US009785415B2

12 United States Patent

(10) Patent No.: US 9.,785.415 B2

Keene et al. 45) Date of Patent: Oct. 10, 2017

(54) REMOTE INTERFACE TO LOGICAL (56) References Cited

INSTRUMENTS .
U.S. PATENT DOCUMENTS
(71) Appllcant NATIONAL INSTRUMENTS 654053145 Bl 3 6/2002 RUSt ““““““““““““ GO6F 9/455
CORPORATION,J AUStiIl,, X (US) 702/121
6,581,012 B1* 6/2003 Aryevccoce.... GO1N 35/0092
(72) Inventors: Richard Henry Mace Keene, Gwent 702/22
(GB); Jan Viborg Moeller, Greve (DK) 8,356,282 BL* /2013 Leippe ...cccovvvnns GUOF 71{ ifﬁg’;‘
(73) Assignee: NATIONAL INSTRUMENTS 3,839,187 BI™ 92014 YR oo ooer S
CORPORATION, Austin, TX (US) 2002/0080174 Al* 6/2002 KodosKyocooove..... GOGF 8/34
715/762
(*) Notice: Subject to any disclaimer, the term of this (Continued)

patent 1s extended or adjusted under 35

Primary Examiner — Insun Kang
U.S.C. 154(b) by 358 days.

(74) Attorney, Agent, or Firm — Meyertons Hood Kivlin
Kowert & Goetzel, P.C.; Jefirey C. Hood; Mark S.

(21) Appl. No.: 14/500,652

Williams
(22) Filed: Sep. 29, 2014 (57) ABSTRACT
System and method for controlling a custom modular mea-
(65) Prior Publication Data surement system. An editor may receive user input specity-
S 2016/0002175 Al Mar. 31, 2016 ing one or more system definitions, each mapping message
based commands, parameters, variables and/or metadata
(51) Int. CL. (“information”) accordant with a control protocol tor stand-
GOGE 9/44 (2006.01) alone 1nstruments to functions and data 1n a programming
GO6F 3/0484 (2013.01) language, and generates the definitions accordingly, each
GO6F 3/0482 (2013.01) being useable by a client application to interface with a
GO6F 9/455 (2006.01) custom modular measurement system that includes multiple
GO6F 9/46 (2006.01) logical nstruments via the message based information. At
GO6F 11/00 (2006.01) least one of the defimtions may be deployed onto the
(52) U.S. CL measurement system. A run-time engine of the measurement
CPC GO6F 8/33 (2013.01); GO6F 3/0482 system may accept a message based command from the

(2013.01); GO6F 3/04842 (2013.01); GO6F application, and call a corresponding function, which may
8/34 (20513_01). GO6F 9/45504 (20513_01). invoke operation of at least one of the logical instruments.

GOGF 9/46 (2013.01); GO6F 11/00 (2013.01) The logical instruments may be operated concurrently,
(58) Field of Classification Searjch including sharing use of a single physical measurement

None device by at least two of the logical instruments.

See application file for complete search history. 24 Claims, 16 Drawing Sheets

reCoivE, by an aiital. user inpul seecdving ais oF Mmore Sysiam definlinons, where
each sysiam dafinition mans messsge based commands, parsmeters, andror
redadRio acooraand wdlt o cerings grotocol fr siandalene msinnmendts o funcions
and data in 2 programming languags

l

generaiz, by he edor, the she of more sysiem definifons hased on the usae nplt
whefe each system delmition i3 useania Dy a cient apniicalicn 1o interaca with &
CHStoM minliie: Maasdremant systam inat wludes muitinke fogea!l msinimends wia
e maszaie 095ed commands, parameters, andlor maadaiy
s

l

depioy at least ong of tne system dafindions onin iha cusionm moduar measipremant
svstem
Lo

accept, ay a nindims epaine of e coslom modular measurement sysiem 2

message based command vam the chisnt anplicanon
ol

l

call by e rup-iima enging, a flinction that coiresnonds i ihe message hased
conmane, based on the al least ong of the ong oF Imoke systarm datmions
a1l

l

perform, by the jua-time engine, said accenting (6018}, and said caliing (5101 3
plarakty of firmes, shere af teast one caflsd inclion invokes coecaion of at leas! ore
o the logical insinumants

US 9,785,415 B2
Page 2

(56)

2005/0251564
2006/0004559
2006/0007941
2006/0036726
2006/0064673
2008/0255818
2010/0070803
2010/0281412
2010/0333076

2013/0145046

References Cited

U.S. PATENT DOCUM

Tillotson

Al* 11/2005

Al* 1/2006
Al* 1/2006
Al* 2/2006
Al* 3/2006

Al* 10/2008 Jefferson

Al* 3/2010

Al* 11/2010
Al* 12/2010

Al* 6/2013

* cited by examiner

iiiiiiiiiiiii

iiiiiiiiiiiiiii

tttttttttttttttttttt

iiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiii

ttttttttttttttttt

ttttttttttttttttt

ttttttttttttttt

ttttttttttttttttttttt

tttttttttttttttttttt

GOO6F 11/2294

709/218

GOOF 9/455

703/26

HO04L 41/00

370/400

G06Q 10/06

709/224

GO6F 9/4443

717/113

GOOF 17/50

703/13

GOO6F 11/263

714/30

GOO6F 9/45512

715/771

GOO6F 8/20

717/140

GOOF 9/541

709/246

US 9,785,415 B2

Sheet 1 of 16

Oct. 10, 2017

U.S. Patent

- fospeee !E e

(WY Joud)
1 @inbi4

%907 VSIA PICH HOTVSIA UC JEM

Yoolun
30'1

é _ .

IO ¥SIA U JiEM 4307 YSIA PIOH

U.S. Patent Oct. 10, 2017 Sheet 2 of 16 US 9,785,415 B2

Confiqured with program
instructions according o
embodiments of the

invention

Computer System

52

]
o o |

)

el - .
L2 M)

N x L) .
h .
1 L H- 1, N

[|
#h ' |y

Figure 2A

fffff

R ;
ki Rl ARk ml:ﬂ1) |

US 9,785,415 B2

Sheet 3 of 16

Oct. 10, 2017

U.S. Patent

{6
U101SAS Jandiiod

g¢ 2inbi4

A%
LUDISAS IBINAWICC

¥8
JeUIBIUL INYM NV

LOURAL
Sy} JO SUSWpoquUIS
O} BUIDIOTIDR SUCHONIISUL
wiedboid ypm pamnbuyuon

US 9,785,415 B2

Sheet 4 of 16

Oct. 10, 2017

U.S. Patent

D¢ 8inbi-
SasUOdsa/SPUBLLIICT 14718
YSIAIN
idingeaer
SUUNY MIIAGET ANy UOWAL BD D
, SUIUNY {1 AMIIAGERT PUBRISISS |
(T pue 8pogd Jesf) Uoiua) WesAS (Y SANCEXY 188 |

Wa)SAS IXd Jaindwon slin

UONUBALI
Sy} JO SlUBUIPOgUIS
O} BUIpIONOE SUONDNASU
wiesbosd upim painbyuon

US 9,785,415 B2

Sheet 5 of 16

Oct. 10, 2017

U.S. Patent

)
ICHUCT) LORGI

il
Spieng uogisinboy
R18{1-Li-0ni

001 \

LORISINDOY
abig . m _
o UILIOHIPUCD
rZe B
97}

o | _jl' =

- -f_'l_'l'_'l_
-

Y e

- -y
. - .ox

FNAXA

—_——— e e e ey

i
.

Y IOMISN

0G1
JE8E JADU HUN

SjuBWNSU
PASEG-BINGWNSD

US 9,785,415 B2

Sheet 6 of 16

Oct. 10, 2017

U.S. Patent

58001 ge b

O]
U0 aINSSBi] = S
LONOIN sineiadus _
_ \\/ | 05}
| CUON
SPHNWUES

A
SNGRiB!

v}

_ L UOHSINDDY
\\ PAASNS < vleel-ui-bnig _
00Z - S SR EIndwo] . - 58}
¥
28 95@_5
. "
YIOMIBN

9f 2.nbi4

US 9,785,415 B2

Sheet 7 of 16

Oct. 10, 2017

Vi 91nbi4

U.S. Patent

>

JBHOIUOD

US 9,785,415 B2

Sheet 8 of 16

Oct. 10, 2017

U.S. Patent

G ainbi4
9t1
SISSEYD IXA f /
\ Z11sng gido J
.\. .
SO 35T 2z Z8T 08T
SI0RNBYLCoSN XA PIED GldD AL pieH OBPIA
/ {
f 071 sng uoisuedxg f
/ /
LD
ISHOAUCY) $NY
281 sng 180
7ol —_—
1BOIUCT MMW
AICLUBIA Lok
I v/
991)

AJCGWISIN VBIBIN

U.S. Patent Oct. 10, 2017 Sheet 9 of 16 US 9,785,415 B2

raceive, by an editor, user input specifying one or more system definitions, where
each system delinion maps message pased commands, parameters, and/or
metadata accordant with a controd protocol for standalone instrumants o funclions
and data i @ programming language
602

| generate, by the editor, the one or more system definitions based on the user input, |

| whera each system definition is useable by a client application to interface witha |

L custom modular measuremant system that includes multiple logical instruments vig |

' the message based commands, paramelers, andfor metadata '
604

daploy at least one of the system definitions onto the custom modular measurement |
system '
6Us

acoepi, by a run-bime enging of the cuslom modidar measurement system, a
message based command from the client application
608

call by the run-ime enging, a funclion that corresponds in the message based
command, hased on the at least one of the one or mors system definitions
610

| perform, by the run-time enging, said accepting (608), and said calling (6810)8 |

| plurality of times, where at least one called function invokes operation of af least one |

3 of the logical instruments '
812

US 9,785,415 B2

Sheet 10 of 16

Oct. 10, 2017

U.S. Patent

SEA

PUBLIUOD 1A4ADS

(WA
Seitis]iisTy
LUBISAS

s

= 4 R % + B 2 W WY S F BERR Y F AR Y v B

SHIBIBUAL)

JONPT WSAS Y

/
\

-~
.ll-.ll-.ll-..ll.

/

suoneouissdg
128 PUBLILICTH
P M3

---1-—---*

g G ISUDCY

IBUbISS] WsIsAS

US 9,785,415 B2

______________ S
DUBLLLLIOD JUBLLITLSU} AEI(0 mEm
<I>NY A Nﬂ%i_
o VS / %.“_.,_
= 186911 /A
— _
— WBLSAS /M
L | | m
= TYNHILNIFNYIMIN A
HOL3d /A
g 2nBYNOD Qr
= NI 5
S Alojepueiy I_hm_
E = hwewmsu g
Egﬁm_xiz =

-.'.‘."'l.ll'.“-"""""".l.'l_".'.."‘_ """"""""""""""""""""""""""""""""""""""

Q 9inbi4

3903 {28

%mm@@mmmc E=t=

1B1BUBIE L DUBLILIDTS JUBUNISY]

AUSIRIBIY DUBLLLUIOYD 1499

U.S. Patent

02

s

Lt

ARIBUGSISA M

WBISAS 111

US 9,785,415 B2

6 24nb14

= S3HBUCS IS

~ SlUSWINSU

s SUGISS8S UDIDBLUDY UOIIULS(SHAIBS

— _ Lis)SAg oo SHES
2 eoT SLUINS TH

= T TRNETS X

i SUIUNY 1Y

- :

Yo LT .

— P~ -]

& b~ X
L . n

= “ uoneInbyuon l@ﬁu@g
. ! | | .

> : elujunyg iy

- |

U.S. Patent

it=18eit-Tg:
WBISAQ

0} 8Inbi

DIBMPIBH

US 9,785,415 B2

SUIBUS JUSLIBINSRaN

UOISSe J0IS88S

LOISSER

e | wswsinseapy wswsinseapy | 1 uswsinsesiy

o

— _

= _ _ \ f

o [(DUDUOAA R _ \ (] [(Bupuops) |

- - uoueinbyuon) I aponyiesyy | 1 udieinbyucs) | 8pnD BN
. AJOUIBIA . __ | Aowspy .

- Juawnasu eabo wBLnsy; 21607

— ”

)

—3

\

= _

e, UOISS S LIORIBUUOT _ w UOISSRS UORISLLICH

g S0 _ m CRUCIT

U.S. Patent

US 9,785,415 B2

Sheet 14 of 16

Oct. 10, 2017

U.S. Patent

L 1 8Inbi4

| (1) 2uibUT 10201014
OPOJ 8N SN UOHBIUSUINISY]

¢ LING, 0-uo1sses) 18D VSIA

{801SAUL~8IX d

instrumentation Bus Protocal 1

() sthBu 1000104
SNy LORRIUSLUNISLY

Bndwio) uskD

Josied

mmomg:n_,.mmxm_ __ JUBWINASU mmw_mﬁ_ %mmmmmcomﬁmacou_

LJUING, uBuinsUy) [0] uoissagWwesAg

(UOIBIDUIS - JBAIBS TALY) JSHDAUOYD peppeqiul 8fXd

21 @inbi4

US 9,785,415 B2

HOOT JUSWNASUS HO0T JUSWINISU]
- pRIBUS PIOH DRIBYS LO JEM
cm Vvllllﬁllllk
- _
- -q e
% HIBODERN % payaolg #4 muﬁm@c@w
L2 4 Md | SV R vy
~ T N
o . I st LI 0B
S R T I
=)
— _A
S ~ %307 JUBLUNASH

peiEUS PIOM

U.S. Patent

SRS

¥ BlD

U.S. Patent Oct. 10, 2017 Sheet 16 of 16 US 9,785,415 B2

configure a custom modular measurement system that includes a pluralily
of logical instruments, each logical instrument configured to perform
measurement functions via at least one corresponding physical
measurement device, a plurality of isolated memory spaces in the memory,
2ach conhgured to store configuration information and working data tor a
respective togical instrument, and at least one measurement engine
1304

operate the custom modular measurement syster, including operating the
piurality of logical instruments concurrently, including,
tor each logical instrument:

commiunicate with a respective client appication
independently
1312

- acquire, generate, or process data using the at least one
- corresponding physical measurement device via the at
least one measurement engine per the configuration
information
1314

where operating the plurality of logical instruments concurrently includes
sharing use of a single physical measurement device by at least two of the
logical instruments
1304

Figure 13

US 9,785,415 B2

1

REMOTE INTERFACE TO LOGICAL
INSTRUMENTS

FIELD OF THE INVENTION

The present disclosure relates to the field of mstrumen-
tation, and more particularly to logical instrumentation,
specifically, a remote interface to logical instruments, and a
device for implementing logical instrumentation.

DESCRIPTION OF THE RELATED ART

Developers of automated test systems often want to
implement a distributed architecture where a custom modu-
lar measurement system 1s physically separated from an
automated test control system but coupled via a network.
Typical modular measurement systems consist of one or
more measurement devices and associated software drivers,
an embedded controller/processor, and a software run-time
system to call and coordinate the drivers for the measure-
ment devices, sometimes concurrently. Typical automated
test control systems consist of a host computer running a
software program that sends commands to the modular
measurement system and receives and then processes the
results.

Such modular measurement systems need a mechanism to
export an interface that can be invoked over a network. One
approach 1s to provide a control protocol for standalone
instruments such as SCPI (Standard Commands for Pro-
grammable Instruments) interface. SCPI 1s a popular stan-
dard for communicating with and controlling measurement
devices which defines standard instrument commands trans-
mitted as ASCII string over a communication bus.

In a typical prior art automated system as described
above, the SCPI interface would necessarily be custom, 1.e.,
would require customization. However, 1t 1s very dithicult to
create a custom SCPI interface to a custom modular mea-
surement system.

Additionally, 1n current automated test systems the ratio
between automated test stations and measurement equip-
ment 1s 1:1. The usage of an individual mstrument 1s often
below 50% which means that the high value asset of the
instrument 1s used less than half the time. One approach to
increase the utilization of such assets 1s to share the instru-
ment between different testers, e.g., host computers execut-
ing testing software, such as in a test executive application
or system. Many test systems utilize a control protocol for
standalone instruments to communicate with and control
istruments, e.g., SCPI; however, sharing a SCPI based
instrument 1s no trivial task as SCPI commands by definition
are or include stateful data, where the total configuration 1s
performed 1n small pieces at a time. This means that if the
instrument 1s shared between two testers A and B, the
commands of tester A can conflict with settings used by
tester B and vice versa.

As 1llustrated i prior art FIG. 1, locking the mstrument,
¢.g., using Virtual Instrument Software Architecture (VISA)
locks, as provided by National Instruments Corporation,
allows tester A to complete Configure, Measure (e.g.,
Acquire and Process), and Result Readback phases of test-
ing before tester B can acquire the lock and lock out tester
A. As FIG. 1 shows, Tester A locks the device, thus limiting,
the device to Tester A’s use, including the Configure,
Measure, and Readback phases of testing, during which
Tester B 1s blocked from using the device. As shown, once
Tester A’s testing 1s done, Tester A unlocks the device, and
Tester B locks the device, thus limiting the device to Tester

10

15

20

25

30

35

40

45

50

55

60

65

2

B’s use, including the Configure, Measure, and Readback
phases of testing, during which Tester A 1s blocked from

using the device. Upon completion of Tester B’s testing,
Tester B may unlock the device.

This approach, however, 1s quite ieflicient as the 1nstru-
ment hardware 1s locked from the time the first Configure
phase command 1s sent until the last result Readback com-
mand 1s received. Ideally, the only time the instrument
hardware actually needs to be locked and blocking any other
processes 1s during the Measure phase.

Graphical programming has become a powertul tool
available to programmers. Graphical programming environ-
ments such as the National Instruments LabVIEW product
have become very popular. Tools such as LabVIEW have
greatly increased the productivity of programmers, and
increasing numbers ol programmers are using graphical
programming environments to develop their software appli-
cations. In particular, graphical programming tools are being
used for test and measurement, data acquisition, process
control, man machine interface (MMI), supervisory control
and data acquisition (SCADA) applications, modeling,
simulation, 1mage processing/machine vision applications,
and motion control, among others.

SUMMARY OF THE INVENTION

Various embodiments of systems and methods for logical
instrumentation are presented below. A system configured
according to embodiments of the techniques disclosed
herein may include a client application, and a custom
modular measurement system, coupled to the client appli-
cation. The custom modular measurement system may
include a controller, including: one or more system defini-
tions, where each system definition maps message based
commands, parameters, variables, and/or metadata accor-
dant with a control protocol for standalone instruments to
functions and data 1n a programming language, and a
run-time engine. The custom modular measurement system
may further include a plurality of logical instruments,
coupled to or comprised in the controller, where the client
application may be configured to send one or more message
based commands, parameters, variables, and/or metadata
accordant with the control protocol to the custom modular
measurement system. The run-time engine may be config-
ured to: accept a message based command from the client
application, call a function that corresponds to the message
based command, based on at least one of the one or more
system definitions, and perform said accepting and said
calling a plurality of times, where at least one called function
invokes operation of at least one of the logical instruments.

In one embodiment, a method for controlling a custom
modular measurement system may include receiving, by an
editor, user input specitying one or more system definitions,
where each system defilnition maps message based com-
mands, parameters, variables and/or metadata accordant
with a control protocol for standalone mstruments to func-
tions and data 1n a programming language. The editor may
generate the one or more system definitions based on the
user mput, where each system definition 1s useable by a
client application to interface with a custom modular mea-
surement system that includes multiple logical istruments
via the message based commands, parameters, variables,
and/or metadata. At least one of the system definitions may
be deployed onto the custom modular measurement system.
A run-time engine of the custom modular measurement
system may accept a message based command from the
client application, and may call a function that corresponds

US 9,785,415 B2

3

to the message based command, based on the at least one of
the one or more system definitions. The run-time engine may
perform said accepting and said calling a plurality of times,
where at least one called function invokes operation of at
least one of the logical mstruments.

The method may further include the editor displaying and
editing one or more functions 1n the programming language.
In one embodiment, the method may include the editor
displaying and editing at least one of the system definitions
in response to user input. Moreover, the editor may create a
tree of the message based commands organized in accor-
dance with the logical mstruments and measurement sub-
systems of the logical instruments. In one embodiment, the
editor may create an integrated instrument soit front panel,
where the integrated instrument soit front panel includes
respective subpanels for logical instruments and/or measure-
ment subsystems of the logical mstruments, and where the
integrated instrument soft front panel maps elements on the
panels to the functions, parameters, variables, and/or meta-
data 1n the programming language. In some embodiments,
the method may include parsing, by the run-time engine, the
message based command, and determining the function
based on the parsing. The above function calling may be
performed 1n response to such determining.

Each logical instrument may represent a single physical
measurement device, multiple coordinated physical mea-
surement devices, or software, as desired. Additionally,
during operation, at least two of the logical instruments may
share use of a single physical measurement device. In one
embodiment, at least one logical instrument may support
concurrent execution of multiple independent measurement
subsystems. The run-time engine may support multiple
concurrent external connections to the same logical instru-
ment.

The method may further include synchronizing, by the
run-time engine, access to a physical measurement device by
multiple logical instruments, or multiple measurement sub-
systems within a logical istrument. In one embodiment, a
message containing a result of the operation may be sent to
the client application.

Note that the control protocol for standalone instruments
may be of any type desired. In one embodiment, the control
protocol for standalone mstruments may be or include SCPI
(Standard Commands for Programmable Instruments). In
some embodiments, the programming language may include
a graphical programming language, e.g., a graphical data
flow programming language, such as LabVIEWT™,

In some embodiments a system may be provided that
includes or supports multiple logical instruments. For
example, 1n one embodiment, the system may include a
processor, and a memory, coupled to the processor, where
the memory stores program instructions executable by the
processor to implement: a plurality of logical instruments,
where each logical mnstrument i1s configured to perform
measurement functions via at least one corresponding physi-
cal measurement device, a plurality of i1solated memory
spaces 1n the memory, where each 1solated memory space 1s
configured to store configuration information and working
data for a respective logical instrument, and at least one
measurement engine.

The plurality of logical instruments may be configured to
operate concurrently, where each of the plurality of logical
instruments may configured to communicate with a respec-
tive client application independently, and acquire, generate,
or process data using the at least one corresponding physical
measurement device via the at least one measurement engine
per the configuration information. During operation, at least

10

15

20

25

30

35

40

45

50

55

60

65

4

two of the logical instruments may share use of a single
physical measurement device.

In some embodiments, use of a single physical measure-
ment device by a logical mstrument may include operating
the single physical measurement device 1 a plurality of
phases, including at least one phase that includes an exclu-
stve portion that requires exclusive access to the single
physical measurement device, 1n which case sharing may
include locking, by a first logical instrument of the at least
two logical instruments, the single physical measurement
device for duration of the exclusive portion of the at least
one phase, thereby blocking others of the at least two logical
instruments from using the single physical measurement
device for the duration of the exclusive portion of the at least
one phase, and unlocking, by the first logical istrument of
the at least two logical instruments, the single physical
measurement device when the exclusive portion of the at
least one phase completes, thereby allowing use of the single
physical measurement device by the others of the at least
two logical mstruments.

In one embodiment, the exclusive portion of the at least
one phase may include an acquire portion in which data are
acquired via the corresponding single physical measurement
device. In another embodiment, the exclusive portion of the
at least one phase may include a generate portion in which
signals are generated via the corresponding single physical
measurement device.

In some embodiments, the at least one measurement
engine may be or include a plurality of measurement
engines. The plurality of measurement engines may be
configured to operate concurrently. Thus, the method may
include operating the plurality of measurement engines
concurrently.

The above locking and unlocking the single physical
measurement device may be performed via a mechanism
implemented in the at least one measurement engine. For
example, the mechanism may be implemented 1n the at least
one measurement engine using operating system (OS) fea-
tures, such as, for example, one or more of: one or more
semaphores, or at least one mutex. In one embodiment, the
mechanism may be implemented 1n the at least one mea-
surement engine using virtual mstrument software architec-
ture (VISA) locks. In some embodiments, the locking or
unlocking may include putting threads to sleep, and/or
disabling OS nterrupts.

In various embodiments, at least one logical instrument of
the plurality of logical instruments 1s configured to provide
measurement capabilities, and analysis fTunctionality 1mple-
mented 1n software, where the analysis functionality oper-
ates on data obtained from the at least one corresponding
physical measurement device.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment 1s considered in conjunction with the
following drawings, 1n which:

FIG. 1 1llustrates device locking for multi-testing using a
modular measurement device, according to the prior art;

FIG. 2A illustrates a computer system configured to
implement embodiments of the present invention;

FIG. 2B illustrates a network system comprising two or
more computer systems configured to implement embodi-
ments of the present mvention;

FIG. 2C 1illustrates a distributed measurement system,
according to one exemplary embodiment of the mvention;

US 9,785,415 B2

S

FIG. 3A illustrates an instrumentation control system
according to one embodiment of the invention;

FIG. 3B illustrates an industrial automation system
according to one embodiment of the invention;

FIG. 4A 1s a high level block diagram of an exemplary
system which may execute or utilize graphical programs;

FIG. 4B illustrates an exemplary system which may
perform control and/or simulation functions utilizing graphi-
cal programs;

FIG. 5 1s an exemplary block diagram of the computer
systems of FIGS. 2A, 2B, 3A and 3B and 4B;

FIG. 6 1s a flowchart diagram illustrating one embodiment
of a method for mterfacing with logical instruments;

FIG. 7 illustrates an exemplary edit time work tlow,
according to one embodiment;

FIG. 8 1llustrates an exemplary hierarchical command set
definition, according to one embodiment;

FIG. 9 illustrates an exemplary run time work flow,
according to one embodiment;

FIG. 10 1s a high level block diagram of an exemplary
system of logical instruments, according to one embodi-
ment;

FI1G. 11 1llustrates an exemplary internal architecture of an
exemplary system of logical mstruments and shared hard-
ware, according to one embodiment;

FIG. 12 1illustrates sharing of a physical instrument,
according to one embodiment; and

FIG. 13 1s a flowchart diagram illustrating one embodi-
ment of a method for operating logical imstruments.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example 1n the drawings and are herein
described 1n detail. It should be understood, however, that
the drawings and detailed description thereto are not
intended to limit the invention to the particular form dis-
closed, but on the contrary, the intention 1s to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

Incorporation by Reference

The following references are hereby incorporated by

reference 1n their entirety as though fully and completely set

forth herein:

U.S. Pat. No. 4,914,568 titled “Graphical System for Mod-
cling a Process and Associated Method,” 1ssued on Apr. 3,
1990.

U.S. Pat. No. 5,481,741 titled “Method and Apparatus for
Providing Attribute Nodes 1 a Graphical Data Flow
Environment™.

U.S. Pat. No. 6,173,438 titled “Embedded Graphical Pro-
gramming System’ filed Aug. 18, 1997,

U.S. Pat. No. 6,219,628 titled “System and Method for
Configuring an Instrument to Perform Measurement
Functions Utilizing Conversion of Graphical Programs
into Hardware Implementations,” filed Aug. 18, 1997.

U.S. Pat. No. 7,210,117 titled “System and Method for
Programmatically Generating a Graphical Program in
Response to Program Information,” filed Dec. 20, 2000.

Terms

The following 1s a glossary of terms used 1n the present
application:

10

15

20

25

30

35

40

45

50

55

60

65

6

Memory Medium—Any of various types of non-transi-
tory computer accessible memory devices or storage
devices. The term “memory medium” 1s itended to include
an 1nstallation medium, e.g., a CD-ROM, tloppy disks 104,
or tape device; a computer system memory or random access
memory such as DRAM, DDR RAM, SRAM, EDO RAM,

Rambus RAM, etc.; a non-volatile memory such as a Flash,
magnetic media, e.g., a hard drive, or optical storage;
registers, or other similar types of memory elements, etc.
The memory medium may comprise other types ol non-
transitory memory as well or combinations thereof. In
addition, the memory medium may be located 1n a first
computer in which the programs are executed, or may be
located 1n a second different computer which connects to the
first computer over a network, such as the Internet. In the
latter instance, the second computer may provide program
istructions to the first computer for execution. The term
“memory medium” may include two or more memory
mediums which may reside in different locations, e.g., 1n
different computers that are connected over a network.

Carrier Medium—a memory medium as described above,
as well as a physical transmission medium, such as a bus,
network, and/or other physical transmission medium that
conveys signals such as electrical, electromagnetic, or digi-
tal signals.

Programmable Hardware Element—includes various
hardware devices comprising multiple programmable func-
tion blocks connected via a programmable interconnect.

Examples include FPGAs (Field Programmable Gate
Arrays), PLDs (Programmable Logic Devices), FPOAs
(Field Programmable Object Arrays), and CPLDs (Complex
PLDs). The programmable function blocks may range from
fine grained (combinatorial logic or look up tables) to coarse
grained (arithmetic logic units or processor cores). A pro-
grammable hardware element may also be referred to as
“reconfigurable logic”.

Software Program—the term “software program™ 1s
intended to have the full breadth of 1ts ordinary meaning,
and mcludes any type of program instructions, code, script
and/or data, or combinations thereof, that may be stored 1n
a memory medium and executed by a processor. Exemplary
soltware programs include programs written 1n text-based
programming languages, such as C, C++, PASCAL, FOR-
TRAN, COBOL, JAVA, assembly language, etc.; graphical
programs (programs written in graphical programming lan-
guages); assembly language programs; programs that have
been compiled to machine language; scripts; and other types
ol executable software. A software program may comprise
two or more software programs that interoperate i some
manner. Note that various embodiments described herein
may be implemented by a computer or software program. A
software program may be stored as program instructions on
a memory medium.

Hardware Configuration Program—a program, e.g., a
netlist or bit file, that can be used to program or configure a
programmable hardware element.

Program—the term “program” 1s intended to have the full
breadth of its ordinary meaning. The term “program”
includes 1) a software program which may be stored 1n a
memory and 1s executable by a processor or 2) a hardware
confliguration program useable for configuring a program-
mable hardware element.

Graphical Program—A program comprising a plurality of
interconnected nodes or icons, wherein the plurality of
interconnected nodes or 1cons visually indicate functionality
of the program. The interconnected nodes or icons are

US 9,785,415 B2

7

graphical source code for the program. Graphical function
nodes may also be referred to as blocks.

The following provides examples of various aspects of
graphical programs. The following examples and discussion
are not mntended to limit the above definition of graphical
program, but rather provide examples of what the term
“oraphical program” encompasses:

The nodes 1n a graphical program may be connected in
one or more of a data flow, control flow, and/or execution
flow format. The nodes may also be connected 1n a “signal
flow” format, which 1s a subset of data flow.

Exemplary graphical program development environments
which may be used to create graphical programs include
LabVIEW®, DasyLab™, DIADem™ and Matrixx/System-
Build™ {rom National Instruments, Simulink® from the
MathWorks, VEE™ {rom Agilent, WiT™ from Coreco,
Vision Program Manager™ from PPT Vision, SoftWIRE™
from Measurement Computing, Sanscript™ from North-
woods Software, Khoros™ from Khoral Research, Snap-

Master™ from HEM Data, VisS1m™ from Visual Solutions,
ObjectBench™ by SES (Scientific and Engineering Soft-
ware), and VisiDAQ™ from Advantech, among others.

The term “graphical program” includes models or block
diagrams created in graphical modeling environments,
wherein the model or block diagram comprises intercon-
nected blocks (i.e., nodes) or icons that visually indicate
operation of the model or block diagram; exemplary graphi-
cal modeling environments include Simulink®, System-
Build™, VisSim™, Hypersignal Block Diagram™, efc.

A graphical program may be represented 1n the memory
of the computer system as data structures and/or program
instructions. The graphical program, ¢.g., these data struc-
tures and/or program instructions, may be compiled or
interpreted to produce machine language that accomplishes
the desired method or process as shown in the graphical
program.

Input data to a graphical program may be received from
any of various sources, such as from a device, unit under
test, a process being measured or controlled, another com-
puter program, a database, or from a file. Also, a user may
input data to a graphical program or virtual instrument using
a graphical user interface, e.g., a front panel.

A graphical program may optionally have a GUI associ-
ated with the graphical program. In this case, the plurality of
interconnected blocks or nodes are often referred to as the
block diagram portion of the graphical program.

Node—In the context of a graphical program, an element
that may be included 1n a graphical program. The graphical
program nodes (or simply nodes) in a graphical program
may also be referred to as blocks. A node may have an
associated icon that represents the node in the graphical
program, as well as underlying code and/or data that imple-
ments functionality of the node. Exemplary nodes (or
blocks) include tunction nodes, sub-program nodes, termi-
nal nodes, structure nodes, etc. Nodes may be connected
together 1n a graphical program by connection icons or
WIres.

Data Flow Program—A Software Program in which the
program architecture 1s that of a directed graph specifying
the flow of data through the program, and thus functions
execute whenever the necessary mput data are available.
Said another way, data flow programs execute according to
a data flow model of computation under which program
functions are scheduled for execution in response to their
necessary mmput data becoming available. Data flow pro-
grams can be contrasted with procedural programs, which
specily an execution flow of computations to be performed.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

As used herein “data flow” or “data tlow programs™ refer to
“dynamically-scheduled data flow” and/or “statically-de-
fined data flow”.

Graphical Data Flow Program (or Graphical Data Flow
Diagram)}—A Graphical Program which 1s also a Data Flow
Program. A Graphical Data Flow Program comprises a
plurality of interconnected nodes (blocks), wherein at least
a subset of the connections among the nodes visually
indicate that data produced by one node is used by another
node. A LabVIEW VI 1s one example of a graphical data
flow program. A Stmulink block diagram 1s another example
ol a graphical data flow program.

Graphical User Interface—this term 1s intended to have

the full breadth of 1ts ordinary meaning. The term “Graphi-
cal User Interface” 1s often abbreviated to “GUI”. A GUI
may comprise only one or more input GUI elements, only
one or more output GUI elements, or both input and output
GUI elements.
The following provides examples of various aspects of
GUIs. The following examples and discussion are not
intended to limit the ordinary meaning of GUI, but rather
provide examples of what the term ““graphical user inter-
face” encompasses:

A GUI may comprise a smgle window having one or more
GUI Elements, or may comprise a plurality of individual
GUI Elements (or individual windows each having one or
more GUI Elements), wherein the individual GUI Elements
or windows may optionally be tiled together.

A GUI may be associated with a graphical program. In
this 1nstance, various mechanisms may be used to connect
GUI Elements in the GUI with nodes in the graphical
program. For example, when Input Controls and Output
Indicators are created 1n the GUI, corresponding nodes (e.g.,
terminals) may be automatically created in the graphical
program or block diagram. Alternatively, the user can place
terminal nodes 1n the block diagram which may cause the
display of corresponding GUI Elements front panel objects
in the GUI, either at edit time or later at run time. As another
example, the GUI may comprise GUI Elements embedded
in the block diagram portion of the graphical program.

Front Panel-—A Graphical User Interface that includes
input controls and output indicators, and which enables a
user to interactively control or manipulate the input being
provided to a program, and view output of the program,
while the program 1s executing.

A front panel 1s a type of GUI. A front panel may be
associated with a graphical program as described above.

In an instrumentation application, the front panel can be
analogized to the front panel of an instrument. In an 1ndus-
trial automation application the front panel can be analo-
gized to the MMI (Man Machine Interface) of a device. The
user may adjust the controls on the front panel to affect the
iput and view the output on the respective indicators.

Graphical User Interface Element—an eclement of a
graphical user interface, such as for providing input or
displaying output. Exemplary graphical user interface ele-
ments comprise iput controls and output 1indicators.

Input Control—a graphical user interface element for
providing user input to a program. An 1mput control displays
the value input by the user and 1s capable of being manipu-
lated at the discretion of the user. Exemplary input controls
comprise dials, knobs, sliders, input text boxes, etc.

Output Indicator—a graphical user iterface element for
displaying output from a program. Exemplary output indi-
cators include charts, graphs, gauges, output text boxes,
numeric displays, etc. An output indicator 1s sometimes

referred to as an “output control”.

US 9,785,415 B2

9

Computer System—any of various types of computing or
processing systems, including a personal computer system
(PC), maimnirame computer system, workstation, network
appliance, Internet appliance, personal digital assistant
(PDA), television system, grid computing system, or other
device or combinations of devices. In general, the term
“computer system” can be broadly defined to encompass any
device (or combination of devices) having at least one
processor that executes instructions from a memory
medium.

Measurement Device—includes mstruments, data acqui-
sition devices, smart sensors, and any of various types of
devices that are configured to acquire and/or store data. A
measurement device may also optionally be further config-
ured to analyze or process the acquired or stored data.
Examples of a measurement device include an instrument,
such as a traditional stand-alone “box” instrument, a com-
puter-based instrument (instrument on a card) or external
istrument, a data acquisition card, a device external to a
computer that operates similarly to a data acquisition card,
a smart sensor, one or more DAQ or measurement cards or
modules 1n a chassis, an 1mage acquisition device, such as an
image acquisition (or machine vision) card (also called a
video capture board) or smart camera, a motion control
device, a robot having machine vision, and other similar
types ol devices. Exemplary “stand-alone” instruments
include oscilloscopes, multimeters, signal analyzers, arbi-
trary wavelform generators, spectroscopes, and similar mea-
surement, test, or automation instruments.

A measurement device may be further configured to
perform control functions, e.g., in response to analysis of the
acquired or stored data. For example, the measurement
device may send a control signal to an external system, such
as a motion control system or to a sensor, 1n response to
particular data. A measurement device may also be config-
ured to perform automation functions, 1.¢., may receive and
analyze data, and issue automation control signals 1n
response.

Functional Unit (or Processing Element)—refers to vari-
ous elements or combinations of elements. Processing ele-
ments include, for example, circuits such as an ASIC (Appli-
cation Specific Integrated Circuit), portions or circuits of
individual processor cores, entire processor cores, individual
processors, programmable hardware devices such as a field
programmable gate array (FPGA), and/or larger portions of
systems that include multiple processors, as well as any
combinations thereof.

Automatically—refers to an action or operation per-
formed by a computer system (e.g., soltware executed by the
computer system) or device (e.g., circuitry, programmable
hardware elements, ASICs, etc.), without user input directly
specilying or performing the action or operation. Thus the
term “‘automatically” 1s in contrast to an operation being
manually performed or specified by the user, where the user
provides mput to directly perform the operation. An auto-
matic procedure may be mitiated by put provided by the
user, but the subsequent actions that are performed “auto-
matically” are not specified by the user, 1.e., are not per-
formed “manually”, where the user specifies each action to
perform. For example, a user filling out an electronic form
by selecting each field and providing input specitying infor-
mation (e.g., by typing imnformation, selecting check boxes,
radio selections, etc.) 1s filling out the form manually, even
though the computer system must update the form in
response to the user actions. The form may be automatically
filled out by the computer system where the computer
system (e.g., soltware executing on the computer system)

5

10

15

20

25

30

35

40

45

50

55

60

65

10

analyzes the fields of the form and fills 1n the form without
any user input speciiying the answers to the fields. As
indicated above, the user may invoke the automatic filling of
the form, but 1s not 1nvolved 1n the actual filling of the form
(c.g., the user 1s not manually specilying answers to fields
but rather they are being automatically completed). The
present specification provides various examples ol opera-
tions being automatically performed in response to actions
the user has taken.

Concurrent—refers to parallel execution or performance,
where tasks, processes, or programs are performed 1n an at
least partially overlapping manner. For example, concur-
rency may be implemented using “strong’” or strict parallel-
1sm, where tasks are performed (at least partially) 1n parallel
on respective computational elements, or using “weak par-
allelism”, where the tasks are performed 1n an interleaved
manner, €.g., by time multiplexing of execution threads.

Logical Instrument—refers to a software implemented
instrument that provides custom measurement and/or analy-
s1s functionality to extend or enhance the capability of
utilized measurement hardware.

Measurement Engine—refers to an application program-
ming interface (API) to hardware that a logical instrument
uses to control or otherwise access measurement hardware.
Examples of measurement engines include, but are not
limited to, device dniver programs such as NI DAQmx
(National Instruments data acquisition) and NI RFSA (Na-
tional Instruments radio frequency signal analyzer) driver
programs, among others.

Measurement Session—refers to a collection of state
information, stored in hardware and/or in software, associ-
ated with a connection of a logical instrument to a physical
measurement device.

Connection Session—refers to a collection of state infor-
mation, stored in hardware and/or in software, associated
with a connection of a client application to an 1nstance of a
logical instrument.

System Session—refers to a collection of state informa-
tion, stored 1n hardware and/or in software, associated with
an mstance of a logical instrument. A system session facili-

tates multiple clients interacting with multiple instances of

the same logical instrument.

Parser—refers to a component that analyzes a string
containing one or more instrumentation commands and
corresponding parameters, received from a client applica-
tion, €.g., via an mstrument bus, and maps the mnstrumen-
tation commands and parameters to memory and actions of
logical instruments.

Overview

Embodiments of the techniques disclosed herein may
tacilitate creation of a SCPI interface to a custom modular
measurement system and may provide an associated run-
time system that executes the functions associated with the
SCPI commands, possibly concurrently.

FIG. 2A—Computer System

FIG. 2A 1llustrates a computer system 82 configured to
implement embodiments of the present invention. As shown
in FIG. 2A, the computer system 82 may include a display
device configured to display the graphical program as the
graphical program 1s created and/or executed. The display
device may also be configured to display a graphical user
interface or front panel of the graphical program during
execution of the graphical program. The graphical user
interface may comprise any type of graphical user interface,

e.g., depending on the computing platform. For example, 1n

US 9,785,415 B2

11

some embodiments, the graphical user interface may facili-
tate user specification and use of logical mstruments, as
described herein.

The computer system 82 may include at least one memory
medium on which one or more computer programs or °
soltware components according to one embodiment of the
present invention may be stored. For example, the memory
medium may store one or more graphical programs which
are executable to implement or perform the methods
described heremn. In some embodiments, the memory
medium may store software, e.g., one or more graphical
programs, that facilitates user specification and use of logi-
cal instruments, as described herein.

Additionally, the memory medium may store a graphical
programming development environment application used to
create and/or execute such graphical programs. The memory
medium may also store operating system soitware, as well
as other software for operation of the computer system.
Various embodiments further include receiving or storing 20
instructions and/or data implemented 1n accordance with the

foregoing description upon a carrier medium.
FIG. 2B—Computer Network

FIG. 2B illustrates a system including a first computer
system 82 that 1s coupled to a second computer system 90. 25
The computer system 82 may be coupled via a network 84
(or a computer bus) to the second computer system 90. The
computer systems 82 and 90 may each be any of various
types, as desired. The network 84 can also be any of various
types, including a LAN (local area network), WAN (wide 30
area network), the Internet, or an Intranet, among others. The
computer systems 82 and 90 may execute a program, €.g., a
graphical program, in a distributed fashion. For example,
computer 82 may execute a first portion of the block diagram
of a graphical program and computer system 90 may execute 35
a second portion of the block diagram of the graphical
program. As another example, computer 82 may display the
graphical user interface of a graphical program and com-
puter system 90 may execute the block diagram of the
graphical program. 40

In one embodiment, the graphical user interface of the
graphical program may be displayed on a display device of
the computer system 82, and the block diagram may execute
on a device coupled to the computer system 82. The device
may include a programmable hardware element and/or may 45
include a processor and memory medium which may
execute a real time operating system. In one embodiment,
the graphical program may be downloaded and executed on
the device. For example, an application development envi-
ronment with which the graphical program 1s associated may 50
provide support for downloading a graphical program for
execution on the device 1n a real time system.
FIG. 2C—Distributed Measurement System

FIG. 2C 1illustrates a distributed measurement system
configured according to embodiments of the present inven- 55
tion. As may be seen, this exemplary system includes a
custom modular measurement (or instrumentation) system,
in this case, a PXI (PCI (Peripheral Component Intercon-
nect) Extensions for Instrumentation) system, that includes
a chassis with multiple installed hardware devices (boards or 60
modules) and a display. Note that while the instrumentation
system shown utilizes PXI, any other mstrumentation plat-
forms may be used as desired. The PXI system 1s commu-
nicatively coupled to a client computer, e.g., a personal
computer, although other types of suitably configured com- 65
puter may be used as desired, e.g., a workstation, a laptop
computer, a tablet computer, and so forth.

10

15

12

As 1ndicated, 1n this particular exemplary embodiment,
the client computer and PXI system communicate via an
VXI-11 mstrumentation protocol bus, although 1t should be
noted that any other imstrumentation protocols may be used
as desired, e.g., GPIB (General Purpose Interface Bus) or
HiSLIP (High Speed LAN (local area network) Instrument
Protocol), among others.

As FIG. 2C also shows, 1n this embodiment, the client
computer includes test executive soltware, such as, for
example, TestStand™ testing software provided by National
Instruments Corporation, the LabVIEW™ graphical pro-
gram development environment, also provided by National
Instruments Corporation, and support for various program-
ming languages, such as C, C#, Python, Ruby, and
JavaScript, among others. As further indicated, in some
embodiments, the client computer may also include or
support virtual mnstrument related software, such as NI-
VISA (National Instruments Virtual Instrument Software
Architecture, which 1s a standard for configuring, program-
ming, and troubleshooting instrumentation systems com-
prising GPIB, VXI, PXI, Senal, Ethernet, and/or USB
interfaces. As also shown, the client computer may also
include a set of commands and responses, e.g., SCPI (Stan-
dard Commands for Programmable Instruments) commands
and responses, although other command sets and protocols
may be used as desired.

As also shown, 1n the embodiment of FIG. 2C, the PXI (or
more generally, instrumentation) system includes a remote
interface for logical mstruments (RILI) system definition,
¢.g., in the form of user code and XML (eXtensible Markup
Language), although other languages may be used as
desired. The nstrumentation system also includes a RILI
run-time system or engine, described in more detail below,
as well as a LabVIEW™ run-time system or engine, as
provided by National Instruments. It should be noted, how-
ever, that the various specific protocols, systems, engines,
languages, devices, and so forth, used in the examples and
descriptions presented herein, are exemplary only, and are
not intended to limit embodiments of the present techniques
to any particular protocols, systems, engines, languages, or
devices.

Exemplary Systems

Embodiments of the present invention may be involved
with performing test and/or measurement functions; con-
trolling and/or modeling instrumentation or industrial auto-
mation hardware; modeling and simulation functions, e.g.,
modeling or simulating a device or product being developed
or tested, etc. Exemplary test applications where the graphi-
cal program may be used include hardware-in-the-loop
testing and rapid control prototyping, among others.

However, 1t 1s noted that embodiments of the present
invention can be used for a plethora of applications and 1s
not limited to the above applications. In other words, appli-
cations discussed i1n the present description are exemplary
only, and embodiments of the present invention may be used
in any of various types of systems. Thus, embodiments of
the system and method of the present invention 1s configured
to be used 1n any of various types of applications, including
the control of other types of devices such as multimedia
devices, video devices, audio devices, telephony devices,
Internet devices, etc., as well as general purpose software
applications such as word processing, spreadsheets, network
control, network monitoring, financial applications, games,
etc.

FIG. 3A 1llustrates an exemplary instrumentation control
system 100 which may mmplement embodiments of the
invention. The system 100 comprises a host computer 82

US 9,785,415 B2

13

which couples to one or more instruments. The host com-
puter 82 may comprise a CPU, a display screen, memory,
and one or more mput devices such as a mouse or keyboard
as shown. The computer 82 may operate with the one or
more mstruments to analyze, measure or control a umt under
test (UUT) or process 150, e.g., via execution of software
104.

The one or more mstruments may mclude a GPIB 1nstru-
ment 112 and associated GPIB interface card 122, a data
acquisition board 114 inserted into or otherwise coupled
with chassis 124 with associated signal conditioning cir-
cuitry 126, a VXI mnstrument 116, a PXI mstrument 118, a
video device or camera 132 and associated 1image acquisi-
tion (or machine vision) card 134, a motion control device
136 and associated motion control interface card 138, and/or
one or more computer based instrument cards 142, among
other types of devices. The computer system may couple to
and operate with one or more of these instruments. The
istruments may be coupled to the umt under test (UUT) or
process 150, or may be coupled to receive field signals,
typically generated by transducers. The system 100 may be
used 1n a data acquisition and control application, in a test
and measurement application, an 1mage processing or
machine vision application, a process control application, a
man-machine interface application, a simulation application,
or a hardware-in-the-loop validation application, among
others.

FIG. 3B illustrates an exemplary industrial automation
system 200 which may implement embodiments of the
invention. The industrial automation system 200 1s stmilar to
the instrumentation or test and measurement system 100
shown 1n FIG. 3A. Flements which are similar or 1dentical
to elements 1in F1G. 3 A have the same reference numerals for
convenience. The system 200 may comprise a computer 82
which couples to one or more devices or istruments. The
computer 82 may comprise a CPU, a display screen,
memory, and one or more input devices such as a mouse or
keyboard as shown. The computer 82 may operate with the
one or more devices to perform an automation function with
respect to a process or device 150, such as MMI (Man
Machine Interface), SCADA (Supervisory Control and Data
Acquisition), portable or distributed data acquisition, pro-
cess control, advanced analysis, or other control, among
others, e.g., via execution of soitware 104.

The one or more devices may 1nclude a data acquisition
board 114 imserted mnto or otherwise coupled with chassis
124 with associated signal conditioning circuitry 126, a PXI
mstrument 118, a video device 132 and associated image
acquisition card 134, a motion control device 136 and
associlated motion control intertace card 138, a fieldbus
device 270 and associated fieldbus interface card 172, a PLL.C
(Programmable Logic Controller) 176, a serial imnstrument
282 and associated serial interface card 184, or a distributed
data acquisition system, such as Fieldpoint system 185,
available from National Instruments Corporation, among
other types of devices.

FIG. 4A 1s a high level block diagram of an exemplary
system which may execute or utilize graphical programs.
FIG. 4A 1llustrates a general high-level block diagram of a
generic control and/or simulation system which comprises a
controller 92 and a plant 94. The controller 92 represents a
control system/algorithm the user may be trying to develop.
The plant 94 represents the system the user may be trying to
control. For example, 11 the user 1s designing an ECU for a
car, the controller 92 1s the ECU and the plant 94 1s the car’s
engine (and possibly other components such as transmis-
sion, brakes, and so on.) As shown, a user may create a

10

15

20

25

30

35

40

45

50

55

60

65

14

graphical program that specifies or implements the function-
ality of one or both of the controller 92 and the plant 94. For
example, a control engineer may use a modeling and simu-
lation tool to create a model (graphical program) of the plant
94 and/or to create the algorithm (graphical program) for the
controller 92.

FIG. 4B illustrates an exemplary system which may
perform control and/or simulation functions. As shown, the
controller 92 may be implemented by a computer system 82
or other device (e.g., including a processor and memory
medium and/or including a programmable hardware ele-
ment) that executes or implements a graphical program. In
a similar manner, the plant 94 may be implemented by a
computer system or other device 144 (e.g., including a
processor and memory medium and/or including a program-
mable hardware element) that executes or implements a
graphical program, or may be implemented in or as a real
physical system, €.g., a car engine.

In one embodiment of the mnvention, one or more graphi-
cal programs may be created which are used 1n performing
rapid control prototyping. Rapid Control Prototyping (RCP)
generally refers to the process by which a user develops a
control algorithm and quickly executes that algorithm on a
target controller connected to a real system. The user may
develop the control algorithm using a graphical program,
and the graphical program may execute on the controller 92,
¢.g., on a computer system or other device. The computer
system 82 may be a platform that supports real time execu-
tion, e.g., a device including a processor that executes a real
time operating system (RTOS), or a device including a
programmable hardware element.

In one embodiment of the mvention, one or more graphi-
cal programs may be created which are used 1n performing
Hardware in the Loop (HIL) simulation. Hardware 1n the
Loop (HIL) refers to the execution of the plant model 94 1n
real time to test operation of a real controller 92. For
example, once the controller 92 has been designed, it may be
expensive and complicated to actually test the controller 92
thoroughly 1n a real plant, e.g., a real car. Thus, the plant
model (1implemented by a graphical program) 1s executed 1n
real time to make the real controller 92 “believe” or operate
as 1f 1t 1s connected to a real plant, e.g., a real engine.

In the embodiments of FIGS. 3A, 3B, and 4B above, one
or more of the various devices may couple to each other over
a network, such as the Internet. In one embodiment, the user
operates to select a target device from a plurality of possible
target devices for programming or configuration using a
graphical program. Thus the user may create a graphical
program on a computer and use (execute) the graphical
program on that computer or deploy the graphical program
to a target device (for remote execution on the target device)
that 1s remotely located from the computer and coupled to
the computer through a network.

Graphical software programs which perform data acqui-
sition, analysis and/or presentation, e.g., for measurement,
instrumentation control, industrial automation, modeling, or
simulation, such as in the applications shown i FIGS. 3A
and 3B, may be referred to as virtual mstruments.

FIG. 5—Computer System Block Diagram

FIG. 5 1s a block diagram 12 representing one embodi-
ment of the computer system 82 and/or 90 1illustrated in
FIGS. 2A, 2B, 2C, or computer system 82 shown 1n FIG. 3A
or 3B. It 1s noted that any type of computer system con-
figuration or architecture can be used as desired, and FI1G. 5
illustrates a representative PC embodiment. It 1s also noted
that the computer system may be a general purpose com-
puter system, a computer implemented on a card 1nstalled in

US 9,785,415 B2

15

a chassis, or other types of embodiments. Elements of a
computer not necessary to understand the present descrip-
tion have been omitted for simplicity.

The computer may include at least one central processing,
unit or CPU (processor) 160 which 1s coupled to a processor
or host bus 162. The CPU 160 may be any of various types,
including an x86 processor, €.g., a Pentium class, a PowerPC
processor, a CPU from the SPARC family of RISC proces-
sors, as well as others. A memory medium, typically com-
prising RAM and referred to as main memory, 166 1s
coupled to the host bus 162 by means of memory controller
164. The main memory 166 may store programs, €.g.,
graphical programs, implementing embodiments of the pres-
ent techniques. The main memory may also store operating
system soltware, as well as other software for operation of
the computer system.

The host bus 162 may be coupled to an expansion or
input/output bus 170 by means of a bus controller 168 or bus
bridge logic. The expansion bus 170 may be the PCI
(Peripheral Component Interconnect) expansion bus,
although other bus types can be used. The expansion bus 170
includes slots for various devices such as described above.
The computer 82 further comprises a video display subsys-
tem 180 and hard drive 182 coupled to the expansion bus

170. The computer 82 may also comprise a GPIB card 122
coupled to a GPIB bus 112, and/or an MXI device 186

coupled to a VXI chassis 116.

As shown, a device 190 may also be connected to the
computer. The device 190 may include a processor and
memory which may execute a real time operating system.
The device 190 may also or instead comprise a programs-
mable hardware element. The computer system may be
configured to deploy a graphical program to the device 190
for execution of the graphical program on the device 190.
The deployed graphical program may take the form of
graphical program 1nstructions or data structures that
directly represents the graphical program. Alternatively, the
deployed graphical program may take the form of text code
(e.g., C code) generated from the graphical program. As
another example, the deployed graphical program may take
the form of compiled code generated trom either the graphi-
cal program or from text code that in turn was generated
from the graphical program.

FIG. 6—Flowchart of a Method for Interfacing with Logical
Instruments

FIG. 6 1illustrates a method for interfacing with logical
instruments, according to one embodiment. The method
shown 1n FIG. 6 may be used 1n conjunction with any of the
computer systems or devices shown in the above Figures,
among other devices. In various embodiments, some of the
method elements shown may be performed concurrently, in
a different order than shown, or may be omitted. Additional
method elements may also be performed as desired. As
shown, this method may operate as follows.

In 602, user mput specifying one or more system defini-
tions may be received by an editor, e.g., an editor program
executing on a computer, such as a computer system 82 or
90, or a client computer as shown 1n FIG. 2C. Each system
definition may map message based commands, parameters,
variables and/or metadata accordant with a control protocol
for standalone instruments to functions and data in a pro-
gramming language, e.g., the “G” graphical programming
language of LabVIEWT™™, or any other programming lan-
guage desired. Note that as used herein the term ““standalone
instrument” refers to a traditional standalone hardware
device, such as an oscilloscope, signal analyzer, etc. Thus,
cach system definition may map message based standalone

5

10

15

20

25

30

35

40

45

50

55

60

65

16

instrument communications (commands, parameters, vari-
ables, and/or metadata) to function calls 1n a programming
language.

In 604, the one or more system definitions may be
generated by the editor, based on the user input of 602. Each
system definition may be useable by a client application to
interface with a custom modular measurement system that
includes multiple logical instruments via the message based
commands, parameters, variable, and/or metadata. Said
another way, a client application may utilize message based
standalone instrument communications (the message based
commands, parameters, variables, and/or metadata) to inter-
act with logical instruments of the custom modular mea-
surement system via the mappings provided by the one or
more of the system definitions. As noted above 1n the Terms
section, a logical instrument 1s a soltware implemented
istrument that provides custom measurement and/or analy-
s1s functionality to extend or enhance the capability of
utilized measurement hardware. Logical instruments imple-
mented on an embedded device may be referred to as
embedded logical instruments.

FIG. 7 illustrates an exemplary edit time work flow,
according to one embodiment. As shown, a system designer
(user of the editor of 602) may specily or generate command
set specifications (as per 602), in this particular case, SCPI
(Standard Commands for Programmable Instruments) com-
mand set specifications, via iput to a RILI (remote interface
for logical instruments) system editor, although 1t should be
noted that this name 1s used for convenience and informative
purposes only, and that any other name may be used as
desired. More generally, the names and labels used herein
are exemplary only, and are not mtended to limit the
embodiments to any particular form, function, or appear-
ance. As FIG. 7 also shows, the editor (RILI system editor)
may then generate at least one system definition, i this
exemplary case, at least one RILI system definition in XML,
although any other language or format may be used as
desired. As indicated, in some embodiments, the editor may
also generate command programs, €.g., 1n response to mput
from the system designer. In the exemplary embodiment of
FIG. 7, the command programs are SCPI command VIs
(virtual 1nstruments, e.g., graphical programs). These com-
mand programs may implement functionality corresponding
to associated commands, 1.e., may be executable to perform
functions 1n response to respective commands. Accordingly,
in some embodiments, the control protocol for standalone
instruments may be or include SCPI (Standard Commands
for Programmable Instruments).

Thus, in some embodiments, the method may include
displaying and editing, by the editor, one or more functions
in the programming language. In various embodiments, the
programming language may be of any type desired. For
example, 1n one embodiment, the programming language
may be textual, e.g., C, C++, C#, JAVA, etc., while 1n other
embodiments, the programming language may be or include
a graphical programming language. In one embodiment, the
graphical programming language may be a graphical data
flow programming language. For example, the editor may be
part of a graphical program development environment, such
as LabVIEW™, whereby the user may develop functions 1n
the LabVIEW™ graphical programming language (“G”).

Similarly, 1n some embodiments, the method may include
displaying and editing, by the editor, at least one of the
system definitions 1n response to user input. Turning now to
FIG. 8, an exemplary hierarchical command set definition,
according to one embodiment, 1s presented. The hierarchical
command set definition may be displayed by the editor 1n a

US 9,785,415 B2

17

GUI, via which the system designer may create and edit such
definitions. For example, in one embodiment, a tree of the
message based commands organized in accordance with the
logical instruments and measurement subsystems of the
logical instruments may be created by the editor in response
to mput, as i1llustrated 1n FIG. 8.

As with FIG. 7, this exemplary embodiment i1s based on
SCPI. As indicated, at the top level of the hierarchy 1s the
RILI system designation, under which follows a defined
RILI imnstrument (Instrument 1) with component folders:
“Mandatory” and “mWLAN”, which include necessary
(mandatory) defimitions for the instrument, and a “RILI
personality” or profile definition with network related
aspects, respectively. Each of these specification compo-
nents may 1mclude subcomponents. For example, as shown,
the mmWLAN RILI personality may include definition fold-
ers, e.g., “CONfigure”, “FETCH”, “NIWLAN-INTER-
NAL”, “SYSTem”, and “TRIGger”, defimng respective
commands or aspects of the RILI personality, although these
particular names are exemplary only. Further 1llustrating the
hierarchical nature of the system definition, the trigger
related personality definition (folder) “TRIGger” includes
subfolder “RFSA™ (radio frequency signal analyzer) with
subfolder “WLAN<1>" that defines an istrument com-
mand: “DELay”, specifically, an mstrument command
parameter definition: TriggerDelay, and an “EDGE” defini-
tion that specifies which edge of a trigger signal 1s used as
a trigger. Note that the hierarchical command set definition
of FIG. 7 1s exemplary only, and that the hierarchy and
particular components shown are for illustrative purposes.

Thus, the at least one system definition may specily or
define a command set for interacting with logical instru-
ments 1mplemented in the custom modular measurement
system. Moreover, the system designer may also at least
partially specily or define logical instruments for the custom
modular measurement system, e.g., via user code (e.g.,
command programs or VIs). Note that in various embodi-
ments, each logical mstrument may represent one or more
of: a single physical measurement device (e.g., physical
module or card), multiple coordinated physical measure-
ment devices, or software, €.g., an instrument program.

In one embodiment, an integrated instrument soit front
panel may be created by the editor, e.g., 1n response to user
input, and/or based on the at least one system definition. The
integrated instrument soft front panel may include respective
subpanels for logical mstruments and/or measurement sub-
systems of the logical mnstruments, and may map elements
on the panels to the functions, parameters, variables, and/or
metadata 1n the programming language. Thus, a GUI for the
defined system may be generated by the editor. In some
embodiments, the GUI may be created in accordance with
the Soft Front Panel (SFP) protocol or system provided by
National Instruments Corporation.

In some embodiments, the editor may create variables
scoped 1nto 1solated groups for storing data accessible from
command functions, e.g., from the SCPI command func-
tions. This scope partitioning of variables may prevent
memory collisions or contlicts during operation of the
logical instruments.

Method elements 606-612 describe exemplary run-time
related operations of the present techniques.

In 606, at least one of the system definitions may be
deployed onto the custom modular measurement system
(see, e.g., the PXI system of FIG. 2C). In some embodi-
ments, multiple such system defimtions may be deployed
onto the custom modular measurement system. Once this (at
least one) system definition 1s deployed to the custom

10

15

20

25

30

35

40

45

50

55

60

65

18

modular measurement system, the system may be opera-
tional, assuming that the system 1s already configured appro-
priately with the necessary run-time components, €.g., a
run-time engine, €.g., a RILI run-time engine, etc.

FIG. 9 illustrates an exemplary run time work flow,
according to one embodiment. As may be seen, a system
designer, possibly the same system designer of 602, may
specily (or update) a runtime configuration for the custom
modular measurement system, e.g., a RILI runtime configu-
ration, e.g., via user input to a GUI, and may initiate a
runtime service for the custom modular measurement sys-
tem, €.g., a RILI runtime service. This runtime service may
then load the at least one system definition (606), thereby
configuring the runtime service, e.g., with specified connec-
tion sessions, (logical) instruments, and personalities (or
profiles). At this point, the custom modular measurement
system may be ready for operation.

In 608, a message based command from the client appli-
cation may be accepted by a run-time engine of the custom
modular measurement system (e.g., the RILI run-time
engine—again, see the PXI system of FIG. 2C). For
example, referring again to the exemplary system of FIG.
2C, the message based command may be sent from the client
computer based on a client application executing on the
client computer, and may be transmitted 1n accordance with
a specified instrumentation protocol, such as VXI-11.

In 610, a function that corresponds to the message based
command may be called by the run-time engine, based on
the at least one of the one or more system definitions. In
other words, the method may use the at least one system
definition to convert or translate the message based com-
mand 1nto a function call by the run-time engine.

In 612, the accepting (608) and calling (610) may be
performed by the run-time engine a plurality of times, where
at least one called function 1mnvokes operation of at least one
of the logical instruments. Said another way, method ele-
ments 608 and 610 may be repeated one or more times 1n an
iterative manner, mapping the accepted message based com-
mands to functions that are called by the run-time engine,
where at least one of the functions utilizes at least one of the
logical instruments. In some embodiments, the method may
further include sending a message containing a result of the
operation to the client application. In other words, once the
at least one of the logical instruments 1s invoked, the method
may send a message that includes results of the logical
istrument’s operation, €.g., to another system or process, to
a log file, to a user, efc.

In some embodiments, the message based command may
be parsed by the run-time engine, and the (corresponding)
function may be determined based on the parsing. The
function call of 610 may be performed in response to this
determining.

In one embodiment, the method may further include
synchronizing, by the run-time engine, access to a physical
measurement device by multiple logical instruments, or
multiple measurement subsystems within a logical instru-
ment. In this manner, operations or functions performed by
multiple logical mstruments or measurement subsystems
thereol may be coordinated to perform a higher level col-
lective task, 1.e., to achieve some collective functionality.
Exemplary System Architectures

FIGS. 10 and 11 1llustrate exemplary system designs and
architectures, according to some embodiments. Note, how-
ever, that the particular designs and architectures shown and
described are exemplary only. The system may be 1mple-
mented via any of the devices shown in the Figures
described above, and may thus include a processor and a

US 9,785,415 B2

19

memory coupled to the processor, where the memory stores
program instructions executable to implement a plurality of
logical instruments, where each logical mstrument 1s con-
figured to perform measurement functions via at least one
corresponding physical measurement device. The program
instructions may be further executable to implement a
plurality of 1solated memory spaces 1n the memory, where
cach 1solated memory space 1s configured to store configu-
ration information and working data for a respective logical
instrument, and may further be executable to 1implement at
least one measurement engine.

Per the Terms section above, a measurement engine 1s an
application programming interface (API) to hardware that
the logical strument uses to control or otherwise access
measurement hardware. Examples of measurement engines
include, but are not limited to, device driver programs such
as NI DAQmx (National Instruments data acquisition multi-
function software services) and NI RFSA (National Instru-
ments radio frequency signal analyzer) driver programs,
among others. In some embodiments, the system may
include a plurality of measurement engines. Moreover, the
plurality of measurement engines may be configured to
operate concurrently, as discussed below 1n more detail.

The plurality of logical instruments may be configured to
operate concurrently. For example, each of the plurality of
logical instruments may be configured to: communicate with
a respective client application independently, and acquire,
generate, or process data using the at least one correspond-
ing physical measurement device via the at least one mea-
surement engine per the configuration information. More-
over, as noted above, during operation, at least two of the
logical instruments may share use of a single physical
measurement device.

FIG. 10 1s a high level block diagram of an exemplary
system of logical instruments, according to one embodi-
ment. As FIG. 10 illustrates, the system of logical instru-
ments may include multiple connection sessions, each con-
nection session facilitating interaction of a respective client
(application), e.g., Client A and Client B of FIG. 10, with a
respective logical instrument, as presented below each con-
nection session. As used herein, the term “connection ses-
sion’ 1s a collection of state information, stored 1n hardware
and/or 1n software, associated with a connection of a client
application to an instance of a logical instrument.

As FIG. 10 shows, 1n one embodiment, each logical
instrument may include user code, e.g., one or more pro-
grams 1mplementing functionality of the logical instrument,
and respective memory, including configuration memory for
storing configuration data, and working memory for use by
the logical 1nstrument (user code) 1 performing functions.
As noted above, the system may also include a measurement
engine, also shown 1n FIG. 10, which may include one or
more device driver programs for interacting with hardware,
also shown, where the hardware icludes at least one physi-
cal measurement device, and 1n some embodiments, mul-
tiple such devices. As further indicated in FIG. 10, 1n some
embodiments, the measurement engine may include or sup-
port multiple measurement sessions. A measurement session
1s or includes a collection of state information, stored in
hardware and/or 1n software, associated with a connection of
a logical instrument to a physical measurement device.
Thus, the system may be configured to implement and
manage interactions between multiple logical nstruments
and associated physical measurement devices indepen-
dently, based on these measurement sessions.

Moreover, 1n some embodiments, the plurality of logical
istruments may be configured to operate concurrently. For

10

15

20

25

30

35

40

45

50

55

60

65

20

example, each of the plurality of logical instruments may be
configured to communicate with a respective client appli-
cation independently, and acquire, generate, or process data
using the at least one corresponding physical measurement
device via the at least one measurement engine per the
configuration information. During operation, at least two of

the logical instruments may share use of a single physical
measurement device, as discussed 1n more detail below.
FIG. 11 illustrates an exemplary internal architecture of an
exemplary system of logical mstruments and shared hard-
ware, according to one embodiment. More specifically, FIG.

11 describes a more detailed (exemplary) embodiment of the
system of FIG. 10.

As shown, 1n the exemplary embodiment of FIG. 11, a
client computer 1s coupled to a custom modular measure-
ment device that includes multiple logical instruments and
corresponding physical measurement devices, 1n this exem-
plary case, PXIe modules or boards (labeled “PXle-Physi-
cal”), comprised 1n a chassis, e.g., as illustrated 1n FIG. 2C.

The client computer of FIG. 11 includes a test application
(Test: App), that includes at least one method, where the
method includes or utilizes one or more SCPI commands
and corresponding VISA calls, which may communicate
with the controller via an instrumentation bus protocol, e.g.,
VXI-11, as shown. In other words, the client application may
execute on the client computer, and may invoke one or more
methods (e.g., program functions) that send SCPI com-
mands via VISA calls (e.g., 1n the form of messages) to the
controller (or, more generally, the custom modular measure-
ment system).

As FIG. 11 further illustrates, the system may implement
multiple system sessions, where each system session 1s a
collection of state information, stored in hardware and/or 1in
soltware, associated with an 1nstance of a logical instrument.
A system session facilitates multiple clients interacting with
multiple 1nstances of the same logical instrument. Each
system session may include or support a respective connec-
tion session, logical instrument, and physical measurement
device, as shown.

In one embodiment, each connection session may include
a parser, which 1s a component that analyzes a string
containing one or more instrumentation commands and
corresponding parameters, received from a client applica-
tion, €.g., via an mstrument bus, and maps the mnstrumen-
tation commands and parameters to memory and actions of
logical instruments. Each connection session may include an
instrumentation bus protocol engine for communicating
with the client computer via the strument bus protocol,
¢.g., VXI-11, among others.

Each connection session may be configured to commu-
nicate with a respective logical instrument, specifically, the
respective memory and user code of the logical instrument,
which 1n turn, may communicate with respective hardware,
¢.g., with a respective physical measurement device, such as
a measurement module or board. In some embodiments, at
least one logical instrument of the plurality of logical
istruments may be configured to provide measurement
capabilities, and analysis functionality implemented 1n sofit-
ware, where the analysis functionality operates on data
obtained from the at least one corresponding physical mea-
surement device.

Further Exemplary Embodiments

The following describes further exemplary embodiments
of the above techniques.

US 9,785,415 B2

21

In one embodiment, during operation, at least two of the
logical mstruments share use of a single physical measure-
ment device. In other words, multiple logical mnstruments
may utilize the same physical measurement device to per-
form their respective functions or tasks. For example, 1n one
embodiment, use of a single physical measurement device
by a logical mnstrument may include operating the single
physical measurement device i a plurality of phases,
including at least one phase that includes a portion that
requires exclusive access to the single physical measurement
device (i.e., an exclusive portion), which may be referred to
as an exclusive portion of the phase. Accordingly, to share
use of the single physical measurement device, each logical
instrument may configured to lock the single physical mea-
surement device for duration of the exclusive portion of the
at least one phase, thereby blocking other logical instru-
ments from using the single physical measurement device
for the duration of the exclusive portion of the at least one
phase, and unlock the single physical measurement device
when the exclusive portion of the at least one phase com-
pletes, thereby allowing use of the single physical measure-
ment device by the other logical instruments. For brevity, the
“exclusive portion of the at least one phase” may be referred
to herein as simply the “exclusive portion”.

For example, in one embodiment, the exclusive portion
may be or include an acquire portion of a measure phase, in
which data are acquired via the corresponding single physi-
cal measurement device. In another embodiment, the exclu-
sive portion may be or include a generate portion of a
measure phase, 1 which signals are generated via the
corresponding single physical measurement device. Note
that the particular phase and portion names used herein are
exemplary only, and that any other names may be used as
desired.

FI1G. 12 illustrates exemplary sharing of a physical instru-
ment via timelines, according to one embodiment. In this
case, the single physical measurement device 1s a DAQ
device. As indicated, Client A (e.g., a first client application)
may ivoke a measurement function or operation that uses
a shared physical measurement device 1n multiple phases,
including a configure phase, a measure phase, which
includes an acquire phase and a process phase, and finally,
a readback phase. In this exemplary case, the exclusive
portion of the at least one phase (which requires exclusive
access to the single physical measurement device) 1s the
acquire portion of the measure phase, in which the single
physical measurement device acquires data. Client B (e.g., a
second client application) make be configured to use the
same device to acquire respective data.

As shown, the single physical measurement device, 1.e.,
the shared instrument, may be locked for use by Client A
during the acquire portion of the measure phase (of Client
A), as indicated by the notation “Hold Shared Instrument
Lock”, during which time, Client B’s access to the single
physical measurement device (shared instrument) may be
blocked, as indicated. Thus, Client B may be required to wait
until Clhient A’s acquire portion of the measure phase 1s
complete before beginning 1ts own acquire portion of the
measure phase, as indicated by the notation “Wait on Shared
Instrument Lock™.

Once the acquire portion of the measure phase of Client
A 1s complete, the single physical measurement device, 1.¢.,
the shared mstrument, may be locked for use by Client B for
the duration of the acquire portion of the measure phase of
Client B, as indicated by the notation “Hold Shared Instru-
ment Lock™ below the Client B timeline, during which time,
Client B’s access to the single physical measurement device

10

15

20

25

30

35

40

45

50

55

60

65

22

(shared instrument) may be blocked, as indicated. Thus,
Client A may be excluded from accessing the device until
Client B’s acquire portion of the measure phase 1s complete.
Thus, each client may be excluded from accessing the single
physical measurement device for a minimum duration, spe-
cifically, for the mimimum amount of time required by the
exclusive portion of the corresponding phase of the device’s
operation.

In some embodiments, each logical instrument may be
configured to lock and unlock the single physical measure-
ment device via a mechanism implemented 1n the at least
one measurement engine. For example, the mechanism may
be implemented in the at least one measurement engine
using operating system (OS) features, €.g., using one or
more semaphores, and/or at least one mutex. In some
embodiments, the mechanism may be implemented by put-
ting threads to sleep or disabling OS interrupts. In one
embodiment, the mechanism may be implemented in the at
least one measurement engine using virtual mstrument soit-
ware architecture (VISA) locks.

FIG. 13—Flowchart of a Method for Operating Logical
Instruments

FIG. 13 1llustrates a method for operating logical 1nstru-
ments, according to one embodiment of the techniques
disclosed herein. The method shown in FIG. 13 may be used
in conjunction with any of the computer systems or devices
shown 1n the above Figures, among other devices. In various
embodiments, some of the method elements shown may be
performed concurrently, in a different order than shown, or
may be omitted. Additional method elements may also be
performed as desired. As shown, this method may operate as
follows.

In 1302, a custom modular measurement system may be
configured, e.g., using a computer, such as a computer
system 82. The custom modular measurement system may
include a plurality of logical instruments, where each logical
instrument 1s configured to perform measurement functions
via at least one corresponding physical measurement device,
and further includes a plurality of 1solated memory spaces 1n
the memory, where each 1solated memory space 1s config-
ured to store configuration information and working data for
a respective logical instrument, and at least one measure-
ment engine.

Additionally, in some embodiments, the method may
further include operating the custom modular measurement
system, including operating the plurality of logical instru-
ments concurrently, as indicated 1n 1304. As also indicated,
in some embodiments, this concurrent operation of the
logical instruments may include method elements 1312 and
1314. More specifically, each logical instrument of the
plurality of logical mstruments may communicate with a
respective client application independently, as per 1312, and
may acquire, generate, or process data using the at least one
corresponding physical measurement device via the at least
one measurement engine per the configuration information,
as indicated in 1314. Moreover, as further indicated 1n 1304,
operating the plurality of logical instruments concurrently
may include sharing use of a single physical measurement
device by at least two of the logical mstruments, as dis-
cussed above.

In some embodiments, at least one logical instrument may
support concurrent execution of multiple independent mea-
surement subsystems. Thus, for example, a single logical
instrument may concurrently perform two complete difler-
ent and separate measurements. As another example, if a
logical instrument 1includes or supports a measurement sys-
tem that includes data acquisition functionality via a first

US 9,785,415 B2

23

measurement subsystem, as well as analysis functionality
via a second measurement subsystem, the logical instrument
may support concurrent execution of the first and second
measurement subsystems, e.g., thereby acquiring data and
analyzing the acquired data in concurrent fashion.

In some embodiments, the run-time engine may support
multiple concurrent external connections to the same logical
instrument. Thus, for example, multiple different client
applications or client computers may utilize the same logical
istrument, subject to constraints due to exclusive portions
of phases associated therewith, as described above.

Thus, embodiments of the above-described techniques
may 1mplement a mechanism to export an interface to
logical instruments that can be mvoked over a network.
Moreover, embodiments of the present techniques may
facilitate creation of an interface, e.g., a SCPI interface, to
a custom modular measurement system, and may provide an
associated runtime system that executes functions associated
with the commands, possibly concurrently.

Additionally, embodiments of the logical instruments
disclosed herein may provide for eflicient and cost-eflective
measurement systems and operations as compared to func-
tionally comparable suites of standalone instruments. For
example, by separating logical instruments from the physi-
cal hardware they use, the hardware needs to be locked only
during the actual exclusive (e.g., acquire or generate) portion
of a phase, which means that the only operations that
multiple clients cannot perform simultaneously are those
performed during the exclusive portion (of the measure
phase) of the operation. Embedding such hardware resource
management within a shared logical instrument provides
substantially more flexibility than prior art approaches.

Summarizing the above, embodiments of the embedded
shared logical instruments and related techniques disclosed
herein may provide for i1solation of clients by providing
different connection sessions for each client, may support a
virtually unlimited number of logical instrument instances
all running on the same physical hardware, may provide
1solated memory spaces wherein different clients” configu-
ration values may be stored, one or more measurement
engine, with multiple parallel measurement sessions, and 1n
some embodiments, a resource manager, €.g., included 1n the
measurement engine, that implements the above-described
locking and unlocking.

Creation of a Graphical Program

The following describes exemplary creation of a graphical
program, although 1t should be noted that the techniques
described are exemplary only, and that other approaches to
creating graphical programs may be used as desired.

First, a graphical program may be created on the computer
system 82 (or on a different computer system). The graphical
program may be created or assembled by the user arranging,
on a display a plurality of nodes or 1icons and then intercon-
necting the nodes to create the graphical program. In
response to the user assembling the graphical program, data
structures may be created and stored which represent the
graphical program. The nodes may be interconnected 1n one
or more of a data flow, control flow, or execution flow
format. The graphical program may thus comprise a plural-
ity of interconnected nodes or 1cons which visually indicates
the functionality of the program. As noted above, the graphi-
cal program may comprise a block diagram and may also
include a user interface portion or front panel portion. Where
the graphical program includes a user interface portion, the
user may optionally assemble the user interface on the

10

15

20

25

30

35

40

45

50

55

60

65

24

display. As one example, the user may use the LabVIEW
graphical programming development environment to create
the graphical program.

In an alternate embodiment, the graphical program may
be created by the user creating or speciiying a prototype,
followed by automatic or programmatic creation of the
graphical program from the prototype. This functionality 1s
described 1n U.S. patent application Ser. No. 09/387,682
titled “System and Method for Automatically Generating a
Graphical Program to Perform an Image Processing Algo-
rithm”, which 1s hereby incorporated by reference in 1its
entirety as though fully and completely set forth herein. The
graphical program may be created in other manners, either
by the user or programmatically, as desired. The graphical
program may implement a measurement function that 1s
desired to be performed by the instrument.

In another approach, a graphical user interface or front
panel for the graphical program may be created, e.g., in
response to user mput. The graphical user interface may be
created 1n any of various ways, €.g., depending on the
graphical programming development environment used.

A block diagram for the graphical program may be
created. The block diagram may be created 1n or using any
graphical programming development environment, such as
LabVIEW, Simulink, VEE, or another graphical program-
ming development environment. The block diagram may be
created 1n response to direct user input, e.g., the user may
create the block diagram by placing or “dragging and
dropping’ icons or nodes on the display and interconnecting
the nodes 1n a desired fashion. Alternatively, the block
diagram may be programmatically created from a program
specification. The plurality of nodes in the block diagram
may be interconnected to visually indicate functionality of
the graphical program. The block diagram may have one or
more of data flow, control flow, and/or execution flow
representations.

It 1s noted that the graphical user mterface and the block
diagram may be created separately or together, 1n various
orders, or 1n an interleaved manner. In one embodiment, the
user interface elements 1n the graphical user interface or
front panel may be specified or created, and terminals
corresponding to the user interface elements may appear 1n
the block diagram in response. For example, when the user
places user interface elements 1n the graphical user intertace
or front panel, corresponding terminals may appear 1n the
block diagram as nodes that may be connected to other
nodes in the block diagram, e.g., to provide iput to and/or
display output from other nodes in the block diagram. In
another embodiment, the user interface elements may be
created 1n response to the block diagram. For example, the
user may create the block diagram, wherein the block
diagram 1ncludes terminal icons or nodes that indicate
respective user interface elements. The graphical user inter-
face or front panel may then be automatically (or manually)
created based on the terminal 1cons or nodes in the block
diagram. As another example, the graphical user interface
clements may be comprised in the diagram.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
will become apparent to those skilled i the art once the
above disclosure 1s fully appreciated. It 1s intended that the

following claims be interpreted to embrace all such varia-
tions and modifications.

We claim:
1. A method for controlling a custom modular measure-
ment system, comprising:

US 9,785,415 B2

25

receiving, by an editor, user input specifying one or more
system definitions, wherein each system definition
maps message based commands, parameters, variables
and/or metadata accordant with a control protocol for
standalone instruments to functions and data in a pro-
gramming language;

generating, by the editor, the one or more system defini-

tions based on the user mput, wherein each system
definition 1s used by a client application to interface
with a custom modular measurement system that
includes multiple logical imstruments via the message
based commands, parameters, variables, and/or meta-
data, each logical instrument providing custom mea-
surement or analysis functionality for at least one
physical measurement device;

deploving at least one of the system definitions onto the

custom modular measurement system;

accepting, by a run-time engine of the custom modular

measurement system, a message based command from
the client application;
calling, by the run-time engine, a function that corre-
sponds to the message based command, based on the at
least one of the one or more system definitions; and

performing, by the run-time engine, said accepting and
said calling a plurality of times, wherein at least one
called function invokes operation of at least one of the
logical instruments, wherein each of the multiple logi-
cal instruments 1s configured to lock the measurement
device during an exclusive phase of operation of the
measurement device, the exclusive phase including an
acquire portion of a measure phase, wherein during the
measure phase, data are acquired via the measurement
device.

2. The method of claim 1, further comprising;:

displaying and editing, by the editor, one or more func-

tions 1n the programming language.

3. The method of claim 1, further comprising: displaying
and editing, by the editor, at least one of the system
definitions in response to the user nput.

4. The method of claim 1, further comprising:

creating, by the editor, a tree of the message based

commands organized in accordance with the logical
instruments and measurement subsystems of the logical
instruments.

5. The method of claim 1, further comprising;:

creating, by the editor, an integrated instrument soit front

panel, wherein the integrated instrument soit front
panel 1includes respective subpanels for logical instru-
ments and/or measurement subsystems of the logical
instruments, and wherein the integrated instrument soft
front panel maps elements on the panels to the func-
tions, parameters, variables, and/or metadata 1 the
programming language.

6. The method of claim 1, further comprising:

parsing, by the run-time engine, the message based com-

mand; and

determining the function based on said parsing;

wherein said calling 1s performed 1n response to said

determining.

7. The method of claim 1, wherein each logical instrument
represents:

a single physical measurement device;

multiple coordinated physical measurement devices; or

soltware.

8. The method of claim 1, wherein during operation, at
least two of the logical instruments share use of a single
physical measurement device.

10

15

20

25

30

35

40

45

50

55

60

65

26

9. The method of claim 1, wherein at least one logical
instrument supports concurrent execution of multiple 1inde-
pendent measurement subsystems.

10. The method of claim 1, wherein the run-time engine
supports multiple concurrent external connections to a same
logical instrument.

11. The method of claim 1, further comprising: synchro-
nizing, by the run-time engine, access to the physical
measurement device by:

multiple logical mstruments; or

multiple measurement subsystems within a logical 1nstru-

ment.

12. The method of claim 1, further comprising;:

sending a message containing a result of the operation to

the client application.

13. The method of claim 1, wherein the control protocol
for standalone mstruments comprises SCPI (Standard Com-
mands for Programmable Instruments).

14. The method of claim 1, wherein the programming
language comprises a graphical programming language.

15. The method of claim 1, wherein the graphical pro-
gramming language comprises a graphical data flow pro-
gramming language.

16. The method of claim 1, wherein each of the plurality
of logical instruments 1s further configured to unlock the
measurement device when the exclusive phase of the opera-
tion of the measurement device completes.

17. A non-transitory computer readable memory medium
that stores program instructions that are executable to 1mple-
ment:

an editor, configured to:

receive user input specilying one or more system
definitions, wherein each system definition maps
message based commands, parameters, variables,
and/or metadata accordant with a control protocol for
standalone 1nstruments to functions and data 1 a
programming language;

generate the one or more system definitions based on
the user mput;

wherein each system definition 1s used by a client
application to interface with a custom modular mea-
surement system that includes multiple logical
instruments via the message based commands,
parameters, variables, and/or metadata, each logical
instrument providing custom measurement or analy-
s1s functionality for at least one physical measure-
ment device;

deploy at least one of the system definitions onto the
custom modular measurement system;

accepting, by a run-time engine of the custom modular
measurement system, a message based command
from the client application;

call, by the run-time engine, a function that corresponds
to the message based command, based on the at least
one of the one or more system definitions; and

perform, by the run-time engine, said accepting and
said calling a plurality of times, wherein at least one
called function invokes operation of at least one of
the logical instruments, wherein each of the multiple
logical istruments 1s configured to lock the mea-
surement device during an exclusive phase of opera-
tion of the measurement device, the exclusive phase
including an acquire portion of a measure phase,
wherein during the measure phase, data are acquired
via the measurement device.

18. The non-transitory computer readable memory
medium of claim 17, wherein the editor 1s configured to:

US 9,785,415 B2

27

display and edit one or more functions in the program-

ming language.

19. The non-transitory computer readable memory
medium of claim 17, wherein the editor 1s further configured
to:

display and edit at least one of the system definitions in

response to user nput.

20. The non-transitory computer readable memory
medium of claim 17, wherein the editor 1s further configured
to:

create a tree of the message based commands organized in

accordance with the logical instruments and measure-
ment subsystems of the logical instruments.

21. The non-transitory computer readable memory
medium of claim 17, wherein the editor 1s further configured
to:

create an integrated instrument soft front panel, wherein

the integrated instrument soft front panel includes
respective subpanels for logical instruments and/or
measurement subsystems of the logical instruments,
and wherein the integrated mstrument soit front panel
maps clements on the subpanels to the functions,
parameters, variables, and/or metadata 1n the program-
ming language.

22. The non-transitory computer readable memory
medium of claim 21, wherein the run-time engine 1s further
configured to: send a message containing a result of the
operation to the client application.

23. The method of claim 21, wherein during operation, at
least two of the logical instruments share use of a single
physical measurement device.

24. A system, comprising:

a client application; and

a custom modular measurement system, coupled to the

client application, wherein the custom modular mea-
surement system comprises:

10

15

20

25

30

35

28

a controller, comprising:
one or more system definitions, wherein each system
defimtion maps message based commands,
parameters, variables, and/or metadata accordant
with a control protocol for standalone instruments
to functions and data 1n a programming language;
and
a run-time engine; and
a plurality of logical instruments, coupled to or com-
prised 1n the controller, each logical instrument pro-
viding custom measurement or analysis functionality
for at least one physical measurement device;

wherein the client application 1s configured to receive, via

an editor of the client application, user iput specitying

the one or more system definitions, and wherein the

client application 1s further configured to send one or

more message based commands, parameters, variables,

and/or metadata accordant with the control protocol to

the custom modular measurement system; and wherein

the run-time engine 1s configured to:

accept a message based command from the client
application;

call a function that corresponds to the message based
command, based on at least one of the one or more
system definitions; and

perform said accepting and said calling a plurality of
times, wherein at least one called function invokes
operation of at least one of the logical mstruments,
wherein each of the multiple logical instruments 1s
configured to lock the measurement device during an
exclusive phase of operation of the measurement
device, the exclusive phase including an acquire
portion ol a measure phase, wherein during the
measure phase, data are acquired via the measure-
ment device.

	Front Page
	Drawings
	Specification
	Claims

