12 United States Patent

Gefflaut et al.

US009779248B1

(10) Patent No.: US 9.,779.248 B1
45) Date of Patent: Oct. 3, 2017

(54) PROTECTION OF SECURED BOOT
SECRETS FOR OPERATING SYSTEM

(71)

(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

(56)

REBOOT

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Alain Gefflaut, Kirkland, WA (US);
Andrey Shedel, Sammamish, WA (US)

Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 15/085,054

Filed: Mar. 30, 2016

Int. CL.

GOol 21/57 (2013.01)

GOol 9/44 (2006.01)

GOol 9/54 (2006.01)

HO4L 9/32 (2006.01)

U.S. CL

CPC GooF 21/575 (2013.01); GO6F 9/4406
(2013.01); GO6F 9/54 (2013.01); HO4L 9/3234

(2013.01)
Field of Classification Search
CPC GO6F 21/575; GO6F 9/4406; GO6F 9/54;

HO4L 9/3234

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7,073,059 B2* 7/2006 Worely, Jr. GO6F 9/4812
713/164
7,313,705 B2* 12/2007 Turkboylar GO6F 21/575
713/169

7,437,613 B2 10/2008 Baumberger

7,818,616 B2 10/2010 Kathail et al.

8,185,783 B2 5/2012 Lee et al.

8,335,931 B2 12/2012 Lee et al.

8,353,031 B1* 1/2013 Rajan HO4L 63/0209

726/22
8,719,559 B2 5/2014 Aloni et al.

(Continued)

OTHER PUBLICATTIONS

Chen, et al., “Live Updating Operating Systems Using Virtualiza-
tion”, In Proceedings of the 2nd international conference on Virtual
execution environments, Jun. 14, 2006, pp. 35-44.

(Continued)

Primary Examiner — Stefan Stoynov
(74) Attorney, Agent, or Firm — Workman Nydegger

(57) ABSTRACT

Protecting secured boot secrets while starting an operating
system. Embodiments include starting a first operating sys-
tem using a trusted computing base, protecting a portion of
the system memory to prevent access to the portion of the
system memory by the first operating system, and storing
secured boot secrets in the protected portion of the system
memory. Based at least on 1dentifying that a second oper-
ating system 1s to be started to replace the first operating
system, embodiments include configuring one or more
memory data structures, including code of the second oper-
ating system, in the protected portion of the system memory.
The protected portion of the system memory is unprotected,
while mitigating attacks on the portion of system memory,
and processor state 1s set to execute the code of the second
operating system. The second operating system starts using
the secured boot secrets stored 1n the portion of the system
memory.

20 Claims, 4 Drawing Sheets

Compuiing Device 261

Operating

System 202

Isolated Operating System 203

} 200 } 208

T T T = T =TT T T ey 'a--—--u—u-n-—-—u—n--—n-—u-nn—n-—-—-—-——n"mmq—n—nr—nq—-nnmq—-—-nr—vn—mnn-mmwnr—-m]

Lser Mode Liser Mode
Kerne! Mode Karnel Mode
Kernel Secure Kernel
206 208

} 210

Secreis 271 1

Dala Structures 218

New Kernal 217

New Secure Kemel 218

OS Loader 219

Hypervisor 204

a

08 Loader 219 I

Boot Manager 214 I - 212

Firmware { Hardware 213 l

b’

US 9,779,248 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,825,993 B2 9/2014 Aloni et al.

9,104,619 B2 8/2015 Chin et al.
2006/0085630 Al 4/2006 Challener et al.
2014/0026124 Al 1/2014 Gilbert et al.
2014/0157264 A’ 6/2014 Russinovich et al.
2015/0178097 A 6/2015 Russinovich
2015/0220729 A 8/2015 Rudolph et al.

A

2016/0092678 3/2016 Probert et al.

Sy Lh b

OTHER PUBLICATIONS

Gibson, Chris, “AIX Live Update”, Published on: Oct. 5, 2015

Available at: https://www.ibm.com/developerworks/community/

blogs/cgaix/resource/ ALX LiveUpdateblog.pdf?lang=en.

Bovenzi, et al., “Towards fast OS rejuvenation: An experimental
evaluation of fast OS reboot techniques”, In Proceedings of IEEE
24th International Symposium on Software Reliability Engineering,
Nov. 4, 2013, pp. 61-70.

Depoutovitch, et al., ““Otherworld”—giving applications a chance
to survive OS kernel crashes”, In Proceedings of 13th USENIX
Symposium on Networked Systems Design and Implementation,
Retrieved on: Mar. 7, 2016, 9 pages.

Candea, et al., “Recursive Restartability: Turning the Reboot
Sledgehammer into a Scalpel”, In Proceedings of the 8th Workshop
on Hot Topics in Operating Systems, May 20, 2001, pp. 1-6.
International Search Report and the Written Opinion 1ssued 1n PCT
Patent Application No. PCT/US2017/024219 dated Jun. 2, 2017.

* cited by examiner

U.S. Patent Oct. 3, 2017 Sheet 1 of 4 US 9,779,248 B1

100
Computing Device 101
Operating Secured
System 102 Memory
Environment 7103
0] Jre
Secrets
109
User Mode
femel Mode Data Structures
110
Kernel
106
2 Code 111
10107 Jr
APl's 104

Trusted Computing Base 108

Figure 1

vz 94nbi4 —

17 9leMpIeH / SIemull

AT pIé Jabeuep 100g

¢ 19peu] 50

US 9,779,248 B1

F07 JosinadAy

- ,_.,
= oz | (1] we{ [0
~ |] |
3 B0z _ 90¢

- I9UISY| 8INJ3S SUISY

_ TIZ S)eioss _

- SpOJ\ [oUIDY SpO [ouley
M SPO Jos | apO Jasq
e

>

-

%«TI:I_ _ m%%jj

o 207 WalsAg
£0¢ wsjshg bunesadQ pajejos | Buiesadp

00¢ 107 @2 bunndwon

U.S. Patent

g¢ o24n mﬁ.& _ £17 olempleH [SJeMuLiA

717 - Flc Jabeuepy E_um M

US 9,779,248 B1

GLZ J8peo]so

F0¢ JOSIABOAH
—— - ~ i
-+ BIZ 1ope0 SO |
o - _ |
- 71z oway amoeg mon | 021 ||]| | S.% | |
,_w 717 19UIOY MON T 77 . 07
, auUIsY 2N suId ”
m\nu gl7 sainponig ele(it S ., oo
[1¢ S19i988 |
SPOW [PUIDY SPO [ouUIeY,
” PO Josn SPON JasN
—
2 3
e) ,,, |
> 80z1{ | || | soz{ | ||
O - - _
o | 707 WRISAS
£0¢ weisAg bugessdQ paielos Bunesado |
00 107 aoineq] Bunnduion

U.S. Patent

U.S. Patent Oct. 3, 2017 Sheet 4 of 4 US 9,779,248 B1

300

301

302

303

304

305

3006

Protect System Memory 307

Figure 3

US 9,779,248 Bl

1

PROTECTION OF SECURED BOOT
SECRETS FOR OPERATING SYSTEM

REBOOT
CROSS-REFERENCE TO RELATED
APPLICATIONS
Not Applicable.
BACKGROUND

The ability of computer systems to store and process
information has transformed the way we live and work.
Computer systems are more capable than ever, now com-
monly store a variety of sensitive data (e.g., financial infor-
mation, personal documents, photos, passwords and other
credentials, etc.) and perform a host of processing tasks
utilizing that data. Additionally, most modern computer
systems are coupled to one another and to other electronic
devices to form both wired and wireless computer networks
over which the computer systems and other electronic
devices can transfer electronic data. With the amount of
sensitive data stored on computer systems, and the increased
connectedness ol computer systems, there 1S more motiva-
tion than ever for nefarious parties to attempt to breach
computer system security. For example, these parties may
seek to utilize the sensitive data stored on those systems for
theirr own purposes (e.g., to steal 1t, to encrypt i1t and use 1t
as a ransom, etc.), may seek to hijack use of computer
system resources, or may attempt to otherwise exploit or
deceive users in other ways.

Accordingly, computer system manufacturers and soft-
ware vendors continually seek new ways to harden computer
system security. One such mechamsm 1s Secure Boot.
Secure Boot 1s a security standard developed by members of
the computing industry to make sure that a computer system
boots using software that 1s trusted by the computer manu-
facturer from the time the computer system 1s powered on to
a defined point 1n an operating system startup. Using Secure
Boot, every phase of an operating system boot process 1s
measured and secured using secrets (e.g., encryption keys).
For example, when a computer system {irst starts, 1ts Secure
Boot compliant firmware checks the signature of the boot
manager that 1s to be loaded, as well as any firmware drivers
that are to be loaded. If these signatures are good, the boot
manager loads load an operating system loader of a target
operating system (e.g., WINDOWS, Linux, UNIX, etc.) and
verifies that it 1s properly signed too. This process continues
with the operating system loader veritying the signature of
boot drivers and the operating system kernel itself. An
operating system that has booted 1n accordance with Secure
Boot provides guarantees that the system 1s booted with
software components that have been validated. Additionally,
it can ufilize secrets obtained during the boot process to
attest to third party software (e.g., anti-malware software)
that 1t was securely booted, and to provide measurements
(e.g., a log of components loaded during the boot) taken
during the boot process.

Another mechanism for hardening computer system secu-
rity 1s to continually discover and patch security vulnerabili-
ties 1in software, and to release updated versions of the
software. This includes discovering and patching security
vulnerabilities in operating systems. While some operating,
system components (e.g., services, drivers, etc.) can poten-
tially be updated while the operating system 1s running (e.g.,
“hot patching” components by updating and restarting only
those components), updating other core components, such as

10

15

20

25

30

35

40

45

50

55

60

65

2

the kernel, has historically required a full reboot of the
computer system 1tself. Rebooting a computer system 1s

disruptive to the workload executing on the computer sys-
tem, which 1s particularly inconvenient 1n server environ-
ments 1 which processes running on the computer system
provide services to other computer systems.

To address this shortcoming, some operating systems
vendors have developed mechanisms for updating core
operating system components, such as the kernel, without
requiring a full computer system reboot. In some 1implemen-
tations, such as kernel software reboot (KSR) from MICRO-
SOFT CORPORATION, the currently executing operating
system loads a new version of one or more operating system
components (such as an operating system loader component,
a new kernel, boot drivers, etc.) in memory, and directly
begins execution of those components, without performing
a full system reboot. Such in-place update/restart mecha-
nisms can restart an updated operating system more quickly
than doing a full system reboot, which reduces interruptions
to workloads executing on the computer system.

However, when an operating system that was started in
accordance with Secure Boot 1s replaced using mechanisms
such as KSR, the newly started operating system loses the
security assurances provided by Secure Boot. Specifically,
there 1s no way to guarantee that the new operating system
running on the system 1s genuine and has not been compro-
mised. Also secrets that had been retrieved from Secure Boot
components during the original hardware boot might have
been compromised or leaked. Accordingly, there 1s an inher-
ent incompatibility between Secure Boot and 1n-place oper-
ating system update mechanisms, which results in system
administrators having to choose between use of Secure Boot
and use of 1n-place operating system update mechanisms.

BRIEF SUMMARY

At least some embodiments described herein address the
incompatibilities between Secure Boot and in-place operat-
ing system update mechanisms. In particular, embodiments
include use of a secured memory environment, which
includes memory that 1s 1accessible to the executing oper-
ating system, to store one or more secrets obtained during
the secured booting process of the operating system and to
preserve and guarantee the integrity of a new operating
system that will be subsequently loaded. Storing the secrets
in a secured memory environment protects the secrets from
tampering by untrusted components executing in the oper-
ating system. When another operating system 1s started
using an 1n-place operating system update mechanism, the
replacement operating system can utilize these stored secrets
as part of attesting to 1ts integrity, such as to attest to third
party soltware that 1t was securely booted, and to provide
measurements taken during the boot process.

For example, embodiments may include methods, sys-
tems, and computer program products for protecting secured
boot secrets while starting an operating system. Embodi-
ments may include starting a first operating system in
reliance on a trusted computing base (TCB), including
obtaining one or more secured boot secrets from the TCB
that are usable for attesting a security status of the first
operating system. Embodiments may also include protecting
a portion of the system memory, including preventing access
to the portion of the system memory by the first operating
system, and storing the one or more secured boot secrets 1n
the protected portion of the system memory.

Subsequently, embodiments may include 1dentitying that
a second operating system 1s to be started to replace the first

US 9,779,248 Bl

3

operating system, without performing a full reboot of the
computer system. Based at least on identifying that the
second operating system 1s to be started to replace the first

operating system, embodiments may include configuring
one or more memory data structures in the protected portion
of the system memory, including loading code of the second
operating system 1n the protected portion of the system
memory for starting the second operating system. Embodi-
ments may also include unprotecting the portion of the
system memory, while mitigating attacks on the portion of
the system memory. Embodiments may also include setting,
processor state to mnitiate execution of the code of the second
operating system to start the second operating system. In
doing so, the second operating system uses the one or more
secured boot secrets obtained by the first operating system
from the TCB and stored in the portion of the system
memory for attesting a security status of the second oper-
ating system. Embodiments also include re-protecting the
portion of the system the memory, including preventing
access to the portion of the system memory by the second
operating system.

This summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner 1n which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated 1n the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 1illustrates a first embodiment of a computing
environment for protecting secured boot secrets while start-
Ing an operating system;

FIG. 2A 1llustrates a second embodiment of a computing,
environment for protecting secured boot secrets while start-
Ing an operating system;

FIG. 2B further illustrates the second embodiment of a
computing environment for protecting secured boot secrets
while starting an operating system; and

FIG. 3 illustrates a flowchart of an example method for
protecting secured boot secrets while starting an operating
system,

DETAILED DESCRIPTION

At least some embodiments described herein address the
incompatibilities between Secure Boot and in-place operat-
ing system update mechanisms. In particular, embodiments
include use of a secured memory environment, which
includes memory that i1s inaccessible to the executing oper-
ating system, to store one or more secrets obtained during
the secured booting process of the operating system and to
preserve and guarantee the integrity ol a new operating
system that will be subsequently loaded. Storing the secrets
in a secured memory environment protects the secrets from
tampering by untrusted components executing in the oper-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ating system. When another operating system 1is started
using an in-place operating system update mechanism, the
replacement operating system can utilize these stored secrets
as part of attesting to its integrity, such as to attest to third
party soltware that 1t was securely booted, and to provide
measurements taken during the boot process.

For example, FIG. 1 illustrates an example computing
environment 100 for protecting secured boot secrets while
starting an operating system. In particular, FI1G. 1 1llustrates
that a computing device 101 can execute an operating
system 102 1n a first portion of memory, and can contain a
second portion of memory protected within a secured
memory environment 103 (i.e., 1solated from the operating
system 102). In some embodiments, the operating system
102 and the secured memory environment 103 are both 1n
system memory (e.g. random access memory (RAM)) that
been partitioned such that the operating system 102 lacks
direct access to memory of the secured memory environ-
ment 103. For example, FI1G. 1 1llustrates that the computing
device 101 can include application programming interfaces
(APIs) 104 that can provide a buller between memory of the
operating system 102 and memory of the secured memory
environment 103, but which can enable communication of
data between the two 1n a controlled manner.

In other embodiments, the operating system 102 and the
secured memory environment 103 are in different memories
altogether. For example, the operating system 102 may
execute 1n system memory, while the secured memory
environment 103 comprises a separate memory component.
In this situation, the APIs may be APIs provided by that
memory component or related hardware/firmware.

FIG. 1 also 1illustrates that the operating system includes
a user mode 1n which user mode processes 105 execute, and
a kernel mode 1n which a kernel 106 and kernel mode
processes and drivers 107 execute. FIG. 1 also illustrates
that the computing device 101 boots utilizing a trusted
computing base (TCB) 108, which includes a set of hard-
ware, soltware, and procedural components that enforce one
or more security policies during system startup. During boot,
and while utilizing the TCB 108, the operating system 102
can obtain various forms of secured boot secrets, such as
encryption keys and measurements (e.g., loaded drnivers,
timing data, etc.), using the TCB 108. The operating system
102 can use these encryption keys and realize and store
measurements to verily its own integrity, to assert to its
security status, and to provide measurements to third party
software.

FIG. 1 illustrates that these secrets 109 can be stored 1n the
secured memory environment 103. These may be stored by
the operating system 101 utilizing the APIs 104, by the TCB
108, or by other components such as a hypervisor, as
discussed later. Storing the secrets 109 in the secured
memory environment protects them from tampering by
processes executing at the operating system 102 (including
user mode processes 1035 and code executing 1in kernel mode
such as kernel mode processes and drivers 107). Thus, for
example, 1f the operating system 102 were to be compro-
mised by a malicious process 103 or driver 107, the secured
memory environment 103 and the APIs 104 prevent that
malicious process 105 or driver 107 from accessing/tamper-
ing with the secrets 109 or the secured code 111.

When the operating system 102 needs to be updated or
otherwise restarted, the computing device 101 enters a {first
phase 1n which 1t sets up memory data structures 110 and
code 111 associated with starting the replacement operating
system 1n the secured memory environment 103. For
example, the operating system 102 may utilize the APIs 104

US 9,779,248 Bl

S

to place an operating system loader and/or kernel (e.g., code
111) of the replacement operating system, and other memory
data structures 110 such as memory page mappings in the
secured memory environment 103. Then, protections of the
secured memory environment 103 are lowered, and 1n a 5
second phase the code 111 1s mitiated to start the replace-
ment operating system’s loader. In doing so, the replacement
operating system leverages the secrets 109 to initiate 1ts boot
using encryption keys, measurements, etc. that were
obtained from the TCB 108 during the initial boot of the 10
computing device 101. Accordingly, the replacement oper-
ating system can provide the same types of security assur-
ances and measurements as the original operating system
102.

FIGS. 2A and 2B illustrate a more particular example. 15
FIG. 2A 1llustrates that a computing device 201 can execute
an operating system 202 (e.g., the operating system 102 of
FIG. 1) 1 a first portion of memory, and can execute an
isolated operating system 203 1 a second portion of
memory. Like operating system 102, operating system 202 20
can 1nclude a user mode and kernel mode, with user mode
processes 1035, a kernel 206, and kernel mode processes and
drivers 107. The 1solated operating system 203 can execute
in a virtual partition, such as one supported by virtualization
technology such as second level address translation, includ- 25
ing use of a hypervisor 204 (e.g., HYPER-V, XEN,
VMWARE, etc.). For example, the hypervisor 204 can
partition system memory by allocating a portion of system
memory to the operating system 102, and by allocating a
different portion of system memory to the secured memory 30
environment 103.

The 1solated operating system 203 can also include its
own user mode processes, a secure kernel 209, and kernel
mode processes and drivers 210. The 1solated operating
system 203 executing in the virtual partition can correspond 35
to the secured memory environment 103 of FIG. 1. As such,
the memory of the 1solated operating system 203 can be
inaccessible to the operating system 202, except as permit-
ted by APIs, such as APIs provided by the hypervisor 204.

In some embodiments, the 1solated operating system 203 40
1s based on, or a dertvative of, the operating system 202. For
example, the secure kernel 209 may comprise as subset of
functionality of the kernel 206, and the 1solated operating
system 203 may serve as an 1solated environment to securely
support processes executing in the operating system 202. 45
For example, the secure kernel 209 may provide an interface
similar to the kernel 206, but support a subset of the API
provided by the kernel 206. An example of such a configu-
ration 1s virtualization-based security (VBS) from MICRO-
SOFT CORPORATION. 50

Like the secured memory environment 103, the isolated
operating system 203 can store secrets 211, such as encryp-
tion keys and measurements obtained from a trusted com-
puting base 212 during mitial cold booting of the operating,
system 202 and/or the 1solated operating system 203. While 55
these secrets are depicted as being stored 1n kernel mode
memory, some embodiments may store them 1n user mode
memory.

FIG. 2A also 1llustrates an example of a TCB 212 that
supports booting of the operating system 202 and the 60
1solated operating system 203. For example, the TCB 212
may operate in accordance with Secure Boot standards. In
particular, the TCB 212 includes computing device firm-
ware/hardware 213, a boot manager 214, and an operating,
system loader 215. When the computing device 201 powers 65
up, 1t directs execution to the firmware/hardware 213. The
firmware/hardware 213 checks a signature of the boot man-

6

ager 214, as well as any firmware drivers that are to be
loaded. If those checks pass, execution 1s given to the boot
manager 214 (along with loading any appropriate firmware
drivers). The boot manager 214 checks a signature of the OS
loader 215 (which 1s typically a component of the operating
system 202), and passes execution to the OS loader 215 11
the signature check passes. The OS loader then initiates
loading of the hypervisor 2014, operating system 202, and
1solated operating system 203.

As part of 1ts operation, the OS loader receives secrets
from lower-level components 1n the TCB 212 (1.e., the boot
manager 214 and/or the firmware/hardware 213). For
example, the OS loader may receive secrets from hardware
such as a trusted platform module (TPM), for from firmware
such as UEFI. The secrets 211 may comprise these secrets,
potentially among others that are generated later in the
operating system startup process.

FIG. 2B 1llustrates an embodiment of use of the secured
boot secrets that are protected within the environment 200 of
FIG. 2A. As 1llustrated 1n FIG. 2B, when 1t 1s detected that
another (e.g., replacement or new/updated) operating 1s to be
started, the computing device 201 sets up memory data
structures and code in memory of the 1solated operating
system 203. For example, the memory data structures 216
may include memory page mappings that are used by the
new operating system during the restart, and code may
include code of the other operating system, such as the
depicted new kernel 217 (e.g., a new or replacement version
of the kernel 206) and/or the depicted OS loader 219 (e.g.,
corresponding to or a new version of the OS loader 215).
Other data structures/code may include the depicted new
secure kernel 218 (e.g., a new or replacement version of the
secure kernel 209), a new hypervisor (e.g., a new or replace-
ment version of the hypervisor 204), new or replacement
drivers, etc. While these memory data structures/code are
depicted as being stored in kermnel mode memory of the
1solated operating system 203, some embodiments may store
one or more of them 1n user mode memory. These memory
data structures/code may be set up by the operating system
202 (e.g., through the hypervisor 204) and/or by the 1solated
operating system 203.

Once the memory data structures/code are set up in
memory of the 1solated operating system 203, an operating
system restart 1s 1nitiated. In some embodiments, this may
include ceasing execution of certain components, such as the
kernel 206, the secure kernel 209, and/or the hypervisor 204,
and/or unloading them from memory. It will be appreciated
that ceasing execution of and/or unloading some of these
components (e.g., the hypervisor) may have the eflect of
un-protecting the memory devoted to the 1solated operating
system 203. As such, certain measures can be taken to
mitigate attacks on the secrets 211 and or the data structures/
code (e.g., by rogue drivers or other processes executing 1n
the operating system 202) while the memory 1s unprotected,
such as disabling direct memory accesses (DMA) and/or
disabling processor interrupt requests (IRQs).

Initiating the operating system restart includes causing a
processor of the computing device 201 to begin execution of
code stored at the memory location corresponding to the OS
loader 219. The may include setting processor state (e.g., the
program counter), so that the processor begin execution of
the code 111. Effectively, this starts operatmg system boot at
the OS loader phase (1.e., when the prior OS loader 215 was
executed) of the TCB 212 As part of this startup, the new
OS loader 219 can utilize the secrets 211 to resume a secure
and measured boot of the new hypervisor, the new kernel
217, and/or the new secure kernel 209. As such, when the

US 9,779,248 Bl

7

new operating system 1s started, it can provide the same
types of security assurances and measurements as the origi-
nal operating system. When the new operating system has
started, the computing device 201 returns to a state similar
that of FIG. 2A 1n which at least the operating system 202
1s now the new/updated operating system.

Returming to the memory data structures 110/216, it has
been noted that these may include memory tables/mappings
that are used by the new operating system during 1ts startup
process. These tables/mappings may store which memory
pages belong to certain applications (executing 1n the oper-
ating system 202 and/or in the isolated operating system
203), which memory pages belong to databases, which
memory pages belong to the operating system 202 and
which memory pages belong to the 1solated operating sys-
tem 203, etc. These may also comprise tlags designating
memory pages that belong to operating system 202, and
pages belonging to 1solated operating system 203. As such,
certain state can be preserved 1n memory during the oper-
ating system restart.

For example, 11 the operating system 202 1s host to virtual
machines, the data structures 110/216 may store tables/
mappings to which memory pages belong to those virtual
machines. In another example, if the operating system 202
1s running a database server, the data structures 110/216 may
store which memory pages belong to the database. Then,
when the OS loader 219 starts the new operating system, that
memory can be preserved, and those memory pages can be
used to resume the virtual machine and/or database pro-
cesses to their prior state. As such the restart can occur
without flushing that data to durable storage prior to the
restart, and reloading that data from the durable storage after
the restart. Such state can be preserved for virtually any type
of process executing at the computing device (including
processes 205 and processes 208).

In view of the foregoing, FIG. 3 illustrates a flow chart of
an example method 300 for protecting secured boot secrets
while starting an operating system. Method 300 will be
described with respect to FIGS. 1, 2A, and 2B.

Method 300 comprises an act of 301 of securely starting,
a first operating system. Act 301 can include starting a first
operating system 1n reliance on a TCB, including obtaining
one or more secured boot secrets from the TCB that are
usable for attesting a security status of the first operating
system. For example, in reference to FIG. 1, computing
device 101 can start operating system 102 using the TCB
108. During boot, the operating system 102 can obtain
secrets, such as encryption keys and measurements, from the
TCB 108. In a more detailed embodiment, FIG. 2A depicts
that computing device 201 can start the operating system
202, beginning with firmware/hardware 213 that executes a
boot manager 214 after veritying 1ts signature, which then
starts an OS loader 215 of the operating system 202 after
veritying 1ts signature. The OS loader 215 can obtain secrets
from lower-level TCB 212 components, and additional
secrets can be generated during subsequent booting of the
operating system 202.

Method 300 comprises an act of 302 of protecting system
memory. Act 302 can include protecting a portion of the
system memory, including preventing access to the portion
of the system memory by the first operating system. For
example, FIG. 1 illustrates that computing device 101 can
include a secured memory environment 103. This secured
memory may be a protected/isolated portion of system
memory, or may be part of some other memory component.
In the example of FIG. 2A, the secured memory environ-

10

15

20

25

30

35

40

45

50

55

60

65

8

ment comprises an 1solated operating system 203 that runs
within virtual memory partition created by a hypervisor 204.

Method 300 comprises an act of 303 of storing secrets 1n
memory. Act 303 can include storing the one or more
secured boot secrets 1n the protected portion of the system
memory. For example, in FIG. 1 secrets 109 are stored in the
secured memory environment 103. In FIG. 2A secrets 211
are stored in memory allocated to the 1solated operating
system 203. These secrets may be stored by the operating
system 102/202 (e.g., using the APIs 104 or the hypervisor
204), or by other components such as the OS loader 215, the
hypervisor 204, or the secure kernel 209.

Method 300 comprises an act of 304 of determining that
a second operating system 1s to be started. Act 304 can
include identifying that a second operating system 1s to be
started to replace the first operating system, without per-
forming a full hardware reboot of the computer system. For
example, 1t may be that an operating system 102/202 1s to be
updated to a new version, and that a new version of the

operating system 1s to be installed/started without going
through the full boot process of the TCB 108/212. The

embodiments herein are not limited to starting an updated
version of a running operating system, however. For
example, the currently running operating system may be
restarted without an update, and older version of the runming
operating system may be installed (e.g., to address compat-
ibility 1ssues introduced in an update), or an entirely new
operating system may be installed. Additionally or alterna-
tively, 1t may be that the i1solated operating system 203 1s
being updated/restarted, and/or the hypervisor 204 1s being
updated/restarted.

Method 300 comprises an act of 305 of configuring
memory data structures. Act 305 can include, based at least
on identifying that the second operating system is to be
started to replace the first operating system, configuring one
or more memory data structures in the protected portion of
the system memory, including loading code of the second
operating system in the protected portion of the system
memory for starting the second operating system. For
example, an operating system loader and/or a kernel may be
loaded nto the secured memory environment 103 of FIG. 1
(1.e., code 111), or the 1solated operating system 203 of FIG.
2B (i.e., new kernel 217 and/or OS loader 219). Addition-
ally, data structures such as memory tables/mappings that
are usable to quickly resume processes aiter the restart can
be stored 1n the secured memory environment 103 (1.¢., data
structures 110)/1solated operating system 203 (1.e., data
structures 216). Any other code that may be updated can also
be stored in the secured memory. For example, 11 the secure
kernel 209 1s being updated, an updated secure kernel 218
can be stored in the secured memory, or if the hypervisor 214
1s being updated, an updated hypervisor can be stored 1n the
secured memory. These memory data structures can be set
up by the secured memory environment 103/1solated oper-
ating system 203, and/or can be set up by the operating
system 102/202 (e.g., using the APIs 104/hypervisor 215).

Method 300 comprises an act of 306 of nitiating starting,
of the second operating system. Act 306 can include setting
a state of one or more processors to initiate execution of the
code of the second operating system to start the second
operating system, the second operating system using the one
or more secured boot secrets obtained by the first operating
system from the TCB and stored 1n the portion of the system
memory for attesting a security status of the second oper-
ating system. For example, a program counter of a processor
of the computing device 101 can be configured to begin
execution of the code 111, or a program counter of a

US 9,779,248 Bl

9

processor of the computing device 201 can be configured to
begin execution of the OS loader 219, to imtiate startup of
the second operating system. During boot, the second oper-
ating system can utilize the secrets 109/211, such that 1t can
attest to 1ts security status.

As part of, or prior to, mitiating starting of the second
operating system, act 306 can include unprotecting the
portion of the system memory, while mitigating attacks on
the portion of the system memory. In reference to FIG. 1,
this may include unloading portions of the operating system
102, or disabling hardware protection associated with
memory i1mplementing the secured memory environment
103. In reference to FIGS. 2A/2B, this may include stop-
ping/unloading the kernel 206, the secure kernel 209, and/or
the hypervisor 204. In order to mitigate attacks when the
portion of the system memory 1s unprotected, various sys-
tem functions that could interrupt the execution of code that
1s doing the transition to the second operating system and
potentially change the memory can be disabled. For
example, DMA, IRQs, and/or System Management Mode
(SMM) (e.g., a processor operating mode 1n which 1n which
normal code execution—including the operating system—1s
suspended, and 1n which other software—which 1s usually
part of firmware or a hardware-assisted debugger—is
executed with elevated privileges) may be blocked/disabled.

Accordingly, method 300 also comprises an act of 307 of
protecting system memory. Act 307 can include re-protect-
ing the portion of the system the memory, including pre-
venting access to the portion of the system memory by the
second operating system. For example, hardware protections
associated with the secured memory environment 103 may
be re-enabled, or the hypervisor may once again enforce
1solation of memory associated with a virtual partition of the
1solated operating system 203.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the
described features or acts described above, or the order of
the acts described above. Rather, the described features and
acts are disclosed as example forms of implementing the
claims.

Embodiments of the present invention may comprise or
utilize a special-purpose or general-purpose computer sys-
tem that includes computer hardware, such as, for example,
one or more processors and system memory, as discussed 1n
greater detail below. Embodiments within the scope of the
present invention also include physical and other computer-
readable media for carrying or storing computer-executable
instructions and/or data structures. Such computer-readable
media can be any available media that can be accessed by a
general-purpose or special-purpose computer system. Com-
puter-readable media that store computer-executable
instructions and/or data structures are computer storage
media. Computer-readable media that carry computer-ex-
ecutable instructions and/or data structures are transmission
media. Thus, by way of example, and not limitation,
embodiments of the mvention can comprise at least two
distinctly different kinds of computer-readable media: com-
puter storage media and transmission media.

Computer storage media are physical storage media that
store computer-executable instructions and/or data struc-
tures. Physical storage media include computer hardware,
such as RAM, ROM, EEPROM, solid state drives (“SSDs™),
flash memory, phase-change memory (“PCM”), optical disk
storage, magnetic disk storage or other magnetic storage
devices, or any other hardware storage device(s) which can

10

15

20

25

30

35

40

45

50

55

60

65

10

be used to store program code in the form of computer-
executable 1nstructions or data structures, which can be
accessed and executed by a general-purpose or special-
purpose computer system to implement the disclosed func-
tionality of the mvention.

Transmission media can include a network and/or data
links which can be used to carry program code 1n the form
of computer-executable instructions or data structures, and
which can be accessed by a general-purpose or special-
purpose computer system. A “network™ 1s defined as one or
more data links that enable the transport of electronic data
between computer systems and/or modules and/or other
clectronic devices. When information 1s transierred or pro-
vided over a network or another communications connection
(erither hardwired, wireless, or a combination of hardwired
or wireless) to a computer system, the computer system may
view the connection as transmission media. Combinations of
the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code 1n the form of computer-executable
instructions or data structures can be transferred automati-
cally from transmission media to computer storage media
(or vice versa). For example, computer-executable instruc-
tions or data structures received over a network or data link
can be buflered in RAM within a network interface module
(e.g., a “NIC”), and then eventually transferred to computer
system RAM and/or to less volatile computer storage media
at a computer system. Thus, 1t should be understood that
computer storage media can be included 1n computer system
components that also (or even primarily) utilize transmission
media.

Computer-executable instructions comprise, for example,
istructions and data which, when executed at one or more
processors, cause a general-purpose computer system, spe-
cial-purpose computer system, or special-purpose process-
ing device to perform a certain function or group of func-
tions. Computer-executable instructions may be, ifor
example, binaries, intermediate format 1nstructions such as
assembly language, or even source code.

Those skilled 1n the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame com-
puters, mobile telephones, PDAs, tablets, pagers, routers,
switches, and the like. The mmvention may also be practiced
in distributed system environments where local and remote
computer systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both
perform tasks. As such, 1n a distributed system environment,
a computer system may include a plurality of constituent
computer systems. In a distributed system environment,
program modules may be located 1n both local and remote
memory storage devices.

Those skilled 1mn the art will also appreciate that the
invention may be practiced 1n a cloud computing environ-
ment. Cloud computing environments may be distributed,
although this 1s not required. When distributed, cloud com-
puting environments may be distributed internationally
within an organization and/or have components possessed
across multiple organizations. In this description and the
following claims, “cloud computing” 1s defined as a model
for enabling on-demand network access to a shared pool of

US 9,779,248 Bl

11

configurable computing resources (e.g., networks, servers,
storage, applications, and services). The definition of “cloud
computing” 1s not limited to any of the other numerous
advantages that can be obtained from such a model when
properly deployed.

A cloud computing model can be composed of various
characteristics, such as on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, measured
service, and so forth. A cloud computing model may also
come 1n the form of various service models such as, for
example, Soltware as a Service (“SaaS”), Platform as a
Service (“PaaS™), and Infrastructure as a Service (“lIaaS™).
The cloud computing model may also be deployed using
different deployment models such as private cloud, commu-
nity cloud, public cloud, hybnd cloud, and so forth.

Some embodiments, such as a cloud computing environ-
ment, may comprise a system that includes one or more
hosts that are each capable of running one or more virtual
machines. During operation, virtual machines emulate an
operational computing system, supporting an operating sys-
tem and perhaps one or more other applications as well. In
some embodiments, each host includes a hypervisor that
emulates virtual resources for the virtual machines using
physical resources that are abstracted from view of the
virtual machines. The hypervisor also provides proper 1so-
lation between the virtual machines. Thus, from the per-
spective ol any given virtual machine, the hypervisor pro-
vides the 1llusion that the virtual machine 1s interfacing with
a physical resource, even though the virtual machine only
interfaces with the appearance (e.g., a virtual resource) of a
physical resource. Examples of physical resources including
processing capacity, memory, disk space, network band-
width, media drives, and so forth.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope
of the invention 1s, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What 1s claimed:

1. A method, implemented at a computer system that
includes one or more processors and system memory, for
protecting secured boot secrets while starting an operating,
system, the method comprising:

starting a first operating system 1n reliance on a trusted

computing base (TCB), including obtaining one or
more secured boot secrets from the TCB that are usable
for attesting a security status of the first operating
system;

protecting a portion of the system memory, including

preventing access to the portion of the system memory
by the first operating system:;

storing the one or more secured boot secrets in the

protected portion of the system memory;

identifying that a second operating system 1s to be started

to replace the first operating system, without performs-
ing a full reboot of the computer system; and

based at least on i1dentifying that the second operating

system 1s to be started to replace the first operating

system, performing at least:

conflguring one or more memory data structures in the
protected portion of the system memory, imncluding
loading code of the second operating system in the
protected portion of the system memory for starting
the second operating system:;

10

15

20

25

30

35

40

45

50

55

60

65

12

unprotecting the portion of the system memory, while
mitigating attacks on the portion of the system
memory;

setting a state of the one or more processors to nitiate
execution of the code of the second operating system
to start the second operating system, the second
operating system using the one or more secured boot
secrets obtained by the first operating system from
the TCB and stored in the portion of the system
memory for attesting a security status of the second
operating system; and

re-protecting the portion of the system the memory,
including preventing access to the portion of the
system memory by the second operating system.

2. The method of claim 1, wherein protecting the portion
of the system memory compromises using a virtualization
technology to establish a secured operating environment that
1s 1solated from the first operating system, including using a
hypervisor to establish a secure partition between the first
operating system and the secured operating environment.

3. The method of claim 2, wherein the secured operating,
environment executes a secured kernel that supports at least
a subset of an application programming 1nterface (API) of a
kernel of the first operating system.

4. The method of claim 2, wherein the first operating
system access one or more services provided by the secured
operating environment using one or more application pro-
gramming intertaces (APIs) provided by the secured oper-
ating environment.

5. The method of claim 4, wherein the first operating
system uses the one or more APIs to store the one or more
secured boot secrets 1n the protected portion of the system
memory, and to configure the one or more memory data
structures 1n the protected portion of the system memory.

6. The method of claim 1, wherein configuring the one or
more memory data structures in the protected portion of the
system memory comprises identifying one or more of:

one or more first memory pages of the system memory

corresponding to at least one process executing in the
first operating system; or

one or more second memory pages of the system memory

corresponding to memory of at least one virtual
machine executing in the first operating system.

7. The method of claim 6, wherein mnitiating execution of
the code of the second operating system comprises at least
one of:

allocating the one or more first memory pages to at least
one process that executes in the second operating
system; or

allocating the one or more second memory pages to at
least one virtual machine that executes i1n the second
operating system.

8. The method of claim 1,

wherein configuring the one or more memory data struc-
tures 1n the protected portion of the system memory
comprises configuring flags designating one or more
first memory pages of the system memory as belonging,
to the first operating system and one or more second
memory pages ol the system memory as belonging to
the protected portion of the system memory, and

wherein re-protecting the portion of the system the
memory comprises using the tlags to allocate the one or
more {irst memory pages to the second operating sys-
tem and using the flags to allocate the one or more
second memory pages to the protected portion of the
system memory.

US 9,779,248 Bl

13

9. The method of claim 1, wherein configuring code for
starting the second operating system 1n the protected portion
of the system memory comprises configuring an operating
system loader of the second operating system that relies on
the one or more memory data structures.

10. The method of claim 1, wherein mitigating attacks on
the portion of the system memory comprises at least one of
blocking direct memory accesses, blocking processor inter-
rupts, or disabling a system management mode.

11. The method of claim 1, wherein the TCB comprises a
trusted platform module (TPM), and wherein at least one of
the one or more secured boot secrets 1s obtained from the
TPM.

12. The method of claim 1, wherein the TCB comprises
firmware, and wherein at least one ol the one or more
secured boot secrets 1s obtained from the firmware.

13. The method of claim 1, wherein the second operating
system 1s one of a different version of the first operation
system or the same version of the first operating system.

14. A computer system, comprising:

ONne Or mMore processors;

system memory; and

one or more computer-readable media having stored

thereon computer-executable instructions that are
executable by the one or more processors to cause the
computer system to protect secured boot secrets while
starting an operating system, the computer-executable
instructions including instructions that are executable
to cause the computer system to perform at least the
following;:
start a first operating system in reliance on a trusted
computing base (T'CB), including obtaining one or
more secured boot secrets from the TCB that are
usable for attesting a security status of the {first
operating system;
protect a portion of the system memory, including
preventing access to the portion of the system
memory by the first operating system:;
store the one or more secured boot secrets in the
protected portion of the system memory;
identify that a second operating system 1s to be started
to replace the first operating system, without per-
forming a full reboot of the computer system; and
based at least on i1dentifying that the second operating
system 1s to be started to replace the first operating
system, perform at least:
configure one or more memory data structures in the
protected portion of the system memory, including
loading code of the second operating system 1n the
protected portion of the system memory for start-
ing the second operating system;
unprotect the portion of the system memory, while
mitigating attacks on the portion of the system
memory;
set a state of the one or more processors to 1nitiate
execution of the code of the second operating
system to start the second operating system, the
second operating system using the one or more
secured boot secrets obtained by the first operating
system from the TCB and stored in the portion of
the system memory for attesting a security status
of the second operating system; and
re-protect the portion of the system the memory,
including preventing access to the portion of the
system memory by the second operating system.

15. The computer system of claim 14, wherein protecting

the portion of the system memory compromises using a

10

15

20

25

30

35

40

45

50

55

60

65

14

virtualization technology to establish a secured operating
environment that 1s 1solated from the first operating system,
including using a hypervisor to establish a secure partition
between the first operating system and the secured operating
environment.

16. The computer system of claim 14, wherein configur-
ing the one or more memory data structures 1n the protected
portion of the system memory comprises 1dentifying one or
more of:

one or more {irst memory pages ol the system memory

corresponding to at least one process executing in the
first operating system; or

one or more second memory pages of the system memory

corresponding to memory of at least one virtual
machine executing in the first operating system.

17. The computer system of claim 16, wherein 1nitiating
execution of the code of the second operating system
comprises at least one of:

allocating the one or more first memory pages to at least

one process that executes in the second operating
system; or

allocating the one or more second memory pages to at

least one virtual machine that executes 1n the second
operating system.
18. The computer system of claim 14, wherein configur-
ing code for starting the second operating system in the
protected portion of the system memory comprises config-
uring an operating system loader of the second operating
system that relies on the one or more memory data struc-
tures.
19. The computer system of claim 14, wherein mitigating
attacks on the portion of the system memory comprises at
least one of blocking direct memory accesses, blocking
processor interrupts, or disabling a system management
mode.
20. A computer program product comprising one or more
hardware storage devices having stored thereon computer-
executable instructions that are executable by one or more
processors of a computer system to cause the computer
system to protect secured boot secrets while starting an
operating system, the computer-executable instructions
including instructions that are executable to cause the com-
puter system to perform at least the following:
start a first operating system in reliance on a trusted
computing base (ITCB), including obtaining one or
more secured boot secrets from the TCB that are usable
for attesting a security status of the first operating
system;
protect a portion of system memory of the computer
system, including preventing access to the portion of
the system memory by the first operating system:;

store the one or more secured boot secrets 1n the protected
portion of the system memory;

identify that a second operating system 1s to be started to

replace the first operating system, without performing

a full reboot of the computer system; and

based at least on 1dentifying that the second operating

system 1s to be started to replace the first operating

system, perform at least:

configure one or more memory data structures 1n the
protected portion of the system memory, mcluding
loading code of the second operating system in the
protected portion of the system memory for starting
the second operating system;

unprotect the portion of the system memory, while
mitigating attacks on the portion of the system
memory;

US 9,779,248 Bl
15

set a state of the one or more processors to mitiate
execution of the code of the second operating system
to start the second operating system, the second
operating system using the one or more secured boot
secrets obtained by the first operating system from 5
the TCB and stored in the portion of the system
memory for attesting a security status of the second
operating system; and

re-protect the portion of the system the memory, includ-
ing preventing access to the portion of the system 10
memory by the second operating system.

¥ ¥ # ¥ o

16

	Front Page
	Drawings
	Specification
	Claims

