12 United States Patent

US009773068B2

(10) Patent No.: US 9,773,068 B2

Forte et al. 45) Date of Patent: *Sep. 26, 2017
(54) METHOD AND APPARATUS FOR DERIVING (51) Int. CL
AND USING TRUSTFUL APPLICATION GO6F 7/00 (2006.01)
METADATA GOoF 17/30 (2006.01)
_ GO6Q 10/00 (2012.01)
(71) Applicant: AT&T Intellectual Property I, L.P., (52) U.S. CL.

Atlanta, GA (US)

(72) Inventors: Andrea G. Forte, Brooklyn, NY (US);
Baris Coskun, Wechawken, NJ (US);
Qi Shen, New York, NY (US); Ilona
Murynets, Rutherford, NJ (US); Jeffrey
Bickford, Somerset, NI (US); Mikhail
Istomin, Brooklyn, NY (US); Paul
Giura, Cairo, NY (US); Roger
Piqueras Jover, New York, NY (US);
Ramesh Subbaraman, Jersey City, NJ
(US); Suhas Mathur, Bayonne, NJ

(US); Wei Wang, Hoboken, NJ (US)

(73) Assignee: AT&T INTELLECTUAL
PROPERTY I, L.P., Atlanta, GA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 15/269,096

(22) Filed: Sep. 19, 2016

(65) Prior Publication Data

US 2017/00042177 Al Jan. 5, 2017
Related U.S. Application Data

(63) Continuation of application No. 13/540,104, filed on
Jul. 2, 2012, now Pat. No. 9,449,104.

CPC .. GOG6F 17/30867 (2013.01); GO6F 17/30554
(2013.01); GO6Q 10/00 (2013.01)

(58) Field of Classification Search

CPC GO6F 17/30867; GO6F 17/30554; G06Q)
10/00; GO6C 30/0185
USPC ., 70777709, 748, 749, 738, 767

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

11/2012 GQGreen et al.
0/2004 Evanscocovvinnnn. A63F 13/12

463/30

8,321,949 Bl
2004/0192440 Al*

2012/0210431 Al 8/2012 Stahlberg
2012/0240236 Al 9/2012 Wyatt et al.
2013/0283377 Al 10/2013 Das et al.

* cited by examiner

Primary Examiner — Md. 1 Uddin

(57) ABSTRACT

A method, non-transitory computer readable medium and
apparatus for deriving trustiul metadata for an application
are disclosed. For example, the method crawls online for the
application, analyzes the application to determine a function
of the application, and generates trustiul meta-data for the
application based upon the function of the application.

20 Claims, 5 Drawing Sheets

10
UE
108

AS

il
ACCESS 104
NETWORK
120 -«

UE

110

v

UE
112
DR
P
106 ACCESS |
NETWORK
122

102 UE
114

U.S. Patent Sep. 26,2017 Sheet 1 of 5 US 9.773,068 B2

UE
112
U
114

ACCESS
NETWORK
122

2§
-
‘ .
S =
Y
23

US 9,773,068 B2

Sheet 2 of §

Sep. 26, 2017

U.S. Patent

. 2 'Ol 1 ..
sddy Jo is1q |eul maInaly ddy jeuondg sddy pejosjes Jesn
uonoeJoju| Josn — Al 9seyd 802 \MV
- S 5
D £ 3
O T —
sddy .. PASE] 1Xau09)
LoJBas-ald yoiesg sddy EE_BV sddy/ ﬁ”hwm._wwﬂ& nwmmww_
WUEBAS|D |4~
(d7IN) onuewsag 19y Buisuey payuey euondo o5,
S o -
S S
L ...am D = ndu) jesn Ag paJsbbl] —|jeseyd ¥02 N naing seag 1asn — ||| @seud 90¢
p —] e ,
i Bunund-1sbu) 4 o
sady sddy ddy buissaooid-ald e A
Bunybiopp dd . 210} ddy
PalybISAA HIPISM G0V P3IMELD UOIEIBUBS o buimeld ddy m - lu
Blep-e1onN — m Py u
sddy JO SSISAIU
Induyj J8sn oN - | 9seud 707 Vi un
— R — _

e T EE—— . e A

Mlomaulel 4 jeuooun-

/
N\

U.S. Patent Sep. 26, 2017 Sheet 3 of 5 US 9,773,068 B2

T CSTARTD/ 302
Y

304
CRAWL THE INTERNET FOR AN APPLICATION l/

Y

ANALYZE THE APPLICATION TO DETERMINEA | — 306
FUNCTION OF THE APPLICATION

Y
GENERATE TRUSTFUL META-DATA FOR THE

APPLICATION BASED UPON THE FUNCTION OF |~ °%°
THE APPLICATION

|
(o)

FIG. 3

US 9,773,068 B2

Sheet 4 of 5

Sep. 26, 2017

U.S. Patent

NOILVHdNTD

HAOVSMN JOIAVHAE!

P Old

SISATVNY

HNHOMLIN/ VOO T,

vev —

 AOVSN HOIAVHAY

DINVNAC

3&.1\\

SISATYNY

HIAOMULIN/IVOOT

Cev —

V.1IVO-V1dN

n41lsndl

9z —

J9OVSN IdVY

oz —

HdVd9 TIVO

m_\wl\\\

JOVSN IdV

IINVYNAQ

N_\vl\\

SISAIVNY
AdVNIE OILVY1S

o:u\\\

oLy —

114 LSH4INVIA

MIINTEd H3SN

90y —

MAINTHd
d01v¥Vd3d0

yoy —

S0y —

d3ddO 19A40

20y —

U.S. Patent Sep. 26,2017 Sheet 5 of 5 US 9.773,068 B2

00
/0 DEVICES, E.G.
MOS%gLE |_.. » STORAGE DEVICE
| 505 506
I
A A
Yy T Y
|
PROCESSOR |_ . MEMORY
502 504
|
:

FIG. 5

US 9,773,068 B2

1

METHOD AND APPARATUS FOR DERIVING
AND USING TRUSTFUL APPLICATION
METADATA

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 13/540,104, filed Jul. 2, 2012, now U.S. Pat.

No. 9,449,104, which 1s herein imncorporated by reference in
its entirety.

The present disclosure relates generally to metadata for
software applications and, more particularly, to a method
and apparatus for deriving and using trustiul application
metadata.

BACKGROUND

Mobile endpoint device use has increased 1n popularity in
the past few years. Associated with the mobile endpoint
devices are the proliferation of software applications broadly
known as “apps” or “applications”) that are created for the
mobile endpoint device.

The number of available apps 1s growing at an alarming
rate. Currently, hundreds of thousands of apps are available
to users via app stores such as Apple’s® app store and
Google’s® Android marketplace. However, with the enor-
mous growth of apps available 1n the Internet, there has been
little control over metadata associated with the apps. For
example, malicious apps may be disguised as popular apps
by providing false information 1n the metadata. As a result,
when users see a particular app, they may believe 1t to be a
legitimate app or a popular app and download and 1nstall the
malicious app instead.

SUMMARY

In one embodiment, the present disclosure provides a
method for deriving trustiul metadata for an application. For
example, the method crawls online for the application,
analyzes the application to determine a function of the
application, and generates trustful meta-data for the appli-
cation based upon the function of the application.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure can be readily understood by
considering the following detailed description 1n conjunc-
tion with the accompanying drawings, in which:

FIG. 1 1illustrates one example of a communications
network of the present disclosure;

FIG. 2 illustrates an example functional framework flow
diagram for app searching;

FIG. 3 illustrates an example flowchart of one embodi-
ment of a method for deriving trustiul meta-data for an app;

FIG. 4 illustrates an example block diagram of one
embodiment of analyzing meta-data of the app; and

FI1G. 5 1llustrates a high-level block diagram of a general-
purpose computer suitable for use in performing the func-
tions described herein.

To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical
clements that are common to the figures.

DETAILED DESCRIPTION

The present disclosure broadly discloses a method, non-
transitory computer readable medium and apparatus for
deriving trustful metadata for software applications
(“apps™). The growing popularity of apps for mobile end-

10

15

20

25

30

35

40

45

50

55

60

65

2

point devices has lead to an explosion of the number of apps
that are available. Currently, there are hundreds of thousands
ol apps available for mobile endpoint devices.

However, there has been little standardization or control
as to how and what information may be inserted nto a
meta-data file that describes a particular app. Currently,
developers may create a meta-data file for an app with
whatever mformation they desire. In addition, third parties
may also be able to modily the meta-data file.

As a result, the meta-data may be mampulated by various
parties to include information that may not accurately
describe the app 1t 1s associated with. Some developers may
take advantage of the ability to manipulate meta-data and
attempt to insert information in the meta-data associated
with a popular app. Consequently, when the popular app 1s
searched for by users, their apps will also appear 1n a search
result presented to the user. For example, some developers
may 1nsert the term “Angry Birds®” into the meta-data file
of a productivity app such that when a user searches for the
“Angry Birds®” app, the productivity app will also appear,
even though the productivity app 1s completely unrelated to
the “Angry Birds®” app.

Worse yet, some hackers may attempt to infect endpoint
devices with harmiul viruses or Trojan horse apps using the
same technique. For example, the meta-data may be created
to make the virus app appearing as a copy of a popular app.
As a result, a user may not know that he or she 1s actually
downloading and executing a virus app instead of the app the
user was actually looking for. Thus, there 1s a need to
provide users with trustiul meta-data that can be trusted by
users.

FIG. 1 1s a block diagram depicting one example of a
communications network 100. The communications net-
work 100 may be any type of communications network, such
as for example, a traditional circuit switched network (e.g.,
a public switched telephone network (PSTN)) or a packet
network such as an Internet Protocol (IP) network (e.g., an
IP Multimedia Subsystem (IMS) network, an asynchronous
transier mode (ATM) network, a wireless network, a cellular
network (e.g., 2G, 3G and the like), a long term evolution
(LTE) network, and the like) related to the current disclo-
sure. It should be noted that an IP network 1s broadly defined
as a network that uses Internet Protocol to exchange data
packets. Additional exemplary IP networks include Voice
over IP (VoIP) networks, Service over IP (SolP) networks,
and the like. It should be noted that the present disclosure 1s
not limited by the underlying network that is used to support
the various embodiments of the present disclosure.

In one embodiment, the network 100 may comprise a core
network 102. The core network 102 may be in communi-
cation with one or more access networks 120 and 122. The
access networks 120 and 122 may include a wireless access
network (e.g., a WiF1 network and the like), a cellular access
network, a PSTN access network, a cable access network, a
wired access network and the like. In one embodiment, the
access networks 120 and 122 may all be different types of
access networks, may all be the same type of access net-
work, or some access networks may be the same type of
access network and other may be different types of access
networks. The core network 102 and the access networks
120 and 122 may be operated by different service providers,
the same service provider or a combination thereof.

In one embodiment, the core network 102 may include an

application server (AS) 104 and a database (DB) 106.
Although only a single AS 104 and a single DB 106 are
illustrated, i1t should be noted that any number of application
servers 104 or databases 106 may be deployed.

US 9,773,068 B2

3

In one embodiment, the AS 104 may comprise a general
purpose computer as illustrated mm FIG. 5 and discussed
below. In one embodiment, the AS 104 may perform the
methods and algorithms discussed below related to deriving
trustiul meta-data.

In one embodiment, the DB 106 may store various
meta-data for each one of a plurality of apps collected by a
web crawler. In addition, the DB 106 may store the gener-
ated trustiul meta-data. The generation of the trustiful meta-
data 1s discussed 1n further detail below.

In one embodiment, the DB 106 may store various
information gathered by analyzing the apps. The informa-
tion gathered by analyzing the apps may be used to generate
the trustiul meta-data. The various information may include,
for example, call graphs, information about application
programming interface (API) usage, information about local
behavior (e.g., does the app access personal information
stored on the endpoint device, and the like) and usage of an
app (e.g., computer processing capacity used, memory used,
battery life used, local endpoint device sensors used, such as
a global position system (GPS), and the like), information
about network behavior and usage of an app (e.g., network
bandwidth used, which network protocols are used, such as
real-time transport protocol (RTP), session initiation proto-
col (SIP)), and the like.

In one embodiment, the DB 106 may also store a plurality
of apps that may be accessed by users via their endpoint
device. In one embodiment, a plurality of databases 106
storing a plurality of apps may be deployed. In one embodi-
ment, the databases may be co-located or located remotely
from one another throughout the communications network
100. In one embodiment, the plurality of databases may be
operated by different vendors or service providers. Although
only a single AS 104 and a single DB 106 are illustrated 1n
FIG. 1, it should be noted that any number of application
servers or databases may be deployed.

In one embodiment, the access network 120 may be in
communication with one or more user endpoint devices
(also referred to as “endpoint devices” or “UE”) 108 and
110. In one embodiment, the access network 122 may be 1n
communication with one or more user endpoint devices 112
and 114.

In one embodiment, the user endpoint devices 108, 110,
112 and 114 may be any type of endpoint device such as a
desktop computer or a mobile endpoint device such as a
cellular telephone, a smart phone, a tablet computer, a laptop
computer, a netbook, an ultrabook, a tablet computer, a
portable media device (e.g., an 1IPod® touch or MP3 player),
and the like. It should be noted that although only four user
endpoint devices are illustrated i FIG. 1, any number of
user endpoint devices may be deployed.

It should be noted that the network 100 has been simpli-
fied. For example, the network 100 may include other
network elements (not shown) such as border elements,
routers, switches, policy servers, security devices, a content
distribution network (CDN) and the like.

FIG. 2 illustrates an example of a functional framework
flow diagram 200 for app searching. In one embodiment, the
tfunctional framework tlow diagram 200 may be executed for
example, 1n a commumnication network described i FIG. 1
above.

In one embodiment, the functional framework flow dia-
gram 200 1ncludes four different phases, phase 1202, phase
I1 204, phase III 206 and phase IV 208. In phase 1202,
operations are performed without user input. For example,
from a universe of apps, phase 1 202 may pre-process each
one of the apps to obtain and/or generate meta-data and

10

15

20

25

30

35

40

45

50

55

60

65

4

perform app fingerprinting to generate a “crawled app.”
Apps may be located 1n a variety of online locations, for
example, an app store, an online retailer, an app marketplace
or individual app developers who provide their apps via the
Internet, e.g., websites. An online location 1s broadly inter-
preted as a location accessible via a network connection.
Thus, crawling “online” for an app 1s broadly interpreted as
accessing an app via a network connection, e.g., accessing
an app on a local area network (or server) or through the
Internet where the app 1s located on an external network (or
server).

In one embodiment, a web crawler may be used to obtain
various apps and the associated meta-data for each one of the
apps. However, as noted above, the meta-data generated by
the developer that 1s obtained from the Internet or the world
wide web may not be trusted due to the ease of manipulating
the meta-data.

As a result, 1n phase 1202, a third party or a network
service provider may generate trustiul meta-data that may be
relied on by an end user or subscriber of the service provider.
In other words, the network service provider may vet the
meta-data for the subscribers to ensure that the meta-data
accurately describes the app. By generating the trustiul
meta-data, the subscriber may have faith that the meta-data
accurately describes the app.

In addition, the trustful meta-data may be leveraged to
provide additional configurable search parameters for the
user. For example, the trustiul meta-data may include infor-
mation about various attributes associated with the app that
were obtained by analyzing the app to generate the trustiul
meta-data. These attributes may be used by a subscriber or
end user to further narrow search queries for apps, such as
searching based upon memory usage, bandwidth usage,
what files the app attempts to access during use, and the like.

In one embodiment, the apps may also be fingerprinted to
climinate harmiul apps, such as viruses, and common apps
can also be grouped together that may be appear to be
different apps based upon the meta-data. Once the trustiul
meta-data 1s generated and the apps are fingerprinted, the
apps may be weighted to assign an mitial weighting that 1s
used to compute an 1nitial ranking.

For example, at phase 1202, the method may optionally
apply a weight to each application to generate a “weighted
app.” For example, the weight can be applied 1n accordance
with various parameters, €.g., a reputation of the app devel-
oper, a cost of app, the quality of the technical support
provided by the developer, a size of the app (e.g., memory
s1ze requirement), ease of use of the app in general, ease of
use based on the user interface, eflectiveness of the app for
its intended purpose, and so on. For example, a reputation of
a developer for developing particular types of apps may
optionally also be obtained, e.g., from a public online forum,
from a social network website, from an independent evalu-
ator, and so on. The reputation information implemented via
weights may then be used to calculate an 1nitial ranking for
cach one of the apps, e.g., a weight of greater than 1 can be
applied to a developer with a good reputation, whereas a
weight of less than 1 can be applied to a developer with a
poor reputation. It should be noted that the weights (e.g.,
with a range of 1-10, with a range between 0-1, and so on)
can be changed based on the requirements of a particular
implementation.

An optional user based filtering step can be applied once
the apps are weighted and an initial ranking for each of the
apps 1s computed. For example, each user may have a
predefined set of parameters that are to be applied to all of
the apps, e.g., excluding all apps of a particular size due to

US 9,773,068 B2

S

hardware limitation, excluding all apps based on a cost of
the apps, excluding all apps from a particular developer and
so on. It should be noted that this step 1s only applied 11 the
user has a predefined set of filter criteria to be applied to
generate “pre-search apps”.

Alternatively, once the apps are weighted and an initial
ranking for each of the apps 1s computed, phase II 204 1s
triggered by user input. For example, during phase II 204 a
user may input a search query for a particular app. In one
embodiment, the search may be based upon a natural lan-
guage processing (NLP) or semantic query. For example, the
search may simply be a search based upon matches of
keywords provided by the user 1n the search query. Using the
NLP query, a NLP ranking of the app may be computed.

In one embodiment, the search may be based upon a
context based query. For example, the search may be per-
formed based upon what (e.g., an activity the user 1is
participating 1n), where (e.g., a location), when (e.g., a time
of day) and with whom (e.g., a single user, a group of users,
friends, family, an age of the user and the like) a user 1s
performing an activity.

A ranking algorithm may be applied to the apps that
accounts for at least the initial ranking and the context based
ranking to compute a final ranking of the apps. In one
embodiment, the final ranking may be calculated based upon
the initial ranking, the context based ranking, the NLP
ranking and/or a user feedback ranking. For example, the
weight values of each of the rankings may be added together
to compute a total weight value, which may then be com-
pared to the total weight values of the other apps.

At phase III 206, the results of the final ranking are
presented to the user. As discussed above, the trustiul
meta-data that 1s generated may be used to allow a user to
turther filter apps or narrow the search based upon particular
attributes of the apps. For example, the user may want to
turther narrow down the search to apps that use less than 100
megabytes of memory space or narrow down the search to
apps to eliminate any apps that access personal contact
information during operation, and the like.

At phase IV 208, the user may select one of the apps and
interact with the app. For example, the user may select one
of the apps and either preview the app or download the app
for mstallation and execution on the user’s endpoint device.

FIG. 3 illustrates a flowchart of a method 300 for deriving,
trustiul metadata for an app. In one embodiment, the method
300 may be performed by the AS 104 or a general purpose
computing device as illustrated i FIG. § and discussed
below.

The method 300 begins at step 302. At step 304, the
method 300 crawls the Internet for meta-data of an app. For
example, the web crawler may be deployed by the AS 104
to crawl the Internet (e.g., websites or online stores that have
apps for purchase and download) for one or more apps and
the associated meta-data. For example, in one embodiment,
there may already be meta-data associated with the app.
However, as noted above, the meta-data may not be trusted
as meta-data may be easily manipulated by a developer or
another third party.

At step 306, the method 300 analyzes the app to determine
how the app functions. By analyzing the app to see how the
app Iunctions, information may be gathered to generate
trustiul meta-data that accurately reflects the true i1dentity
and functions of the app. In other words, a third party or a
network service provider may actually analyze the app to
reveal the true functionality of the app rather than blindly
relying on the meta-data that 1s provided or that pre-existed
with the app.

10

15

20

25

30

35

40

45

50

55

60

65

6

The app may be analyzed using a variety of methods and
by a variety of parties. For example, the app may be
analyzed by a developer, by an operator preview, by a user
preview, and the like. The analysis may include static
analysis, dynamic analysis and analysis of various files
associated with an app.

The analysis may attempt to collect information regarding
how the app functions and the attributes of an app. For
example, the attributes may include how the app behaves
with respect to accessing personal mformation stored on a
local endpoint device, how much processing capacity the
app uses, how much memory the app uses, how much
battery life the app consumes (i.e., rate of power consump-
tion), which sensors of the endpoint device are used by the
app (e.g., a GPS sensor, an accelerometer, a camera, a
microphone, etc.), how much network bandwidth the app
uses, which network protocols are used by the app, and the

like.

FIG. 4 illustrates an example block diagram 400 of the
various types of analysis that may be performed to generate
trustful metadata. For example, the analysis may be per-
formed by one or more diflerent parties that perform various
types of analysis.

For example, 1n one embodiment, the analysis may be
performed by a developer 402, an operator preview 404 or
by a user preview 406. In one embodiment, the developer
402 may gather information about the app using certain files
408, ¢.g., a manifest file for Android® operating systems.
The files may be analyzed to obtain application program-
ming interface (API) usage information 416.

In one embodiment, the operator preview 404 may ana-
lyze the app by performing a static binary analysis 410 or a
dynamic analysis 412. For example, the operator preview
404 may be performed by a network service provider or
another third party tasked with performing the analysis.

In one embodiment, the static binary analysis 410 may
analyze certain code of the app that does not change, for
example, call graphs 418 or API usage 420. Looking at the
call graphs 418 or the API usage 420 may help gather
information about what programs the app 1s actually execut-
ing and how the app 1s executing them.

In one embodiment, the dynamic analysis 412 may ana-
lyze local and network behavior and usage 422. For
example, dynamic analysis 412 may include analysis of how
the app functions during operation, e.g., how the app
responds to user mnputs, and the like.

In one embodiment, local behavior may include informa-
tion such as, for example, whether the app accesses personal
information stored on the endpoint device, whether the app
attempts to access or execute other applications on the
endpoint device, whether the app stores cookies on the
endpoint device, and the like. In one embodiment, the local
usage may include information such as, for example, how
much processing power of the endpoint device the app uses,
how much memory of the endpoint device the app uses, how
much battery life of the endpoint device the app uses, which
sensors on the endpoint device the app uses, and the like. In
one embodiment, network behavior may include informa-
tion such as, for example, what network protocols are used
by the app, does the app scan for particular ports, how often
does the app communicate through the network while run-
ning, and the like. In one embodiment, the network usage
may include information such as, for example, how much
bandwidth the app uses in the network, how much process-
ing resources the app uses in the network, how much data the
app 1s storing in the network, and the like.

US 9,773,068 B2

7

In one embodiment, the user preview 406 may analyze the
app by performing a dynamic analysis 414. In one embodi-
ment, the user preview 406 may be a live preview applica-
tion on the user’s endpoint device that can be monitored by
the network, e.g., by the AS 104, to collect information.

For example, a user may want to “test drive” an app
betore purchasing and downloading the app. The live pre-
view allows the user to execute and operate the app on the
user’s endpoint device, or remotely from a server, as if the
user had purchased the app. As a result, the service provider
may allow the user to preview the app before purchasing and
downloading. During the course of the user preview, the
service provider or network may collect information about
how the app behaves or 1s used while the user 1s “test
driving” the app.

In one embodiment, the dynamic analysis 414 may ana-
lyze local and network behavior and usage 424 similar to the
dynamic analysis 412 of the operator preview 404. In one
embodiment, local behavior may include information such
as, for example, does the app access personal information
stored on the endpoint device, does the app attempt to access
or execute other applications on the endpoint device, does
the app store cookies on the endpoint device, and the like. In
one embodiment, the local usage may include information
such as, for example, how much processing power of the
endpoint device the app uses, how much memory of the
endpoint device the app uses, how much battery life of the
endpoint device the app uses, which sensors on the endpoint
device the app uses, and the like. In one embodiment,
network behavior may include information such as, for
example, what network protocols are used by the app, does
the app scan for particular ports, how often does the app
communicate through the network while running, and the
like. In one embodiment, the network usage may include
information such as, for example, how much bandwidth the
app uses 1n the network, how much processing resources the
app uses 1n the network, how much data the app 1s storing
in the network, and the like.

In one embodiment, the information gathered from all of
the analysis may be used to generate the trustiful meta-data.
For example, by analyzing the app and testing to see how the
app truly operates, the app may be vetted and the trustiul
meta-data may be generated that can be trusted, unlike the
meta-data that 1s currently available for an app. In other
words, an objective third party, such as for example, a
network service provider, may generate trustful meta-data
that 1s based upon actual analysis and testing of the app. In
other words, the trustiul meta-data 1s generated by a different
party than the party that generated the original meta-data
associated with an app.

In one embodiment, one or more ol the analysis per-
tformed by the developer 402, the operator preview 404 or
the user preview 406 may be used to generate the trustiul
meta-data. In other words, not all of the analysis may be
needed to generate the trustiul meta-data. For example, the
trustiul meta-data may be generated with only the developer
402 analysis or the developer 402 analysis and the operator
preview 404 analysis and so on. In addition, any one of the
analysis methods may be executed by any of the developer
402, the operator preview 404 or the user preview 406. For
example, the developer 402 may also use static binary
analysis and/or dynamic analysis.

Referring back to FIG. 3, at step 308 the method 300
generates trustiul meta-data for the app based upon how the
app Iunctions. It should be noted that the trustiul meta-data
may be considered to be an additional meta-data file for the
app. The generation of the trustiul meta-data 1s not simply a

10

15

20

25

30

35

40

45

50

55

60

65

8

modification of one or more fields in an existing meta-data
file. Rather, 1t creates a second diflerent meta-data file
associated with the app based upon how the app functions.
Thus, the existing meta-data file can be retained and 1s not
deleted or over-written 1n one embodiment.

In other words, the apps that are obtained 1n step 304 may
already be associated with pre-existing meta-data. However,
by generating the “trustiul” meta-data, a network service
provider may provide the trustful meta-data file to an end
user or subscriber instead of the pre-existing meta-data that
was obtained with the app.

The trustful meta-data may be presented to a subscriber or
an end user such that the subscriber or the end user may have
full confidence that the trustful meta-data accurately
describes the app. As a result, the additional service pro-
vided by the service provider may be provided as a sub-
scription service (e.g., a service provided for an additional
fee or as an added feature to a data plan service, e.g., Internet
access service) to the end user or subscriber by ensuring that
apps having trustful meta-data are not malicious virus apps
or Trojan horse apps.

In addition, the trustful meta-data may be leveraged to
provide additional configurable search parameters for the
user. For example, the trustiul meta-data may include infor-
mation about various attributes associated with the app that
were obtained when the app was analyzed to generate the
trustful meta-data. These attributes may be used by a sub-
scriber or end user to further narrow search queries for apps,
such as searching based upon memory usage, bandwidth
usage, what files the app attempts to access during use and
the like. At step 310, the method 300 ends.

It should be noted that although not explicitly specified,
one or more steps of the method 300 described above may
include a storing, displaying and/or outputting step as
required for a particular application. In other words, any
data, records, fields, and/or intermediate results discussed 1n
the methods can be stored, displayed, and/or outputted to
another device as required for a particular application.
Furthermore, operations, steps or blocks 1n FIG. 3 that recite
a determining operation, or involve a decision, do not
necessarily require that both branches of the determining
operation be practiced. In other words, one of the branches
of the determining operation can be deemed as an optional
step. Furthermore, operations, steps or blocks of the above
described methods can be combined, separated, and/or per-
formed 1n a different order from that described above,
without departing from the example embodiments of the
present disclosure.

FIG. 5 depicts a huigh-level block diagram of a general-
purpose computer suitable for use in performing the func-
tions described herein. As depicted 1n FIG. 5, the system 500
comprises a hardware processor element 502 (e.g., a CPU),
a memory 304, e.g., random access memory (RAM) and/or
read only memory (ROM), a module 505 for deniving
trustful metadata for an app, and various input/output
devices 506, e.g., storage devices, including but not limited
to, a tape drive, a tloppy drive, a hard disk drive or a compact
disk drive, a receiver, a transmitter, a speaker, a display, a
speech synthesizer, an output port, and a user mput device
(such as a keyboard, a keypad, a mouse, and the like).

It should be noted that the present disclosure can be
implemented in soiftware and/or in a combination of sofit-
ware and hardware, e.g., using application specific inte-
grated circuits (ASIC), a general purpose computer or any
other hardware equivalents, e.g., computer readable mstruc-
tions pertaining to the method(s) discussed above can be
used to configure a hardware processor to perform the steps

US 9,773,068 B2

9

of the above disclosed method. In one embodiment, the
present module or process 503 for deriving trustiul metadata
for an app can be implemented as computer-executable
instructions (e.g., a software program comprising computer-
executable instructions) loaded into memory 504 and
executed by hardware processor 502 to implement the
functions as discussed above. As such, the present method
505 for derntving trustiul metadata for an app as discussed
above 1 method 300 (including associated data structures)
of the present disclosure can be stored on a non-transitory
(c.g., tangible or physical) computer readable storage
medium, e.g., RAM memory, magnetic or optical drive or
diskette and the like.
While various embodiments have been described above,
it should be understood that they have been presented by
way ol example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only 1n accordance with the following
claims and their equivalents.
What 1s claimed 1s:
1. A method for denving trustful metadata for a software
application for a mobile device, the method comprising:
crawling, via a processor, online for the software appli-
cation for the mobile device, wherein a pre-existed
meta-data 1s associated with the software application;

analyzing, via the processor, the software application to
determine a function of the software application,
wherein the analyzing comprises analyzing an applica-
tion behavior and usage from a dynamic analysis to
determine the function of the software application for
generating the trustful meta-data, wherein the deter-
mining the function of the soitware application com-
prises determining: a processing capacity used by the
soltware application, a memory capacity used by the
soltware application, and a network protocol used by
the software application;

generating, via the processor, the trustiul meta-data as a

fingerprint for the software application without relying
on the pre-existed meta-data for the software applica-
tion based upon the function of the software applica-
tion, wherein the trustful meta-data describes how the
software application functions, wherein the trustiul
meta-data 1s stored 1n a metadata file for the software
application along with the pre-existed meta-data with-
out overwriting the pre-existed meta-data, wherein the
trustful meta-data includes: the processing capacity
used by the software application, the memory capacity
used by the software application, and the network
protocol used by the software application;

receiving, via the processor, a user query and a filter

criterion provided by a user;

generating, via the processor, a search result 1n response

to the user query, wherein the generating the search
result 1s performed by applying the filter criterion on
the trustful meta-data associated with the software
application; and

presenting, via the processor, the search result to the user

in accordance with the filter criterion that 1s predefined
by the user.

2. The method of claim 1, wherein the analyzing 1s
performed by a developer.

3. The method of claim 2, wherein the analyzing further
comprises analyzing an application programming interface
usage from a manifest file to generate the trustiul meta-data.

4. The method of claim 1, wherein the analyzing 1s
performed by an operator preview.

10

15

20

25

30

35

40

45

50

55

60

65

10

5. The method of claim 4, wherein the analyzing turther
comprises analyzing information obtained from a static
binary analysis to generate the trustful meta-data.

6. The method of claim 1, wherein the analyzing 1s
performed by a user preview.

7. The method of claim 1, further comprising:

presenting a recommended application based upon the

filter criterion that i1s predefined by the user.

8. A non-transitory computer-readable medium storing a
plurality of mstructions which, when executed by a proces-
sor, cause the processor to perform operations for deriving
trustful metadata for a software application for a mobile
device, the operations comprising:

crawling online for the software application for the

mobile device, wherein a pre-existed meta-data 1s asso-
ciated with the software application;

analyzing the software application to determine a function

of the software application, wherein the analyzing
comprises analyzing an application behavior and usage
from a dynamic analysis to determine the function of
the soltware application for generating the trustiul
meta-data, wherein the determining the function of the
soltware application comprises determining: a process-
ing capacity used by the software application, a
memory capacity used by the software application, and
a network protocol used by the software application;
generating the trustiul meta-data as a fingerprint for the
software application without relying on the pre-existed
meta-data for the software application based upon the
function of the software application, wherein the trust-
ful meta-data describes how the software application
functions, wherein the trustful meta-data 1s stored 1n a
metadata file for the software application along with the
pre-existed meta-data without overwriting the pre-ex-
isted meta-data, wherein the trustful meta-data
includes: the processing capacity used by the software
application, the memory capacity used by the software
application, and the network protocol used by the
soltware application;

receiving a user query and a filter criterion provided by a

user;
generating a search result 1n response to the user query,
wherein the generating the search result 1s performed
by applying the filter criterion on the trustiul meta-data
associated with the software application; and

presenting the search result to the user 1n accordance with
the filter criterion that 1s predefined by the user.

9. The non-transitory computer-readable medium of claim
8, wherein the analyzing i1s performed by a developer.

10. The non-transitory computer-readable medium of
claim 9, wherein the analyzing further comprises analyzing
an application programming interface usage from a manifest
file to generate the trustful meta-data.

11. The non-transitory computer-readable medium of
claim 8, wherein the analyzing i1s performed by an operator
preview.

12. The non-transitory computer-readable medium of
claim 11, wherein the analyzing further comprises analyzing
information obtained from a static binary analysis to gen-
erate the trustful meta-data.

13. The non-transitory computer-readable medium of
claiam 8, wherein the analyzing i1s performed by a user
preview.

14. The non-transitory computer-readable medium of
claim 8, the operations further comprising:

presenting a recommended application based upon the

filter criterion that i1s predefined by the user.

US 9,773,068 B2

11

15. An apparatus for derniving trustful metadata for a
software application for a mobile device, the apparatus
comprising;

a processor; and

a computer-readable medium storing a plurality of >

instructions which, when executed by the processor,

cause the processor to perform operations, the opera-

tions comprising:

crawling online for the software application for the
mobile device, wherein a pre-existed meta-data 1s
associated with the software application;

analyzing the software application to determine a func-
tion of the soitware application, wherein the analyz-
ing comprises analyzing an application behavior and
usage from a dynamic analysis to determine the
function of the software application for generating
the trustful meta-data, wherein the determining the
function of the software application comprises deter-
mining: a processing capacity used by the software
application, a memory capacity used by the software
application, and a network protocol used by the
software application;

generating the trustiul meta-data as a fingerprint for the
software application without relying on the pre-
existed meta-data for the software application based
upon the function of the software application,
wherein the trustful meta-data describes how the
software application functions, wherein the trustiul
meta-data 1s stored in a metadata file for the software
application along with the pre-existed meta-data

10

15

20

25

12

without overwriting the pre-existed meta-data,
wherein the trustiul meta-data includes: the process-
ing capacity used by the software application, the
memory capacity used by the soiftware application,
and the network protocol used by the software appli-
cation;

receiving a user query and a {ilter criterion provided by
a user;

generating a search result 1n response to the user query,
wherein the generating the search result 1s performed
by applying the filter criterion on the trustiul meta-
data associated with the software application; and

presenting the search result to the user 1n accordance
with the filter criterion that 1s predefined by the user.

16. The apparatus of claim 15, wherein the analyzing
further comprises analyzing an application programming
interface usage from a manifest file to generate the trustiul
meta-data.

17. The apparatus of claim 15, wherein the analyzing 1s
performed by an operator preview.

18. The apparatus of claim 17, wherein the analyzing
further comprises analyzing information obtained from a
static binary analysis to generate the trustful meta-data.

19. The apparatus of claim 15, the operations further
comprising;

presenting a recommended application based upon the

filter criterion that 1s predefined by the user.

20. The apparatus of claim 15, wherein the analyzing 1s
performed by a user preview.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

