US009785738B1

12 United States Patent

Alpert et al.

US 9,785,738 B1
Oct. 10, 2017

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR EVALUATING OTHER PUBLICATTIONS
SPANNING TREES
Khuller et al., “*Balancing Minimum Spanning and Shortest Path
(71) Applicant: Cadence Design Systems, Inc., San Trees,” Computer Science Department, University of Maryland,
Jose, CA (US) Chapter 27, pp. 243-250; downloaded on Nov. 15, 2015.
Cong et al., “Provably Good Performance-Driven Global Routing,”
(72) Inventors: Charles Jay Alpert, Cedar Park, 1X IEEE Transactions on Computer-Aided Design, vol. 11, No. 6, Jun.
(US); Zhuo Li, Cedar Park, TX (US); 1992, pp. 739-752.
Wing Kai Chow, K?WIOOH (HK); Boese et al., “High-Performance Routing Trees With Identified
Wen-Hao Liu, AU_SUH: IX (US); Critical Sinks,” Computer Science Department, University of Cali-
Derong Liu, Austin, TX (US) fornia at Los Angeles, 30th ACM/IEEE Design Automation Con-
_ _ ference, 1993, pp. 182-187.
(73) Assignee: Cadence Design Systems, Inc., San Alpert et al., “Prim-Dykstra Tradeofls for Improved Performance-
Jose, CA (US) Driven Routing Tree Designs,” IEEE Transactions on Computer-
(*) Notice: Subject. to any disclaimer,. the term of this ggg?gfségg%?gg‘tegmted Cireuits and Systems, vol. 14, No. 7, Jul.
patent 1s extended or adjusted under 35 Alpert et al., “Timing-Driving Steiner Trees are (Practically) Free,”
U.S.C. 154(b) by O days. IBM Austin Research Lab, Austin, TX 78758, DAC 2006, Jul
24-28, 20006, pp. 389-392.
(21) Appl. No.: 14/972,809
* cited by examiner
(22) Filed: Dec. 17, 2015
Primary Examiner — Eric Lee
(51) Int. CL (74) Attorney, Agent, or Firm — Mark H. Whittenberger,
Goor 17/50 (2006.01) Esq.; Holland & Knight LLP
(52) U.S. CL
CPC ... GO6I' 1775081 (2013.01); GO6F 17/5077 (57) ABSTRACT
_ _ _ (2013.01) The present disclosure relates to a system and method for
(58) Field of Classification Search evaluating spanning trees. Embodiments may include
USPC S TSI ISP PSSR 2 716/126 receiving, using at least one processor, a spanning tree
See application file for complete search history. including one or more sinks coupled by one or more edges.
(56) References Cited Embodiments may further include receiving a user-selected

2007/0271543 Al*

U.S. PATENT DOCUMENTS

11/2007 Alpertc.......... GO6F 17/509
716/114

200

riuriairarfraivrfrarivarrar

floating parameter. Embodiments may also include inter-
changing the one or more edges of the spanning tree based
upon, at least i part, the user-selected floating parameter.

15 Claims, 12 Drawing Sheets

receiving, using at least one processor, a spanning tree including one or
more sinks coupled by one or more edges

202 "

receiving a user-selected tloating parameter

204_"

interchanging the one or more edges of the spanning tree based upon, at least
in part, the user-selected floating parameter

206

US 9,785,738 B1

Sheet 1 of 12

Oct. 10, 2017

U.S. Patent

(81) Xomiau

[
'------‘--

/

s$920.d HE o=
: "
uoljeneas | 1 D
oaJ) buiuueds | & 0
uopesidde |
il
x <

LI IE S JE S N

k._........k...k._,..,_....k...k._........._,....k._,.......k...k._,....._...q...k._........k....q.........k...h......f...h......f...hqﬁ...._
X i “..uw\

L Ol

S

N e e

v...lu.lk!..w

¥
i
S
e e e
L A e e b e ey |
L o el ok o
FoE e ey e a ay ae a a e
A e g
L N ol i aal a aF aay ay
e e e aa a i
L R el e g e
L o N e ok o
L N el e e ey
L A M“.
L N “ ” @
e e e g
L N g g
N e N ok o
L N s
e g
—..:..I.:..:..:..:..:..:..:..:..:..:..:..:.b.b..:.b.b.b.b.b.b.b.b.b.b.b.b.b.b.b.b.b.b.b.#b. .:." O_ mo— Q Q m
e e i a .
min e e e e e e e e o e e e o ol olterdt i
a
- L]
T YT R T E TR LW YN
- o ¥
* L
] » " -7
_J_l_..l..l.l_l.l..l..l_ 1‘..l_l__l_ll_
3 a ' r_-
R .:J._
n i i
- —
I T AnOD DS On
L™ -y —_— - - - -
m _ﬁ T P i B Ll L n s Y
[Y - - -
e e - - anOaocCoason
n = - - * "
- - -..l _-.__. .._..l
L3 L] R il r-=
Rt T T LT L : L
[» [1 4 - -
MIal vy s I
a [}] [] k] 1 L] 1,
— ' ' . 1 E 1 il PR bttt
|]] - [] [k . m——— . FEmEEEEEEE=
.I.I..I__Il l.! a] s N - I-.l - . . J.......r_.
a '] F] [] - - N -
l..rlli.l.-. a7 - 3 I nll -_l..-i..l =
o i ol wlf = = EoN
l._..-_.._l._l..-lli A . .lt -_.n -, ll.l..- -
- ._-....l. Ll [] r !.1 __-I l.l.-.r.._..l.l
L L ar ’] r * i
- - . x o+ . . e
LN T— .I-_..-_. . 1 r L.i - -
- .l.l..-. 1 [+« i x .Il..l -
g L d 1 J 1 F s
[! ' __. r 4 v
L] - = b = L-..._.
L " b N L l.-. Y e
L]] - 4 ™ "n
LS S ¥ e - :
* - - - - b =1
) M u -
- - .._.._..-_ LT — 1
L9 FY
L !-.l.l. ™ (% .._
- - —
L -
L
™
/’O> -H ._—
O # '_
L) *
'I.l_l_ll.ll .-I_I._l-l.l_-.
LI
A
— - il ._i
- om o b_l..-_l _-_.._.j. -
- .-l..__. "
- - _-.l
l.-.I.I - - &
™
. .Ilj_- ..-_Il. .r_- .
J..l.-_ ._..-_. -..-. " - .-_-. uhouh
- - -._-_ . 4 l_r L lll.l.ll ey
Au. .-r r-_ . -.. ._.... . -J i..l.l pwrETE=TE,
L -
- l- "]] .- ' l\ - pm At
- - £ 1 ’ F] 1.‘ -
- - -) o i N r - L Ty
- - 4 4 I - -
M”. Ly "] r o o ¢ fl - Ay o T e e e e
" et o o ___.- .a 3 2 . - a T e a a A
- - i - -y Jr dr e dr o dr e e dpo e dr oM g oAl M
My . Ry ._..-._ - “ “ r 2 s_.l e e e e
Ry " M x I 1 Pl e e el e iy Y
F - a L 1 1] g
L L i L] o o el]
, » bl L b -] L 1 1 1 1 o ap e e e e e e ap e e i
- L™ - L 1 b o A g
L_i.l.t._..lll_l.l_ Il..ll..l..l_.l__l_._r_. s _..__p . .__‘.r * . . L X K M
4 "y " L] . . ' - . X dp o dp dr e dr dr g drodeodpode al N
" L] . = " P A NN N N NN N
L - ' - L] - drodr Jdr o dr dr dp dp o dp dr e e e g g s
[- "n " " . E o e]
- - - - N A]
B 3 - 9 - L N
- - - Lt e o kol k] e
- Y - A e 1
Se il o A g
- -
_— AN N N NN NN i
- LN N g
:Omﬂmo—_aam e N N e P NN
u . .

Jualjo

RN L N NN NN NN N

L

U.S. Patent Oct. 10, 2017 Sheet 2 of 12 US 9,785,738 B1

PO
-
-

recetving, using at least one processor, a spanning tree including one or
more sinks coupled by one or more edges

202~

recetving a user-selected tloating parameter

204"

interchanging the one or more edges of the spanning tree based upon, at least
in part, the user-selected tloating parameter

206"

FIG. 2

U.S. Patent Oct. 10, 2017 Sheet 3 of 12 US 9,785,738 B1

o
-

312A \-312B

312D 3108

308
312C

310C

FIG. 3A

312B
310B

310A
312C .

FIG. 3B

=
v o
= ¥ Old
A
=
)
%
-
3011 00LY
— 0Ly
5 voLr A
m %\N\\\\\\\\\\\% SrARY
| goLv
VZLb
— NSADLULS
S 9zLv
= gziy
w 80 - 8oy

U.S. Patent

US 9,785,738 B1

Sheet 5 of 12

Oct. 10, 2017

U.S. Patent

G Ol

9 Ol

US 9,785,738 B1

SIS By Syus %y SHUIS SUUIS Hy-By

asio /.. .'\\85 aoig /4- -\\owa

081L%

-1\5.@5

Sheet 6 of 12

* +
*
. *

»
>

9219 \\ ./ V819 aglo ", N vaig
+ m + +* m
A e A

809 209

Oct. 10, 2017

U.S. Patent

US 9,785,738 B1

Sheet 7 of 12

Oct. 10, 2017

U.S. Patent

L Dl

syuns Oy Squs -0y sjuis WPy syuis Ty Squs Tty syuIs YT
o

391/ /4. aoL/ .p ‘.\owﬁ = /.-o@_& /..- -,.\ 914
02 . (e 08L.
AgLL asiL/ 4814 asgtl
|, 891. %E/‘ %E/. VOLL™
1 .

#.-.ti + i#iff
» _-.t * ot
dels \ .,f v8L. d8l. \ o Svais
ti ii.-_. &*# 1*1
ﬁ#m . m
N 80/ N~ 20/
007

US 9,785,738 B1

Sheet 8 of 12

Oct. 10, 2017

U.S. Patent

(] = sabpo
JO JaQUUNN

8 Ol

U.S. Patent Oct. 10, 2017 Sheet 9 of 12 US 9,785,738 B1

900 Find_child_node(nodes, distance)

(926 e A 5
N {Next out-going

< "> edge in routing tree Nodes=Nodes U 5
: find_child_nodes(v’, D—1)
S e=(v, v) from v} T 5

Return Nodes {No additional out-going
edges in routing tree
e=(v, 1) from v]

-~ 930
Return Nodes -

FIG. 9

U.S. Patent Oct. 10, 2017 Sheet 10 of 12 US 9,785,738 B1

1000

Find_candidates{edge, distance)

i 1034

- 1032 / Assume edge={(v,v")

- Nodes = find__child__nc)des(v,ﬂ)

——— b Return Nodes
)4
N 1036
~ ™
__________________________________ > '*Q: x:,,
. v
H .
[Next in-

coming edge
in (G-T) e’ =

(u’, u,) to v}

o 1036
[v’isnot 7 h /r ’

ancestor of |
0] ‘-~ f,,f INo addit:onal
incoming edges in (G-
T) e’ = (' .u)to v

[v" 15 not
ancestor of u’}

Y 1042
V,, INo additional 1044
- node - Return £dges — @

u e Nodes]

FIG. 10

U.S. Patent Oct. 10, 2017

Sheet 11 of 12

1146

1100
/’ 1164
““““““““““““““““““““““““““““““““““““ o 11438
swap (e,€’) BestDeltaCost=0
. » Update downstream Q ' BestSwap = emoty |
5 Update downstream K D LY
[BestDeltaCost < Q] oo)
1162~ . Y1150
\ INo A /
f‘f : Zqﬂm ____________________________ additional _;H 1‘; [N
™ . - cefk S e - ©
N d e additional
[Nextl € Ey) candidate
[BestDeltaCost 2 0] ! 1152 edges of E,]
; N T
i 1166 . .
E. = find_candidates(e, D)
’ ’l - 1154
INext candidate edge
e' € E,]
1156
e X
Cost = swap cost{e,e’)
X 1158
--------------- [Cost 2 BestDeltaCost] : ““

[
(Cost < BestDeltsCost]

__________________________ ‘,/' 1160

BestDeltaCost = Cost

US 9,785,738 B1

Sheet 12 of 12

Oct. 109 2017

U.S. Patent

2l Ol

424 ”_OE_‘
oEC\\\a\\\\\\\\\\\& v ARA)

US 9,785,738 Bl

1

SYSTEM AND METHOD FOR EVALUATING
SPANNING TREES

FIELD OF THE INVENTION

The present disclosure relates to electronic design auto-
mation (EDA), and more specifically, to a system and
method for evaluating spanning trees.

DISCUSSION OF THE RELATED ART

EDA utilizes software tools that may be used in the design
and analysis of numerous electronic systems such as printed
circuit boards (PCBs) and itegrated circuits (ICs). Span-
ning trees may be used in determiming a wire routing for
PCBs and ICs. A Prim-Dijkstra (PD) algorithm can generate
a spanmng tree. The time complexity of the PD algorithm 1s
(¢ log e), where ¢ 1s the number of edges 1n a given routing
graph associated with the spanning tree. However, the PD
algorithm does not generate an optimal wirelength/detour
tradeodl. It may be of interest to seek a post-processing edge
swapping process to obtain better spanning trees.

SUMMARY OF INVENTION

In one or more embodiments of the present disclosure, a
computer-implemented method i1s provided. The method
may include receiving, using at least one processor, a
spanning tree including one or more sinks coupled by one or
more edges. The method may further include receiving a
user-selected floating parameter. The method may also
include interchanging the one or more edges of the spanning
tree based upon, at least 1n part, the user-selected floating,
parameter.

One or more of the following features may be included.
In some embodiments, the interchanging the one or more
edges may be further based upon, at least 1n part, at least one
of: one or more wirelengths of the spanning tree, one or
more detour costs associated with the one or more sinks of
the spanning tree, and a number of downstream sinks
associated with each sink of the one or more sinks of the
spanning tree. In some embodiments, the spanning tree 1s
associated with an integrated circuit design. In some
embodiments, interchanging the one or more edges may
include changing a direction of the one or more edges. The
method may include determining the number of downstream
sinks associated with each sink of the one or more sinks of
the spanning tree. The method may also include updating
cach sink of the one or more sinks with a common detour
cost change after interchanging one or more edges. In some
embodiments, mterchanging the one or more edges may
include selecting an edge of the one or more edges that 1s
shared by a plurality of source-to-sink paths.

In some embodiments, a computer-readable storage
medium 1s provided. The computer-readable storage
medium may have stored thereon instructions that when
executed by a machine result in one or more operations.
Operations may include receiving a spanning tree including
one or more sinks coupled by one or more edges. Operations
may Tfurther include receiving a user-selected floating
parameter. Operations may also include interchanging the
one or more edges of the spanning tree based upon, at least
in part, the user-selected floating parameter.

One or more of the following features may be included.
In some embodiments, interchanging the one or more edges
may be further based upon, at least in part, at least one of:
one or more wirelengths of the spanning tree, one or more

10

15

20

25

30

35

40

45

50

55

60

65

2

detour costs associated with the one or more sinks of the
spanming tree, and a number of downstream sinks associated

with each sink of the one or more sinks of the spanning tree.
In some embodiments, the spanning tree 1s associated with
an integrated circuit design. In some embodiments, wherein
interchanging the one or more edges may include removing
a tree edge and adding a non-tree edge. In some embodi-
ments, interchanging the one or more edges may include
changing a direction of the one or more edges. Operations
may include determining the number of downstream sinks
associated with each sink of the one or more sinks of the
spanmng tree. Operations may also include updating each
sink of the one or more sinks with a common detour cost
change after interchanging one or more edges. In some
embodiments, interchanging the one or more edges may
include selecting an edge of the one or more edges that 1s
shared by a plurality of source-to-sink paths.

In one or more embodiments of the present disclosure, a
system may 1nclude a computing device having at least one
processor configured to receive a spanning tree associated
with an integrated circuit design including one or more sinks
coupled by one or more edges. The at least one processor
may be turther configured to receive a user-selected floating
parameter. The at least one processor may be further con-
figured to interchange the one or more edges of the spanning
tree based upon, at least 1n part, the user-selected floating
parameter.

One or more of the following features may be included.
In some embodiments, interchanging the one or more edges
may be further based upon, at least 1in part, at least one of:
one or more wirelengths of the spanning tree, one or more
detour costs associated with the one or more sinks of the
spanming tree, and a number of downstream sinks associated
with each sink of the one or more sinks of the spanning tree.
In some embodiments, interchanging the one or more edges
may include removing a tree edge and adding a non-tree
edge. In some embodiments, interchanging the one or more
edges may include changing a direction of the one or more
edges.

Additional features and advantages of embodiments of the
present disclosure will be set forth in the description which
tollows, and 1n part will be apparent from the description, or
may be learned by practice of embodiments of the present
disclosure. The objectives and other advantages of the
embodiments of the present disclosure may be realized and
attained by the structure particularly pointed out in the
written description and claims hereof as well as the
appended drawings.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further
explanation of embodiments of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of embodiments of the present
disclosure and are incorporated in and constitute a part of
this specification, illustrate embodiments of the present
disclosure and together with the description serve to explain
the principles of embodiments of the present disclosure.

FIG. 1 1s a system diagram depicting aspects of the
spanming tree evaluation process in accordance with an
embodiment of the present disclosure;

FIG. 2 1s a flowchart depicting operations consistent with
the spanning tree evaluation process of the present disclo-
Sure;

US 9,785,738 Bl

3

FIG. 3A 1s a schematic depicting a spanming tree in
accordance with an embodiment of the present disclosure;

FIG. 3B i1s a schematic depicting a spanning tree in
accordance with an embodiment of the present disclosure;

FIG. 4 1s a schematic depicting aspects of the spanning
tree evaluation process in accordance with an embodiment
of the present disclosure;

FIG. 5 1s a schematic depicting aspects of the spanning,
tree evaluation process in accordance with an embodiment
of the present disclosure;

FIG. 6 1s a schematic depicting aspects of the spanming
tree evaluation process 1n accordance with an embodiment
of the present disclosure;

FIG. 7 1s a schematic depicting aspects of the spanming
tree evaluation process 1n accordance with an embodiment
of the present disclosure;

FIG. 8 1s a schematic depicting aspects of the spannming
tree evaluation process in accordance with an embodiment
of the present disclosure;

FIG. 9 1s a flowchart depicting operations consistent with
the spanning tree evaluation process of the present disclo-
SUre;

FIG. 10 1s a flowchart depicting operations consistent
with the spanning tree evaluation process of the present
disclosure:

FI1G. 11 1s a flowchart depicting operations consistent with
the spanning tree evaluation process of the present disclo-
sure; and

FIG. 12 1s a schematic depicting aspects of the spanming
tree evaluation process in accordance with an embodiment
of the present disclosure.

DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments
of the present disclosure, examples of which are 1llustrated
in the accompanying drawings. The present disclosure may,
however, be embodied 1n many different forms and should
not be construed as being limited to the embodiments set
torth herein. Rather, these embodiments are provided so that
this disclosure will be thorough and complete, and will fully
convey the concept of the disclosure to those skilled 1n the
art.

Referring to FIG. 1, there 1s shown spanning tree evalu-
ation process 10 that may reside on and may be executed by
server computer 12, which may be connected to network 14
(c.g., the Internet or a local area network). Examples of
server computer 12 may include, but are not limited to: a
personal computer, a server computer, a series ol server
computers, a mini computer, and a mainframe computer.
Server computer 12 may be a web server (or a series of
servers) running a network operating system, examples of
which may include but are not limited to: Microsoft®
Windows® Server; Novell® NetWare®; or Red Hat®
Linux®, for example. (Microsoit and Windows are regis-
tered trademarks of Microsoft Corporation in the United
States, other countries or both; Novell and NetWare are
registered trademarks of Novell Corporation in the United
States, other countries or both; Red Hat 1s a registered
trademark ol Red Hat Corporation in the United States, other
countries or both; and Linux 1s a registered trademark of
Linus Torvalds in the United States, other countries or both.)
Additionally/alternatively, the spanning tree evaluation pro-
cess may reside on and be executed, 1n whole or 1n part, by
a client electronic device, such as a personal computer,
notebook computer, personal digital assistant, or the like.

10

15

20

25

30

35

40

45

50

55

60

65

4

The instruction sets and subroutines of spanning tree
evaluation process 10, which may include one or more
solftware modules, and which may be stored on storage
device 16 coupled to server computer 12, may be executed
by one or more processors (not shown) and one or more
memory modules (not shown) incorporated 1nto server com-
puter 12. Storage device 16 may include but i1s not limited
to: a hard disk drive; a solid state drive, a tape drive; an
optical drive; a RAID array; a random access memory
(RAM); and a read-only memory (ROM). Storage device 16
may include various types of files and file types including
but not limited, to hardware description language (HDL)
files, which may contain the port type descriptions and
executable specifications of hardware blocks.

Server computer 12 may execute a web server application,
examples of which may include but are not limited to:
Microsoit 1IS, Novell Webserver™, or Apache® Webserver,
that allows for HITP (1.e., HyperText Transier Protocol)
access to server computer 12 via network 14 (Webserver 1s
a trademark of Novell Corporation in the United States,
other countries, or both; and Apache 1s a registered trade-
mark of Apache Software Foundation 1n the United States,
other countries, or both). Network 14 may be connected to
one or more secondary networks (e.g., network 18),
examples of which may include but are not limited to: a local
area network; a wide area network; or an intranet, for
example.

Server computer 12 may execute an electronic design
automation (EDA) application (e.g., EDA application 20),
examples of which may include, but are not limited to those
available from the assignee of the present application. EDA
application 20 may interact with one or more EDA client
applications (e.g., EDA client applications 22, 24, 26, 28).
EDA application 20 may be referred to herein as a design
tool.

Spanning tree evaluation process 10 may be a stand-alone
application, or may be an applet/application/script that may
interact with and/or be executed within EDA application 20.
In addition/as an alternative to being a server-side process,
the spanning tree evaluation process may be a client-side
process (not shown) that may reside on a client electronic
device (described below) and may interact with an EDA
client application (e.g., one or more of EDA client applica-
tions 22, 24, 26, 28). Further, the spanning tree evaluation
process may be a hybnid server-side/client-side process that
may interact with EDA application 20 and an EDA client
application (e.g., one or more of client applications 22, 24,
26, 28). As such, the spanning tree evaluation process may
reside, 1n whole, or in part, on server computer 12 and/or one
or more client electronic devices.

The mstruction sets and subroutines of EDA application
20, which may be stored on storage device 16 coupled to
server computer 12 may be executed by one or more
processors (not shown) and one or more memory modules
(not shown) incorporated nto server computer 12.

The mstruction sets and subroutines of EDA client appli-
cations 22, 24, 26, 28, which may be stored on storage
devices 30, 32, 34, 36 (respectively) coupled to client
clectronic devices 38, 40, 42, 44 (respectively), may be
executed by one or more processors (not shown) and one or
more memory modules (not shown) incorporated into client
clectronic devices 38, 40, 42, 44 (respectively). Storage
devices 30, 32, 34, 36 may include but are not limited to:
hard disk drives; solid state drives, tape drives; optical
drives; RAID arrays; random access memories (RAM);
read-only memories (ROM), compact tlash (CF) storage
devices, secure digital (SD) storage devices, and a memory

US 9,785,738 Bl

S

stick storage devices. Examples of client electronic devices
38, 40, 42, 44 may include, but are not limited to, personal
computer 38, laptop computer 40, mobile computing device
42 (such as a smart phone, netbook, or the like), notebook
computer 44, for example. Using client applications 22, 24,

26, 28, users 46, 48, 50, 52 may access EDA application 20
and may allow users to e.g., utilize spanning tree evaluation
process 10.

Users 46, 48, 50, 52 may access EDA application 20

directly through the device on which the client application
(e.g., client applications 22, 24, 26, 28) i1s executed, namely
client electronic devices 38, 40, 42, 44, for example. Users
46, 48, 50, 52 may access EDA application 20 directly
through network 14 or through secondary network 18.
Further, server computer 12 (1.¢., the computer that executes
EDA application 20) may be connected to network 14
through secondary network 18, as illustrated with phantom
link line 54.

The various client electronic devices may be directly or
indirectly coupled to network 14 (or network 18). For
example, personal computer 38 1s shown directly coupled to
network 14 via a hardwired network connection. Further,
notebook computer 44 1s shown directly coupled to network
18 via a hardwired network connection. Laptop computer 40
1s shown wirelessly coupled to network 14 via wireless
communication channel 66 established between laptop com-
puter 40 and wireless access point (1.e., WAP) 68, which 1s
shown directly coupled to network 14. WAP 68 may be, for
example, an IEEE 802.11a, 802.11b, 802.11g, Wi-F1, and/or
Bluetooth device that 1s capable of establishing wu'eless
communication channel 66 between laptop computer 40 and
WAP 68. Mobile computing device 42 1s shown wirelessly
coupled to network 14 via wireless communication channel
70 established between mobile computing device 42 and
cellular network/bridge 72, which 1s shown directly coupled
to network 14.

As 1s known 1n the art, all of the IEEE 802.11x specifi-
cations may use Ethernet protocol and carrier sense multiple
access with collision avoidance (1.e., CSMA/CA) for path
sharing. The various 802.11x spec:lﬁcatlons may use phase-
shift keying (1.e., PSK) modulation or complementary code
keying (1.e. CCK) modulation, for example. As 1s known 1n
the art, Bluetooth 1s a telecommunications industry specifi-
cation that allows e.g., mobile phones, computers, and
personal digital assistants to be interconnected using a
short-range wireless connection.

Client electronic devices 38, 40, 42, 44 may each execute
an operating system, examples of which may include but are
not limited to Microsoft Windows, Microsoft Windows
CE®, Red Hat Linux, or other suitable operating system.
(Windows CE 1s a registered trademark of Microsoit Cor-
poration in the United States, other countries, or both).

Referring to FIGS. 2-12, various embodiments consistent
with spanning tree evaluation process 10 are provided. As
shown 1n FIG. 2, embodiments of spanning tree evaluation
process 10 may include receiving (202), using at least one
processor, a routing including one or more sinks coupled by
one or more edges. Embodiments may further include
receiving (204) a user-selected floating parameter. Embodi-
ments may also include mterchanging (206) the one or more
edges of the spanning tree based upon, at least 1n part, the
user-selected tloating parameter.

In some embodiments and as shown 1in FIGS. 3A and 3B,
spannming tree evaluation process 10 may include receiving a
spannming tree including one or more sinks coupled by one or
more edges. A “spanning tree” as used herein may include,
but 1s not limited to, one or more possible mterconnections

10

15

20

25

30

35

40

45

50

55

60

65

6

between a plurality of nodes 1n a network and/or a signal net.
While a network may include the interconnection and/or
communication of a plurality electronic devices (e.g., wired
connections, wireless connections, etc.), this 1s a non-limait-
ing example within the scope of the present disclosure. A
network may also include the relationship(s) between vari-
ous mathematical structures and/or symbols. Examples of
networks that may be represented by a spanning tree include,
but are not limited to, communication networks, power
networks (e.g., electrical transmission), utility networks
(e.g., liquid piping), and other networks of information
and/or resources that may be represented by a spanning tree.

In one example, a spanning tree may be associated with
an mtegrated circuit design. The spanning tree may describe
how a group of terminals connects both directly and/or
indirectly to a source pin in the integrated circuit design. In
some embodiments, the spanning tree may be associated
with a VLSI circuit routing design. The spanning tree may
determine the topology for the wiring of one or more given
points 1n an electronic circuit design. For example, source A
might route to sink B, and sink B might route to sink C. A,
B, and C may all have physical locations, which may
provide the wiring routes for the spanming tree. However, the
spanming tree itsell may not be a routed solution. The
spanming tree may provide an initial starting point from
which actual wires may be inserted.

In some embodiments, a spanning tree may be associated
with a routing graph. A “routing graph” as used herein may
include, but 1s not limited to, an intermediate data structure
that may be used to evaluate a spanming tree, as will be
described 1n greater detail below. In some embodiments,
multiple spanning trees may exist for a single routing graph
and may depict multiple, possible interconnection configu-
rations between a plurality of nodes of a routed graph. Each
of the routing graph and the spanning tree may be undirected
and/or directed. Undirected may indicate that the relation-
ship between one or more sinks and/or a source has no
orientation. Directed may indicate that the relationship
between one or more sinks and/or a source and a sink has an
orientation.

A “source” as used herein may include, but 1s not limited
to, a source node, source pin and/or a root. A “sink™ as used
herein may 1nclude, but 1s not limited to, a vertex, a terminal,
a pin, and/or a node. An “edge” or “edge (a, b)” as used
herein may include, but 1s not limited to, a feasible and/or
potential link between two nodes (e.g., smk “a” and sink
“b”). In some embodiments, an edge may be a tree edge
and/or a non-tree edge. A “tree edge” as used herein may
include, but 1s not limited to, an edge defined in a spanning
tree. A “non-tree edge” as used herein may include, but is not
limited to, an edge that 1s not defined 1n a spanning tree. In
other words, a non-tree edge may be a possible link between
one or more nodes of a routed graph but may not be defined
n a spanning tree. A spanning tree may include one or more
subtrees. A subtree as used herein may include, but 1s not
limited to, a subset of one or more sinks downstream from
a sink. A downstream sink may include, but 1s not limited to,
a sink (e.g., a descendant sink) that 1s linked to an adjacent
sink (e.g., an ancestor sink and/or upstream sink), such that
the downstream sink may be further from the source than the
adjacent sink and/or may be connected to the source through
the adjacent sink. The cost of a spanning tree may include
but 1s not limited to, the sum of the costs of each edge of the
one or more edges 316 of the spanning tree. The cost of each
edge may include, but 1s not limited to, the wirelength of
cach edge. A “wirelength™ as used herein may include, but
1s not limited to, the distance between one or more sinks.

US 9,785,738 Bl

7

The distance between one or more sinks may include, but 1s
not limited to, the Manhattan distance between the one or
more sinks. A “radius” as used herein may include, but 1s not
limited to, the distance between the source and the sink
turthest from the source of a spanning tree.

As shown in the example of FIG. 3A, a spanning tree may
include a source 308, one or more sinks 310A, 310B, 310C,

310D and one or more edges 312A, 3128, 312C, 312D to
link the one or more sinks 310A, 310B, 310C, 310D and/or
the source 308. The wirelength of edge 312A between the
source 308 and sink 310A may be 8. The wirelength of edge
312B between sink 310A and sink 310B may be 5. The
wirelength of edge 312C between the source 308 and sink
310C may be 4. The wirelength of edge 312D between sink
310A and sink 310D may be 3. As described above, the cost
of each edge may be the wirelength and the cost of the
spannming tree may be the cost of each edge of the spanning
tree. In this example, the cost of spanning tree may be 20
(e.g., 8+5+4+3). The radius of the spanning tree may be the
distance between the source 308 and the furthest sink. In this
example, the radius may be the distance of edges 312A and
312B between the source 308 and sink 310B, which may be
13 (e.g., 8+5).

In another example and as shown 1n FIG. 3B, a spanning

tree may include a source 308, one or more sinks 310A,
310B, 310C, 310D and one or more edges 312A, 312B,

312C, 312D to link the one or more sinks and/or the source
308. The wirelength of edge 312A between the source 308
and sink 310A may be 8. The wirelength of edge 312B
between the source 308 and sink 310B may be 5. The
wirelength of edge 312C between the source 308 and sink
310C may be 4. The wirelength of edge 312D between sink
310A and sink 310D may be 3. As described above, the cost
of each edge may be the wirelength and the cost of the
spanming tree may be the cost of each edge of the spanning
tree. In this example, the cost of spanning tree may be 20
(e.g., 8+5+4+3). The radius of the spanning tree may be the
distance between the source 308 and the furthest sink. In this
example, the radius may be the distance of edges 312A and
312C between the source 308 and sink 310C, which may be
12 (e.g., 8+4).

In some embodiments, a spanning tree may be generated
by an algorithm. Examples of algorithms that may generate
spanning trees include, but are not limited to, Prim’s algo-
rithm, Dyjkstra’s algorithm, the Prim-Dijkstra algorithm, and
other algorithms that may generate spanning trees within the
scope of the present disclosure. Examples of spanning trees
that may be received may include, but are not limited to,
timing-driven and/or performance driven spanning trees,
Steiner trees, rectilinear Stemner trees (RSTs), Rectilinear

Steiner Minmimum Trees (RSMTs), Minimum Rectilinear
Steiner Arborescence (MRSA), Bounded Radius-Ratio

Steiner Mimmum Trees (BRSMTs), Critical-Sink Routing
Trees (CSRTs), Elmore Routing Trees (ERTs), and any
spanning tree within the scope of the present disclosure.
In some embodiments, spanning tree evaluation process
10 may receive a spanning tree T=(V ., E) and a routing
graph G=(V 5, E). In one example, the spanning tree and
the routing graph may be directed (e.g., a directed spanming,
tree and/or a directed routing graph). In some embodiments,
V., and E.. may be vertices and edges in spanning tree T,
respectively (1.e., V may be associated with vertices or sinks
and E may be associated with edges). V. and E . may be
vertices and edges 1n routing graph G, respectively. In some
embodiments, the spanning tree V.- may have some or all of
the same vertices of the routing graph V -, (V. =V). In some
embodiments, the spanning tree E- may have some or all of

10

15

20

25

30

35

40

45

50

55

60

65

8

the edges of the directed routing graph E, (E-©E;). The
vertices of the routing graph V . may include a source node
s,5€V . The routing graph may also include one or more sink

nodes v, (veV and v=s). For every sink node, there may
exist a directed source-to-sink path (SSPath) in T. A span-
ning tree with a directed source-to-sink path for each sink
node may be a source-to-sink tree.

In some embodiments, spanning tree evaluation process
10 may include receiving (204) a user-selected floating
parameter. In some embodiments, the user-selected floating
parameter (o) may be a given weight value. For a given
user-selected floating parameter, spanning tree evaluation
process 10 may evaluate a received spanning tree for wasted
wirelength and/or additional detour. In some embodiments,
the user-selected floating parameter (¢.) may be between O
and 1. The total detour and total wirelength of the tree may
be traded off by the user specified floating parameter o
between O and 1. When o 1s 0, spanning tree evaluation
process 10 may find a minimum spanning tree (MST). A
minimum spanning tree, as used herein, may include but 1s
not limited to a spanning tree with a minimum wirelength.
When o 1s 1, spanning tree evaluation process 10 may find
a shortest-path tree (SPT). An SPT as used herein may
include, but 1s not lmmited to, a spanmng tree with a
minimum radius.

A user and/or an EDA application may select the user-
selected floating parameter based upon, at least 1n part, the
tradeoll between increasing the wirelength 1n order to reduce
source-sink distance and vice versa. The user-selected float-
ing parameter may be stored as a default value, may be
received from a graphical user interface, and/or may be
received by any other suitable method from any source. For
example, a user-selected floating parameter may be set to a
default of 0. However, 1n some embodiments, 11 a signal net
becomes critical, a user may increase the user-selected
floating parameter until the signal net 1s no longer critical.
Critical as used herein may include, but 1s not limited to, a
signal net

In some embodiments and as shown 1n FIG. 4, spanning,
tree evaluation process 10 may include interchanging (206)
the one or more edges of the spanning tree based upon, at
least 1 part, the user-selected floating parameter (a).
“Swapping” and “interchanging” as used herein, may
include, but are not limited to, removing an edge, adding
another edge and/or replacing an edge with another edge. In
some embodiments, removing an edge may include remov-
ing a tree edge. In some embodiments, adding an edge may
include adding a non-tree edge. In some embodiments, one
or more edges of a spanning tree may be swapped until all
pins and/or nodes connected. Spanning tree evaluation pro-
cess 10 may iteratively remove one or more tree edges
(eeE) and/or add one or more non-tree edges (ee(E —E)
to modily the received spanming tree and/or produce a new
spanning tree which may result in a better wirelength-to-
detour tradeofl according to a given weight value (o). In
some embodiments, spanning tree evaluation process 10
may iteratively swap or interchange one or more edges to
reduce the spanning tree cost (e.g., wirelength). In some
embodiments, spanning tree evaluation process 10 may
swap or interchange one or more edges to reduce signal
delay 1n the spanning tree (e.g., radius). In some embodi-
ments, spanning tree evaluation process 10 may occur after
a spanning tree has been created (e.g., spanning tree evalu-
ation process 10 involve post-processing of the spanning
tree). Spanning tree evaluation process 10 may evaluate a
received spanning tree according to a cost function and may

US 9,785,738 Bl

9

improve the wirelength and/or detour cost, as will be
described 1n greater detail below.

In some embodiments, interchanging the one or more
edges may 1nclude changing a direction of the one or more
edges. During swapping, one or more edges may change
direction. In one example, changing the direction of the one
or more edges may be needed to maintain a source-to-sink
tree structure. “Distance” of an edge swap as used herein
may include, but i1s not limited to, a number of edges with
direction changes during swapping.

In a non-limiting example and as shown 1n FIG. 4, one or
more edges of a spanning tree may be interchanged. Span-
ning tree evaluation process 10 may interchange the edge
412A between the source 408 and sink 410A with the edge
between sink 410B and sink 410D. In some embodiments,

interchanging may include removing edge 412A and adding
edge 414. In some embodiments, one or more of the edges
of the spanning tree (e.g., a directed spanning tree) may be
directed. In one example, 412D may be a directed edge. As
shown in FIG. 4, iterchanging one or more edges may
change the direction of directed edge 412D (e.g., from sink

410A to 410D) to a directed edge 412D’ (e.g., from 410D to
410A). The distance of the edge swap of FIG. 4 may be one
because one edge (e.g., edge 412D) may have changed
direction (e.g., 412D").

In some embodiments, interchanging the one or more
edges may be further based upon, at least 1n part, at least one
of: one or more wirelengths of the spanning tree, one or
more detour costs associated with the one or more sinks of
the spanning tree, and a number of downstream sinks
associated with each sink of the one or more sinks of the
spanning tree. In some embodiments, spanning tree evalu-
ation process 10 may tradeoll between one or more of
wirelength, radius, detour cost, and the number of down-
stream sinks. In some embodiments, interchanging the one
or more edges may be further based upon, at least in part,
wirelengths, detour costs, and the downstream number of
sinks 1n accordance with a cost function which will be
described 1n greater detail below. Detour cost, as used herein
may include, but 1s not limited to, the cost of removing an
existing edge and adding a new edge. The detour cost of an
edge e (v,, v;,) may be represented by Equation 1 below:

g .~dist(s,v,)+len(e)-dist(s,v;) (1)

where dist(s,v,) may be the distance between sources and
sink v, len(e) may be an edge length and/or wirelength of
edge e, and dist(s,v;) may be the distance between source s
and sink v,. In some embodiments, the detour cost of at a
sink may include, but 1s not limited to, the sum of the detour
costs of the edges from source to the sink. The detour cost
of a sink may be represented by Equation 2 below.

(2)

where SSPath, may include, but 1s not limited to, one or
more edges of a path connecting the source and the sink t,
and g € may be the detour cost of edge e.

In some embodiments, spanning tree evaluation process
10 may interchange one or more edges of the spanning tree
based upon, at least 1n part, the cost function. Interchanging,
the one or more edges based upon, at least 1n part, the cost
function may include, but 1s not limited to, reducing wire
routing and/or improving the wirelength and detour cost
simultaneously. Using the cost function may include con-
sidering wasted wirelength, detour cost and the downstream
number of sinks. In some embodiments, spanming tree

) =2e€55p0m 9e

10

15

20

25

30

35

40

45

50

55

60

65

10

evaluation process 10 may swap one or more edges to
directly optimize the wirelength/detour tradeoil to improve
both criteria simultaneously.

In some embodiments, the cost function for swapping
from an edge ¢, .. 10 an edge ¢_,, may be represented by
Equation 3 below:

Cost=02,.p,AQ+(1-a)(lenle zz)-len(e, cnove)) (3)

However, to calculate the total source to sink delay may
be impractically time consuming. In some embodiments,
when a sink’s detour cost 1s changed by AQ,, every sink in
the subtree under sink t may also be changed by AQ.. This
may simplify calculations with the number of downstream
sink(s) (K), as will be discussed 1n greater detail below.

In some embodiments and as shown 1n the example of
FIG. 5, spanning tree evaluation process 10 may swap edge
(1, a) with edge (3, a), where edge (1, a) may be e,___ _ and

edge (1, a) may be e_ .. As shown 1n FIG. 5, the source s 508,
may be linked to sink 1 316 A and sink 1 516B by edge 518A

and edge 518B, respectively. Sink 1 516 A may be linked to
sink a 516C by edge 518C. In some embodiments, sinks a

1, and/or] may include subtrees. In one example, sink a may
include K sinks 1n a subtree, where K may be a number of
downstream sinks. Spanmng tree evaluation process 10 may
swap e, ... t1o¢e .. byremoving edge (1, a) 518C and adding
edge (3, a) 520. In thus example, the distance for the edge
swap may be zero because no edge directions may have been
changed during the swap ote,_ _ _toe .. Thecosttunction
for swapping from edge e, _toe_,,when edge swapping
with a distance of zero (e.g., D=0) may be represented by
Equation 4 below:

Costpo=0K (Dt qja— o) +H{1-a)(len(e;,)-len(e;,)) (4)

In some embodiments and as shown 1n the example of
FIG. 6, spanning tree evaluation process 10 may swap edge
(1, a) with edge (3, b), where edge (1, a) may be e¢,___ _ and

edge (1, b) may be e_, .. As shown in FIG. 6, the sources 608,
may be linked to sink 1 616 A and sink 1 616B by edge 618A

and edge 618B, respectively. Sink 1 616 A may be linked to
sink a 616C by edge 618C. Sink a 616C may be linked to
sink b 616D by edge 618D. In some embodiments, sinks a,
b, 1, and/or 1 may include subtrees of downstream sinks. In
one example, sink a 616C may include K | sinks 1n a subtree
and sink b 616D may include K, sinks 1n a subtree. Spanning
tree evaluation process 10 may swap e, to e .. by
removing edge (1, a) 618C and adding edge (3, b) 620. In this
example, the distance for the edge swap may be one because
the edge direction for edge 618D may have been changed
during the swapofe, _ _toe_ .. toedge 618D with a new
direction. The cost function for swapping from edge e, . .
to e ., when edge swapping with a distance of one (e.g.,
D=1) may be represented by Equation 5 below:

Costp | =0((K,~K) (Q+9 1519 5= P) +Kp (O +;5-
Op))+(1-a)(len(e;;)-len(e,)) (3)
In some embodiments and as shown in the example of
FIG. 7, spanming tree evaluation process 10 may swap edge
(1, a) with edge (3, ¢), where edge (1, a) may be ¢,___._ and

edge (3, c) may bee_ ... As shown 1n FIG. 7, the sources 708,
may be linked to sink 1 716 A and sink 1 716B by edge 718 A
and edge 718B, respectively. Sink 1 716 A may be linked to
sink a 716C by edge 718C. Sink a 716C may be linked to
sink b 716D by edge 718D. Sink b 716D may be linked to
sink ¢ 716E by edge 718E. In some embodiments, sinks a
b, ¢, 1, and/or] may include subtrees of downstream sinks.
In one example, sink a 716C may include K sinks 1n a
subtree, sink b 716D may include K, sinks in a subtree, and

US 9,785,738 Bl

11

sink ¢ 716E may include K _ sinks 1in a subtree. Spanning tree
evaluation process 10 may swap e, _ande_ ., by remov-
ing edge (1, a) 718C and adding edge (3, ¢) 720. In this
example, the distance for the edge swap may be two because
the edge direction for edges 718D and 718FE may have been
changed during the swap of e, _ to e_ ., to edges 718D’
and 718E' with new directions. The cost function for swap-
ping from edge e, 1o e ., when edge swapping with a
distance of two (e.g., D=2) may be represented by Equation

6 below:

CostpH=a((K,~K)(Q+q;+a 5~ @)H K~ K)N+
Qi+ o= Op) K (O4q,.- Q) +(1-a)(len(e;)-len
(€1a)) (6)
While example distances of zero, one, and two have been
described, any distance may be used within the scope of the
present disclosure.

In some embodiments, spanning tree evaluation process
10 may determine that one or more edges (v,, v,) and (v,,, v,,)
may be swapped when sink v, 1s a downstream sink of v. In
other embodiments, spanning tree evaluation process 10
may determine that one or more edges (v,, v;) and (v, v,,)
may be swapped when the number of edges in the path
connecting sink v,, and sink v, 1s at most D. Spanning tree
evaluation process 10 may determine that one or more edges
(v, v;) and (v, v,)) may be swapped if sink v; 1s not an
ancestor of sink v, . In one example, spanning tree evalua-
tion process 10 may determine that one or more edges (v,
v;) and (v, v,)) may be swapped when: v, 1s a downstream
sink of v, when the number of edges in the path connecting
v,, and v, 1s at most D and 1f v; 1s not an ancestor of v,,.

In some embodiments and as shown in the example of
FIG. 8, a spanning tree may include a source 808 and sinks
v, 816A, v, 8168, v, 816C, and v, 816N. In some embodi-
ments, sinks v, 816C, and v, 816N may be linked together
directly and/or through one or more additional sinks (e.g., N
sinks, where N may be the number of edges). In one
example, v, 816C, and v,, 816N may be separated by D
edges. In some embodiments, sink v, 8168 may be a
downstream sink of v, 816C. In some embodiments, sink v,
816A may not be an ancestor of sink v, 816B. Spanning tree
evaluation process 10 may determine that edges 818C and
818N may be swapped because of any or all of the following
teatures: v, 816C, and v,, 816N may be separated by D edges,
sink v, 816 A may not be an ancestor of sink v, 8168, and/or
sink v,, 8168B may be a downstream sink of v, 816C.

In some embodiments, and as shown in the example
flowchart of FIG. 9, spanning tree evaluation process 10
may evaluate a spanming tree for eligible downstream sinks
for swapping (e.g., child nodes) and may return one or more
nodes. An example function 900 of spanning tree evaluation
process 10 (e.g., find_child_nodes) may start 922 with a first
sink v, and may determine 924 whether D=0. If D=0,
function 900 may return a list of nodes, “Nodes™. If D=0,
function 900 may determine 926 if there are any outgoing
edges e=(v, v') 1n the spanning tree, T, from v. If spanning
tree T includes one or more outgoing edges e=(v, V'),
function 900 may 1dentify a child node and add 928 the sink
v' to “Nodes™ and recursively call find_child_nodes for v'
and D-1. Function 900 may recursively call find_
chuld_nodes for each subsequent child node until there are
no additional outgoing edges. If spanning tree T does not
include any additional outgoing edges, function 900 may
end 930 the function and return “Nodes”.

The following 1s a non-limiting example of an implemen-
tation of one or more features and/or functions of spannming,
tree evaluation process 10 for finding one or eligible down-

10

15

20

25

30

35

40

45

50

55

60

65

12

stream sinks for swapping. Other implementations may be
used within the scope of the present disclosure.
Function find_child_nodes (v, D)

Nodes={v}

If D=0

return Nodes

End IT

For each out-going edge in T e=(v, V') from v

Nodes=NodesUfind_child_nodes(v', D-1)

End For

return Nodes

In some embodiments, and as shown in the example
flowchart of FIG. 10, spanning tree evaluation process 10
may evaluate the spanning tree to find candidate edges for
swapping. An example function 1000 of spanmng tree
evaluation process 10 (e.g., find_candidates) may start 1032
by assigning 1034 “Edges” to an empty set and “Nodes™ to
the result of function 900 (e.g., find_child_nodes) for inputs
(v, D). In some embodiments, function 1000 may use the
resulting “Nodes” from function 900 (e.g., {find_
child_nodes) to determine 1036 whether there are any
incoming edges e'=(u',u) to u from node vu'. If spanning tree
T includes additional mmcoming edges e'=(u',u) to u from
node u', spanning tree evaluation process 10 may determine
1038 whether v' 1s an ancestor of u' of the incoming edge
e'=(u',u). If v' 1s not ancestor of u', spanning tree evaluation
process 10 may add 1040 ¢' to “Edges”. Spanning tree
evaluation process 10 may determine 11 there are additional
incoming edges e'=(u',u) to v and determine whether v' 1s an
ancestor ol u' until there are no additional incoming edges 1n
the node. Spanming tree evaluation process 10 may deter-
mine 1042 whether there are additional nodes ue*“Nodes”. I
there are additional nodes, spanning tree evaluation process
10 may determine whether there are incoming edges in u and
determine whether v' 1s an ancestor of u' of the mmcoming
edge for each incoming edge of node u until there are no
additional nodes. After determining that there are no addi-
tional nodes ue“Nodes™, spanning tree evaluation process 10
may end 1044.

The following 1s a non-limiting example of an 1mplemen-
tation of one or more features and/or functions of spanning
tree evaluation process 10. Other implementations may be
used within the scope of the present disclosure.

Function find_candidates(e, D)

Assume e=(v, V')

Edges=(

Nodes=find_child_nodes(v, D)

For each ueNodes

For each in-coming edge i (G-T) e'=(u',u) to u

If v' 1s not ancestor of U

Add ¢' to Edges
End If

End For

End For

In some embodiments, and as shown in the example
flowchart of FIG. 11, spanning tree evaluation process 10
may evaluate the spanning tree to determine which edges to
interchange and interchange one or more edges. An example
function 1100 of spanning tree evaluation process 10 may
start 1146 by assigning 1148 “BestSwap™ to an empty value
and “BestDeltaCost” to zero. In some embodiments, func-
tion 1100 may determine 1150 whether there are any edges
in the spanning tree eel .. If spanning tree T includes edges
cel ., spanning tree evaluation process 10 may assign 1152
E_ to the result of find_candidates(e, D). Function 1100 may
determine 1154 whether there are any candidate edges e'eEe
resulting from find_candidates(e, D). If candidate edges are

US 9,785,738 Bl

13

found, function 1100 may assign 1156 Cost to the result of
swap_cost(e, ¢'). In some embodiments, swap_cost(e, ¢')
may represent the cost of swapping one or more edges (e, €').
In some embodiments, function 1100 may determine 1158
whether Cost 1s less than BestDeltaCost. If function 1100
determines that Cost 1s less than BestDeltaCost, BestDelta-
Cost may be assigned 1160 the value of Cost and BestSwap
may be assigned edges (e, €'). Function 1100 may determine
1154 whether there are additional candidate edges e'eFe. It
there are additional candidate edges, function 1100 may
repeat the process as described above until there are no
additional candidate edges ¢'eEe. After determining that
there are no additional candidate edges e'eEe, function 1100
may determine 1150 whether there are any additional edges
in the spanning tree eeE.. Function 1100 may repeat the
process as described above until there are no additional
edges 1n the spanning tree cekE ..

After determining that there are no additional edges ¢'eEe,
function 1100 may determine 1162 whether BestDeltaCost
1s less than zero. In some embodiments, 11 BestDeltaCost 1s
less than zero, function 1100 may have i1dentified a swap that
reduces the cost of the spanning tree and may perform 1164
one or more of swapping edges (e, '), updating downstream
Q, and/or updating upstream K, where Q may be the
downstream sink detour costs and K may be the number of
downstream sinks. In some embodiments, while function
1100 1dentifies moves that reduce the cost of the spanning
tree, function 1100 may repeat the process as described
above while BestDeltaCost 1s less than zero. When function
1100 determines 1162 that BestDeltaCost 1s greater than or
equal to zero, Tunction 1100 may end 1166. In one example,
if the mitial cost of the spanning tree 1s 20, function 1100
may {ind a swap with BestDeltaCost of -2. Function 1100
may do the swap and may make the new cost of the spanming,
tree equal to 18. If another iteration gives a BestDeltaCost
of -1, then the new cost of the spanning tree may become
17. In some embodiments, function 1100 may not find an
improving swap, which may mean that BestDeltaCost=0 and
tfunction 1100 may end 1166.

The following 1s a non-limiting example of an implemen-
tation of one or more features and/or functions of spanning,
tree evaluation process 10. Other implementations may be
used within the scope of the present disclosure.

Given a directed routing graph G=(V 5, E2)
(Given a directed source-to-sink tree T=(V 5, E)
Repeat:

BestDeltaCost=0

BestSwap=()

For each eeE

E_=find_candidates(e, D)

For each candidate edge ¢'eE,

Cost=swap_cost(e,e')

If Cost<BestDeltaCost

BestDeltaCost=Cost
BestSwap=(e, ¢')

End If

End For

I (BestDeltaCost<0)

swap (e, €')

Update downstream

Update upstream K

End If
While (BestDeltaCost<0)

In some embodiments, spanning tree evaluation process
10 may include determining the number of downstream
sinks associated with each sink of the one or more sinks of
the spanning tree. In some embodiments, spanning tree

10

15

20

25

30

35

40

45

50

55

60

65

14

evaluation process may store the number of downstream
sinks (K)) at each sink t, as shown 1n FIG. 12. The number
of downstream sinks may include the number of down-
stream and the current sink. For example, as shown 1n FIG.
12, spanning tree 1200 may include a source 1208 and sinks
1210A, 12108, 1210C, 1210D, 1210E, 1210F. The number
of downstream sinks for the source 1208 may be 7 which
may be the number of all sinks downstream from the source
(e.g., 6) and may also 1nclude the source (e.g., 1) to total 7.
In some embodiments, the number of downstream sinks may
be updated after each edge swapping.

In some embodiments and referring again to FIGS. 5-7,
the number of downstream sinks, K at each sink t, may be
updated upstream as shown below 1 Equations 7-8 for a
distance of zero (e.g., D=0):

K,=K;-K, (7)

K/=K+K, (8)

In some embodiments, the number of downstream sinks,
K at each sink t, may be updated upstream as shown below
in Equations 9-12 for a distance of one (e.g., D=1):

K'=K-K_ (9)

KK +K, (10)

Ko =Ko=Ky (11)

K=K, (12)

In some embodiments, the number of downstream sinks,
K at each sink t, may be updated upstream as shown below
in Equations 13-17 for a distance of two (e.g., D=2):

K/'=K-K, (13)

K/'=K+K, (14)

KH’:KH_KE? (]‘5)

Kp=K,~K, (16)

K=K, (17)

While example distances of zero, one, and two have been
described, any distance may be used within the scope of the
present disclosure. In some embodiments, parent nodes of
sinks 1 and 1 may be updated with the same K change (K'-K,
and K/'-K) until the nearest common ancestor ot 1 and j.

Spanning tree evaluation process 10 may also include
updating each sink of the one or more sinks with a common
detour cost change after interchanging one or more edges.
As discussed above, to calculate the total source to sink
delay of a spanning tree for each detour may be impracti-
cally time consuming. In some embodiments, when a sink’s
detour cost 1s changed by AQ,, every sink in the subtree
under sink t may also be changed by AQ .. This may simplity
calculations with the number of downstream sink(s) (K). In
some embodiments, whenever a sink’s detour cost 1s
changed, spanning tree evaluation process 10 may update all
downstream sinks’ detour cost with the same change, or a
common detour cost change, AQ..

In some embodiments, mterchanging the one or more
edges may include selecting an edge of the one or more
edges that 1s shared by a plurality of source-to-sink paths. In
some embodiments, spanming tree evaluation process 10
may choose an edge that may be shared by more source-to-
sink paths, based upon, at least in part, the number of
downstream sinks (K), even if the edge 1s relatively long.
This may result in a lower detour cost with a lower total

US 9,785,738 Bl

15

wirelength. Other processes, such as PD, pick relatively
short edges that result 1n higher detour costs and/or higher
total wirelength.

In some embodiments utilizing the spanning tree evalu-
ation process 10 for reducing wire routing in an integrated
circuit, a 20% better detour cost for the same wirelength
and/or capacitance may be observed. In the context of
integrated circuits, this may help delays for critical nets. It
may also create better buller trees and better clock networks.
Overall, the physical design of integrated circuits may
improve with utilization of spanning tree evaluation process
10.

In some embodiments of the present disclosure, spanning,
tree evaluation process 10 may reduce wirelength and/or the
radius of a spanning tree. In one example, reducing the
wirelength and/or the radius of a spanning tree in the context
ol integrated circuit design may reduce signal delays and
capacitance in an integrated circuit.

Spanning tree evaluation process 10 may be configured to
operate with various EDA applications such as those avail-
able from the Assignee of the present disclosure, which may
allow the user to evaluate a spanning tree associated with an
integrated circuit design. In some embodiments, spanning
tree evaluation process 10, when configured to operate with
EDA application 20, may evaluate a spanning tree associ-
ated with an integrated circuit design, reduce wirelengths,
and 1ncrease data throughput for the integrated circuit
design. In some embodiments, the spanning tree may be
received at a graphical user interface associated with the
EDA application 20. In some embodiments, the user-se-
lected floating parameter may be received at a graphical user
interface associated with EDA application 20.

In some embodiments, EDA application 20 may support
a variety of languages and/or standards. Some of these may
include, but are not limited to, IEEE-standard languages, the
Open Verification Methodology (OVM), the emerging
Accellera Universal Verification Methodology (UVM), and
the e Reuse Methodology (eRM). EDA application 20 may
support €, Open Verification Library (OVL), OVM class
library, emerging UVM class library, SystemC®, SystemC
Verification Library, SystemVerilog, Verilog®, VHDL, PSL,
SVA, CPF, as well as numerous other languages. EDA
application 20 may be used 1n accordance with mixed-
language, mixed-signal, and low-power designs, across mul-
tiple levels of abstraction, and may include the ability to “hot
swap’’ the RTL simulation in/out of numerous accelerators/
emulators.

As used 1n any embodiment described herein, the terms
“circuit” and “circuitry” may include, for example, singly or
in any combination, hardwired circuitry, programmable cir-
cuitry, state machine circuitry, and/or firmware that stores
istructions executed by programmable circuitry. It should
be understood at the outset that any of the operations and/or
operative components described 1in any embodiment herein
may be implemented in software, firmware, hardwired cir-
cuitry and/or any combination thereof. Embodiments of the
present disclosure may be incorporated in whole or 1n part
into any design tools.

As will be appreciated by one skilled 1n the art, the present
disclosure may be embodied as a method, system, or com-
puter program product. Accordingly, the present disclosure
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
soltware, micro-code, etc.) or an embodiment combining
solftware and hardware aspects that may all generally be
referred to heremn as a “circuit,” “module” or “system.”
Furthermore, the present disclosure may take the form of a

10

15

20

25

30

35

40

45

50

55

60

65

16

computer program product on a computer-usable storage
medium having computer-usable program code embodied in
the medium.

Any suitable computer usable or computer readable
medium may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer-usable, or computer-
readable, storage medium (including a storage device asso-
ciated with a computing device or client electronic device)
may be, for example, but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system, apparatus, or device, or any suitable combination
of the foregoing. More specific examples (a non-exhaustive
list) of the computer-readable medium would 1nclude the
following: an electrical connection having one or more
wires, a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an
crasable programmable read-only memory (EPROM or
Flash memory), an optical fiber, a portable compact disc
read-only memory (CD-ROM), an optical storage device. In
the context of this document, a computer-usable, or com-
puter-readable, storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with the 1nstruction execution system, apparatus,
or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program coded
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that 1s not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device. Program code
embodied on a computer readable medium may be trans-
mitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations of the
present disclosure may be written 1n an object oriented
programming language such as Java, Smalltalk, C* or the
like. However, the computer program code for carrying out
operations of the present disclosure may also be written 1n
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

The present disclosure 1s described below with reference
to flowchart 1llustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the disclosure. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-

US 9,785,738 Bl

17

grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified 1n the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored
in a computer-readable memory that can direct a computer
or other programmable data processing apparatus to function
in a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including istructions which implement the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other pro-
grammable apparatus provide steps for implementing the
functions/acts specified 1n the flowchart and/or block dia-
gram block or blocks.

It will be apparent to those skilled 1n the art that various
modifications and variations can be made 1 the embodi-
ments of the present disclosure without departing from the
spirit or scope of the present disclosure. Thus, it 1s intended
that embodiments of the present disclosure cover the modi-
fications and variations provided they come within the scope
of the appended claims and their equivalents.

What 1s claimed 1s:

1. A computer-implemented method for evaluating a
spanning tree and reducing wirelength associated with an
integrated circuit design comprising:

receiving, using at least one processor, a spanning tree

associated with an integrated circuit design to be fab-
ricated including one or more sinks coupled by one or
more edges;

receiving a user-selected tloating parameter; and

interchanging the one or more edges of the spanning tree

based upon, at least 1n part, the user-selected floating
parameter, one or more wirelengths of the spanming
tree, one or more detour costs associated with the one
or more sinks of the spanning tree, and a number of
downstream sinks associated with each sink of the one
or more sinks of the spanning tree, wherein interchang-
ing results 1n reducing one or more wirelengths of the
spanning tree resulting 1in a reduced wirelength inte-
grated circuit, wherein interchanging includes replac-
ing a first edge with a second edge.

2. The computer-implemented method of claim 1,
wherein interchanging the one or more edges includes
removing a tree edge and adding a non-tree edge.

3. The computer-implemented method of claim 1,
wherein interchanging the one or more edges includes
changing a direction of the one or more edges.

4. The computer-implemented method of claim 1, further
comprising:

determining the number of downstream sinks associated

with each sink of the one or more sinks of the spanning
tree.

5. The computer-implemented method of claim 1, further
comprising;

5

10

15

20

25

30

35

40

45

50

55

60

18

updating each sink of the one or more sinks with a
common detour cost change after interchanging one or
more edges.

6. The computer-implemented method of claim 1,
wherein interchanging the one or more edges includes
selecting an edge of the one or more edges that 1s shared by
a plurality of source-to-sink paths.

7. A computer-readable storage medium having stored
thereon instructions that when executed by a machine result
in the following operations:

recerving a spanmng tree associated with an integrated
circuit design to be fabricated including one or more
sinks coupled by one or more edges;

recerving a user-selected floating parameter; and

interchanging the one or more edges of the spanning tree
based upon, at least 1n part, the user-selected floating
parameter, one or more wirelengths of the routing tree
and one or more detour costs associated with the one or
more sinks of the routing tree, wherein interchanging
results 1n reducing one or more wirelengths of the
routing tree resulting 1n a reduced wirelength integrated
circuit, wherein interchanging includes replacing a first
edge with a second edge.

8. The computer-readable storage medium of claim 7,
wherein interchanging the one or more edges includes
removing a tree edge and adding a non-tree edge.

9. The computer-readable storage medium of claim 7,
wherein 1nterchanging the one or more edges includes
changing a direction of the one or more edges.

10. The computer-readable storage medium of claim 7,
turther comprising;:

determining the number of downstream sinks associated
with each sink of the one or more sinks of the spanning
tree.

11. The computer-readable storage medium of claim 7,

further comprising:

updating each sink of the one or more sinks with a
common detour cost change after interchanging one or
more edges.

12. The computer-readable storage medium of claim 7,
wherein interchanging the one or more edges includes
selecting an edge of the one or more edges that 1s shared by
a plurality of source-to-sink paths.

13. A system for evaluating a spanning tree comprising:

a computing device having at least one processor config-
ured to receive a spanmng tree associated with an
integrated circuit design to be fabricated including one
or more sinks coupled by one or more edges, the at least
one processor further configured to receive a user-
selected tloating parameter and swap the one or more
edges of the spanning tree based upon, at least 1n part,
the user-selected floating parameter, one or more wire-
lengths of the routing tree, one or more detour costs
associated with the one or more sinks of the routing
tree, and a number of downstream sinks associated with
cach sink of the one or more sinks of the routing tree,
wherein swapping the one or more edges includes
replacing a first edge with a second edge.

14. The system of claim 13, wherein swapping the one or
more edges includes removing a tree edge and adding a
non-tree edge.

15. The system of claim 13, wherein swapping the one or
more edges includes changing a direction of the one or more
edges.

	Front Page
	Drawings
	Specification
	Claims

