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COMPUTING KEY-SCHEDULES OF THE
AES FOR USE IN WHITE BOXES

BACKGROUND

Cryptographic algorithms are widely used for encryption
of messages, authentication, encryption signatures and 1den-
tification. The well-known DES (Data Encryption Standard)
has been 1n use for a long time, and was updated by
Triple-DES, which has been replaced in many applications
by AES (Advanced Encryption Standard). AES 1s an
approved encryption standard by the U.S. government. AES
1s a substitution permutation network, that 1s fast enough to
execute 1n both computer software and hardware implemen-
tations, relatively easy to mmplement, and requires little
memory space.

Implementations of AES do not provide much security
against an attacker recovering a secret key, 11 the attacker has
privileged access to the system implementing the cipher.
However, AES 1s often used 1n potentially insecure envi-
ronments. For instance, AES could be employed 1n a white
box environment. In a white box model, it 1s presumed that
an attacker has total access to the system performing an
encryption, including being able to observe directly a state
of memory, program execution, and so on. In such a model,
an encryption key can be observed in or extracted from
memory, and so ways to conceal operations indicative of a
secret key are important. For example, the attacker can learn
the secret key of an AES soltware implementation by
observing the execution of the key scheduling algorithm.

Digital rights management (DRM) applications are one
instance where 1t 1s desired to keep the attacker from finding
the secret key even though the attacker has complete control
of the execution process. “White-Box Cryptography and an
AES Implementation”, by Stanley Chow, Philip A. Eisen,

arold Johnson, Paul C. van Oorschot, 1in Selected Areas 1n
Cryptography: 97 Annual International Workshop, SAC
2002, PP. 250-270, gives a construction of the AES algo-
rithm for such white box model. The security of this
construction resides 1n the use of table lookups and masked
data. The input and output mask applied to this data 1s never
removed along the process. In this solution, there 1s a need
for knowing the key value at the compilation time, or at least
to be able to derive the tables from the original key 1n a
secure environment.

However, this solution does not solve all needs for block
cipher’s encryption. Indeed, the case where the key 1is
derived through a given process and then unknown at the
compilation time 1s not included. One typical use case 1s
when a program 1s distributed over several users and each of
them has their own key. In this case, 1t 1s from a practical
point of view 1mpossible to disseminate different code to
cach user. Another use case 1s when generating session keys
(which are different for each session) through a given
process. Of course, i this case the key 1s unknown at
compilation time. Another use case 1s when 1t 1s necessary
to store a large number of keys. However, 1t 1s not reasonable
to consider storing around 700 KB for each key.

BRIEF SUMMARY

Some embodiments provide a method for performing a
cryptographic process. The method receives first and second
cipher keys. The method generates a set of subkeys corre-
sponding to each of the first and second cipher keys. The set
of subkeys for the first cipher key 1s dependent on the first
cipher key and the second cipher key. The method performs
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2

the cryptographic process by using the generated sets of
subkeys. The method 1 some embodiments 1s used to
protect the keys ol white box AES representations. The
method provides security advantages over the methods that
perform two independent white box key expansions. Since
the subkeys of the second cipher key depend on the first
cipher key, attacking the second key requires breaking both
key schedules, which 1s not the case for two independent
computations.

In addition, some embodiments apply linear transforma-
tions to the keys to protect the keys of white box AES
representations. Furthermore, some embodiments generate
key schedules protected by diflerent linear functions P1 and
P2. Using two diflerent linear functions, P1 and P2, these
embodiments protect K1 with P1 and K1PK2 with P2.
Some embodiments also provide a method that generates
sets of subkeys for more that two cipher keys, where the
subkeys for each cipher key can depend on subkeys of one
or more of the other cipher keys.

The preceding Summary 1s mtended to serve as a brief
introduction to some embodiments as described herein. It 1s
not meant to be an introduction or overview of all subject
matter disclosed 1n this document. The Detailed Description
that follows and the Drawings that are referred to in the
Detailed Description will further describe the embodiments
described 1n the Summary as well as other embodiments.
Accordingly, to understand all the embodiments described
by this document, a full review of the Summary, Detailed
Description and the Drawings i1s needed. Moreover, the
claimed subject matters are not to be limited by the 1llus-
trative details 1n the Summary, Detailed Description and the
Drawings, but rather are to be defined by the appended
claims, because the claimed subject matters can be embod-
ied 1n other specific forms without departing from the spirit
of the subject matters.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purposes of explanation,
several embodiments of the mvention are set forth in the
following figures.

FIG. 1 provides a conceptual illustration of an example
cryptographic operation according to the AES standard.

FIG. 2 conceptually illustrates a process for generating
subkeys 1mn some embodiments of the invention where at
least one of the subkeys 1s dependent on the other subkey.

FIG. 3 1llustrates the inputs and output of the KeygenAs-
s1st function.

FIGS. 4A-4D conceptually 1llustrate one implementation
of KeygenAssist function.

FIG. 5 1llustrates the inputs and output of the KeygenRe-
combine function.

FIGS. 6 A-6D conceptually 1llustrate one implementation
of KeygenRecombine function.

FIG. 7 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

Conventional cryptography techniques were mtended to
protect confidential information from malicious attackers.
The confidential data was protected from everyone except
from the recipient. In environments such as DRM or client
solftware running in the cloud, the receiving platform 1s
controlled by potentially hostile end-users. In these envi-
ronments, white-box cryptography techniques are required
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to prevent attackers from extracting the cryptographic keys
and then redistribute the protected content.

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, 1t will be clear and
apparent to one skilled in the art that the mvention 1s not
limited to the embodiments set forth and that the invention
may be practiced without some of the specific details and
examples discussed.

Many more details of embodiments of the multi-block
cryptographic operations will be discussed below. Section 1
provides a detailed discussion of AES as an example of a
multi-round block cipher operation. Section II then
describes scheduling two key schedules at the same time 1n
some embodiments. Next, Section III describes extending
the key scheduling to multiple key schedules. Finally, Sec-
tion IV describes an electronic system with which some
embodiments of the mvention are implemented.

I. Description of AES

Before describing the computation of key schedules of
some embodiments 1n further detail, an example of AES 1s
described. Block ciphers are deterministic algorithms that
operate on blocks of fixed-length data of input and generate
same size blocks of output referred to as ciphertext. While
one of ordinary skill in the art will recognize that the
principles described in this specification are applicable to
various different forms of block cipher, they are described in
part by reference to the AES block cipher.

FIG. 1 provides a conceptual 1illustration of an example
cryptographic operation 100 (e.g., an encryption or decryp-
tion operation) according to the AES standard. As shown,
input data 140 1s processed in an iitial round 110, nine
middle rounds 120, and a final round 130, to produce output
state 150. For a decryption operation, the mnput data 140 1s
encrypted data (referred to as cipher text) and the output
state 150 1s decrypted data (which may be plain text, or
cipher text 1n the case that the mput data was encrypted
multiple times). Similarly, for encryption, the input data 140
may be previously encrypted data or unencrypted data
(cipher text or plamn text), and the output data 150 1s
encrypted data (cipher text, which will be twice encrypted 1n
the case that the input 1s also cipher text). The input data 140
can be any computer readable message (or, more accurately,
a block of such a computer readable message). For instance,
the mput data 140 could be a portion of an encrypted content
file, video content, image content, audio content, a computer
message, a secure transmission, or any other string of values
that can be encoded as biats.

In some embodiments, AES has a fixed block size of 128
bits and a key size of 128, 192 or 256 bits. Due to the fixed
block size of 128 bits, AES operates on a 4x4 array of bytes
(e.g., 16 bytes). Accordingly, the input data 140 1s a 16-byte
array of information, which may be a sub-portion of a larger
message. For mnstance, a 3 megabyte audio file can be
divided into 16 byte portions and each portion encrypted
according to operation 100. During the operations of AES,
the 1input data 140, as manipulated, may be referred to as
“AES state”. AES state 1s a 16-byte builer upon which the
AES operations are performed.

AES uses key expansion, and like most block ciphers, a
set of encryption and decryption rounds (iterations). Each
round 1volves similar processes. As shown in FIG. 1, the
initial round 110, nine middle rounds 120, and final round
130 each includes similar operations (e.g., SubBytes, Shii-
tRows, MixColumns, and AddRoundKey). The entire AES
encryption algorithm (e.g., operation 100) includes 11
AddRoundKey operations, 10 SubBytes operations, 10 Shii-
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4

tRows operations, and 9 MixColumns operations. Prelimi-
narily to operation 100, the original 16-byte cipher key 155
1s expanded to 11 subkeys, during what 1s called a key
scheduling operation. The 11 subkeys include subkey_0
160, subkey_1-subkey 9 165, and subkey_10 170. The
cleven subkeys are each used in different rounds of operation
100. Each subkey 1s 16 bytes long, 1n some embodiments, to
match the size of the AES state.

In the mnitial round 110, the cryptographic operation 100
receives mput data 140 and performs AddRoundKey opera-
tion 115. The AddRoundKey operation 115 combines input
data 140 with the subkey_0 155. Specifically, this operation
113 performs a logical exclusive disjunction operation (here-
mafter “XOR”) on subkey_0 155 and mput data 140, 1n
order to produce itermediate AES state.

Following the mitial round 110, operation 100 performs
nine middle rounds 120. Each of the nine middle rounds 120
includes four operations: SubBytes 121, ShiftRows 122,
MixColumns 123, and AddRoundKey 124. The SubBytes
operation 121 substitutes the bytes of the current AES state
according to a substitution table. This substitution table 1s
sometimes referred to as a substitution box or “S-BOX”
table. This operation provides non-linearity in the cipher.

The ShiftRows operation 122 cyclically shifts bytes 1n
cach row of the AES state by certain oflsets. As the AES
state 1s a 4x4 16-byte array, the AES state can be arranged
in a 4 row, 4 column arrangement. ShiftRows 122 will shait
different rows of the 4x4 AES state by different amounts. For
imnstance, in some embodiments, the first row 1s lelt
unchanged, each byte of the second row 1s shifted one to the
lett, and the third and fourth rows are shifted by oflsets of
two and three respectively.

The MixColumns operation 123 combines bytes of the
AES state from each column using an invertible linear
transformation. The MixColumns operation 123 takes four
bytes as mput and outputs four bytes, where each 1nput byte
aflects all four output bytes. The MixColumns operation
may be implemented via a table lookup operation. Together
with the ShiftRows operation, the MixColumns operation
provides diflusion in the cipher.

The AddRoundKey operation 124 combines a round key
from one of subkey_1-subkey 9 165 with the AES state,
depending on the round, in the same manner as the
AddRoundKey operation 115. For each round, a subkey 1s
derived from cipher key 155. Each subkey 1s the same size
as the AES state (e.g., a 4x4 16-byte array). The subkey 1s
combined with the AES state using an XOR operation.

The cryptographic operation 100 performs mine such
rounds on the AES state. Once the nine middle rounds 120
are completed, the operation 100 performs a final round 130,
which includes a SubBytes operation 131, a ShiftRows
operation 132, and an AddRoundKey operation 133. These
final operations are the same as those described above 1n
connection with the earlier rounds. The eleventh subkey_10
170 1s combined with the AES state to produce output state
150.

The previous description of operation 100 corresponds to
the order of operations required to encrypt content. Decryp-
tions operations under AES are substantially similar, but the
order of operations 1s reversed and inverses of the operations
are used. The mverse of AddRoundKey 1s AddRoundKey
itself. The inverse of SubBytes 1s Inverse SubBytes, which
1s another table look up operation. The mverse of MixCol-
umuns 1s Inverse MixColumns, which i1s also another lookup
operation. The mverse of ShiftRows 1s Inverse ShiftRows,
which 1s another move from one byte location to another.
Different versions of AES (e.g., the 256-bit variant) can
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include different numbers of rounds and different key sizes.
For turther detail on AES, see the specification for the
Advanced Encryption Standard (AES), National Institute of
Standards and Technology (NIST), which can be found on
the Internet.

A. The AES Key Schedule

A cipher key, K, of 16 bytes can be represented either in
bytes (k0, . . . k15) or in 32-bit words (w0, w1, w2, w3). The
key schedule of cipher key K for AES 1s defined as follows.
The first subkey K[0] 1s equal to K. For 10, the subkey

[=(wO[{] Wl['] w2[i], w3[i]) 1s dertved from the previ-
ous subkeyK (WO[I—l] wl[i-1], w2[i-1], w3[i-1]) in
the following Way

wO[i]=wO0[i-1]BSubWord(RotWord(w3[i-1]) )P Rcon
[/

wll[i/=wl[i-1]DwOli]

w2[i]=w2[i-1]Dwl[i]

w3[i]=w3[i-1]Dw2[i]

where SubWord 1s the operation that applies the SubBytes
function on all bytes that make a word. RotWord 1s the
bit-wise rotation of the word by 8 bits to the left. Rcon|1] 1s
a constant for the round 1. The operator & is the bitwise
logical exclusive disjunction referred to as “exclusive or”
operator or “XOR™ operator.

As can be seen, the only non-linear operation at work 1n
the key schedule algorithm 1s the Subword instruction. This
operation 1s applied only on 4 bytes out of each 16-byte
subkey.

B. White Box Key Schedule and Encryption

In the case of white boxes with dynamic keys, inputs,
outputs, and keys are supposed to be masked by constant
(1.e., known at compilation time) or dynamic (1.¢., depending
on/linked to another mnput) value, denoted M 1n the follow-
ing. In such cases, the AES key schedule 1s computed
directly on the masked key KOM. The output is then the
expanded subkeys K'[1]=K[1]PM'[i], where M' 1s a set of
masks. The white box encryption and decryption algorithm
ensures that the encryption and decryption occurs only on
masked data at all time, to ensure the security of the data and
the key involved. The key schedule 1s an 1mitialization of the
AES subkeys for each round. The secure key schedule 1s
sometimes referred to as white box initialization.

II. Scheduling Two AES Keys at Once

The above describes the standard, most basic form of
AES. Other block ciphers follow similar types of processes.
In a non-white box environment (e.g., on a secure server to
which the public does not have access), the basic form of
AES can generally be used without too much concern.
However, in a white box environment (e.g., on a user device,
the memory of which can be examined during the crypto-
graphic process by a sophisticated user), additional protec-
tions to obfuscate the cryptographic process are oiten
desired.

There are applications of cryptographic software that
require managing several keys at once for encryption or
decryption. For example, a proxy re-encryption scheme
takes as mput some data encrypted with a first key, and
outputs the same data, but encrypted with a second key.
Another example 1s a stream that 1s encrypted by multiple
keys, and must therefore be decrypted with multiple keys.
The stream 1s encrypted either sequentially (the stream 1is
encrypted by a key K1, and then the encrypted stream 1s
encrypted by another key K2), or in parallel (with two
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6

different keys used to encrypt diflerent parts of the stream).
Both keys are considered as masked each with a specific
mask.

A. Representation of Two Masked Keys

Some embodiments provide a method for computing the
expansion of two keys without revealing them. In the
following discussions, K1 and K2 are two 16-byte keys,
with K1[7] and K2[i{] being the scheduled keys for round 1,
which are used i AES encryption or decryption methods.

The goal of the white box initialization i1s to compute the
schedules K'l1 and K'2, defined as:

K'l[i]=K1[i]DMoutl[i]

K2[i]=K2[iJBK1[i]DMout2[i]

where the Moutl[i] and Mout2[i] are output masking values
and @ 1s bitwise “exclusive or” operation. For instance,
Moutl and Mout2 are each an array of constants, each
constant used to mask a corresponding round 1 subkey.

FIG. 2 conceptually illustrates a process 200 for gener-
ating subkeys in some embodiments of the invention where
at least one of the subkeys 1s dependent on the other subkey.
As shown, the process receives (at 205) a first cipher key and
a second cipher key. In some embodiments, the process
receives the first and second keys as masked values. For
instance, the process 1n some embodiments receives a {first
input that includes K1&&Minl, where K1 is the first cipher
key and Minl 1s an imnput mask. The process i some
embodiments also receives a second mput that includes
K1PK2Min2, where K2 is the second cipher key and
Min2 1s an mnput mask.

The process then generates (at 210) a set of subkeys for
the first cipher key. The set of subkeys of the first cipher key
includes one subkey for each cryptographic round. Each
subkey of the first cipher key 1s dependent on the first cipher
key and/or a subkey of the first cipher key from a previous
round.

The process then generates (at 215) a set of subkeys for
the second cipher key. The set of subkeys of the second
cipher key includes one subkey for each cryptographic
round. Each subkey of the second cipher key 1s dependent on
the first cipher key and/or a subkey of the first cipher key
from a previous round. In addition, each subkey of the
second cipher key 1s dependent on the second cipher key
and/or a subkey of the second cipher key from a previous
round. The process then performs (at 220) cryptographic
process by using the set of subkeys for the first and second
cipher keys. The process then ends. Several more detailed
embodiments are described below.

Some embodiments generate subkeys for two cipher keys
using a process for which the input, output, and pseudocode
are shown below. As shown, the first cipher key (and 1ts
derived values) are used both in computation of the subkeys
for the first cipher key and the subkeys for the second cipher
key.

The mputs to the process are as follows:

A1=K1TMinl

A2=K1BK2DMin2

where K1 1s the first cipher key, K2 1s the second cipher key,
Minl 1s a first masking value and Min2 1s a second masking
value.

Output:
K107, . . . K'1[10]
K72[0], . .. K?[10]
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where K'1[i] (0<1<10) 1s round 1 subkey for the first cipher
key and K"2[7] (0<1<10) 1s round 1 subkey for the second

cipher key.
Pseudocode:

K'1[0] = A1 © (Minl & Moutl[0])

K'2[0] = A2 & (Min2 & Mout2[0])

For 1 1in [1, 10]:
K'l[1] = KeygenAssist (K'1[1-1], Moutl[1-
K'2[1] = K'2[i-1] ©© KeygenRecombine (K'1[i-
Moutl[i-1], Mout2[i-1]) €& (Mout2[i] €& Mout2[i-

1], Moutl[i], Rcon[1])
1], K'2[i-1],
1])

In the above pseudocode, the Moutl[i] and Mout2[i] are
output masking values. For instance, Moutl and Mout2 are
cach an array of constants, each constant used to mask a
corresponding round 1 subkey. Since Al 1s equal to
K1Minl, the operation K'1[0] —AI@(I\/’ml@Moutl[O ) 1s
equivalent to K1bMout1[0], which in effect removes Minl
mask and masks K1 with Moutl[0] without revealing K1.
Similarly, since A2 1s equal to K1€bK2bMin2, the operation

K'2[0] —AZGB(MHQ@MOH‘[Z[O]) 1S equivalent  to
K1PK2PMout2[0], which in eff

ect removes Min2 mask
and applies Mout2[0] mask without revealing K1 or K2.
Aflter msertmg K2'[0] into the above “for loop” K'2[i] will
depend on 1s K1[/][DK2[/|PMout2[i]. K'2[{] 1s, therefore,
referred to herein as the differential key since it 1s based on
the “exclusive or” of K1[i] and K2[i]).

The {function KeygenAssist (previous_key, mask
out_prev_round, mask_out_curr_round, Rcon_1) 1s the func-
tion that iterates the key schedule function with mmput and
output masks. KeygenAssist 1s used to generate the subkeys
for the first cipher key. The pseudocode corresponding to
KeygenAssist function 1s as follows:

KeygenAssist (previous__key, mask out_ prev__round,
mask__out_ curr__round, Rcon_ 1):
(w0, wl, w2, w3) = previous__key
(vO, v1, v2, v3) = mask out prev_ round
(z0, z1, z2, z3) = mask_ out_ curr_round
w'0 = w0 & SubWord (RotWord (w3 D v3)) & Reon__i &
y0O D z0
wl=wl@Sw0Dyl Dzl D z0
w2=w2DwlDy2Dz2 Dzl
wW3=w3Dw2Dy3Dz3Dz2
Output (w'0, w'l, w'2, w'3)

where w0, wl, w2, w3 are 4-bytes words and the operation
(w0, wl, w2, w3)=previous_key denotes decomposing of
the previous_key into 4 4-bytes words.

FI1G. 3 illustrates the mputs and output of the KeygenAs-
sist function. As shown, the KeygenAssist function 300
receives the previous round subkey 305 of the first cipher
key, the previous round output mask 310 of the first cipher
key, the current round output mask 3135 of the first subkey,
and the current round constant 320, 1.e., the current round
Rcon. The KeygenAssist function 300 generates the current
round subkey 325 of the first cipher key.

FIGS. 4A-4D conceptually 1llustrate one implementation
of KeygenAssist function. KeygenAssist function n each
round uses portions of the subkey 405 generated in the
previous round, portions of Moutl 410 used in the previous
round (1.e., Moutl[i-1]) and portions of Moutl 415 of the
current round (1.e., Moutl]i]) to generate the subkey of the
first cipher key for the current round. As shown 1n FIG. 4A,
the XOR of y0 425 and z0 430 are generated. The result 1s
XORed with Rcon_1 435, which 1s the 4-byte constant used
tor the current round. The result 1s XORed with the output
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of SubWord function 440. The result 1s XORed with the
4-byte word w0 460 to generate the 4-byte word w'0 of the
current round subkey for the first cipher key.

SubWord operation applies the SubBytes function on all
bytes that make a word (in the example of FIG. 4A, a 4-byte
word that 1s the output of RotWord operation 443). The
output ol SubWord operation 440 i1s generated as follows.
The XOR of the 4-byte word w3 450 and the 4-byte word v3
4355 1s generated. The result 1s the 1nput to RotWord opera-
tion 445. RotWord 1s the bit-wise rotation of the word by 8
bits to the left. The result 1s input to SubWord operation 440.

FIG. 4B shows generation of another 4-byte word, w'l of

the first cipher key by using the KeygenAssist function. As
shown, the XOR of w'0 420 (generated 1n FIG. 4A) with wl

4635 1s generated. The result 1s then XORed with y1 470. The
result of this operation 1s i turn XORed with z1 475.
Finally, the result of this operation 1s XORed with z0 430 to
generate w'l 483.

FIG. 4C shows generation of another 4-byte word, w'2 of
the first cipher key by using the KeygenAssisst function. As
shown, the XOR of w'l 485 (generated 1n FIG. 4B) with w2
480 1s generated. The result 1s then XORed with y2 487. The
result of this operation 1s i turn XORed with z2 489.
Finally, the result of this operation 1s XORed with z1 475 to
generate w'2 490.

FIG. 4D shows generation of another 4-byte word, w'3 of

the first cipher key by using the KeygenAssisst function. As
shown, the XOR of w'2 490 (generated 1n FI1G. 4C) with w3

450 1s generated. The result 1s then XORed with y3 455. The
result of this operation 1s i turn XORed with z3 494.
Finally, the result of this operation 1s XORed with z2 489 to
generate w'3 4935,

The function KeygenRecombine (prev_keyl, prev_
key_diff, mask outl_prev_round, mask out_difl_ prev_
round) 1s another function that contains non-linearity in the
AES key schedule. KeygenRecombine 1s used to generate
the subkeys for the second cipher key. The pseudocode
corresponding to KeygenRecombine function 1s as follows:

KeygenRecombine (prev__keyl, prev__key diff,
mask__outl__prev_ round,
mask__out__diff _prev_ round):

(w0, wl, w2, w3) = prev__keyl

(x0, x1, x2, x3) =prev_key diff

(vO, v1, v2, y3) = mask_ outl_prev_ round

(zO, z1, z2, z3) = mask_out_diff prev_ round

x'0 = X0 & SubWord (RotWord (w3 & v3)) & SubWord
(RotWord (w3 @ x3 @ y3 D z3))

X'l = x1 © z0
X2 =%x2 D 7zl
X3 =x3 T 22

Output (x'0, x'1, x'2, xX'3)

Comparing to KeygenAssist function, the function Key-
genRecombine has one additional operation SubWord (Rot-
Word). This 1s the only place where some values of the
differential key (which depends on the second cipher key)
can be exposed, and as can be seen from the pseudocode
above, only 4 Bytes out of the 16 Bytes that make the key
are revealed. In order to calculate SubWord (RotWord
(w3Dx3DPy3Dz3)), the operations w3Dx3Dy3Pz3 will be
computed 1n some registers of the computer that 1s 1imple-
menting the algorithm. This will only expose one word (1.¢.,
word x3) of the differential key to a potential attack.
Therefore, no matter what the security mechanism for cal-
culating subkeys of K1 1s, the novel function KeygenRe-
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combine disclosed herein, only reveals 4 bytes of each K2'[{]
subkey, which 1s not suflicient to compute the full K2'i]
subkey by an attacker.

Also, SubWord (RotWord) operation 1s part of the Key-
genAssist function. It 1s, therefore, easy to re-use this
function 1n the KeygenRecombine method, to keep these 4
Bytes still masked. There are several ways to implement
SubWord 1n such a way that it keeps masks on values. Using
one of these implementations, the computations will remain
masked during the whole process of key scheduling. The
RotWord function 1s linear and 1s thus directly compatible
with mask preservation.

FI1G. 5 illustrates the mputs and output of the KeygenRe-
combine function. As shown, the KeygenRecombine func-
tion 500 receives the previous round subkey 505 of the first
cipher key, the previous round differential subkey 510, the
previous round output mask 513 of the first cipher key, and
the previous round output mask 520 of the differential
subkey.

The term “differential key” or “differential subkey™ herein
refers to the “exclusive or” of two keys. For instance, the
“previous round differential subkey” 1s the e*“xclusive or” of
“the previous round subkey of the first cipher key” and the
“previous round subkey of the second cipher key”. As

described above, the differential subkey for the first round 1s
the masked subkey K'2[0]:

K2[0]=42B(Min2BMout2 [0])=K1BK 2EMout2[0]

and K'2[7] for each subsequent round 1s defined as:

K2[i]=K2[i-1]DPKeygenRecombine(K'1[i-1],K"2[i-
1], Moutl[i-1],Mout2[i-1])D(Mout2 [{ [ DMout2
[-1])

The output 525 of KeygenRecombine function 500 1s
XORed with the previous round subkey 530 of the differ-
ential cipher key. The result 1s XORed with the current round
output mask 535 of the differential subkey. The result 1s then
XORed with the previous round output mask 340 of the
differential subkey mask to generate the current round
subkey 545 of the differential cipher key.

FIGS. 6 A-6D conceptually 1llustrate one implementation
of KeygenRecombine function. KeygenRecombine function
in each round uses portions of the subkey 405 of the first
cipher key generated 1n the previous round, portions of the
differential subkey 6035 generated in the previous round,
portions of Moutl 410 used in the previous round (1.e.,
Moutl[i-1]) and portions of Mout2 610 used in the previous
round (1.e., Mout2[i-1]) to generate 4 4-byte words x'0, x'1,
x'2, and x'3, which are used (as shown 1n the above pseudo-
code) to generate the current round subkey K'2[i] for the
differential cipher key.

As shown 1n FIG. 6 A, the XOR of w3 450 and x3 615 are
generated. The result 1s XORed with y3 455. The result 1s
XORed with z3 620. The result 1s the input to RotWord
operation 625, which bit-wise rotates the word by 8 bits to
the left. The result 1s mput to SubWord operation 630.

FIG. 6 A also shows that the XOR of w3 450 and y3 455
are generated and the result 1s mput to RotWord operation
635. The result 1s mput to SubWord operation 640. The
output of SubWord operation 640 1s XORed with the output
of SubWord operation 630. The result 1s XORed with the
4-byte word x0 645 to generate the 4-byte word x'0, 650
which 1s used to generate the current round subkey for the
differential cipher key.

FIG. 6B shows the use of the KeygenRecombine function
for generation of another 4-byte word, x'1, which 1s used to
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generate the differential cipher key. As shown, x'1 665 1is
generated by performing the XOR operation between x1 655
and z0 660.

FIG. 6C shows the use of the KeygenRecombine function
for generation of another 4-byte word, x'2, which 1s used to
generate the differential cipher key. As shown, x'2 670 1s

generated by performing the XOR operation between x2 675
and z1 680.

FIG. 6D shows the use of the KeygenRecombine function
for generation of another 4-byte word, x'3, which 1s used to
generate the differential cipher key. As shown, x'3 685 1is
generated by performing the XOR operation between x3 615
and z2 690.

B. Adding Linear Transformation on the Key Schedule

Since all operations involving the key in the AES encryp-
tion and decryption methods are linear, some embodiments
apply linear transformations (denoted P, below) to the keys

to protect the keys of white box AES representations. P 1s a

function from {0,1}**8 to {0,1}**8 (i.e. from the set of
bytes into itself), where “{0,1}” is a set made of two
clements 0 and 1. The operator ** denotes the “power to”
operation. The function P has the following properties (by
definition of a linear transformation):

For all bytes x,y,P(x)DP(y)=PxDy)

P 1s bijective, and has as inverse InvP, such that for all x,
InvP(P(x))=x

A bijective function 1s a function that provides one-to-one
correspondence between the elements of two sets where
every element of one set 1s paired with exactly one element
of the other set and vice versa. Since P 1s linear, 1t 1s quite
trivial to generate the key schedules K"1 and K"2 defined as
P(K'1) and P(K'2) (here the application of P 1s meant Byte
per Byte) using the exact same method as the one described
in the previous section (1.e., by replacing K'1 with K"1 and
K'2 with K"2 1n the above pseudocodes).

To compute such key schedules, the only thing to replace
1s the following. First, apply P on the first round keys K'1[ 0],
K'2[0] (since the first round key is the key itseltl). Second,
replace all occurrences of the SubWord functions by P(Sub-
Word(InvP( )). This method enables having linear transfor-
mations applied to the key directly on both K1 and K2 key
schedules. In other words, instead of computing K'1, K"1=P
(K'1) 1s computed. Similarly, instead of computing K'2,
K"2=P(K'2) 1s computed.

C. Complex Combinations of Key Schedules

The previous sections described how to generate 1 a
masked way the key schedules of K'1 and K'2, and to have
it protected by a linear function P. Some embodiments
generate key schedules protected by diflerent linear func-
tions P1 and P2. Using two different linear functions, P1 and
P2, these embodiments protect K1 with P1 and K1<PK2 with
P2. The following modifications are done on the methods
described in the previous sections.

First, the function P1 1s apphed to K'1[0], and P2 1s
applied to K2[0]. Second, the KeygenAssist function 1s
modified (as 1n the previous section) by replacing the calls
to SubWord( ) with calls to SubWord_WithP1( =P1(Sub-
Word(InvP1( )). Third, KeygenRecombine 1s replaced by the
following function:

KeygenRecombineWithLinear (prev_ kevl, prev_ key_  dif):
(w0, wl, w2, w3) = prev__key
(x0, x1, X2, x3) = prev__key_ diff
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-continued

z0 = x0 & SubWord_ WithPlandP2 (RotWord (w3) ) &
SubWord_ WithPlandP2 (RotWord (w3 & Pl
(InvP2 (x3) ) ) )

7zl =x1 D =0
72 =X2 D 71
73 =x3 D 72

Output (20, z1, z2, z3)

P1(InvP2) 1s a transition function from one protection to
the other, and as such 1s also an acceptable linear function.
P1(InvP2) 1s applied byte per byte. The
SubWord_WithPlandP2 function 1s the function P2(Sub-
Word(InvP1)), which 1s similar to the SubWord_ WithP1
function.

For clarity reasons, the use of masks was not explicitly
mentioned 1n this section. However, once the P1 and P2
linear functions are applied to protect K1 and K2, one can

apply masks Moutl and Mout2 on respectively P1(K1) and
P2 (K1PK2).
I1I. Extension to Multiple Key Schedules

The previous sections described how to compute two key
expansions at once. Some embodiments also provide expan-
sion to n keys, where n 1s an arbitrary number. The tech-
niques described in previous sections can be extended to key
scheduled defined as by equations (1) to (4), where n 1s
greater than 2:

Kn=KnPKn-1D . . . K2FK1 (1)

Kn=Pn(KnDKn-1P . . . K2BK1) (2)

K'n=KnKj for a given j and » (3)

K'n=Pn(KnPKj/) (4)

The method to implement the first two options (1) and (2)
1s to apply the previous section and do a recursive call. First,
the key schedule for K1 and K2®K1 are determined as
described 1n the previous sections. Then, the key schedule
for K26BK1 and K3PK2PDK1 is determined by making a
recursive call to the same functions by replacing K1 with
K2PK1 and K2PK1 with K3PK2K1. This is recursively
continued until the key schedule for K'n 1s determined.

The method to implement the last two options (3) and (4)
1s straightforward from the previous section, and recursive
calls. In these methods, Kn 1s protected by Kj and (depend-
ing on the values of n and 1) Kn+1 1s protected by Kj+1, etc.
The same functions as described 1n previous sections are
utilized by replacing K1 with Kj and K2bK1 with KnPKj.

Some embodiments utilize the same techniques to have
more complex and codependent key schedules computed.

For istance, suppose P1 and P2 are two linear functions,
such that P1+P2 1s an invertible linear tunction and:

K1=P1(K1)BP2(K2)

K2=P2(K1)BP1(K2)

where K'1 and K'2 are the key schedules to compute, out of
the keys provided 1n a similar way. As can be seen, K'1 1s
dependent on both K1 and K2. Similarly, K'2 1s dependent
on both K1 and K2. The disclosed embodiments enable to
compute key schedules for K'1 and K2 by simply replacing
the non-linear part SubWord with the appropriate function as
described below.
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The previous sections used the following equations:
K'1=K1
K2=K1DK2

which are equivalent to:

K1=K"l

K2=K'13K"2
with the codependent key, the following equations are used:

K1=PLK1YPP2AK2)=F1(K1,K2)

K2=P2K1)DPLEK2=F2(K1,K2)
which are equivalent to:

K1=(P1DP2)(PLK'))YD(P1IDP2) “(P2(K2))=G1
(K'1,K7?)

K2=(P1DP2)(P2(K'))YD(P1DP2) 2 (P1(K2))=G2
(K'1,K7?)

As described above, in KeygenAssist, (w3y3) is used as
input of SubWord(RotWord( )) function. This value 1s based
on the 4” word of K1, w3. With codependent keys, the 4”
words of K1 and K2 are computed using G1 and G2, the
SubWord(RotWord(( )) function is then applied to the 4”
words and finally F1 1s applied on these two words. In key
recombine, the same 1s done for the first SubWord(Rot-
Word(( )) function. For the second tunction, F2 1s applied on
the two 4” words instead of F1.

Furthermore, P(SubWord(RotWord((P~")) can be used
and F1, F2, G1, and G2 can be modified accordingly:

F1=P(F1(P7YK1),P 1 (K2))
FR=P(F2(P"Y(K1),P 1 (K2))
G'1=P(G1(P"Y{K1),P (K2))

GR=P(G2(P Y K1),P {(K2))

The above method enables to have all intermediate values
protected by a linear function.

In some embodiments when a key K that 1s stored 1n a
masked way following the equation:

K=K"©M

where K 1s the cipher key, M 1s a mask value, and K' 1s the
masked key stored in memory. The disclosed embodiments
can be used to compute the key schedule of K using the key
schedule of K' and the value of the mask M. This approach
keeps 12 amongst 16 of the bytes of K masked during the
computation.

The tools provided by the embodiments described above,
enable computing key schedules 1n a dependent, masked
way. Since the scheduling of a dynamic key i1s one of the
weak points of a white box AES computation, 1t should be
protected as well, and the disclosed embodiments enables to
do so 1n an mnovative way.

The computation cost of this method 1s slightly larger than
twice the expansion of a key, since the non-linear part should
be computed three times for each round, instead of twice.
However this overhead 1s quite negligible, compared to the
overall cost of the AES execution.

The secunity added by this method protects 1n a better way
than two key schedules. The main diflerence 1n computing
two key schedules using the disclosed embodiments 1nstead
of doing two 1independent white box key expansions 1s that
to attack the second key, it 1s necessary to break both key
schedules, which 1s not the case 1n two independent com-
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putations. Also, 1n the disclosed codependent key schedules,
it 1s necessary to break the two key schedules to break any
one of the two keys. Overall, the security improvements
largely compensate for the small computation cost overhead.

The disclosed embodiments explained how 1t 1s possible
to compute multiple key schedules at the same time, 1n the
case of the AES. Only the non-linear part (e.g., the SubWord
(RotWord( )) function) 1s computed separately, and it was
shown how to do 1t without revealing the key data involved
in 1t. The rest of the sub-keys are computed without being
unmasked at any point.

The disclosed embodiments also show how 1t 1s possible
to compute sub keys that have linear operators on them,
which enables to have more complex masked keys used. In
particular, having codependent key schedules 1s possible
here, and enables to have complex functions of the keys as
iputs to the key scheduling algorithm. To conclude, 1t 1s
also possible to compute the key schedule of K1 and
K16bK2, and to use the output only for a white box repre-
sentation of AES with key K2. This 1s equivalent to a
dynamic masking of K2.

IV. Electronic System

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more
computational or processing unit(s) (e.g., one or more pro-
cessors, cores of processors, or other processing units), they
cause the processing unit(s) to perform the actions indicated
in the mnstructions. Examples of computer readable media
include, but are not limited to, CD-ROMSs, flash drives,
random access memory (RAM) chips, hard drives, erasable
programmable read-only memornes (EPROMs), electrically
crasable programmable read-only memories (EEPROMs),
etc. The computer readable media does not include carrier
waves and electronic signals passing wirelessly or over
wired connections.

In this specification, the term “software” 1s meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, in some
embodiments, multiple software inventions can be imple-
mented as sub-parts of a larger program while remaining
distinct software inventions. In some embodiments, multiple
solftware inventions can also be implemented as separate
programs. Finally, any combination ol separate programs
that together implement a software mvention described here
1s within the scope of the mvention. In some embodiments,
the soitware programs, when installed to operate on one or
more electronic systems, define one or more specific
machine implementations that execute and perform the
operations of the software programs.

FIG. 7 conceptually illustrates another example of an
clectronic system 700 with which some embodiments of the
invention are implemented. The electronic system 700 may
be a computer (e.g., a desktop computer, personal computer,
tablet computer, etc.), phone, PDA, or any other sort of
clectronic or computing device. Such an electronic system
includes various types of computer readable media and
interfaces for various other types of computer readable
media. Electronic system 700 includes a bus 703, processing,
unit(s) 710, a system memory 720, a network 725, a read-
only memory (ROM) 730, a permanent storage device 735,
input devices 740, and output devices 745.

The bus 703 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
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ous internal devices of the electronic system 700. For
instance, the bus 705 communicatively connects the pro-
cessing unit(s) 710 with the read-only memory 730, the
system memory 720, and the permanent storage device 735.

From these various memory units, the processing unit(s)
710 retrieves structions to execute and data to process 1n
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
processor i different embodiments.

The read-only-memory 730 stores static data and instruc-
tions that are needed by the processing unit(s) 710 and other
modules of the electronic system. The permanent storage
device 7335, on the other hand, 1s a read-and-write memory
device. This device 1s a non-volatile memory unit that stores
instructions and data even when the electronic system 700 1s
ofl. Some embodiments of the imnvention use a mass-storage
device (such as a magnetic or optical disk and 1ts corre-
sponding disk drive, integrated flash memory) as the per-
manent storage device 735.

Other embodiments use a removable storage device (such
as a tloppy disk, tlash memory device, etc., and 1ts corre-
sponding drive) as the permanent storage device. Like the
permanent storage device 735, the system memory 720 1s a
read-and-write memory device. However, unlike storage
device 735, the system memory 720 1s a volatile read-and-
write memory, such a random access memory. The system
memory 720 stores some of the mstructions and data that the
processor needs at runtime. In some embodiments, the
invention’s processes are stored in the system memory 720,
the permanent storage device 735, and/or the read-only
memory 730. For example, the various memory units
include 1nstructions for processing multimedia clips 1n
accordance with some embodiments. From these various
memory units, the processing unit(s) 710 retrieves mnstruc-
tions to execute and data to process 1n order to execute the
processes of some embodiments.

The bus 1105 also connects to the mput and output
devices 740 and 745. The input devices 740 enable the user
to communicate information and select commands to the
clectronic system. The input devices 740 include alphanu-
meric keyboards and pointing devices (also called ““‘cursor
control devices”), cameras (e.g., webcams), microphones or
similar devices for receiving voice commands, etc. The
output devices 745 display 1mages generated by the elec-
tronic system or otherwise output data. The output devices
745 1include printers and display devices, such as cathode ray
tubes (CRT) or liquid crystal displays (LCD), as well as
speakers or similar audio output devices. Some embodi-
ments include devices such as a touchscreen that function as
both mmput and output devices.

Finally, as shown in FIG. 7, bus 705 also couples elec-
tronic system 700 to a network 7235 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN™), a wide area network (“WAN"), or an Intranet), or
a network of networks, such as the Internet. Any or all
components of electronic system 700 may be used in con-
junction with the mvention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
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versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mim-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and tloppy disks. The computer-readable media may
store a computer program that 1s executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as is
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a miCroprocessor using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself. In addition, some
embodiments execute soltware stored 1n programmable
logic devices (PLDs), ROM, or RAM devices.

As used 1 this specification and any claims of this
application, the terms “computer”, “server”, “processor’,
and “memory” all refer to electronic or other technological
devices. These terms exclude people or groups of people.
For the purposes of the specification, the terms display or
displaying means displaying on an electronic device. As
used 1n this specification and any claims of this application,
the terms “computer readable medium,” “computer readable
media,” and “machine readable medium” are entirely
restricted to tangible, physical objects that store information
in a form that 1s readable by a computer. These terms
exclude any wireless signals, wired download signals, and
any other ephemeral signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill 1n the art waill
recognize that the invention can be embodied i1n other
specific forms without departing from the spirit of the
invention. In addition, a number of the figures such as FIG.
2 conceptually illustrate processes. The specific operations
ol these processes may not be performed in the exact order
shown and described. The specific operations may not be
performed 1n one continuous series of operations, and dif-
ferent specific operations may be performed in different
embodiments. Furthermore, the process could be imple-
mented using several sub-processes, or as part of a larger
macro process. Thus, one of ordinary skill in the art would
understand that the invention i1s not to be limited by the
foregoing 1llustrative details, but rather 1s to be defined by
the appended claims.

The 1nvention claimed 1s:

1. A method for preventing a potential attacker from
extracting keys of a cryptographic process performed on a
computing device, the method comprising:

at the computing device, receiving an encrypted computer

readable message comprising media content;

at the computing device, receiving first and second cipher

keys of a digital right management (DRM) application,
wherein the potential attacker has control over an
execution of the DRM application on the computing
device;

for a plurality of rounds, generating a first set of subkeys

corresponding to the first cipher key as a function of the
first cipher key;

10

15

20

25

30

35

40

45

50

55

60

65

16

for the plurality of rounds, generating a second set of
subkeys corresponding to the second cipher key,
wherein for each round after a first round, a subkey of
the second set of subkeys 1s a function of (1) a first
subkey of the first set of subkeys from a previous round
and (1) a second subkey of the second set of subkeys
from the previous round; and

decrypting the media content by performing the crypto-

graphic process using the generated sets of subkeys.

2. The method of claim 1, wherein receiving the first and
second cipher keys comprises:

recerving a first mput comprising the first cipher key

masked by a first input masking value; and

recetving a second mmput comprising the second cipher

key, masked by a second masking value, and masked
by the first cipher key.
3. The method of claim 1, wherein generating the first set
of subkeys corresponding to the first cipher key comprises
generating a subkey for each of the plurality of rounds of the
cryptographic process.
4. The method of claim 1, wherein generating the second
set ol subkeys corresponding to the second cipher key
comprises, for the first round of the cryptographic process,
setting a {first subkey for the second set of subkeys to the
second cipher key masked by a masking value.
5. The method of claim 1, wherein generating the second
set of subkeys comprises performing a set of nonlinear
operations to generate the subkey of the second set of
subkeys of each round after the first round, the set of
nonlinear operations comprising:
a nonlinear function of a portion of the first subkey of the
first set of subkeys from the previous round masked by
a first masking value; and

a nonlinear function of (1) a portion of the first subkey of
the first set of subkeys from the previous round masked
by (11) a portion of the second subkey of the second set
of subkeys from the previous round masked by (111) the
first masking value masked by (1v) a second masking
value.

6. The method of claim 5, wherein the set of nonlinear
operations further comprises a function to substitute bytes of
the subkey according to a substitution table.

7. The method of claim 1, wherein the cryptographic
process 1s advanced encryption standard (AES).

8. A non-transitory machine readable medium storing a
program which when executed by at least one processing
unit of a computing device prevents a potential attacker from
extracting keys of a cryptographic process performed on the
computing device, the program comprising sets of mstruc-
tions for:

at the computing device, receiving an encrypted computer

readable message comprising media content;

at the computing device, recerving first and second cipher

keys of a digital right management (DRM) application,
wherein the potential attacker has control over an
execution of the DRM application on the computing
device;

for a plurality of rounds, generating a {irst set of subkeys

corresponding to the first cipher key as a function of the
first cipher key;

for the plurality of rounds, generating a second set of

subkeys corresponding to the second cipher key,
wherein for each round after a first round, a subkey of
the second set of subkeys 1s a function of (1) a first
subkey of the first set of subkeys from a previous round
and (11) a second subkey of the second set of subkeys
from the previous round; and
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decrypting the media content by performing the crypto-

graphic process using the generated sets of subkeys.

9. The non-transitory machine readable medium of claim
8, wherein the set of structions for receiving the first and
second cipher keys comprises sets of instructions for:

receiving a first mput comprising the first cipher key

masked by a first input masking value; and

receiving a second input comprising the second cipher

key, masked by a second masking value, and masked
by the first cipher key.
10. The non-transitory machine readable medium of claim
8, wherein the set of instructions for generating the first set
ol subkeys corresponding to the first cipher key comprises a
set of instructions for generating a subkey for each of the
plurality of rounds of the cryptographic process.
11. The non-transitory machine readable medium of claim
8, wherein the set of mnstructions for generating the second
set ol subkeys corresponding to the second cipher key
comprises a set of instructions for setting, for the first round
of the cryptographic process, a first subkey for the second set
of keys 1 to the second cipher key masked by a masking
value.
12. The non-transitory machine readable medium of claim
8, wherein the set of instructions for generating the second
set of subkeys comprises a set of instructions for performing
a set of nonlinear operations to generate the subkey of the
second set of subkeys of each round after the first round, the
set of nonlinear operations comprising;
a nonlinear function of a portion of the first subkey of the
first set of subkeys from the previous round masked by
a first masking value; and

a nonlinear function of (1) a portion of the first subkey of
the first set of subkeys from the previous round masked
by (11) a portion of the second subkey of the second set
of subkeys from the previous round masked by (111) the
first masking value masked by (1v) a second masking
value.

13. The non-transitory machine readable medium of claim
12, wherein the set of nonlinear operations further comprises
a function to substitute bytes of the subkey according to a
substitution table.

14. The non-transitory machine readable medium of claim
8, wherein the cryptographic process 1s advanced encryption
standard (AES).

15. A computing device comprising:

a set of processing units; and

a non-transitory machine readable medium storing a pro-

gram which when executed by at least one of the
processing units of the computing device prevents a
potential attacker from extracting keys of a crypto-
graphic process performed on the computing device,
the program comprising sets of instructions for:
at the computing device, receiving an encrypted com-
puter readable message comprising media content;
at the computing device, receiving first and second
cipher keys of a digital right management (DRM)
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application, wherein the potential attacker has con-
trol over an execution of the DRM application on the
computing device;

for a plurality of rounds, generating a first set of
subkeys corresponding to the first cipher key as a
tfunction of the first cipher key;

for the plurality of rounds, generating a second set of
subkeys corresponding to the second cipher key,
wherein for each round after a first round, a subkey
of the second set of subkeys 1s a function of (1) a first
subkey of the first set of subkeys from a previous
round and (11) a second subkey of the second set of
subkeys from the previous round; and

decrypting the media content by performing the cryp-
tographic process using the generated sets ol sub-
keys.

16. The device of claim 15, wherein the set of instructions
for recerving the first and second cipher keys comprises sets
ol instructions for:

recetving a first mput comprising the first cipher key

masked by a first input masking value; and

recerving a second input comprising the second cipher

key, masked by a second masking value, and masked
by the first cipher key.

17. The device of claim 15, wherein the set of instructions
for generating the first set of subkeys corresponding to the
first cipher key comprises a set of instructions for generating
a subkey for each of the plurality of rounds of the crypto-
graphic process.

18. The device of claim 15, wherein the set of instructions
for generating the second set of subkeys corresponding to
the second cipher key comprises a set of instructions for
setting, for the first round of the cryptographic process, a

first subkey for the second set of keys 1 to the second cipher
key masked by a masking value.
19. The device of claim 15, wherein the set of instructions
for generating the second set of subkeys comprises a set of
instructions for performing a set of nonlinear operations to
generate the subkey of the second set of subkeys of each
round aiter the first round, the set of nonlinear operations
comprising:
a nonlinear function of a portion of the first subkey of the
first set of subkeys from the previous round masked by
a first masking value; and

a nonlinear function of (1) a portion of the first subkey of
the first set of subkeys from the previous round masked
by (11) a portion of the second subkey of the second set
of subkeys from the previous round masked by (111) the

first masking value masked by (1v) a second masking
value.

20. The device of claim 19, wherein the set of nonlinear
operations further comprises a function to substitute bytes of
the subkey according to a substitution table.
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