST has a language model combined therewith,
the score obtained from the language model 1s also included
in the accumulation score.

The path having the best accumulation score 1s generally
found using the Viterbi algorithm. Moreover, instead of
finding only the best path, there are times when the paths
from the best path to the N-th best path are found.

Consider a case in which the accumulation score 1s in the
form of the distance, and assume that it 1s better to have a
smaller distance. In that case, the process of finding out the
path having the best accumulation score 1s 1dentical to the
process of searching for the shortest path of a directe
acyclic graph 1in which, every time a speech signal 1s input,
one or more state and one or more transition are added.

Token Passing

In the process of searching for a path in a WFEST that 1s
converted from an HMM, a technology called token passing
1s often used. In this technology, an object called a token 1s
used. To the token 1s assigned the state of the head of the
path being searched. In the process of searching a WFEFST,
since a plurality of paths 1s searched 1n parallel, a plurality
of tokens 1s managed at the same time. Moreover, a token
holds the accumulation score of the path.

Every time a signal or a feature 1s mnput, the token 1s
propagated. That 1s, every time a signal or a feature 1s iput,
the state assigned to the token 1s changed according to the
transitions of the WEFST. In the case 1n which a single state
has a plurality of outgoing transitions, the token assigned
with that single state 1s duplicated for a number equal to the
number of outgoing transitions. Moreover, in the case in
which a plurality of tokens reach a single state; only one
token having the best accumulation score 1s held in principle
and the remaining tokens are destroyed.

US 9,786,272 B2

S

Lattice
In the embodiments, during the search of a WFST, a

lattice 1s generated. In the embodiments, a lattice 1s a graph
including nodes, or 1s a directed acyclic graph including
nodes and arcs. Herein, the terms nodes and arcs are used 1n
order to distinguish between states and transitions of a
directed graph (for example, a WFST) to be searched.

The nodes and the arcs of a lattice can have labels
assigned thereto. Moreover, the nodes and the arcs of a
lattice can have scores assigned thereto.

First Embodiment

Overall Configuration

FIG. 1 1s a diagram 1llustrating a configuration of a pattern
recognition device 10 according to a first embodiment. The
following explanation 1s given about the pattern recognition
device 10 according to the first embodiment.

The pattern recogmition device 10 recognizes the pattern
of input signals and outputs a recognition result. The signals
input to the pattern recognition device 10 can be of any type
as long as they represent patterns. Examples of the mput
signals include speech signals, signals representing hand-
writing, 1mage signals representing characters, or moving-
image signals representing gestures such as the sign lan-
guage.

The pattern recognition device 10 includes a feature
extractor 12, a decoder 20, and a storage 22.

The feature extractor 12 receives mput of signals repre-
senting a pattern, and obtains the feature of the signals at
regular time intervals. Then, the feature extractor 12 sends
the obtained feature of the signals to the decoder 20.

The feature represents information indicating the section-
by-section features of a signal, and 1s used by the decoder 20
in calculating the signal scores. When a speech signal is
received as input, the feature extractor 12 obtains the feature
in, for example, the unmits of 10 milliseconds (on a frame-
by-frame basis).

Meanwhile, the duration of signals that 1s used 1n calcu-
lating the feature need not match with the period of time of
outputting the feature. Moreover, 1n the case 1n which the
decoder 20 calculates the signal scores using the actual
signals, the feature extractor 12 can send segmented signals,
which are segmented at regular 1ntervals, to the decoder 20.

Every time the feature extractor 12 receives input of
signals or the feature of signals, the decoder 20 searches a
WFEST that has been created in advance. During the search,
the decoder 20 generates a lattice according to the input
signal sequence or according to the feature sequence of the
signals. When the input of the signals 1s completed; from the
lattice generated during the search and from the WFST, the
decoder 20 detects the path having the best accumulation
score and outputs, as the recognition result, an output
symbol string in which the output symbols present in the
detected path are connected.

Herein, as the output symbol string, the decoder 20 can
output, for example, a string of words, or a string of
phonemes, or a symbol string of smaller units than pho-
nemes. Alternatively, the decoder 20 can output a symbol
string having a combination of the strings mentioned above.

Moreover, 1n the first embodiment, during the search of a

digraph, the decoder 20 generates a lattice not including
arcs.

The storage 22 1s used to store a WEFST that has been
created in advance. The decoder 20 can constantly refer to
the WEST stored 1n advance 1n the storage 22 and perform
the search.

10

15

20

25

30

35

40

45

50

55

60

65

6

The storage 22 1s used to store either the algorithm, or the
data, or the algorithm and the data referred to for the purpose
of calculating the signal scores. In the first embodiment, the
storage 22 1s used to store a score function that takes a score
identifier and a signal or the feature of a signal as arguments,
and calculates a signal score. Moreover, 1n the first embodi-
ment, the state transition scores of the HMM that were not
assigned to the transitions of the WFST as weights can also
be stored in the storage 22 along with the score function.

Furthermore, the storage 22 can also be used to store, as
data, other information that 1s not stored in the WFST.

Herein, the decoder 20 searches a WEFST according to the
token passing method. While searching the WEFST, the
decoder 20 can call the score function with arguments 1n the
form of a score identifier obtained from the WEFST and a
signal or the feature of a signal; and calculate a signal score.
Moreover, the decoder 20 can obtain the weights of the
WFST from the storage 22. If the storage 22 is storing the
score function as well as the state transition scores of the
HMM, then the decoder 20 can obtain the state transition
scores too. With that, the decoder 20 can calculate the
accumulation score by accumulating the weights of the
transitions in the path being searched and the signal scores.
When the state transition scores of the HMM are available,
they can also be accumulated 1n the accumulation score.

Meanwhile, the mput symbols in the WEST, which 1s
stored 1n the storage 22, are assigned with the score 1den-
tifiers that are used 1n calculating the signal scores. More-
over, the WEFST 1s converted in advance in such a way that
the incoming transitions to a single state are assigned with
only one type of mput symbols.

Configuration

FIG. 2 1s a block diagram of the decoder 20 according to
the first embodiment. The decoder 20 includes a token
storage 31, a token operating unit 32, a score calculator 33,
a duplication eliminator 34, a pruner 35, a lattice storage 36,
a node adder 37, and a connection detector 38.

The token storage 31 i1s used to store one or more tokens.
Prior to the mput of a signal or the feature of a signal, the
token storage 31 1s used to store the tokens assigned with the
initial states.

Each of a plurality of tokens holds information 1indicating,
the state assigned thereto. As long as each of a plurality of
tokens and the state assigned thereto are stored 1n a corre-
sponding manner in the token storage 31, the association
between the tokens and the assigned states can be of any
arbitrary type.

Moreover, each of a plurality of tokens holds an accu-
mulation score obtained by accumulating the signal scores,
which are calculated from the mnput symbols (the score
identifiers) present 1n the path represented by the token, and
the weights (for example, the state transition scores)
assigned to the transitions in the path. Meanwhile, 1n the first
embodiment, the tokens do not hold the input symbols. That
1s because, as described later, the tokens can obtain the input
symbols by referring to the incoming transitions with respect
to the respective assigned states.

Furthermore, each of a plurality of tokens can also hold
context information. As an example, 1n the case 1n which the
search 1s performed while combining two WESTs 1n a

dynamic manner, the context information contains the state

of the head of the paths of the second WFST. Moreover, as
an example, 1n the case in which an output symbol string
assigned to the already-passed transitions 1s used as a part of
the feature; the context information can include that output
symbol string.

US 9,786,272 B2

7

Each state of the WFST 1s assigned to a single token in
principle. In the case 1n which the context information 1s also
included, a 2-tuple of the assigned state and the context
information 1s assigned to a single token. In that case,
consequently, each state of the WFST may get assigned to a
plurality of tokens.

Every time a signal or the feature i1s iput, the token
operating unit 32 propagates each of a plurality of tokens,
which 1s stored in the token storage 31, according to the
WFEST and until a transition assigned with a non-empty 1input
symbol 1s passed. Herein, propagating a token implies
changing the state assigned to the token to the next state. In
the case of searching a digraph 1n which the states have input
symbols assigned thereto, the token operating unit 32 propa-
gates a token until a state assigned with a non-empty input
symbol 1s reached.

In this case, 11 a state assigned with a token has a plurality
of outgoing transitions, then the token operating unit 32
creates a token corresponding to each of a plurality of
transitions and propagates each created token according to
the corresponding transition to the next state.

Every time the token operating unit 32 propagates the
tokens until a transition assigned with a non-empty input
symbol 1s passed, the score calculator 33 calculates the
signal score and the accumulation score with respect to each
of a plurality of tokens. More specifically, with respect to
cach of a plurality of tokens, the score calculator 33 calls the
score function that corresponds to the mput symbol (the
score 1dentifier) assigned to the transition which was passed
as a result of the previous propagation, and calculates the
signal score based on the mput symbol. Moreover, with
respect to each of a plurality of tokens, the score calculator
33 calculates the accumulation score by accumulating the
weilghts and the signal scores 1n the path represented by the
concerned token. Then, the score calculator 33 instructs the
tokens, which are stored 1n the token storage 31, to hold the
respective signal scores and the respective accumulation
scores. Meanwhile, 1n the case of searching a digraph not
having the weights attached thereto, the score calculator 33
does not perform processes related to the weights, and
calculates the accumulation scores with the weights set to
ZEro.

Every time the token operating unit 32 propagates the
tokens until a transition assigned with a non-empty input
symbol 1s passed, the duplication eliminator 34 eliminates
the duplication of tokens. More specifically, the duplication
climinator 34 eliminates the duplication of such two or more
tokens which have the same state assigned thereto. As an
example, the duplication eliminator 34 keeps only one token
having a suitable accumulation score and destroys the
remaining tokens out of the two or more tokens which have
the same state assigned thereto.

In the case 1n which a token holds the context information
too, the duplication eliminator 34 eliminates the duplication
of such two or more tokens which have the same state
assigned thereto and which hold the same context informa-
tion. With that, for example, 1n the case 1n which the search
1s performed while combining two WFSTs 1n a dynamic
manner, the duplication eliminator 34 becomes able to keep
such tokens which have the same state assigned thereto 1n
one WEST but have diflerent states assigned thereto in the
other WEFST.

Every time the token operating unit 32 propagates the
tokens until a transition assigned with a non-empty input
symbol 1s passed; the pruner 35 eliminates the tokens, from
among a plurality of tokens stored 1n the token storage 31,
which have the accumulation score worse than a certain

10

15

20

25

30

35

40

45

50

55

60

65

8

score. As an example, the pruner 35 eliminates the tokens
having the accumulation score worse by a certain score than
the best of the accumulation scores of a plurality of tokens.

The lattice storage 36 1s used to store a lattice. Prior to the
input of a signal or the mput of the feature of a signal, the
lattice storage 36 1s used to store an empty lattice. Then,
during the period in which the input of the feature 1is
ongoing, the lattice storage 36 1s used to store under-
generation lattices.

Every time the token operating unit 32 propagates the
tokens until a transition assigned with a non-empty input
symbol 1s passed; the node adder 37 adds, in the lattice
stored 1n the lattice storage 36, a node corresponding to the
state assigned to each of a plurality of tokens stored in the
token storage 31. In this case, the node adder 37 adds the
nodes 1n a corresponding manner to the number of times for
which a token 1s added 1n the lattice (that 1s, the number of
times for which a signal or the feature of a signal 1s 1nput).

Moreover, to each node to be added, the node adder 37
associates the following: (1) the accumulation score of the
source token; (2) the signal score of the source token; and (3)
the state of the head of the path represented by the source
token. Herein, the node adder 37 can associate each node
and the abovementioned information in any arbitrary man-
ner. For example, the node adder 37 can instruct the nodes
to hold the respective sets of information, or can store the
information in a separate table in a corresponding manner to
the nodes.

Upon completion of node addition (for example, upon
completion of the mput of a signal or the feature of a signal
or upon completion of the mput of a certain number of
signals or the feature of a certain number of signals), the
connection detector 38 refers to the lattice, which 1s stored
in the lattice storage 36, and to the WFST; and detects the
path having the best accumulatlon score from among the
paths established from the initial states to the final states.
Then, the connection detector 38 outputs a symbol string 1n
which the output symbols present 1n the best path are joined.

More specifically, the connection detector 38 refers to the
WFST and detects nodes that are connected to the node
added 1n the 1-th mstance (where 1 1s an integer equal to or
greater than one) in the lattice and that are added in the
1+1-th 1nstance 1n the lattice. That 1s, the connection detector
38 refers to the WFST and determines whether or not a
transition exists from the state of the WFST corresponding
to the node added 1n the 1-th istance in the lattice to the state
of the WFST corresponding to any one of the nodes added
in the 1+1-th 1instance. If such a transition exists in the WFST,
then the connection detector 38 detects that there exists a
node which 1s connected to the node added in the 1-th
instance in the lattice and which 1s added in the 1+1-th
instance in the lattice.

Herein, the node added 1n the 1-th instance i1s treated as a
first node, and a node connected to the first node and added
in the 1+1-th instance 1s treated as a second node. Then, the
connection detector 38 detects a path in which the value
obtained by adding the accumulation score associated to the
first node, the signal score associated to the second node, and
the weights 1n the path connecting the first node and the
second node 1s 1dentical to the accumulation score associ-
ated to the second node. In the case of searching a digraph
not having the weights attached thereto, the connection
detector 38 calculates the path with the weights set to zero.

Furthermore, the connection detector 38 detects the node
having the best accumulation score from among the nodes
added 1n the last instance. The detected node corresponds to
the end node of the best path. Then, by treating the detected

US 9,786,272 B2

9

node as the second node, the connection detector 38 per-
forms the process of detecting the connection relationship
and detects the first node 1n the best path. Then, by treating
the detected first node as the second node, the connection
detector 38 performs the same operation. Thus, 1n a reverse
sequential manner, the connection detector 38 repeatedly
performs the same process up to the node added in the first
instance 1n the lattice. Then, the connection detector 38
detects the best path from the node corresponding to the
initial state to the node corresponding to a final state, and
joins and outputs the output symbols present 1n the detected
best path. Alternatively, the connection detector 38 can be
configured to join and output the mput symbols present in
the detected best path. Still alternatively, the connection
detector 38 can be configured to join and output the 1nput
symbols as well as the output symbols present in the
detected best path.

Process Flow

FIG. 3 1s a flowchart for explaining a sequence of pro-
cesses performed by the decoder 20 according to the first
embodiment. Once the mput of a signal starts, the feature
extractor 12 extracts the feature from the signal and sends 1t
to the decoder 20. Then, the processes from Step S101 are
performed 1n the decoder 20.

Firstly, the decoder 20 obtains the feature from the feature
extractor 12 (Step S101). Then, the decoder 20 determines
whether or not the feature 1s successtully obtained (Step
S102). If the feature 1s successtully obtained (Yes at Step
5102), the system control proceeds to a loop process from
Step S103 to Step S106. Meanwhile, the decoder 20 can
perform the process at Step S102 before performing the
process at Step S101. In that case, at Step S102, the decoder
20 determines whether or not the next feature can be
obtained.

During the loop process from Step S103 to Step S106, the
decoder 20 performs the processes at Step S104 and Step
S105 with respect to each token. That 1s, the decoder 20
propagates the concerned token from the state assigned
thereto to the next state according to the transitions illus-
trated in the WEST (Step S104). In this case, the decoder 20
propagates the concerned token until a transition assigned
with a non-empty input symbol 1s passed. Then, the decoder
20 obtains the weights that are assigned to the transitions
passed by the concerned token, and adds the weights to the
accumulation score of the token (Step S105).

Once the loop process from Step S103 to Step S106 1s
completed, the system control proceeds to Step S107. Then,
the decoder 20 detects whether there exist two or more
tokens which have the same state assigned thereto (Step
S107). IT there exist such two or more tokens, then the
decoder 20 keeps only one token having the best accumu-
lation score and destroys the remaining tokens.

Then, a loop process from Step S108 to Step S110 1s
performed 1n the decoder 20. During the loop process from
Step S108 to Step S110, the decoder 20 performs the process
at Step S109 with respect to each token. That 1s, the decoder
20 calculates the signal score of the concerned token. Then,
the decoder 20 adds the signal score to the accumulation
score held by the concerned token, and thus updates the
accumulation score (Step S109).

Once the loop process from Step S108 to Step S110 1s
completed, the system control proceeds to Step S111. Then,
the decoder 20 eliminates the tokens having the accumula-
tion score worse than a certain score (Step S111).

Upon the completion of the process at Step S111, the
system control proceeds to Step S112. Then, the decoder 20
adds, 1n a lattice, a node corresponding to the state that 1s

10

15

20

25

30

35

40

45

50

55

60

65

10

assigned to each of a plurality of tokens (Step S112). In this
case, the decoder 20 associates each added node with the
signal score and the accumulation score of the correspond-
ing token and with the state of the head of the path
represented by the corresponding token.

Upon the completion of the process at Step S112, the
system control returns to Step S101. Herein, every time a
feature 1s mput, the decoder 20 repeats the processes from
Step S103 to Step S112.

Meanwhile, if the feature 1s not successiully obtained, that
1s, 11 the mput of signal ends (No at Step S102); then the
system control proceeds to Step S113.

Then, the decoder 20 refers to the lattice, which 1s stored
in the lattice storage 36, and to the WFST and detects the
path having the best accumulation score from among the
paths established from the initial states to the final states
(Step S113). Upon the completion of the process at Step
S113, the decoder 20 outputs, as the recognition result, a
symbol string 1n which the output symbols present in the
best path are joined (Step S114). The completion of the
process at Step S114 marks the end of the tlow of processes.

Pseudo Code

FIG. 4 1s a diagram 1illustrating a pseudo code for the
processes performed 1n the decoder 20 according to the first
embodiment. Thus, with reference to the pseudo code that 1s
illustrated 1n FIG. 4 and that 1s executed by the decoder 20,
the explanation 1s given about the detailed processes per-
formed 1n the decoder 20.

Herein, t represents a token, and T represents a set of
tokens. Moreover, L represents a lattice. Furthermore, 1
represents a iframe number. Thus, L[] represents a set of
nodes added 1n the frame having the frame number f{.

Moreover, state(t) represents the state assigned to the
token t. Furthermore, tacc_score(t) represents the accumu-
lation score held by the token t. Moreover, tam_score(t)
represents the signal score held by the token t. The three
clements, namely, the state, the accumulation score, and the
signal score that are assigned to the token t are expressed as
(state, accumulation score, signal score).

In this pseudo code, the processes are performed on the
premise that a greater score 1s more suitable. Alternatively,
if the function “max” 1n the pseudo code 1s changed to the
function “min”, and 1f the magnmitude relationship during the
comparison of scores 1s reversed; then the processes can be
performed on the premise that a smaller score 1s more
suitable.

Meanwhile, w,___ represents a score di
serves as the reference for pruning.

Moreover, € represents that a symbol string 1s empty.
When € represents an input symbol, 1t implies that no score
identifier 1s assigned to the mput symbol. In an 1dentical
manner, when € represents an output symbol; 1t implies that
the information output as the recognition result, such as
words, 1s not assigned to the output symbol.

In the first embodiment, a transition having € as the input
symbol 1s called an e transition or an empty transition.
Meanwhile, regarding a transition e, the next state 1is
expressed as n(e). Moreover, mput(e) represents the input
symbol of the transition e, and output(e) represents the
output symbol of the transition e. Furthermore, w(e) repre-
sents the weight of the transition e.

Usually, a WEFST has an iitial weight. However, in the
first embodiment, the initial weight of a WEFST 1s equal to
zero. That 1s because a WEFST can be modified 1n advance 1n
such a way that a single transition and a single state are
added with respect to a single nitial state and are assigned
to a transition having the nitial weight added thereto. It a

terence that

US 9,786,272 B2

11

pseudo code 1s to be written by taking into account the 1nitial
weight, then the mitial weight can be added to an accumu-
lation weight of tokens that 1s created at the first line.

Given below 1s the explanation of the operation per-
formed at each line. The decoder 20 performs the operations
written at each line of the pseudo code illustrated 1n FI1G. 4
in a sequential manner starting from the first line.

At the first line, the decoder 20 initializes the set of
tokens. Herein, as an example, the set of tokens can be
implemented using an array, a singly linked list, or a binary
tree. Meanwhile, since overlapping elements cease to exist
at the ninth line, the decoder 20 may or may not delete the
overlapping elements at the first line. Moreover, the decoder
20 mmitializes the frame number 1 to zero.

At the second line, the decoder 20 determines whether or
not the input of signals 1s completed. I1 the input of signals
1s completed, then the decoder 20 proceeds to the operation
at the 16-th line for outputting the result. However, 11 any
signal 1s yet to be processed, then the decoder 20 performs
the operations from the third line to the 13-th line.

At the third line, the decoder 20 receives, from the feature
extractor 12, the feature of the input signal; and substitutes
the feature 1into v. In the pseudo code, the feature 1s written
as feature vector.

At the fourth line, the decoder 20 initializes the set T of
tokens to an empty set.

The fifth line indicates that the operations from the sixth
line to the eighth line are performed for each token included
in the set L[1].

The sixth line indicates that the operations at the seventh
and eighth lines are performed for the outgoing transitions
from the state that 1s assigned with the token t.

A function “outgoing’ returns a set of outgoing transitions
from the state state(t) in the case in which the WEST does
not include € transitions.

However, when the WFST includes € transitions, the
function “outgoing” returns a set E_ that includes the out-
going transitions from the state state(t) excluding the €
transitions and includes the transitions which can be reached
by following e transitions from the state state(t) and which
do not have € as the input symbol. If there 1s a plurality of
paths to reach such a transition, then the function “outgoing’™
selects only one path i which the value obtained by
accumulating the weights 1s the greatest. In order to search
for the path 1n which the value obtained by accumulating the
weights 1s the greatest, 1t 1s possible to implement, for
example, the Dijkstra algorithm or the Bellman-Ford algo-
rithm.

Moreover, the Tunction “outgoing” modifies the weight of
cach transition ¢, included 1n the set E, into a value obtained
by accumulating the weights 1n the path from the state
state(t) to the transition ¢, (including the transition e,).
Moreover, the function “outgoing” modifies the output sym-
bol of each transition e, included 1n the set E_ 1nto a symbol
string 1n which the output symbols 1n the path from the state
state(t) to the transition e, (including the transition e,) are
linked.

In the case 1n which the paths up to the transition e,
include a plurality of output symbol strings all of which are
to be kept, the function “outgoing™ can be configured 1n the
following manner. Assume that x_ represents an output
symbol string 1n a particular path. Moreover, assume that w,,
represents a value obtained by adding the greatest weight,
from among the weights 1n the paths assigned with the same
output symbol string as the output symbol string x,, and the
weilght of the transition ¢, . Then, 1n the set to be returned as
the processing result, the function “outgoing™ adds a tran-

10

15

20

25

30

35

40

45

50

55

60

65

12

sition having the output symbol string x_, having the weight
w_. and having the remaining elements to be same as the
transition ¢, .

At the seventh line, the decoder 20 creates a new token
t . The state assigned to the token t__ 1s the next state of
the transition e. Moreover, the accumulation score of the
token t__ 1s a value obtained by adding the weight of the
transition ¢ to the accumulation score of the token t. Fur-
thermore, the signal score of the token t__ 1s zero.

At the eighth line, the decoder 20 adds the token t,__ .
which 1s created at the seventh line, to the set T of tokens.

At the ninth line, 1f there 1s a plurality of tokens having the
same state assigned thereto, the decoder 20 keeps only one
token having a suitable accumulation score and eliminates
the remaining tokens. In this example, the decoder 20 keeps
only one token having the best accumulation score. Upon the
completion of the operation at the ninth line, the number of
tokens having a single state assigned thereto 1s at most one.

The 10-th line indicates that the operations at the 11-th
and 12-th lines are performed for each token t included in the
set T of tokens.

At the 11-th line, the decoder 20 calculates a signal score
using a score function “am_score”, which takes a feature as
the first argument and takes a score i1dentifier as the second
argument, and returns a signal score. Then, the decoder 20
substitutes the value calculated using the score function
“am_score” 1n the signal score tam_score(t) of the token t.

A Tunction “mcoming” returns a set of incoming transi-
tions from the state state(t). There 1s a possibility that a
plurality of transitions can be obtained using the function
“mmcoming”. In the WFST used 1n the first embodiment, the
input symbols of all transitions are identical, and only a
single mput symbol (a single score identifier) 1s sent to the
score function. Meanwhile, if the input symbols of the
incoming transitions are associated 1n advance to the respec-
tive states, then the decoder 20 can refer to the association
and obtain the same result without having to perform the
process ol mput(incoming(state)).

At the 12-th line, the decoder 20 adds the signal score
tam_score(t), which 1s calculated at the 11-th line, to the
accumulation score tacc_score(t) of the token t.

The operations at the 13-th to 15-th lines indicate pruning,
of tokens and adding of the post-pruning tokens as nodes 1n
a lattice.

At the 13-th line, from among the accumulation scores of

the tokens included 1n the set T of tokens, the decoder 20
substitutes the best accumulation score in w__ .

At the 14-th line, the decoder 20 increments the frame
number 1 by one.

At the 15-th line, the decoder 20 eliminates, from the set
T of tokens, such tokens which hold the accumulation score
equal to or smaller than the value obtained by subtracting
w, . 1from w___. Moreover, the decoder 20 adds the
remaining tokens as nodes 1n the set L[{]. Herein, w,___ can
either be a fixed value set 1n advance or a value calculated
in such a way that the number of tokens 1s within a certain
number. Meanwhile, the method of performing prumng
according to the number of tokens 1s called histogram
pruning. In the first embodiment, the tokens and the nodes
are treated as same objects. However, 11 a node can hold the
information on the accumulation score, the signal score, and
the assigned state that 1s included 1n a token; then the tokens
and the nodes need not be treated as same objects.

The operations from the 16-th line to the 25-th line
indicate obtaiming a first-ranked result from the lattice.

US 9,786,272 B2

13

At the 16-th line, the decoder 20 initializes a variable x_,
which 1s used to hold an 1nput symbol string, with an empty
string.

At the 17-th line, the decoder 20 performs the following
operation with respect to each node t included 1n the set L[{]
and substitutes the result 1n ©.

Firstly, the decoder 20 calls a function “eps” with the
argument in the form of the state assigned with the node t.
The function “eps” finds a state q that can be reached from
the state assigned with the node t by following only €
transitions, finds a weight w of the path having the greatest
weight from among the paths to the state g, and finds an
output symbol string o of the path having the greatest
weight; and returns them as a 3-tuple (g, w, o). In the
3-tuples returned by the function “eps™, a 3-tuple including
the state assigned with the node t 1s also included. When the
state q 1s the state assigned with the node t, then the weight
w 1s zero and the output symbol string o 1s €. Once the result
1s returned from the function “eps”, the decoder 20 adds a
3-tuple (t, w+p(q), 0) 1n & only when the state q 1s a final
state. When the processes are performed for all nodes t, the
nodes that reach the final states are recorded as part of
3-tuples 1n ®. Meanwhile, the configuration can be such that
the determination of whether or not a state 1s a final state 1s
performed in the function “eps™ so as to ensure that the states
q returned by the function “eps™ are all final states.

At the 18-th line, the decoder 20 determines whether or
not © 1s an empty set. If ® 1s an empty set, then there 1s no
path reaching a final state. In that case, at the 19-th line, the
decoder 20 returns an empty string as the recognition result.
That marks the end of the processes of the pseudo code.

On the other hand, 1 ® 1s not an empty set, then the
system control proceeds to the operation at the 20-th line. Of
the nodes recorded 1n ®, the decoder 20 substitutes, in ¢, __,
the node having the greatest value obtained by adding the
weilght of the best path, from among the paths starting from
the states assigned with the nodes to a final state, and the
accumulation score of the nodes. Moreover, the decoder
substitutes, 1 x,,, an output symbol string recorded 1n the
same 3-tuple as the concerned node, that 1s, an output
symbol string obtained by joining the output symbol strings
present in the best path from among the paths starting from
the states assigned with the nodes to a final state.

The 21-st line indicates that the operations from the 22-nd
line to the 24-th line are performed in a repeated manner
while the frame number 1 1s greater than zero.

At the 22-nd line, the decoder 20 decrements the frame
number by one.

At the 23-rd line, 1 t represents a node included in the set
L[{], the decoder 20 substitutes the node t and the transition
¢, which satisiy the following two conditions, into t,__. and
€, respectively.

The first condition 1s that the next state of the transition
obtained using the function “outgoing” from the state
assigned with the node t matches with the state assigned with
the node t,__..

The second condition 1s that the value obtained by adding,
the weight of the transition created using the function
“outgoing”, the accumulation score of the node t, and the
signal score of the node t,__, 1s equal to the accumulation
score of the node t,__. In other words, the decoder 20 again
performs the calculation at the seventh line and the 12-th line
and searches for such a node t and such a transition ¢ that
enable replication of the node t,_ . Since the nodes do not
hold a back pointer unlike 1n the conventional technology,
the decoder 20 needs to perform such recalculation. In the
case 1n which there 1s a plurality of nodes and a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

14

transitions satisfving the two conditions mentioned above,
the decoder 20 can select any one node and any one
transition. That 1s because, regardless of the selected node
and the selected transition, the best accumulation score 1s
achieved.

At the 24-th line, the decoder 20 joins the mput symbol of
the transition ¢,_ ., which 1s obtained at the 23-rd line,
anterior to the input symbol string x_. Moreover, the decoder
20 joins the output symbol of the transition e, __, which 1s
obtained at the 23-rd line, anterior to the output symbol
string x . Herein, at the 24-th line, each dot “*” represents
joming of a symbol anterior thereto and posterior thereto.

When the operations are completed up to the frame
number 1=0, that 1s, up to the first node; the decoder 20
proceeds to the operation at the 25-th line. Then, at the 25-th
line, the decoder 20 returns the input symbol string x, and
the output symbol string x as the result of speech recog-
nition. Meanwhile, 1f the mnput symbols represent the states
of an HMM, then the input symbol string x_ becomes a
sequence of states of the HMM.

In the pseudo code described above, using the frame
numbers 1; the sets of nodes are 1dentified with L[{]. How-
ever, mstead of using the frame numbers, the sets of nodes
can be held as elements of a singly linked list or a doubly
linked list. At the 21-st line to the 24-th line, the operations
are performed by decrementing the frame number 1 by one.
Hence, 11 a singly linked list or a doubly linked list 1s used,
then the decoder 20 can perform the same operations by
tracing each node 1n the list.

Example of Operations

FIG. 5 1s a transition diagram illustrating an example of
the processes performed 1n the decoder 20 according to the
first embodiment. Herein, assuming that the decoder 20
performs processes according to the pseudo code illustrated
in FI1G. 4, the specific explanation 1s given for the manner 1n
which a lattice 1s created and the manner 1n which the best
path 1s found using the lattice and the result 1s output.

In FIG. §, the left side portion enclosed within dashed
lines represents a WEST searched by the decoder 20. In that
WFST, circles represent states, and the numbers written 1n
the circles represent state numbers. Moreover, the circle
drawn with a heavy line represents an 1mitial state. Further-
more, the double-lined circle represents a final state. More-
over, arrows represent transitions. The character string writ-
ten close to each arrow i1s separated using *:” and “/”.
Herein, on the left side of *“:” 1s written the input symbol.
Moreover, between *“:” and *“/” 1s written the output symbol.
Furthermore, on the right-hand side of */” 1s written the
weilght.

In FIG. 5, the right side portion not enclosed within the
dashed lines represents a lattice that 1s obtained as a result
of mputting the feature thrice. The rectangles having
rounded corners represent nodes. On the top left part of each
node, a label such as n12 1s written. The nodes are illustrated
in order of addition from the left side to the right side. The
assigned states are 1llustrated along the vertical direction of
the node positions. From the bottom portion, a state 1 to a
state 4 are 1illustrated in that order.

Inside each node, s, . represents the accumulation score,
and s, represents the signal score. If t represents a token
that 1s not yet added as a node in the lattice, then s,
corresponds to tacc_score(t) and s, corresponds to tam_
score(t). Meanwhile, in the example illustrated in FIG. 5,
w, 15 set to five.

US 9,786,272 B2

15

At the first line of the pseudo code illustrated 1n FIG. 4,
the decoder 20 adds a node n01 to the set L|0]. At that time,
the accumulation score as well as the signal score 1s equal to
zero. At the third line, the decoder 20 receives the feature for
the first time. At the fourth line, the decoder 20 adds an
empty set to the set T. Consequently, T={ } holds true.

From the fifth line to the eighth line, the decoder 20
propagates the tokens according to the feature received in
the first instance. Since the previous token 1s stored as a node
in the set L[0], 1t corresponds to the node n01. Thus, from
the fifth line to the eighth line, the tokens are propagated to
the state 2 and the state 3 via the outgoing transitions from
the state 1 of the WFST assigned with the node n01.
Moreover, to the accumulation score 1s added the weights of
the transitions that have been passed. Consequently, the
token assigned to the state 2 has the accumulation score “0”.
Similarly, the token assigned to the state 3 has the accumu-
lation score “-3”.

At the ninth line, since a plurality of tokens 1s not assigned
to the same state, the decoder 20 does not perform any
processes.

From the 10-th line to the 12-th line, the decoder 20
calculates the signal scores and the accumulation scores, and
stores them in the tokens. Assume that the signal scores
calculated from the feature, which 1s received in the first
instance, are am_score (v, b,)=-3 and am_score (v, by)=2.
In that case, the accumulation score of the token assigned to
the state 2 becomes equal to —-3; while the accumulation
score of the token assigned to the state 3 becomes equal to
-3. Moreover, the signal score of the token assigned to the
state 2 becomes equal to -3; while the accumulation score
of the token assigned to the state 3 becomes equal to -2.

During the operations from the 13-th line to the 15-th line,
the decoder 20 performs pruning of tokens. However, since
w, =5 holds true, none of the tokens 1s pruned at this point
of time.

At the 15-th line, the decoder 20 adds the tokens as nodes
in the set L. Consequently, L[1]={(2, 3, -3), (3, -5, -2)}
holds true. With reference to FIG. 5, nodes n12 and n13 are
added to the set L[1].

Then, returning to the third line, the decoder 20 receives
the feature for the second time. From the fourth line to the
eighth line, the decoder 20 propagates the tokens according
to the feature received in the second instance. Since the
nodes n12 and n13 are stored 1n the set L[1], those nodes are
treated as tokens. The tokens are propagated according to the
processing of the function “outgoing”, and T={(2, -3, 0), (3,
-5, 0), (4, -4, 0), (4, -5, 0)} holds true.

At the ninth line, if there 1s a plurality of tokens assigned
to the same state, the decoder 20 eliminates the tokens
except the token having the greatest accumulation score.
Consequently, T={(2, -3, 0), (3, -5, 0), (4, -4, 0)} holds
true.

From the 10-th line to the 12-th line, the decoder 20
calculates the signal scores and the accumulation scores, and
stores them 1n the tokens. Assume that the signal scores
calculated from the feature, which 1s received 1n the second
instance, are am_score (v, b,)=—2, am_score (v, b;)=-5, and
am_score (v, b,)=-1. In that case, T={(2, -5, 2), (3, -10,
-5), (4, =5, 1)} holds true.

At the 13-th line, the decoder 20 calculates the greatest
accumulation score for the purpose of token pruning.
Herein, the greatest accumulation score w___ 1s -5, and
w__ —w, becomes equal to —10. Hence, the token (3,
—-10, -5) does not satisty the condition at the 15-th line and
gets pruned. Now, two tokens (2, -5, -2) and (4, -5, -1)
remain. Then, the decoder 20 adds those two tokens as nodes

10

15

20

25

30

35

40

45

50

55

60

65

16
in the set L. Consequently, L[2]={(2, -5, -2), (4, -5, -1)}
holds true. With reference to FIG. 5, nodes n22 and n24 are
added to the set L[2].

Then, returming to the third line, the decoder 20 receives
the feature for the third time. From the fourth line to the
cighth line, the decoder 20 propagates the tokens according
to the feature received 1n the third instance. From the state
4, the mput symbol has an € transition as the outgoing
transition. However, there 1s no outgoing transition from the
state 5. Hence, when the state 4 1s fed to the function
“outgoing”, the only transition that 1s obtained 1s the seli-
transition of the state 4. Thus, as the post-propagating
tokens, T={(2, -5, 0), (4, -6, 0), (4, -5, 0)} holds true.

At the ninth line, since there are two tokens 1n the state 4,
the decoder 20 keeps the token having a suitable accumu-
lation score. As aresult, T={(2, -5, 0), (4, -5, 0)} holds true.

From the 10-th line to the 12-th line, the decoder 20

calculates the signal scores and the accumulation scores, and
stores them 1n the tokens. Assume that the signal scores
calculated {from the feature, which 1s received in the third
instance, are am_score (v, b,)==5 and am_score (v, b,)=-3.
In that case, T={(2, =10, -5), (4, -8, -3)} holds true.

From the 13-th line to the 15-th line, none of the tokens
are pruned. Consequently, the remaining two tokens are
added as nodes in the set L. Thus, L[3]={(2, -10, -5), (4, -8,
-3)} holds true. With reference to FIG. 5, nodes n32 and n34
are added to the set L[3].

As a result of performing the processes described above,
the mput of the feature for three times 1s completed, and the
decoder 20 then obtains the recognition result.

At the 17-th line, ©®={((4, -8, -3), -2, green)} holds true.
The state 2 1s not a final state, and it 1s not possible to reach
a final state by following only € transitions. Therefore, the
node n32 1s not included i . Since O 1s not an empty set,
the operation at the 20-th line 1s performed. However, since
® includes only one element, t, _=(4, -8, -3) and x =green
holds true.

At this stage, =3 holds true. Thus, at the 22-nd line, the

frame number I becomes equal to two. At the 23-rd line,
such nodes are found which have an outgoing transition in

the form of a transition joined to the token t, __, from a node
included i the set L[2]. Herein, the node n24 and the
seli-transition of the state 4 are found. Thus, n(e)=state
d=state (t,_.,) holds true, and tacc_score (n24)+w(e)+tam_
score (t, _)=—35+0-3=-8=tacc_score (t,__) holds true. Con-
sequently, t, _=n24 and ¢, _=seli-transition of the state 4
holds true. Theretore, at the 24-th line, x_=b, and x =green
holds true.

Subsequently, returning to the 22-nd line, 1=1 holds true.
Then, at the 23-rd line, a transition occurs from t, ,_=nl12 and
€05 State 2 to the state 4. Thus, at the 24-th line, x_=b,b,
and x =green holds true.

Then, returning to the 22-nd line, =0 holds true. Then, at
the 23-rd line, a transition occurs from t, _—n01 and
€05 state 1 to the state 2. Thus, at the 24-th line, x_=b,b,b,
and x_=blue green holds true.

Subsequently, at the 25-th line, the decoder 20 returns the
final result of x_=b,b,b, and x, =blue green as the recogni-
tion result.

Hardware Configuration

FIG. 6 1s a hardware block diagram of the pattern recog-
nition device 10 according to the first embodiment. The
pattern recognition device 10 includes a central processing
umt (CPU) 101, an operating umt 102, a display 103, a
microphone 104, a read only memory (ROM) 105, a random

US 9,786,272 B2

17

access memory (RAM) 106, a storage 107, a communication
device 108, and a bus 109 that interconnects each of these
constituent elements.

The CPU 101 uses a predetermined area in the RAM 106
as the work area and performs various processes 1 Coop-
eration with various computer programs stored in advance 1n
the ROM 1035 or the storage 107; and performs an overall
control of the constituent elements (the feature extractor 12
and the decoder 20) of the pattern recognition device 10.
Moreover, 1 cooperation with the computer programs
stored 1n advance 1 the ROM 105 or the storage 107, the
CPU 101 implements the operating unit 102, the display
103, the microphone 104, and the communication device
108.

The operating unit 102 1s an mnput device such as a mouse
or a keyboard that receives instruction signals 1n the form of
information mput by a user by operating the operating unit
102, and outputs the instruction signals to the CPU 101.

The display 103 1s a display device such as a liquid crystal
display (LCD). Based on display signals received from the
CPU 101, the display 103 displays a variety of information.
For example, the display 103 displays the recognition result
output by the decoder 20. Meanwhile, 11 the recognition
result 1s output to the commumication device 108 or the
storage 107, then the pattern recognition device 10 may not
include the display 103.

The microphone 104 1s a device that receives input of
speech signals. In the case in which pattern recognition 1s to
be done with respect to prerecorded speech signals or with
respect to speech signals mput from the communication
device 108, the pattern recognition device 10 may not
include the microphone 104.

The ROM 105 1s used to store, 1n a non-rewritable
manner, computer programs and a variety of setting infor-
mation to be used in controlling the pattern recognition
device 10. The RAM 106 1s a volatile storage medium such
as a synchronous dynamic random access memory
(SDRAM). The RAM 106 serves as the work area of the
CPU 101. More particularly, the RAM 106 functions as a
builer for temporarily storing various variables and param-
cters used by the pattern recognition device 10.

The storage 107 1s a rewritable recording device such as
a storage made of a semiconductor such as a flash memory,
or a storage medium capable of magnetic or optical record-
ing. The storage 107 1s used to store the computer programs
and a variety of setting information used 1n controlling the
pattern recognition device 10. Moreover, the storage 107 1s
used to store computer programs and a variety of setting
information used in controlling the pattern recognition
device 10. Moreover, the storage 107 1s also used to store 1n
advance the parameters of the score function and a variety
of WEFST-related information.

The communication device 108 communicates with an
external device, and 1s used in receiving input of speech
signals and 1n outputting the recognition result. In the case
in which pattern recognition 1s to be done with respect to
prerecorded speech signals or speech signals input from the
microphone 104 and 1n which the recognition result 1s to be
output to the display 103 or the storage 107, the pattern
recognition device 10 may not include the communication
device 108.

Meanwhile, 1n the case of performing pattern recognition
of handwritten characters, the pattern recognition device 10
turther includes a handwriting input device. Alternatively, 1n
the case of performing optical character recognition (OCR),
the pattern recognition device 10 further includes a scanner
or a camera. Still alternatively, in the case of performing

10

15

20

25

30

35

40

45

50

55

60

65

18

gesture recognition, hand signal recognition, or sign lan-
guage recognition; the pattern recognition device 10 further

includes a video camera that imports dynamic image signals.
In these cases, since speech signals are not required 1n
pattern recognition, the pattern recogmition device 10 may
not include the microphone 104.

The computer programs executed 1n the pattern recogni-
tion device 10 according to the first embodiment are
recorded as installable or executable files 1n a computer-
readable recording medium such as a compact disk read only
memory (CD-ROM), a flexible disk (FD), a compact disk
readable (CD-R), or a digital versatile disk (DVD), which
may be provided as a computer program product.

Alternatively, the computer programs executed in the
pattern recognition device 10 according to the first embodi-

ment can be saved as downloadable files on a computer
connected to the Internet or can be made available for
distribution through a network such as the Internet. Alter-
natively, the computer programs executed in the pattern
recognition device 10 according to the first embodiment can
be stored in advance 1n a ROM or the like.

The computer programs executed 1n the pattern recogni-
tion device 10 according to the first embodiment contain a
module for the feature extractor 12 and the decoder 20 (the
token storage 31, the token operating unmit 32, the score
calculator 33, the duplication eliminator 34, the pruner 35,
the lattice storage 36, the node adder 37, and the connection
detector 38). The CPU 101 (the processor) reads the com-
puter programs {rom a storage medium and executes them so
that each constituent element 1s loaded 1 a main storage
device. As a result, the feature extractor 12 and the decoder
20 (the token storage 31, the token operating unit 32, the
score calculator 33, the duplication eliminator 34, the pruner
35, the lattice storage 36, the node adder 37, and the
connection detector 38) are generated in the main storage
device. Meanwhile, the feature extractor 12 and the decoder
20 can be configured entirely or partially using hardware.

Effect

As described above, after the search of a digraph (such as
a WEFST) 1s completed, the decoder 20 according to the first
embodiment find outs, while referring to the digraph, the
path having the best accumulation score from a lattice and
generates an output symbol string. Hence, while searching a
digraph, the decoder need not generate and destroy back
pointers 1ndicating the connection relationship among the
nodes. That enables achieving reduction in the calculation
cost of the search operation, and achieving reduction 1n the
storage area required to manage the back pointers.

Second Embodiment

FIG. 7 1s a block diagram of a decoder 40 according to a
second embodiment. In the pattern recognition device 10,
the decoder 40 according to the second embodiment 1s
installed 1n place of the decoder 20 according to the first
embodiment. The configuration of the decoder 40 and the
computer programs executed therein are substantially 1den-
tical to the decoder 20 according to the first embodiment.
Hence, regarding the i1dentical functions and configuration,
same reference numerals are used 1n the drawings. More-
over, the detailed explanation of the identical functions and
configuration 1s not repeated. That 1s, the explanation 1is
given only about the differences.

The decoder 40 further includes an eliminator 41. While
searching the paths, the decoder 40 performs pruning and
climinates the tokens having the accumulation score worse
than a certain score. Thus, during the search, the nodes for

US 9,786,272 B2

19

which the corresponding tokens are already eliminated due
to pruning remain in the lattice storage 36. That 1s, 1 the
lattice stored in the lattice storage 36, the nodes 1n such paths
in which the node added 1n the last frame cannot be reached
are also held. In that regard, every time a predetermined
number of signals are mput or every time the feature of a
predetermined number of signals 1s 1input, the eliminator 41
climinates unnecessary nodes from the lattice.

More particularly, the eliminator 41 refers to the WEST
and, of the nodes added in the lattice in the 1-th i1nstance,
climinates such nodes from which none of the nodes added
in the 1+1-th instance are reachable. Herein, 1 1s an integer
equal to or greater than one. Thus, the eliminator 41 can
eliminate, from the lattice, such nodes which are not linked
to the nodes included i the next lattice (i.e., eliminates
nodes 1n the paths that end midway).

Herein, a node added in the 1-th instance 1s treated as a
first node, and a node connected to the first node and added
in the 1+1-th instance 1s treated as a second node. Then,
except for the path 1n which the accumulation score asso-
ciated to the second node 1s 1dentical to the value obtained
by adding the accumulation score associated to the first
node, the signal score associated to the second node, and the
weights 1n the path connecting the first node and the second
node; the eliminator 41 can eliminate the nodes 1n the other
paths. As a result, the eliminator 41 can eliminate such a
node from the lattice that even though 1s linked to a node
included in the next lattice 1s not linked to the best path. In
the case of searching a digraph not having the weights
attached thereto, the eliminator 41 does not perform pro-
cesses related to the weights, and calculates the accumula-
tion scores with the weights set to zero.

Alternatively, as an example, every time the feature of
signals 1s mnput, the eliminator 41 can eliminate the unnec-
essary nodes. Still alternatively, after every predetermined
number of times, the eliminator 41 can eliminate the unnec-
essary nodes. Still alternatively, when the empty space 1n the
storage area decreases to or below a certain level, the
climinator 41 can eliminate the unnecessary nodes.

FIG. 8 1s a diagram illustrating the pseudo code of a
function prune(t,,,,,. 1, that represents the process of
climinating the unnecessary nodes performed by the decoder
40 according to the second embodiment.

During the operations from the third line to the 135-th line
of the pseudo code illustrated 1 FIG. 4, the decoder 40
according to the second embodiment executes the function
prune(t,,.,,. 1., when a condition is satistied that the
operations from the third line to the 15-th line of the pseudo
code 1llustrated 1n FIG. 4 are repeated for a predetermined
number times (including once) or that the empty space in the
storage area decreases to or below a certain level.

Herein, 1., represents the first frame number in the
range of frames for eliminating unnecessary frames. More-
over, I, represents the last frame number 1n the range of
frames for eliminating unnecessary frames. For example, 1n
the case 1n which he processing of the feature has been done
for 50 frames and 1n which the unnecessary frames 1n the
range from the 30-th frame to the 50-th frame are to
climinated; the decoder 40 calls the function prune(30, 50).
Meanwhile, regardless of the point of time at which the
tfunction prune(30, 50) 1s called during the operations from
the third line to the 15-th line of the pseudo code illustrated
in FIG. 4, the operations from the third line to the 15-th line
are not aflected.

The first line indicates that the decoder 40 decrements 1
one by one 1n a sequential manner from the frame number

10

15

20

25

30

35

40

45

50

55

60

65

20

t,~1 to the frame number {1,

&

oein» aNd performs the process
at the second line after every decrement.

At the second line, the decoder 40 updates the set L[1]
with a set of nodes satisfying the following condition.

Assume that t represents the node (a first node) that is
added 1n the lattice 1n response to the mput of the feature of
signals in the i1-th frame (where 1 1s an integer equal to or
greater than one); and assume that t, represents the node (a
second node) that 1s added 1n the lattice 1n response to the
input of the feature of signals 1n the 1+1-th frame. In this
case, regarding the nodes satistying the condition, the next
state of the outgoing transition ¢ from the state assigned to
the node t 1s 1dentical to any one of the states assigned to the
node t , and the value obtained by adding the accumulation
score of the node t, the weight of the transition e, and the
signal score of the node t, 1s 1dentical to the accumulation
score of the node t .

FIG. 9 1s a diagram 1llustrating a modification example of
the second line ot the function prune(t,,,, . 1,,.,) that rep-
resents the process of eliminating the unnecessary nodes
performed by the decoder 40 according to the second
embodiment. In the pseudo code illustrated 1n FIG. 8, in the
case of returning only the result of the best path, the decoder
40 can eliminate the unnecessary nodes. However, in the
case of including the result other than the best path 1n the
lattice and then returning the lattice, the second line can be
modified as illustrated 1n the pseudo code 1 FI1G. 9. That 1s,
the decoder 40 updates the set L[1] with the set of nodes
satisiying the following condition.

Assume that t represents the node (a first node) that is
added 1n the lattice 1n response to the mput of the feature of
signals 1n the i1-th frame; and assume that t, represents the
node (a second node) that 1s added 1n the lattice in response
to the iput of the feature of signals 1n the 1+1-th frame. In
this case, regarding the nodes satistying the condition, the
next state of the outgoing transition e from the state assigned
to the node t 1s 1dentical to any one of the states assigned to
the node t, .

As described above, while searching a digraph, the
decoder 40 according to the second embodiment eliminates
the unnecessary nodes that have been added 1n a lattice. As
a result, the decoder 40 according to the second embodiment
can achieve reduction in the usage amount of the storage
area during the search of a digraph.

Third Embodiment

FIG. 10 1s a block diagram of a decoder 50 according to
a third embodiment. In the pattern recognition device 10, the
decoder 50 according to the third embodiment 1s 1nstalled 1n
place of the decoder 20 according to the first embodiment.
The configuration of the decoder 50 and the computer
programs executed therein are substantially identical to the
decoder 20 according to the first embodiment. Hence,
regarding the identical functions and configuration, same
reference numerals are used 1n the drawings. Moreover, the
detailed explanation of the i1dentical functions and configu-
ration 1s not repeated. That 1s, the explanation 1s given only
about the differences.

The decoder 50 further includes an arc adder 51 that adds
an arc in the lattice after the node adder 37 has finished
adding the nodes. That 1s, the arc adder 51 adds arcs 1n the
lattice after the search of the WFST i1s completed. In this
case, the arc adder 51 adds, 1n the lattice, arc from the nodes
added in the 1-th mstance (where 11s equal to or greater than
one) in the lattice to the nodes added 1n the 1+1-th 1nstance
in the lattice.

US 9,786,272 B2

21

Then, the arc adder 51 outputs the lattice, 1n which arcs
have been added, to the outside. With that, the arc adder 51
can output a recognition result that has a use other than
obtaining the best path. Meanwhile, the decoder 50 can be
configured to also include the eliminator 41 illustrated 1n
FIG. 7.

FIG. 11 1s a diagram illustrating a pseudo code for the
processes performed 1n the decoder 50 according to the third
embodiment. Herein, the pseudo code illustrated 1n FIG. 11
1s executed after the execution of the pseudo code 1llustrated
in FI1G. 4. Alternatively, instead of performing the operations
from the 16-th line to the 25-th line of the pseudo code
illustrated 1n FIG. 4, the decoder 50 can perform the opera-
tions from the first line to the 21-st line of the pseudo code
illustrated 1n FIG. 11.

Herein, D represents a set of nodes of a lattice that
includes arcs. Moreover, R represents a set of arcs. In the
third embodiment, the nodes are assigned with accumulation
scores. Moreover, an arc 1s assigned with the input symbols
of the transitions, excluding e transitions, passed while
processing a single frame as well as assigned with an output
symbol string in which the output symbols of the passed
transitions are jomned. Furthermore, an arc 1s assigned with
a value that 1s added to the accumulation score while
processing a single frame, that 1s, assigned with the value
obtained by adding the weights and the signal scores of the
passed transitions. This score 1s called a difference score.

An arc 1s made of a 5-tuple (previous state, next state,
input symbol, output symbol, difference score). In the third
embodiment, the nodes included 1n the lattice L are reused.
The nodes included 1n the lattice L are assigned with the
states of the WFEFST. In case the states of the WFST are not
required, then new nodes can be created by removing the
WEST states from the nodes.

At the first line of the pseudo code 1llustrated 1n FIG. 11,
the decoder 50 1mitializes the frame number 1 with the value
of the frame number 1 at the point of time of completion of
the operations from the second line to the 15-th line of the
pseudo code 1llustrated in FIG. 4. Moreover, the decoder 50
creates a new node t.that represents the end ot the lattice.
That 1s, the node t.represents the end node.

At the second line, the decoder 50 1nitializes the set D of
nodes to an empty set. Moreover, the decoder 50 initializes
the set R of arcs to an empty set.

At the third line, the decoder 50 performs an identical
operation to the operation performed at the 17-th line of the
pseudo code 1illustrated 1n FIG. 4.

At the fourth line, 1T ® 1s not an empty set, then the
decoder 30 proceeds to the operation at the sixth line.
However, 11 ® 1s an empty set, then the decoder 50 returns
an empty lattice as the recognition result at the fifth line.
Meanwhile, 1n the case of generating a lattice 1n which arcs
are added irrespective of the fact that none of the nodes
reaches a final state, it serves the purpose 1t the decoder 50
does not include the condition geF, which 1s the condition for
creating ®, at the third line of the pseudo code.

At the sixth line, the decoder 50 assigns the best accu-
mulation score to the node t. Meanwhile, 1n this example,
the greatest accumulation score 1s the best accumulation
score.

At the seventh line, the decoder 50 adds the node t.1n the
set D.

The eighth line indicates that the operation at the ninth
line 1s performed with respect to each element of ©.

At the ninth line, the decoder 50 creates an arc from the
node t to the node t. Then, the decoder 50 adds the created
arc 1n the set R. For the added arc, the input symbol 1s an

10

15

20

25

30

35

40

45

50

55

60

65

22

empty string; the output symbol string i1s o; and the difler-
ence score 1s w. Moreover, the decoder 50 adds the node t in
the set D.

At the 10-th line, the decoder 50 substitutes the nodes
included 1n ® 1n the set T.

The 11-th line indicates that the operations from the 12-th

line to the 20-th line are performed in a repeated manner
until the frame number 1 becomes zero.

At the 12-th line, the decoder 50 decrements the frame

number 1 by one.
At the 13-th line, of the nodes included 1n the set L[1], the

decoder 50 substitutes the nodes satisiying the following
condition in a set 1. Herein, ot the nodes included in the set
L[1], the nodes satisfying the condition are the nodes for
which the next state of the transition obtained using the
function “outgoing”, which takes the state assigned with the
node t as the argument, 1s 1dentical to any one of the states
assigned with the nodes included in the set T.

At the 14-th line, the decoder S0 adds the set T, to the set
D.

The 15-th line indicates that, for each node t included 1n

the set T, the operations from the 16-th line to the 19-th line
are performed.

The 16-th line indicates that, for each transition e obtained
using the function “outgoing’” that takes the state assigned to
the token t as the argument, the operations from the 17-th
line to the 19-th line are performed.

The 17-th line indicates that, upon determining whether or
not the next state of the transition ¢ 1s identical to any one
of the states assigned with the nodes included 1n the set T,
the operations at the 18-th line and the 19-th line are
performed only 1f an 1dentical state 1s present.

At the 18-th line, the decoder 50 substitutes, in the node
t , the node assigned to the state found to be 1dentical at the
1°7-th line.

At the 19-th line, the decoder 50 adds the arc from the
node t to the node t, 1n the set R. Regarding the added arc,
the input symbol 1s the input symbol of the transition e; the
output symbol string 1s the output symbol string of the
transition e; and the difference score 1s the value obtained by
adding the weight of the transition € and the signal score of
the node t, .

At the 20-th line, the decoder S0 substitutes the set T, into
the set T.

At the 21-st line, the decoder 50 returns, as an arc-
including lattice, the set of nodes and the set of arcs. That
marks the end of the processes.

As described above, after the search of a digraph 1is
completed, the decoder 50 according to the third embodi-
ment generates arcs and adds them 1n a lattice. As a result,
the decoder 50 need not generate and destroy arcs while
searching the digraph, thereby enabling achieving reduction
in the calculation cost of the search operation.

Fourth Embodiment

FIG. 12 1s a block diagram of a decoder 60 according to
a fourth embodiment. In the pattern recognition device 10,
the decoder 60 according to the fourth embodiment 1s
installed 1n place of the decoder 20 according to the first
embodiment. The configuration of the decoder 60 and the
computer programs executed therein are substantially 1den-
tical to the decoder 20 according to the first embodiment.
Hence, regarding the i1dentical functions and configuration,
same reference numerals are used 1n the drawings. More-
over, the detailed explanation of the identical functions and

US 9,786,272 B2

23

configuration 1s not repeated. That 1s, the explanation 1is
given only about the diflerences.

The decoder 60 according to the fourth embodiment
includes the token storage 31, a plurality of token operating

units 32, a plurality of score calculators 33, a plurality of >

duplication eliminators 34, a plurality of pruners 33, the

lattice storage 36, the node adder 37, the connection detector
38, a first divider 61, a first collector 62, a second divider 63,
a second collector 64, a third divider 65, a third collector 66,
a fourth divider 67, and a fourth collector 68.

Every time a signal or a feature 1s mput, the first divider
61 divides a plurality of tokens, which 1s stored 1n the token
storage 31, into a plurality of small sets corresponding to the
plurality of token operating units 32. Then, to each token
operating unit 32, the first divider 61 distributes the tokens
included 1n the corresponding small set. Then, each token
operating unit 32 propagates each token included in the
received small set to the next state. In this case, the token
operating units 32 perform the processes 1n parallel to each
other.

The first collector 62 collects the tokens propagated by the
token operating umts 32. Then, the first collector 62 stores
the collected tokens 1n the token storage 31.

The second divider 63 divides the tokens, which are
collected by the first collector 62 and stored in the token
storage 31, 1nto a plurality of small sets corresponding to the
plurality of duplication eliminators 34. In this case, the
second divider 63 divides the tokens 1n such a way that the
tokens that have reached the same state are included i the
same small set. Then, to each duplication eliminator 34, the
second divider 63 distributes the tokens included i the
corresponding small set. Subsequently, each duplication
climinator 34 eliminates the duplication of tokens that are
included in the corresponding received small set as the
tokens reaching the same state. More particularly, each
duplication eliminator 34 keeps the token having the best
accumulation score from among the tokens that have
reached the same state. In this case, the duplication elimi-
nators 34 perform the processes in parallel to each other.

The second collector 64 collects the tokens that remain
after the elimination performed by the duplication elimina-
tors 34. Then, the second collector 64 stores the collected
tokens 1n the token storage 31.

The third divider 65 divides the tokens, which are col-
lected by the second collector 64 and stored in the token
storage 31, into a plurality of small sets corresponding to the
score calculators 33. Then, to each score calculator 33, the
third divider 65 distributes the tokens included 1n the cor-
responding small set. Subsequently, each score calculator 33
calculates the signal score and the accumulation score
corresponding to each token included 1n the received small
set. In this case, the score calculators 33 perform the
processes 1n parallel to each other.

The third collector 66 collects the tokens for which the
score calculators 33 have calculated the scores. Then, the
third collector 66 stores the collected tokens in the token
storage 31.

The fourth divider 67 divides the tokens, which are
collected by the third collector 66 and stored in the token
storage 31, into a plurality of small sets corresponding to the
pruners 35. Then, to each pruner 35, the fourth divider 67
distributes the tokens included in the corresponding small
set. Subsequently, each pruner 35 climinates the tokens
having the accumulation score worse than a certain score. In
this case, the pruners 35 perform the processes 1n parallel to
cach other.

10

15

20

25

30

35

40

45

50

55

60

65

24

The fourth collector 68 collects the tokens for which the
pruners 35 have calculated the scores. Then, the fourth
collector 68 stores the collected tokens 1n the token storage
31.

Meanwhile, the decoder 60 according to the fourth
embodiment can be configured to also include the eliminator
41 illustrated 1n FIG. 7 and the arc adder 51 illustrated 1n
FIG. 10.

FIG. 13 1s a block diagram illustrating threads of the
decoder 60 according to the fourth embodiment. Regarding
the hardware configuration of the pattern recognition device
10 according to the fourth embodiment, one or more CPUs
101 are added to the hardware configuration illustrated 1n
FIG. 6.

The decoder 60 executes tasks using a plurality of threads

run by the CPUs 101. As an example, the decoder 60
includes a main thread 71, a task queue 72, a result queue 73,
and a plurality of worker threads 74.
The main thread 71 performs the process of generating
tasks and storing them 1n the task queue 72 and performs the
process of obtaining results from the result queue 73 and
integrating them. The worker threads 74 obtain the tasks
from the task queue 72 and execute them. The worker
threads 74 included in the decoder 60 are equal 1n number
to the number of tasks to be performed concurrently. As an
example, the decoder 60 includes the worker threads 74
equal 1n number to the number of CPUs 101. Each worker
thread 74 stores the result of task execution in the result
queue 73.

The task queue 72 and the result queue 73 are subjected
to exclusive access control, and are not accessible to the
worker threads 74 and the main thread 71 at the same time.
Meanwhile, when there 1s only a single CPU 101, the
decoder 60 does not include any worker thread 74. Instead,
the main thread 71 executes the tasks. Thus, when there 1s
only a single CPU 101, the decoder 60 need not perform
exclusive access control, thereby enabling achieving reduc-
tion 1n the processing cost.

FIG. 14 1s a diagram 1llustrating a pseudo code for the
processes performed 1n the main thread 71 of the decoder 60
according to the fourth embodiment. FIG. 15 1s a diagram
illustrating a pseudo code for the processes performed 1n the
worker threads 74 of the decoder 60 according to the first
embodiment.

Herein, in order to distinguish between the line numbers
in the pseudo code illustrated in FIG. 14 and the line
numbers 1 the pseudo code illustrated in FIG. 15; the
pseudo code illustrated 1n FIG. 14 starts from the first line,
while the pseudo code 1llustrated 1n FIG. 14 starts from the
101 -st line.

Herein, Q, . represents the task queue 72, and
represents the result queue 73.

Every time the feature 1s input, the decoder 60 performs
the operations from the third line to the 12-th line 1n a
repeated manner. As the outline, i the first phase (from the
fourth line to the eighth line), the decoder 60 propagates the
tokens to the next states. In the second phase (from the ninth
line to the 13-th line), the decoder 60 eliminates the unnec-
essary tokens. In the third phase ({from the 14-th line to the
19-th line), the decoder 60 outputs the signal scores and the
accumulation scores. In the fourth phase (from the 21-st line
to the 25-th line), the decoder 60 prunes the tokens not
satisiying the accumulation scores, and adds the rest of the
tokens as the nodes of a lattice 1n the set L[1]. From the 26-th
line onward, the operations are identical to the operations
from the 16-th line onward of the pseudo code 1llustrated 1n
FIG. 4 according to the first embodiment.

Fesilt

US 9,786,272 B2

25

Given below 1s the explanation of the operations per-
formed at each line.

At the first line 1llustrated in FIG. 14, the main thread 71
initializes a variable n, which represents the number of tasks
being processed, to zero. The other operations are 1dentical
to the operations performed at the first line of the pseudo
code 1llustrated 1n FIG. 4.

The operations at the second line and the third line are
identical to the operations at the second line and the third
line of the pseudo code illustrated in FIG. 4.

At the fourth line, the main thread 71 divides a plurality
of tokens, which corresponds to a plurality of nodes
recorded 1n the set L[{] using a function “split”, and returns
a set 1n which small sets having one or more tokens are the
clements. The set of those elements 1s referred to as T .
Then, for each small set, the main thread 71 performs the
operation at the fifth line.

Herein, the function “split” can divide the tokens 1n an
arbitrary manner. As an example, the function “split” divides
the tokens into small sets equal in number to the number of
worker threads 74. Alternatively, the function “split” can
divide the tokens into small sets equal in number to the
number of nodes included 1n the set L|f]. As a result, the
processes for a single token can be performed in a single
task. Meanwhile, smaller the divisions, greater 1s the degree
of concurrency. However, that leads to an increase in the
number of times of performing queue operations at the fifth
line and the eighth line. Hence, it 1s not always true that the
processing speed increases on the whole.

At the fifth line, the main thread 71 adds a task named
phasel in the task queue Q, .. The data attached to that task
1s T_ .. Since a single task 1s added, the main thread 71
increments n by one.

At the sixth line, the main thread 71 sets the set T to an
empty set.

The seventh line indicates that the operation at the eighth
line 1s performed until all tasks are processed. At the eighth
line, the main thread 71 obtains a result from the result queue
Q. ... The values that are obtained represent a set of
post-propagating tokens. Then, the main thread 71 adds the
obtained values to the set 1. Herein, obtaining a result
implies that a single task 1s completed. Hence, the main
thread 71 decrements n by one. I there 1s not a single result
in the result queue Q,__ ;.. then the main thread 71 waits till
a result 1s obtained.

Each worker thread 74 processes a task added at the fifth
line according to the pseudo code 1llustrated 1n FIG. 15. The
101-st line of the pseudo code 1llustrated in FIG. 15 indicates
that the operations from the 102-nd line to the 122-nd line
are performed 1n a repeated manner t1ll the completion of
operations. At the 102-nd line, the worker thread 74 waits
until a task 1s added 1n the task queue Q, .. Once a task 1s
added 1n the task queue Q, ., the worker thread 74 retrieves
that task and sets u___ _ as the name of the task and setsu,___
as the data of the task.

The 103-rd line indicates that, when the name of an added
task 1s phasel, the operations from the 104-th line to the
109-th line are performed. At the 104-th line, the worker
thread 74 retrieves data from u, . and sets 1t as a set T..
Moreover, the worker thread 74 mitializes a set T, to an
empty set. The 103-th line indicates that the operations from
the 106-th line to the 108-th line are performed with respect
to each token included in the set T..

From the 106-th line to the 108-th line, the worker thread
74 changes the set for adding tokens to the set T, _ ., and
performs operations identical to the operations from the

sixth line to the eighth line of the pseudo code illustrated 1n

10

15

20

25

30

35

40

45

50

55

60

65

26

FI1G. 4. At the 109-th line, the worker thread 74 adds the set
T, of obtained tokens to the result queue Q That

Flew

marks the end of the processing of that task.

At the ninth line of the pseudo code 1llustrated 1n FIG. 14,
the main thread 71 divides the set of tokens using the
function “split” and returns the set T , in which the small
sets of one or more tokens are the elements. Then, for each
small set, the main thread 71 performs the operation at the

10-th line.

At the ninth line, unlike at the fourth line, the main thread
71 divides the tokens according to a condition that the tokens
assigned with the same state are included 1n the same set of
tokens. Assume that T, and T, represent the post-division
small sets of tokens, and state(T,) and state(T,) represent the
sets of states of the tokens included 1n the small sets T, and
T,, respectively. In this case, the state state(t,) and the state
state(t,) should not have the same states included therein.
Meanwhile, of a plurality of tokens having the same state
and the same context information, the decoder 60 can keep
only the token having the best accumulation score. In that
case, since a plurality of tokens gets assigned to the same
state, the main thread 71 divides the tokens at the ninth line
under the condition that the tokens having the same state and
the same context information are included in the same set of
tokens.

At the 10-th line, the main thread 71 adds a task named
phase2 to the task queue Q, .. The data attached to that task
1s T_ .. Since a single task 1s added, the main thread 71
increments n by one.

At the 11-th line, the main thread 71 sets the set T to an
empty set.

The 12-th line indicates that the operation at the 13-th line
1s performed until all the tasks are processed. At the 13-th
line, the main thread 71 obtains the result from the result
queue Q,__ ... The obtained value represents the set of tokens
from which the unnecessary tokens have been eliminated.
Then, the main thread 71 adds the obtained value 1n the set
T. Herein, obtaining a result implies that a single task 1s
completed. Hence, the main thread 71 decrements n by one.
If there 1s not a single result 1n the result queue Q,__ .., then
the main thread 71 waits t1ll a result 1s obtained.

The worker thread 74 processes the task, which 1s added
at the 10-th line, according to the pseudo code illustrated 1n
FIG. 15. The 110-th line indicates that, when the added task
1s named phase2, the operations at the 111-th and 112-th
lines are performed.

At the 111-th line, the worker thread 74 retrieves data
from v, . and sets it as the set T,. At the 112-th line, the
worker thread 74 performs the same operation as the opera-
tion performed at the ninth line of the pseudo code 1llustrated
in FIG. 4. That 1s, among the tokens included 1n the set T,
when a plurality of tokens are assigned with the same state,
the worker thread 74 keeps only a single token having the
best accumulation score. Then, the worker thread 74 adds
the set of such tokens 1n the result queue and ends the
processing of the task.

At the 14-th line of the pseudo code 1llustrated in FIG. 14,
in an 1dentical manner to the fourth line, the main thread 71
divides the set of tokens using the function “split”, and
returns a set in which small sets having one or more tokens
are the elements. Then, for each small set, the main thread
71 performs the operation at the 15-th line.

At the 15-th line, the main thread 71 adds a task named
phase3 in the task queue Q, .. The data attached to that task
1s T_ . and the feature v. Since a single task 1s added, the

sibh

main thread 71 increments n by one.

resulr

resulr

US 9,786,272 B2

27

At the 16-th line, the main thread 71 sets the set T to an
empty set. Moreover, the main thread 71 initializes w, _ to
minus infinity. In practice, the main thread 71 sets the
mimmum possible value n w__ .

The 17-th line indicates that the operations at the 18-th
and 19-th lines are performed until all tasks are processed.
At the 18-th line, the main thread 71 obtains a result from the
result queue Q,_. ;.. The obtained values are assumed to be
T, and w, . Herein, obtaining a result implies that a single
task 1s completed. Hence, the main thread 71 decrements n
by one. IT there 1s not a single result 1n the result queue
Q. ... then the main thread 71 waits t1ll a result 1s obtained.

At the 19-th line, the main thread 71 adds the value T, 1n
the set 'T. Moreover, 1t a weight w 1s greater thanw_ ., then
the main thread 71 updates w, __ with the weight w.

The worker thread 74 processes the task, which 1s added
at the 15-th line, according to the pseudo code 1llustrated 1n
FIG. 15. The 113-th line indicates that, when the added task
1s named phase3, the operations from the 114-th line to the
119-th line are performed.

At the 114-th line, the worker thread 74 retrieves data
fromu . and sets the retrieved set of token as the set'T, and
sets the feature as v. From the 115-th line to the 118-th line,
the worker thread 74 changes the set T to the set T, and
performs the same operations as the operations from the
10-th line to the 13-th line of the pseudo code illustrated 1n
FI1G. 4. At the 119-th line, the worker thread 74 adds a
2-tuple (T, w_) to the result queue That marks the
end of the processing of the task.

At the 20-th line of the pseudo code illustrated n FI1G. 14,
the main thread 71 performs the same operation as the
operation performed at the 14-th line of the pseudo code
illustrated 1n FIG. 4.

At the 21-st line, 1n an 1dentical manner to the fourth line,
the main thread 71 divides the set of tokens using the
function “split” and returns a set in which the small sets of
one or more tokens are the elements. Then, for each small
set, the main thread 71 performs the operation at the 22-nd
line.

At the 22-nd line, the main thread 71 adds a task named
phased 1n the task queue Q, .. The data attached to that task
1s T _ , and the maximum value w___ of the accumulation
scores. Since a single task 1s added, the main thread 71
increments n by one.

At the 23-rd line, the main thread 71 sets the set L[{] to
an empty set.

The 24-th line indicates that the operation at the 25-th line
1s performed until all tasks are processed. At the 25-th line,
the main thread 71 obtains a result from the result queue
Q... The values that are obtained represent a set of tokens
excluding the pruned tokens. Then, the main thread 71 adds
the obtained result to the set L[1]. Herein, obtaiming a result
implies that a single task 1s completed. Hence, the main
thread 71 decrements n by one. I there 1s not a single result
in the result queue Q,__ ;.. then the main thread 71 waits till
a result 1s obtained.

The worker thread 74 processes the task, which 1s added
at the 22-nd line, according to the pseudo code illustrated 1n
FIG. 15. The 120-th line indicates that, when the added task
1s named phased4, the operations at the 121-st and 122-nd
lines are performed.

At the 121-st line, the worker thread 74 retrieves data
fromu, ; sets T, as the set of tokens; and sets w___as the
maximum value of the accumulation scores. At the 122-nd
line, the worker thread 74 performs the same operation as
the operation performed at the 135-th line of the pseudo code

illustrated in FI1G. 4. That 1s, the worker thread 74 eliminates

resulr:

5

10

15

20

25

30

35

40

45

50

55

60

65

28

such tokens which have the accumulation score smaller than
a value obtained by subtracting a constant value w,___ from
w_ . Then, the worker thread 74 adds the set of remaiming
tokens 1n the result queue Q,__ ;.. and ends the processing of
the task.

Then, from the 26-th line to the 35-th line of the pseudo
code illustrated in FIG. 14, the main thread 71 performs
operations 1dentical to the operations performed from the
16-th line to the 25-th line of the pseudo code illustrated 1n
FIG. 4.

As described above, using the task queue 72 and the result
queue 73, the decoder 60 communicates data between the
main thread 71 and the worker thread 74. For that reason, 1n
the decoder 60, as long as the task queue 72 and the result
queue 73 are subjected to exclusive access control, 1t 1s not
necessary to perform exclusive access control for other
constituent elements.

Meanwhile, the function “prune” according to the second
embodiment can also be processed as a task 1n the worker
thread 74. In that case, addition of the task 1n the result queue
Q.....;,.can be done at any point of time during the operations
performed from the second line to the 25-th line of the
pseudo code illustrated in FIG. 14. However, the range
including the node being added during the operation at the
25-th line cannot be sent to the function “prune”. As long as
that range 1s not included, then the lattice does not get
changed during the operations performed from the second
line to the 25-th line of the pseudo code illustrated 1n FIG.
4. Hence, the function “prune” and the operations performed
from the second line to the 25-th line of the pseudo code
except the range described above can be processed 1n a
mutually independent manner.

Regarding the process of obtaining the feature performed
at the third line, the main thread 71 can alternatively perform
that operation immediately before the 14-th line. By delay-
ing the process of obtaining the feature, the pattern recog-
nition device 10 becomes able to perform the process of
calculating the feature and the process of propagating the
tokens 1n parallel.

In this way, the decoder 60 according to the fourth
embodiment can perform processes 1n parallel using a
plurality of CPUs 101. Hence, 1t becomes possible to reduce
the processing time.

Modification Example of Digraph

In the first to fourth embodiments, the explanation 1s
given for an example in which a WFEFST 1s used as the
digraph to be searched. Alternatively, 1t 1s also possible to
search another type of digraph and generate a lattice 1n an
identical manner. Herein, another type of digraph points to
a digraph in which the mput symbols, the output symbols,
and the weights are assigned in a diflerent manner than a
WFST. In a digraph, as long as the input symbols, the output
symbols, and the weights are assigned to either the states or
the transitions; any type of digraph can be used.

There are eight types of such a digraph. Moreover, these
digraphs are convertible into each other. For example, in the
first to fourth embodiments, all incoming transitions have
the same mput symbol assigned thereto. That 1s same as
assigning the mput symbol to the states. That 1s, even i1 the
iput symbols assigned to the transitions are reassigned to
the states, an input symbol string obtained by joining the
input symbols 1n a path 1s 1dentical to the input symbol string
obtained before reassignment of the mput symbols.

Meanwhile, 1n the case of not using a language model and
the transition probability of an HMM; the weights 1n the
digraph become equal to zero. For example, in the case of
performing 1solated word recognition, a digraph having the

US 9,786,272 B2

29

weights equal to zero 1s used. In that case, the decoder 20
need not hold the weights 1n the storage area, and need not
perform all processes related to the weights.

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the mventions.
Indeed, the novel embodiments described herein may be
embodied 1n a variety of other forms; furthermore, various
omissions, substitutions and changes in the form of the
embodiments described herein may be made without depart-
ing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such
forms or modifications as would fall within the scope and
spirit of the inventions.

What 1s claimed 1s:

1. A decoder for searching a digraph and generating a
lattice, partially or entirely, corresponding to a signal that 1s
input or corresponding to a feature of the signal, the digraph
having an iput symbol and an output symbol assigned to a
state or a transition, the input symbol being a score identifier
that represents at least either an algorithm or data for
calculating a signal score from the signal or the feature, the
decoder comprising:

a processor that executes instructions that facilitate per-

formance of operations, comprising:

every time the signal or the feature 1s input, propagating,

cach of a plurality of tokens, which 1s an object
assigned with a state of the head of a path being
searched, based on using the digraph to determine that
a state or a transition assigned with a non-empty 1nput
symbol 1s reached;

in each instance of token propagating, adding, in the

lattice, a node corresponding to a state assigned to each
of the plurality of tokens,

as a function of using the digraph, detecting a first node

that 1s connected to a second node added in an 1-th
instance (where 1 1s an 1mteger equal to or greater than
one) 1n the lattice and that 1s added 1n an 1+1-th mstance
in the lattice; and

outputting an output symbol with which the output sym-

bol 1n the state corresponding to the first node and the
output symbol 1n the state corresponding to the second
node are concatenated, when the output symbol being
assigned the state, the transition on the digraph detect-
ing the second node connected to the first node, or
outputting an output symbol assigned to an arc or the
transition and the output symbol in the preceding and
succeeding transitions are concatenated, when the out-
put symbol being assigned the transition, the arc gen-
erated from the transition and the first node and the
second node:

every time the signal or the feature 1s iput for a prede-

termined number of times, eliminating unnecessary
nodes from the lattice.

2. The decoder according to claim 1, the operations
turther comprising adding, in the lattice, an arc from the
node added at the 1-th instance in the lattice to the node
added at the 1+1-th node 1n the lattice.

3. The decoder according to claim 2, the operations
turther comprising adding the arc in the lattice after comple-
tion of adding nodes.

4. The decoder according to claim 1, the operations
turther comprising every time the tokens are propagated,
calculating, with respect to each of the plurality of tokens, a
signal score corresponding to the input symbol assigned to

10

15

20

25

30

35

40

45

50

55

60

65

30

a state or a transition of the head of a path and an accumu-
lation score obtained by accumulating the signal scores 1n
the path.

5. The decoder according to claim 4, wherein, with
respect to each of the node that 1s added, the operations
further comprising associating the signal scores and the
accumulation score of the token holding information to
generate the node and associating a state of the head of a
path represented by the token holding the information.

6. The decoder according to claim 3, wherein, when the
node added 1n the 1-th mstance 1s treated as a first node and
the node connected to the first node and added 1n the 1+1-th
instance 1s treated as a second node, the operations further
comprising detecting a path 1n which the accumulation score
associated to the second node i1s identical to the value
obtained by adding the accumulation score associated to the
first node and the signal score associated to the second node.

7. The decoder according to claim 4, wherein

the digraph has a weight assigned to a state or a transition,

and

with respect to each of the plurality of tokens, the opera-

tions further comprising calculating the signal score
and calculating an accumulation score obtained by
accumulating the weights and the signal scores 1n a
path represented by the token.

8. The decoder according to claim 7, wherein, with
respect to each of the nodes that 1s added, the operations
further comprising associating the signal scores and the
accumulation score of the token holding information to
generate the node and associating a state of the head of a
path represented by the token holding the information.

9. The decoder according to claim 8, wherein, when the
node added 1n the 1-th 1nstance 1s treated as a first node and
the node connected to the first node and added in the 1+1-th
instance 1s treated as a second node, the operations further
comprising detecting a path 1n which the accumulation score
associated to the second node i1s identical to the value
obtained by adding the accumulation score associated to the
first node, the signal score associated to the second node, and
weights 1n a path connecting the first node and the second
node.

10. The decoder according to claim 1, the operations
further comprising:

performing a plurality of token operation processes 1n

parallel to each other;

performing a plurality of duplication elimination pro-

cesses 1n parallel to each other;

dividing the plurality of tokens into a plurality of first

small sets corresponding to the plurality of token
operation processes and distributing, to each of the
plurality of token operation processes, tokens 1included
in corresponding first small sets;

collecting a plurality of tokens propagated by the plurality

of token operating processes;

dividing the plurality of tokens into a plurality of second

small sets corresponding to the duplication elimination
processes, and distributing, to each of the plurality of
duplication elimination processes, tokens included 1n
corresponding second small sets; and

collecting a plurality of tokens that remain after elimina-

tion 1s performed by the plurality of duplication elimi-
nation processes.

11. The decoder according to claim 10, wherein the
operations further comprise putting tokens reaching same
state 1nto the second small sets.

12. The decoder according to claim 1, the operations
further comprising:

US 9,786,272 B2

31

in parallel calculating, every time the tokens are propa-
gated, a signal score corresponding to the input symbol
assigned to a state or a transition of the head of a path
represented by the token and an accumulation score
obtained by accumulating the signal scores 1n the path
represented by the path;

dividing the plurality of tokens into a plurality of small

sets and distributing tokens included in corresponding
small set; and

collecting a plurality of tokens for which the signal score

and the accumulation score have been calculated.
13. The decoder according to claim 12, the operations
turther comprising from among a plurality of tokens reach-
ing same state, keeping a token having best of the accumu-
lation scores.
14. The decoder according to claim 1, the operations
turther comprising;:
in parallel to each other, eliminating tokens having an
accumulation score worse than a certain score;

dividing the plurality of tokens into a plurality of small
sets, and distributing tokens included 1n corresponding
small set; and

collecting a plurality of tokens that remain after perfor-

mance of an elimination.

15. A decoder for searching a digraph and generating a
lattice, partially or entirely, corresponding to a signal that 1s
input or corresponding to a feature of the signal, the digraph
having an mput symbol and an output symbol assigned to a
state or a transition, the input symbol being a score 1dentifier
that represents at least either an algorithm or data for
calculating a signal score from the signal or the feature, the
decoder comprising:

a processor that executes instructions that facilitate per-

formance of operations, comprising;

every time the signal or the feature 1s mput, propagating,

cach of a plurality of tokens, which 1s an object
assigned with a state of the head of a path being
searched, based on using the digraph to determine that
a state or a transition assigned with a non-empty 1nput
symbol 1s reached;

in each instance of token propagating, adding, in the

lattice, a node corresponding to a state assigned to each
of the plurality of tokens,

as a function of using the digraph, detecting a first node

that 1s connected to a second node added in an 1-th
instance (where 1 1s an 1mteger equal to or greater than
one) 1n the lattice and that 1s added 1n an 1+1-th 1instance
in the lattice; and

every time the signal or the feature 1s mput for a prede-

termined number of times, eliminating unnecessary
nodes from the lattice.

16. A decoder for searching a digraph and generating a
lattice, partially or entirely, corresponding to a signal that 1s
input or corresponding to a feature of the signal, the digraph
having an mput symbol and an output symbol assigned to a
state or a transition, the input symbol being a score 1dentifier
that represents at least either an algorithm or data for
calculating a signal score from the signal or the feature, the
decoder comprising:

10

15

20

25

30

35

40

45

50

55

32

a processor that executes instructions that facilitate per-

formance of operations, comprising:

every time the signal or the feature 1s mput, propagating

cach ol a plurality of tokens, which 1s an object
assigned with a state of the head of a path being
searched, based on using the digraph to determine that
a state or a transition assigned with a non-empty 1nput
symbol 1s reached;

in each istance of token propagating, adding, in the

lattice, a node corresponding to a state assigned to each
of the plurality of tokens,

as a function of using the digraph, detecting a first node

that 1s connected to a second node added in an 1-th
instance (where 1 1s an 1teger equal to or greater than
one) 1n the lattice and that 1s added 1n an 1+1-th istance
in the lattice; and

every time the signal or the feature 1s mput for a prede-

termined number of times, eliminating unnecessary
nodes from the lattice, wherein the eliminating further
comprising referring to the digraph and, of nodes added
in the 1-th instance 1n the lattice, eliminating nodes that
do not reach any of nodes added 1n the 1+1-th 1nstance
in the lattice.

17. The decoder according to claim 16, the operations
turther comprising every time the tokens are propagated,
calculating, with respect to each of the plurality of tokens, a
signal score corresponding to the mput symbol assigned to
a state or a transition of the head of a path and an accumu-
lation score obtained by accumulating the signal scores 1n
the path, wherein

when the node added 1n the 1-th 1nstance 1s treated as a first

node and the node connected to the first node and added
in the 14+1-th instance 1s treated as a second node, the
operations further comprise eliminating nodes present
in paths excluding a path in which the accumulation
score associated to the second node 1s 1dentical to the
value obtained by adding the accumulation score asso-
ciated to the first node and the signal score associated
to the second node.

18. The decoder according to claim 17, wherein

the digraph has a weight assigned to a state or a transition,

with respect to each of the plurality of tokens, the opera-

tions further comprise calculating the signal score and
calculating an accumulation score obtained by accu-
mulating the weights and the signal scores 1n a path
represented by the token, and

when the node added in the 1-th instance 1s treated as a first

node and the node connected to the first node and added
in the 1+1-th instance 1s treated as a second node,
climinating nodes present in paths excluding a path 1n
which the accumulation score associated to the second
node 1s 1dentical to the value obtained by adding the

accumulation score associated to the first node, the
signal score associated to the second node, and weights
in a path connecting the first node and the second node.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

