12 United States Patent

US009772924B2

(10) Patent No.: US 9,772,924 B2

Zhou et al. 45) Date of Patent: Sep. 26, 2017
(54) METHOD AND APPARATUS FOR FINDING (56) References Cited
BUGS IN COMPUTER PROGRAM CODES |
U.S. PATENT DOCUMENTS
(71) Applicant (Tji:;eI;tnTeﬁ?;?tlggys(sel;ez?l‘zﬁe?éN) 5,533,192 A * 7/1996 Hawley GOO6F 11/362
pAtLy = 714/28
5,682,492 A * 10/1997 McFarland GO6F 9/30003
(72) Inventors: Feihu Zhou, Shenzhen (CN); Ligiang . 712/214
Xie, Shenzhen (CN) (Continued)
(73) Assignee: (TS%NECNEZNHTEg(égﬁI’)g(N’(;Y FOREIGN PATENT DOCUMENTS
LIMITED, Shenzhen, Guangdong CN 1776644 A 5/2006
Province (CN) CN 102073587 A 5/2011
(*) Notice: Subject to any disclaimer, the term of this OTHER PURIICATIONS
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 53 days. Omar Ahmad et al., “Hierarchical, concurrent state machines for
behavior modeling and scenario control”, [Online], IEEE 1994, pp.
(21) Appl. No.: 15/182,463 36-42, [Retrieved from Internet on Feb. 28, 2017], <http://
_ iIeceexplore.ieee.org/stamp/stamp.jsp?arnumber=390503> *
(22) Filed: Jun. 14, 2016 P g/stamp/stamp J5p
iled: un. 14, _
(Continued)
(65) Prior Publication Data _ _ _
Primary Examiner — Ziaul A Chowdhury
" ltorney, ent, or r'irm — lorgan, L.ewis
US 2016/0350202 Al Dec. 1, 2016 74 A v, Ag i Morgan, Lewis &
o Bockius LLP
Related U.S. Application Data
(63) Continuation of application No. (57) ABSTRACT
PCT/CN2014/092951, filed on Dec. 3, 2014 A method for debugging program code is performed at an
_ . o apparatus having one or more processors and memory for
(30) Foreign Application Priority Data storing programs to be executed by the one or more pro-
Dec. 19, 2013 (CN) oovvoooeeoeoe 2013 1 0704156 cessors. The method includes the iollowing steps: for each

(51) Int. CL
GOGF 9/44
GOG6F 11/36

U.S. CL
CPC

(2006.01)
(2006.01)
(52)
........ GOG6F 11/362 (2013.01); GO6F 11/3636

(2013.01); GO6F 11/3648 (2013.01); GOG6F
11/3664 (2013.01)

Field of Classification Search
CPC GO6F 11/36; GO6F 11/362; GO6F 11/3636:
GO6F 11/3648; GO6F 11/3664

See application file for complete search history.

(58)

program code segment from a set of program code segments,
assigning a unique value to a detection variable of a state
machine when the respective program code segment oper-
ates the state machine. The unique value 1s based on a value
of an identification variable associated with the respective
program code segment. The method also includes determin-
ing a current value of the detection varniable corresponding
to an abnormal program exit, and determining a suspicious
program code segment based on a comparison of the current
value of the detection variable with the unique values of the
respective 1dentification variables. The method further

(Continued)

200
For each program code segment from a set of program code segments,

assign a unigque value to a detection variable of 3 state machingina 201

process of the respective program code segment operating the staie

machine, where the urique value 15 identical to a value of an
identification variable associated with the respective program ¢ode
segment

Retnieve a core file generated in response to an abnormal program exit 02

during & process of the set of program code segments operating the

state maching

.] , 03

Parse the core file to determmine a context associated with the state

mmachine when the abnormal program exit occurs
/8204
Determine a curretit value of the detection variable based on the context
Determine a suspicious program code segment from the set of program 03
code segrnents based on a comparison of the current value of the
[detection variable with the imique values of the rezspective identificaton
vaniables asscciated with the set of program code segments
Dutput debug information for the abmortnal proeram exit, where the /SZEIE
debug information inclades information of at least one statement in the

SuSpiCious program code sement

US 9,772,924 B2
Page 2

includes outputting debug information based on the suspi-
cious program code segment.

(56)

5,978,902
0,189,140
6,311,327
6,317,638
7,627,785
2005/0172168
2005/0251794
2010/0162212

2012/0017119
2012/0084756

2012/0124588

16 Claims, 8 Drawing Sheets

References Cited

U.S. PATENT DOCUMENTS

A=I=

Bl *

Bl *

Bl *

Bl *

Al*

Al*

Al*

Al
Al*

Al*

11/1999 Manno....... GO6F 11/348
712/227
2/2001 Maddurt GO6F 11/348
712/227
10/2001 O’Brien GO6F 11/3466
714/35
11/2001 Schreder GO0O5B 19/042
700/2
12/2009 Grodnik GO6F 11/3636
714/38.14
8/2005 Kilianc.ocvenn. GO6F 11/362
714/31
11/2005 Taylor GO6F 11/3664
717/148
6/2010 Stall GO6F 11/3664
717/124

1/2012 Ghosh et al.
4/2012 Subramanian GO6F 11/3676
717/124
5/2012 Smhaccoevvnenn. GO6F 9/54
718/102

2012/0167161 Al* 6/2012 Kimcc...... HO4L 63/1408
726/1

2013/0239214 Al* 9/2013 Klemn ... GO6F 21/566
726/24

2014/0053027 Al* 2/2014 Nixon GOO6F 11/3656
714/45

2014/0115566 Al* 4/2014 Caoccooovvvvvvvnnnnnnn, GO6F 9/444
717/129

2014/0282414 Al* 9/2014 Chazan GOO6F 11/3664
717/125

2016/0026581 Al* 1/2016 Muttik GOO6F 12/1441
726/26

OTHER PUBLICATTONS

Bart Vermeulen, “Functional Debug Techniques for Embedded
Systems”, IEEE 2008, pp. 208-2015, [Retrieved from Internet on

Feb. 28, 20171, <http://1eeexplore.1eee.org/stamp/stamp.
jsp?arnumber=4534159>*
Richard K. Shehady et al., “A Method to Automate User Interface

Testing Using Variable Finite State Machines™, [Online], IEEE

1997, pp. 80-88, [Retrieved from Internet on Feb. 28, 2017],
<http://1eeexplore.ieee.org/stamp/stamp.jsp?arnumber=6 14080> %

Yanme1r L1 et al., “Data Flow Analysis and Formal Method”,
[Online], 20135, pp. 398-406, [Retrieved from Interent on Feb. 28,
2017], <http://download.springer.com/static/pdt/782/chp%253A10.
1007%252F978-3-662-46248-5_ 48.pdf>.*

Tencent Technology, ISRWO, PCT/CN2014/092951, Feb. 17, 2015,

7 pgs.
Tencent Technology, IPRP, PCT/CN2014/092951, Jun. 21, 2016, 5

PES.

* cited by examiner

U.S. Patent Sep. 26, 2017 Sheet 1 of 8 US 9,772,924 B2

S101
For each program code segment from a set of program code segments,

assign a unique value to a detection vanable of a state machine in a
process of the respective program code segment operating the state
machine, where the unique value 1s based on a value of an identification
variable associated with the respective program code segment

. . . . 102
Determine a current value of the detection variable corresponding to an

abnormal program exit during a process of the set of program code
segments operating at least one state machine

Determine a suspicious program code segment from the set of program S103
code segments based on a comparison of the current value of the
detection variable with the unique values of the respective identification
variables associated with the set of program code segments

S104

Output debug information for the abnormal program exit, where the
debug information includes information of at least one statement in the
suspicious program code segment

FIG. 1

U.S. Patent Sep. 26, 2017 Sheet 2 of 8 US 9,772,924 B2

For each program code segment from a set of program code segments,
assign a unique value to a detection variable of a state machine in a 201
process of the respective program code segment operating the state
machine, where the unique value 1s 1dentical to a value of an
identification variable associated with the respective program code
segment

Retrieve a core file generated in response to an abnormal program exit 5202
during a process of the set of program code segments operating the
state machine

S203
Parse the core file to determine a context associated with the state
machine when the abnormal program exit occurs
204
Determine a current value of the detection variable based on the context
Determine a suspicious program code segment from the set of program S203
code segments based on a comparison of the current value of the
detection variable with the unique values of the respective 1identification
variables associated with the set of program code segments
S206

Output debug information for the abnormal program exit, where the
debug information includes information of at least one statement 1n the
suspicious program code segment

FIG. 2A

U.S. Patent Sep. 26, 2017 Sheet 3 of 8 US 9,772,924 B2

Detection

Variable
25

20

Detection

Variable
25

20

Detection
Variable
25

tate Machine
20

Assign a
value

Assign a
value

Assign a
value

- State State p
Assignment transition || Assignment transit Assignment
Statement > STatement rafist 1.(111 STatement | |
21 ply) 23
Program Code Program Code Program Code
Segment 211 Segment 221 Segment 231
State Al State A2 State A3

FIG. 2B

U.S. Patent Sep. 26, 2017 Sheet 4 of 8 US 9,772,924 B2

For each program code segment from a set of program code segments,
assign a unique value to a detection variable of a state machine in a 301
process of the respective program code segment operating the state
machine, where the unique value 1s determined by a predefined
function that takes a value of an 1identification variable associated with
the respective program code segment as an input

Retrieve a core file generated 1n response to an abnormal program exit 5302
during a process of the set of program code segments operating the
state machine

S303
Parse the core file to determine a context associated with the state
machine when the abnormal program exit occurs
304
Determine a current value of the detection variable based on the context
Determine a suspicious program code segment from the set of program S305
code segments based on a comparison of the current value of the
detection variable with the unique values of the detection variable
associated with the set of program code segments
S306

Output debug information for the abnormal program exit, where the
debug information includes information of at least one statement 1n the
suspicious program code segment

FIG. 3

U.S. Patent Sep. 26, 2017 Sheet 5 of 8 US 9,772,924 B2

For each program code segment from a set of program code segments,
assign a unique value to a detection variable of a state machine from a 401
set of state machines 1n a process of the respective program code
segment operating the respective state machine, where the unique value
1s 1dentical to a value of an 1dentification variable associated with the
respective program code segment

Retrieve a core file generated in response to an abnormal program exit 5402
during a process of the set of program code segments operating the set
of state machines

5403
Parse the core file to determine a context associated with a state
machine that 1s operated when the abnormal program exit occurs
404
Determine a current value of the detection variable based on the context
Determine a suspicious program code segment from the set of program 5403
code segments based on a comparison of the current value of the
detection varnable with the unique values of the respective 1dentification
variables associated with the set of program code segments
S406

Output debug information for the abnormal program exit, where the
debug information includes information of at least one statement 1n the
suspicious program code segment

FIG. 4

U.S. Patent Sep. 26, 2017 Sheet 6 of 8 US 9,772,924 B2

g
g

For each program code segment from a set of program code segments,
assign a unique value to a detection variable of a state machine from a
set of state machines in a process of the respective program code 501
segment operating the respective state machine, where the unique value
1s determined by a predetined function that takes a value of an
1dentification variable associated with the respective program code
segment as an input

Retrieve a core file generated 1in response to an abnormal program exit 5502
during a process of the set of program code segments operating the set
of state machines

S503
Parse the core file to determine a context associated with a state
machine that 1s operated when the abnormal program exit occurs
504
Determine a current value of the detection variable based on the context
Determine a suspicious program code segment from the set of program 5505
code segments based on a comparison of the current value of the
detection variable with the unique values of the detection variables
assoctated with the set of program code segments
S506

Output debug information for the abnormal program exit, where the

debug information includes information of at least one statement in the
suspicious program code segment

FIG. 5

U.S. Patent Sep. 26, 2017 Sheet 7 of 8 US 9,772,924 B2

s 600
r________________________jf ______________________]
| Apparatus |
i a
| 610 620 630 640
| e / / / |
: Assignment _ , Retrieving . Searching . Output :
' | Module Module Module Module ||
I I
| |
| |
L N

KF1G. 6A

60

S

,//
r]
: Apparatus :
| |
: 6l 62 e 03 e o4 :
| |
l| Assignment | , Retrieving , Searching | , Output ||
: Module Module Module Module :
: :
| / 65 |
| |
I Storing |
: Module :
- |

U.S. Patent Sep. 26, 2017 Sheet 8§ of 8 US 9,772,924 B2

r 700
Apparatus ”
PP a 701 _ \ _________________________________
__ L. Processor Memory
Communication 7051
Bus 702 F
[R Operating
System
703 704
(& — 7052
Network Application
User Interface Interface Program

FIG. 7

US 9,772,924 B2

1

METHOD AND APPARATUS FOR FINDING
BUGS IN COMPUTER PROGRAM CODES

PRIORITY CLAIM AND RELATED
APPLICATION

This application 1s a continuation application of PCT
Patent Application No. PCT/CN2014/092951, entitled

“METHOD AND APPARATUS FOR FINDING BUGS IN
COMPUTER PROGRAM CODES?” filed on Dec. 3, 2014,
which claims priority to Chinese Patent Application Serial
No. 201310704156.3, entitled “METHOD AND APPARA-
TUS FOR FINDING BUGS IN COMPUTER PROGRAM
CODES”, filed on Dec. 19, 2013, both of which are incor-
porated herein by reference in their entirety.

FIELD OF THE APPLICATION

The present application generally relates to the field of
computer technologies, and more particularly to a method
and apparatus for finding bugs in program code.

BACKGROUND

Debugging program code 1s an important subject for the
field of computer technologies. Some known methods for
debugging program code use GNU project debugger (GDB)
tools to check core files, and then find bugs based on location
information of suspicious program code and associated
variable values that are recorded i the core files. Such
known debugging methods, however, might be inetlicient or
ineflective 11 checking core files fails to disclose any location
information of potential bugs.

Theretfore, a need exists for a method and apparatus that
can efhiciently and accurately find bugs 1 program code.

SUMMARY

The above deficiencies associated with the known debug-
ging methods may be addressed by the techniques described
herein.

In some embodiments, a method for finding bugs in
program code 1s disclosed. The method 1s performed at an
apparatus, which has one or more processors and memory
for storing programs to be executed by the one or more
processors. The method includes, for each program code
segment from a set of program code segments, assigning a
unique value to a detection variable of a state machine 1n a
process of the respective program code segment operating,
the state machine. In some instances, for example, the value
of the i1dentification variable associated with the respective
program code segment 1s a current value of the identification
variable determined 1n the process of the respective program
code segment operating the state machine.

The unique value 1s assigned based on a value of an
identification variable associated with the respective pro-
gram code segment. In some 1instances, for example, the
unique value assigned to the detection variable of the state
machine 1n the process of the respective program code
segment operating the state machine 1s identical to the value
of the 1dentification variable associated with the respective
program code segment. In some other instances, for
example, the unique value assigned to the detection variable
of the state machine i1s determined by a predefined function
that takes the value of the identification variable associated
with the respective program code segment as an input.
Additionally, 1n some instances, the unique value 1s assigned

10

15

20

25

30

35

40

45

50

55

60

65

2

to the detection variable using an assignment statement for
the detection variable in the respective program code seg-

ment.

The method includes determining a current value of the
detection variable corresponding to an abnormal program
exit during a process of the set of program code segments
operating at least one state machine. In some instances, to
determine the current value of the detection variable, the
method 1ncludes retrieving a context associated with the at
least one state machine when the abnormal program exit
occurs, and determiming the current value of the detection
variable based on the retrieved context. In some instances, to
retrieve the context, the method includes retrieving a core
file generated 1n response to the abnormal program exit, and
parsing the core {ile to determine the context associated with
the at least one state machine when the abnormal program
exit occurs.

The method also 1ncludes determining a suspicious pro-
gram code segment from the set of program code segments
based on a comparison of the current value of the detection
variable with the unique values of the respective 1dentifica-
tion variables associated with the plurality of program code
segments. In some 1nstances, the method includes determin-
ing the suspicious program code segment based on a deter-
mination that the current value of the detection variable was
assigned to the detection variable based on the value of the
identification variable associated with the suspicious pro-
gram code segment.

The method further includes outputting debug informa-
tion for the abnormal program exit, where the debug infor-
mation includes information of at least one statement 1n the
suspicious program code segment. In some instances, the
debug information includes location information of an
assignment statement for the detection variable 1n the sus-
picious program code segment. Such location information
can include, for example, at least one of a line number
associated with the assignment statement, a name of a
function that includes the assignment statement, and a file
name of a source file that includes the assignment statement.

In some embodiments, an apparatus includes one or more
processors and memory storing one or more programs for
execution by the one or more processors. The one or more
programs include instructions that cause the apparatus to
perform the method for finding bugs in program code as
described above. In some embodiments, a non-transitory
computer readable storage medium stores one or more
programs including instructions for execution by one or
more processors. The mstructions, when executed by the one
Oor more processors, cause the processors to perform the
method for finding bugs 1n program code at an apparatus as
described above.

Various advantages of the present application are apparent
in light of the descriptions below.

BRIEF DESCRIPTION OF DRAWINGS

-

T'he atorementioned implementation of the application as
well as additional 1mplementations will be more clearly
understood as a result of the following detailed description
of the various aspects of the application when taken 1n
conjunction with the drawings.

FIG. 1 1s a flow chart illustrating a method performed at
an apparatus for finding bugs in program code 1n accordance
with some embodiments.

FIG. 2A 1s a flow chart illustrating another method
performed at an apparatus for finding bugs 1n program code
in accordance with some embodiments.

US 9,772,924 B2

3

FIG. 2B 1s a schematic diagram illustrating the method in
FIG. 2A.

FIG. 3 1s a flow chart illustrating another method per-
formed at an apparatus for finding bugs 1n program code 1n
accordance with some embodiments.

FIG. 4 1s a flow chart illustrating another method per-
formed at an apparatus for finding bugs 1n program code 1n
accordance with some embodiments.

FIG. 5 1s a flow chart illustrating another method per-
formed at an apparatus for finding bugs 1n program code 1n
accordance with some embodiments.

FIG. 6A 1s a block diagram illustrating modules of an
apparatus for finding bugs 1n program code 1n accordance
with some embodiments.

FIG. 6B 1s a block diagrams illustrating modules of
another apparatus for finding bugs in program code 1n
accordance with some embodiments.

FIG. 7 1s a block diagram illustrating components of an
apparatus for finding bugs 1 program code in accordance
with some embodiments.

Like reference numerals refer to corresponding parts
throughout the several views of the drawings.

DETAILED DESCRIPTION

Reference will now be made 1n detail to embodiments,
examples of which are illustrated 1 the accompanying
drawings. In the following detailed description, numerous
specific details are set forth 1n order to provide a thorough
understanding of the subject matter presented herein. But it
will be apparent to one skilled 1n the art that the subject
matter may be practiced without these specific details. In
other instances, well-known methods, procedures, compo-
nents, and circuits have not been described in detail so as not
to unnecessarily obscure aspects of the embodiments.

In order to make the objectives, technical solutions, and
advantages of the present application comprehensible,
embodiments of the present application are further described
in detail below with reference to the accompanying draw-
Ings.

FIG. 1 1s a flow chart illustrating a method performed at
an apparatus for finding bugs in program code 1n accordance
with some embodiments. The apparatus performing the
method 100 can be any type of apparatus, device, tool and/or
machine that can be used for debugging program code. Such
an apparatus can be operatively coupled to, attached to, or
included 1n (e.g., as a part of) a machine (e.g., a computer or
any other type of electronic device) that executes the pro-
gram code. The program code (potentially) debugged by the
apparatus can be any type of program code that 1s executable
by a machine (e.g., a computer or any other type of elec-
tronic device). Such program code can be written and/or
complied 1n any program language such as, for example,
assembly languages, BASIC, C, C++, C#, Cython, F#,
Fortran, Java, JavaScript, Maple, Mathematica, MATLAB,
Objective-C, Perk PHP, Python, Visual Basic, and/or the
like.

In some embodiments, the apparatus performing the
method 100 can be, for example, a smart phone, a mobile
Internet device (MID), a personal digital assistant (PDA), a
tablet computer, a laptop computer, a handheld computer, a
desktop computer, a workstation, a server, and/or any other
clectronic device that can be used for debugging program
code. In some embodiments, the apparatus can be a portion,
a module or a component of a device (e.g., the devices listed
above). In such embodiments, the apparatus can include, for
example, a hardware-based module (e.g., a digital signal

10

15

20

25

30

35

40

45

50

55

60

65

4

processor (DSP), an application-specific integrated circuit
(ASIC), a field programmable gate array (FPGA), etc.), a
soltware-based module (e.g., a module of computer code
executed at a processor, a set of processor-readable instruc-
tions executed at a processor, etc.), or a combination of
hardware and software modules. Instructions or code of such
an apparatus can be stored 1n a memory of a device (1.e., the
device that hosts the apparatus) and executed at a processor
(e.g., CPU) of the device. In some embodiments, the appa-
ratus can include one or more debugger tools such as, for
example, GNU Debugger (GDB), Intel Debugger, LLDB,
Microsolt Visual Studio Debugger, Valgrind, WinDbg,
Eclipse, efc.

In operation, the apparatus can be operated by a user to
debug program code. Such a user can be, for example, a
program debugger, a program developer, a software engi-
neer, a system administrator, etc. In some embodiments, the
user can operate the apparatus to manually perform opera-
tions ol a debugging method (e.g., as shown and described
with respect to FIGS. 1-5) 1n a step-by-step manner. In some
other embodiments, the user can send an instruction to the
apparatus such that the apparatus is triggered to automati-
cally perform operations of a debugging method.

In some embodiments, the apparatus performing the
method 100 can include one or more processors and
memory. In such embodiments, the method 100 1s (at least
partially) governed by mstructions or code of an application
that are stored in a non-transitory computer readable storage
medium of the apparatus and executed by the one or more
processors of the apparatus. The application 1s associated
with finding bugs 1n program code. Such an application can
be stored 1n a memory of the apparatus (e.g., the non-
transitory computer readable storage medium of the appa-
ratus) and executed at a processor of the apparatus. As
shown 1 FIG. 1, the method 100 includes the following
steps.

At S101, for each program code segment from a set of
program code segments, the apparatus assigns a unique
value to a detection variable of a state machine 1n a process
of the respective program code segment operating the state
machine, where the unique value 1s based on a value of an
identification variable associated with the respective pro-
gram code segment.

In some embodiments, a program code segment 1s 1n a
process of operating a state machine after the program code
segment performs a cut-in operation on the state machine
and before the program code segment performs a cut-out
operation on the state machine. In other words, after the
program code segment initiates a cut-in operation on the
state machine, the program code segment enters a process of
operating the state machine. Such a process continues while
the program code segment performs the cut-in operation, the
cut-out operation and/or other operations (e.g., assignment
operation) on the state machine, until the program code
segment completes the cut-out operation on the state
machine.

In some embodiments, the apparatus assigns a value of an
identification variable associated with a respective program
code segment, as the unique value, to the detection variable
ol a respective state machine. The respective state machine
1s the state machine operated by the respective program code
segment from the set of program code segments when the
assignment 1s performed. Such an assignment method 1s
shown and described with respect to FIGS. 2A and 4.

In some other embodiments, the apparatus assigns a value
calculated based on the value of the identification variable
associated with the respective program code segment, as the

US 9,772,924 B2

S

unique value, to the detection variable of the respective state
machine. Such an assignment method 1s shown and
described with respect to FIGS. 3 and 3. In such embodi-
ments, for example, the unique value assigned to the detec-
tion variable can be determined by a predefined function that
takes the value of the 1dentification variable associated with
the respective program code segment as an input. For
example, such a predefined function can i1nclude adding a
predefined value to and/or subtracting a predefined value
from the value of the identification variable. For another
example, such a predefined function can include multiplying
and/or dividing the value of the identification variable by a
predefined value. In such embodiments, the predefined func-
tion can be any mathematical and/or logical function where
the value of the idenfification variable can be uniquely
determined from the result of the function by a reverse
calculation.

In some embodiments, values of the identification vari-
ables associated with different program code segments are
different from each other. That 1s, an i1dentification variable
associated with a program code segment from the set of
program code segments has a value different from that of an
identification variable associated with another program code
segment from the set of program code segments. Similarly,
the results calculated by the predefined function that takes
the values of the identification variables associated with
different program code segments as imputs are different from
cach other for the corresponding different program code
segments. As a result, the values assigned to the detection
variable in the processes of the different program code
segments operating one or more state machines are different
for the different program code segments (corresponding to
the diflerent processes). In other words, each value assigned
to the detection variable 1n a respective process 1s a unique
value associated with a respective program code segment
that operates a state machine in that process.

In some embodiments, a program code segment repre-
sents a minimum code granularity that includes code (or
instructions) for operating at least a cut-in operation and a
cut-out operation on a state machine. Such a program code
segment can include multiple (e.g., several, tens of, hun-
dreds of, thousands of, tens of thousands of, etc.) program
code subsegments. In some embodiments, a program code
can be arbitrary divided into multiple program code seg-
ments 1n any suitable method. In some embodiments, a state
machine represents an object model that can transfer
between a finite number of internal states when being driven
by certain external events such as, for example, being
operated by a program code segment.

At 5102, the apparatus determines a current value of the
detection variable corresponding to an abnormal program
exit during a process of the set of program code segments
operating at least one state machine. In some embodiments,
to determine the current value of the detection variable, the
apparatus retrieves a context associated with a state machine
when the abnormal program exit occurs, and then deter-
mines the current value of the detection variable based on
the retrieved context. In some embodiments, an abnormal
program exit refers to an event that a program code (includ-
ing one or multiple program code segments) 1s not executed
in accordance with a predefined process as programmed
and/or 1s terminated in an abnormal manner.

In some embodiments, the state machines operated by the
various program code segments from the set of program
code segments can be the same state machine, different state
machines, or partially-different state machines. The values
of the identification variables associated with diflerent pro-

10

15

20

25

30

35

40

45

50

55

60

65

6

gram code segments can be different. As a result, the values
assigned to the detection vaniable are different for difierent
processes. In other words, the values assigned to the detec-
tion variable are different at different times (1.e., correspond-
ing to diflerent processes). Thus, the current value of the
detection variable can be used to determine which program
code segment 1s operating a state machine when that abnor-
mal program exit occurs. Specifically, if the current value of
the detection variable 1s assigned based on (e.g., identical to,
calculated using the predefined function of) a value of an
identification variable associated with a program code seg-
ment (1.e., when that program code segment operates a
respective state machine), then that program code segment
1s a suspicious program code segment that operates the
respective state machine when the abnormal program exit
OCCUrs.

In some embodiments, to determine a current value of the
detection variable corresponding to an abnormal program
exit, the apparatus can first retrieve a core file generated 1n
response to the abnormal program exit. The apparatus can
then parse the core file to determine a context associated
with the respective state machine when the abnormal pro-
gram ¢xit occurs. The apparatus can further determine the
current value of the detection variable based on the context.
Such a method 1s shown and described with respect to FIGS.
2A-5.

At S103, the apparatus determines a suspicious program
code segment from the set of program code segments based
on a comparison of the current value of the detection
variable with the unique values of the respective identifica-
tion variables associated with the set of program code
segments. As discussed above, by performing the compari-
son, the apparatus can determine the suspicious program
code segment based on a determination that the current
value of the detection variable was assigned to the detection
variable based on the value of the identification variable
associated with the suspicious program code segment. For
example, by comparing the current value of the detection
variable with the values of the respective identification
variables associated with the set of program code segments,
the apparatus can determine that the current value of the
detection variable was i1dentical to the value of the i1denti-
fication vaniable associated with the suspicious program
code segment, or the current value of the detection variable
was calculated using the predefined function that takes the
value of the idenftification variable associated with the
suspicious program code segment as an input.

In some embodiments, 1n order to perform the compari-
son, the apparatus 1s configured to store a set of values of
identification variables, where each value from the set of
values 1s associated with a respective program code segment
from the set of program code segments. In such embodi-
ments, the apparatus can store the set of values of 1dentifi-
cation variables i1n, for example, a database within the
apparatus or at an external storage device accessible to the
apparatus. In performing operations of S103, the apparatus
retrieves values of 1dentification variables from the database,
and then compares the current value of the detection variable
with the retrieved values of identification variables.

In some embodiments, to perform the comparison and
determine the suspicious program code segment, the appa-
ratus can output (e.g., print) values of all identification
variables associated with each program code segment from
the set of program code segments. The apparatus can then
search through the output values of all identification vari-
ables to capture the one that 1s 1dentical to the current value
of the detection variable. The program code segment asso-

US 9,772,924 B2

7

ciated with the captured value of the respective identification
variable 1s the suspicious program code segment. Alterna-
tively, the apparatus can output (e.g., print) all the results
calculated by the predefined function that takes, as inputs,
the values of the identification vanables associated with
cach program code segment from the set of program code
segments. The apparatus can then search through the calcu-
lated results to capture the one that 1s identical to the current
value of the detection variable. The program code segment
associated with the captured calculated result 1s the suspi-
cious program code segment.

At S104, the apparatus outputs debug information for the
abnormal program exit, where the debug information
includes information of at least one statement in the suspi-
cious program code segment. In some embodiments, the
debug information includes location information of an
assignment statement for the detection variable or other
statement 1n the suspicious program code segment. In some
embodiments, the location information 1includes, {for
example, a line number associated with the assignment
statement or another statement included in the suspicious
program code segment, a name of a function that imncludes
the assignment statement or another statement included in
the suspicious program code segment, a file name of a
source file that includes the assignment statement or another
statement included 1n the suspicious program code segment,
and/or the like. In some embodiments, the location infor-
mation can include any other information usetul for locating
the potential bug in the program code.

In some embodiments, after determining the debug infor-
mation (e.g., including the location information) associated
with a potential bug, the apparatus can store the current
value of the detection vaniable and the debug information in
a data structure such as, for example, a list. Such a list can
use a variable name of the detection variable as a key. In
such embodiments, the apparatus can efliciently and quickly
retrieve the stored current value of the detection variable
and/or the debug information from the data structure by
using the variable name of the detection variable as a search
key.

In some embodiments, the apparatus can assign the
unique value (determined based on the value of the identi-
fication variable associated with the respective program
code segment) to the detection variable by invoking an
assignment statement for the detection variable in a respec-
tive program code segment. In such embodiments, each of
one or more program code segments from the set of program
code segments can include such an assignment statement for
the detection variable. The apparatus can invoke the assign-
ment statement mcluded 1n a program code segment during,
the process of that program code segment operating a
respective state machine.

In some other embodiments, the apparatus can assign the
unique value (determined based on the value of the identi-
fication variable associated with the respective program
code segment) to the detection variable by invoking an
assignment statement for the detection vanable 1n a third-
party tool or a code-debugging tool such as, for example,
GDB. In such embodiments, 1n the process of each program
code segment operating a respective state machine, the
apparatus activates the third-party tool or code-debugging
tool to mvoke the assignment statement for performing the
assigning operation.

In performing the method 100, the apparatus assigns
various unique values to the detection variable of a respec-
tive state machine corresponding to each process of a
respective program code segment operating that state

10

15

20

25

30

35

40

45

50

55

60

65

8

machine. By performing such assigning operations, the
apparatus attaches a unique tracking mark of a respective
program code segment to a respective state machine (via the
umique value of the detection variable associated with the
respective state machine). By retrieving and analyzing the
context corresponding to an abnormal program exit, the
apparatus can determine the state machine that i1s operated
when the abnormal program exit occurs. Meanwhile, the
apparatus can also determine the current value of the detec-
tion variable of that state machine. As described above, each
possible current value of a detection variable can be
unmiquely mapped (1.€., based on a one-to-one mapping) to a
value of an 1dentification variable associated with a respec-
tive program code segment. Thus, the apparatus can deter-
mine the respective program code segment, as a suspicious
program code segment, based on the current value of the
detection variable. As a result, the apparatus can obtain
location information of a potential bug that 1s presumably
included in the suspicious program code.

FIG. 2A 1s a flow chart illustrating another method 200
performed at an apparatus for finding bugs 1n program code
in accordance with some embodiments. The apparatus per-
forming the method 200 can be structurally and functionally
similar to the apparatus performing the method 100
described above with respect to FIG. 1. Particularly, the
program code debugged by the apparatus includes a set of
program code segments. The apparatus 1s configured to
assign a unique value to a detection variable of a state
machine while a respective program code segment from the
set of program code segments 1s operating that state
machine. In some embodiments, each program code seg-
ment from the set of program code segments 1s operating the
same state machine. In such embodiments, a detection
variable of that state machine 1s assigned different values by
the apparatus when a respective program code segments 1S
operating that state machine.

FIG. 2B 1s a schematic diagram illustrating the method
200 1n FIG. 2A. As shown 1n FIG. 2B, each of program code
segments 211, 221 and 231 operates the same state machine
20, which 1s associated with a detection variable 25. Thus,
when the program code segment 211 operates the state
machine 20 at a first stage, the state machine 20 1s 1n a state
Al, and the apparatus assigns a value to the detection
variable 25 using an assignment statement 21 included 1n the
program code segment 211. Similarly, when the program
code segment 221 operates the state machine 20 at a second
stage, the state machine 20 1s 1n a state A2, and the apparatus
assigns a value to the detection variable 25 using an assign-
ment statement 22 included in the program code segment
221. Furthermore, when the program code segment 231
operates the state machine 20 at a third stage, the state
machine 20 1s in a state A3, and the apparatus assigns a value
to the detection variable 25 using an assignment statement
23 included in the program code segment 231. Since the
states Al, A2 and A3 are different from each other, the
values assigned to the detection variable 1n the three stages
are different from each other. Thus, the apparatus can
determine which stage the stage machine 1s 1n (correspond-
ing to a program code segment from the three program code
segments) based on a current value of the detection variable
when an abnormal program exist occurs.

Similar to the apparatus performing the method 100, the
apparatus performing the method 200 can include one or
more processors and memory. In such embodiments, the
method 200 1s (at least partially) governed by instructions or
code of an application that are stored 1n a non-transitory
computer readable storage medium of the apparatus and

US 9,772,924 B2

9

executed by the one or more processors of the apparatus. The
application is associated with finding bugs in program code.
Such an application can be stored n a memory of the
apparatus (e.g., the non-transitory computer readable storage
medium of the apparatus) and executed at a processor of the
apparatus. As shown 1n FIG. 2A, the method 200 includes
the following steps.

At 5201, for each program code segment from the set of
program code segments, the apparatus assigns a unique
value to the detection variable of the state machine in a
process of the respective program code segment operating,
the state machine. The unique value 1s 1dentical to a value of
an 1dentification variable associated with the respective
program code segment. Operations of S201 are similar to the
operations of S101 shown and described above with respect
to FIG. 1. Additionally, as show and described above with
respect to FIG. 2B, the state machine operated by each
program code segment from the set of program code seg-
ments 1s the same state machine, and the detection variable
1s the same variable. Furthermore, since each program code
segment from the set of program code segments 1s different
from each other (1.e., including different code), the values of
the 1dentification variables associated with those program
code segments are different from each other. As a result,
different values are assigned to the detection variable of the
state machine corresponding to the set of program code
segments.

Operations of S202-S204 are similar to the operations of
S102 shown and described above with respect to FIG. 1.
Specifically, at S202, the apparatus retrieves a core file
generated 1n response to an abnormal program exit during a
process of the set of program code segments operating the
state machine. The core file 1s associated with (or contains
information associated with) a program code segment from
the set of program code segments, which 1s operating the
state machine when the abnormal program exit occurs. Thus,
the core file can be used to determine the suspicious program
code segment. In some embodiments, each program code
segment from the set of program code segments 15 poten-
tially associated with the abnormal program exit. In other
words, the abnormal program exit might occur during a
process of any program code segment from the set of
program code segments operating the state machine. For
example, as shown 1n FIG. 2B, an abnormal program exit
might occur when any of the program code segments 211,
221 or 231 operates the state machine 20. As a result, the
apparatus retrieves a core lile generated 1n response to the
abnormal program exit. Such a core file contains informa-
tion associated with the suspicious program code segment
(1.e., the one that operates the state machine when the
abnormal program exit occurs), which can be used to
determine the suspicious program code segment.

At S203, the apparatus parses the core file to determine a
context associated with the state machine when the abnor-
mal program exit occurs. Such a context includes mforma-
tion associated with the suspicious program code segment,
which can be used to determine the suspicious program code
segment. At S204, the apparatus determines a current value
ol the detection variable based on the context. As describe
above, although 1t 1s the same state machine being operated
by each program code segment from the set of program code
segments, the values assigned to the detection variable
corresponding to each program code segment from the set of
program code segments are different from each other. Thus,
the current value of the detection variable 1s uniquely
associated with a program code segment that operates the
state machine when the abnormal program exit occurs.

-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

At S205, the apparatus determines a suspicious program
code segment from the set of program code segments based
on a comparison ol the current value of the detection
variable with the unique values of the respective 1dentifica-
tion variables associated with the set of program code
segments. Operations of S205 are similar to the operations
of S103 shown and described above with respect to FIG. 1.
At S206, the apparatus outputs debug information for the
abnormal program exit, where the debug information
includes information of at least one statement 1n the suspi-
cious program code segment. Operations of S206 are similar
to the operations of S104 shown and described above with
respect to FI1G. 1.

FIG. 3 1s a flow chart illustrating another method 300
performed at an apparatus for finding bugs in program code
in accordance with some embodiments. The apparatus per-
forming the method 300 can be structurally and functionally
similar to the apparatuses performing the methods 100, 200
described above with respect to FIGS. 1 and 2A. Particu-
larly, the program code debugged by the apparatus includes
a set of program code segments. The apparatus 1s configured
to assign a unique value to a detection variable of a state
machine while a respective program code segment from the
set of program code segments 1s operating that state
machine. Similar to the embodiments described with respect
to FIGS. 2A and 2B, each program code segment from the
set of program code segments 1s operating the same state
machine. In such embodiments, a detection variable of that
state machine 1s assigned diflerent values by the apparatus
when a respective program code segments 1s operating that
state machine.

Similar to the apparatuses performing the methods 100
and 200, the apparatus performing the method 300 can
include one or more processors and memory. In such
embodiments, the method 300 1s (at least partially) governed
by 1structions or code of an application that are stored in a
non-transitory computer readable storage medium of the
apparatus and executed by the one or more processors of the
apparatus. The application 1s associated with finding bugs 1n
program code. Such an application can be stored in a
memory of the apparatus (e.g., the non-transitory computer
readable storage medium of the apparatus) and executed at
a processor of the apparatus. As shown 1n FIG. 3, the method
300 includes the following steps.

At S301, for each program code segment from the set of
program code segments, the apparatus assigns a unique
value to the detection variable of the state machine m a
process of the respective program code segment operating
the state machine. The unique value 1s determined by a
predefined function that takes a value of an identification
variable associated with the respective program code seg-
ment as an mput. Operations of S301 are similar to the
operations of S101 shown and described above with respect
to FIG. 1. Additionally, as described above, the state
machine operated by each program code segment from the
set of program code segments 1s the same state machine, and
the detection variable 1s the same variable. Furthermore,
since each program code segment from the set of program
code segments 1s different from each other (1.e., including
different code), the values of the idenftification variables
associated with those program code segments are different
from each other. As a result, different values are assigned to
the detection variable of the state machine corresponding to
the set of program code segments.

Operations of S302-5304 are similar to the operations of
S102 and S202-5204 shown and described above with
respect to FIGS. 1 and 2A. Specifically, at S302, the appa-

US 9,772,924 B2

11

ratus retrieves a core file generated in response to an
abnormal program exit during a process of the set of
program code segments operating the state machine. The
core file 1s associated with (or contains information associ-
ated with) a program code segment from the set of program
code segments, which 1s operating the state machine when
the abnormal program exit occurs. Thus, the core file can be
used to determine the suspicious program code segment. In
some embodiments, each program code segment from the
set of program code segments 1s potentially associated with
the abnormal program exit. In other words, the abnormal
program exit might occur during a process of any program
code segment from the set of program code segments
operating the state machine.

At S303, the apparatus parses the core file to determine a
context associated with the state machine when the abnor-
mal program exit occurs. Such a context includes informa-
tion associated with the suspicious program code segment,
which can be used to determine the suspicious program code
segment. At S304, the apparatus determines a current value
of the detection variable based on the context. As describe
above, although 1t 1s the same state machine being operated
by each program code segment from the set of program code
segments, the values assigned to the detection variable
corresponding to each program code segment from the set of
program code segments are diflerent from each other. Thus,
the current value of the detection variable 1s uniquely
associated with a program code segment that operates the
state machine when the abnormal program exit occurs.

At S305, the apparatus determines a suspicious program
code segment from the set of program code segments based
on a comparison ol the current value of the detection
variable with the unique values of the detection variable
associated with the set of program code segments. Opera-
tions of S305 are similar to the operations of S103 shown
and described above with respect to FIG. 1. At S306, the
apparatus outputs debug information for the abnormal pro-
gram exit, where the debug imnformation includes informa-
tion of at least one statement 1n the suspicious program code
segment. Operations of S306 are similar to the operations of
S104 shown and described above with respect to FIG. 1.

FIG. 4 1s a flow chart illustrating another method 400
performed at an apparatus for finding bugs in program code
in accordance with some embodiments. The apparatus per-
forming the method 400 can be structurally and functionally
similar to the apparatuses performing the methods 100-300
described above with respect to FIGS. 1-3. Particularly, the
program code debugged by the apparatus includes a set of
program code segments. The apparatus 1s configured to
assign a unique value to a detection variable of a state
machine while a respective program code segment from the
set of program code segments 1s operating that state
machine. Different from the embodiments described with
respect to FIGS. 2A, 2B and 3, the set of program code
segments operate a set of state machines including one or
more state machines. In other words, different program code
segments from the set of program code segments can operate
the same or different state machines. In such embodiments,
a detection variable of a respective state machine 1s assigned
different values by the apparatus when a respective program
code segments 1s operating that state machine.

Similar to the apparatuses performing the methods 100-
300, the apparatus performing the method 400 can include
one or more processors and memory. In such embodiments,
the method 400 1s (at least partially) governed by instruc-
tions or code of an application that are stored 1n a non-
transitory computer readable storage medium of the appa-

10

15

20

25

30

35

40

45

50

55

60

65

12

ratus and executed by the one or more processors of the
apparatus. The application 1s associated with finding bugs 1n
program code. Such an application can be stored 1n a
memory of the apparatus (e.g., the non-transitory computer
readable storage medium of the apparatus) and executed at
a processor of the apparatus. As shown 1n FIG. 4, the method
400 includes the following steps.

At S401, for each program code segment from the set of
program code segments, the apparatus assigns a unique
value to a detection variable of a state machine from the set
of state machines 1 a process of the respective program
code segment operating the respective state machine. The
unmique value 1s identical to a value of an identification
variable associated with the respective program code seg-
ment. Operations of S401 are similar to the operations of
S101 shown and described above with respect to FIG. 1.
Additionally, as described above, the state machine(s) oper-
ated by the set of program code segments can be the same
state machine or different state machines, and the detection
variable(s) can be the same variable or different variables.
Furthermore, since each program code segment from the set
of program code segments 1s different from each other (i.e.,
including different code), the values of the identification
variables associated with those program code segments are
different from each other. As a result, different values are
assigned to the detection variable(s) of the state machine(s)
corresponding to the set of program code segments.

Operations of S402-S404 are similar to the operations of
S102, S202-S204 and S302-S304 shown and described
above with respect to FIGS. 1-3. Specifically, at S402, the
apparatus retrieves a core file generated 1n response to an
abnormal program exit during a process ol the set of
program code segments operating the set of state machines.
The core file 1s associated with (or contains information
associated with) a program code segment from the set of
program code segments, which 1s operating a respective
state machine from the set of state machines when the
abnormal program exit occurs. Thus, the core file can be
used to determine the suspicious program code segment. In
some embodiments, each program code segment from the
set of program code segments 1s potentially associated with
the abnormal program exit. In other words, the abnormal
program exit might occur during a process of any program
code segment from the set of program code segments
operating a respective state machine.

At S403, the apparatus parses the core file to determine a
context associated with a respective state machine when the
abnormal program exit occurs. Such a context includes
information associated with the suspicious program code
segment, which can be used to determine the suspicious
program code segment. At S404, the apparatus determines a
current value of the detection variable based on the context.
As describe above, regardless of the same state machine or
different state machines being operated by the set of program
code segments, the values assigned to a respective detection
variable corresponding to each program code segment from
the set of program code segments are different from each
other. Thus, the current value of the detection variable 1s
umiquely associated with a program code segment that
operates a respective state machine when the abnormal
program exit occurs.

At S4035, the apparatus determines a suspicious program
code segment from the set of program code segments based
on a comparison ol the current value of the detection
variable with the umque values of the identification vari-
ables associated with the set of program code segments.
Operations of S405 are similar to the operations of S103

US 9,772,924 B2

13

shown and described above with respect to FIG. 1. At S406,
the apparatus outputs debug information for the abnormal
program exit, where the debug information includes infor-
mation of at least one statement in the suspicious program
code segment. Operations of S406 are similar to the opera-
tions of S104 shown and described above with respect to
FIG. 1.

FIG. 5 1s a flow chart illustrating another method per-
formed at an apparatus for finding bugs 1n program code 1n
accordance with some embodiments. The apparatus per-
forming the method 500 can be structurally and functionally
similar to the apparatuses performing the methods 100-400
described above with respect to FIGS. 1-4. Particularly, the
program code debugged by the apparatus includes a set of
program code segments. The apparatus 1s configured to
assign a unique value to a detection variable of a state
machine while a respective program code segment from the
set of program code segments 1s operating that state
machine. Similar to the embodiments described with respect
to FIG. 4, the set of program code segments operate a set of
state machines including one or more state machines. In
other words, different program code segments from the set
of program code segments can operate the same or different
state machines. In such embodiments, a detection variable of
a respective state machine 1s assigned different values by the
apparatus when a respective program code segments 1s
operating that state machine.

Similar to the apparatuses performing the methods 100-
400, the apparatus performing the method 500 can include
one or more processors and memory. In such embodiments,
the method 500 1s (at least partially) governed by instruc-
tions or code of an application that are stored 1 a non-
transitory computer readable storage medium of the appa-
ratus and executed by the one or more processors of the
apparatus. The application 1s associated with finding bugs 1n
program code. Such an application can be stored 1n a
memory of the apparatus (e.g., the non-transitory computer
readable storage medium of the apparatus) and executed at
a processor of the apparatus. As shown 1n FIG. 5, the method
500 includes the following steps.

At S501, for each program code segment from the set of
program code segments, the apparatus assigns a unique
value to a detection variable of a state machine from the set
ol state machines in a process of the respective program
code segment operating the respective state machine. The
unique value 1s determined by a predefined function that
takes a value of an 1dentification variable associated with the
respective program code segment as an iput. Operations of
S501 are similar to the operations of S101 shown and
described above with respect to FIG. 1. Additionally, as
described above, the state machine(s) operated by the set of
program code segments can be the same state machine or
different state machines, and the detection variable(s) can be
the same variable or different variables. Furthermore, since
cach program code segment from the set of program code
segments 1s different from each other (1.e., including ditfer-
ent code), the values of the identification variables associ-
ated with those program code segments are diflerent from
cach other. As a result, different values are assigned to the
detection variable(s) of the state machine(s) corresponding
to the set of program code segments.

Operations of S502-S504 are similar to the operations of
S102, S202-S204, S302-S304 and S402-S404 shown and
described above with respect to FIGS. 1-4. Specifically, at
S502, the apparatus retrieves a core lile generated 1n
response to an abnormal program exit during a process of the
set of program code segments operating the set of state

10

15

20

25

30

35

40

45

50

55

60

65

14

machines. The core file 1s associated with (or contains
information associated with) a program code segment from
the set of program code segments, which i1s operating a
respective state machine from the set of state machines when
the abnormal program exit occurs. Thus, the core file can be
used to determine the suspicious program code segment. In
some embodiments, each program code segment from the
set of program code segments 1s potentially associated with
the abnormal program exit. In other words, the abnormal
program exit might occur during a process of any program
code segment from the set of program code segments
operating a respective state machine.

At S503, the apparatus parses the core file to determine a
context associated with a respective state machine when the
abnormal program exit occurs. Such a context includes
information associated with the suspicious program code
segment, which can be used to determine the suspicious
program code segment. At S504, the apparatus determines a
current value of the detection variable based on the context.
As describe above, regardless of the same state machine or
different state machines being operated by the set of program
code segments, the values assigned to a respective detection
variable corresponding to each program code segment from
the set of program code segments are diflerent from each
other. Thus, the current value of the detection variable 1s
umiquely associated with a program code segment that
operates a respective state machine when the abnormal
program e€xit occurs.

At S505, the apparatus determines a suspicious program
code segment from the set of program code segments based
on a comparison ol the current value of the detection
variable with the unique values of the detection variables

associated with the set of program code segments. Opera-
tions of S505 are similar to the operations of S103 shown
and described above with respect to FIG. 1. At S506, the
apparatus outputs debug information for the abnormal pro-
gram exit, where the debug information includes informa-
tion of at least one statement 1n the suspicious program code
segment. Operations of S506 are similar to the operations of
S104 shown and described above with respect to FIG. 1.

FIG. 6A 1s a block diagram illustrating modules of an
apparatus 600 for finding bugs i program code 1n accor-
dance with some embodiments. The apparatus 600 can be
structurally and functionally similar to the apparatuses
described with respect to FIGS. 1-5. As shown 1n FIG. 6A,
the apparatus 600 includes an assignment module 610, a
retrieving module 620, a searching module 630 and an
output module 640. In some embodiments, the apparatus
600 can include more or less modules than those shown 1n
FIG. 6A.

In some embodiments, each module included in the
apparatus 600 can be a hardware-based module (e.g., a
digital signal processor (DSP), an application-specific inte-
grated circuit (ASIC), a field programmable gate array
(FPGA), etc.), a software-based module (e.g., a module of
computer code executed at a processor, a set ol processor-
readable instructions executed at a processor, etc.), or a
combination of hardware and software modules. Instructions
or code of each module can be stored 1n a memory of the
apparatus 600 (not shown 1 FIG. 6A) and executed at a
processor (e.g., a CPU) of the apparatus 600 (not shown in
FIG. 6A). Overall, the assignment module 610, the retriev-
ing module 620, the searching module 630 and the output
module 640 can be configured to collectively perform the
methods 100-500 shown and described with respect to
FIGS. 1-5.

US 9,772,924 B2

15

Specifically, the assignment module 610 1s configured to,
among other functions, for each program code segment from
a set of program code segments, assign a unique value to a
detection variable of a state machine 1 a process of the
respective program code segment operating the state
machine. Similarly stated, the assignment module 610 1s
configured to perform S101 of the method 100 described
with respect to FIG. 1. The unique value 1s based on a value
of an identification variable associated with the respective
program code segment. In some embodiments, as shown and
described with respect to FIGS. 2A and 4, the assignment
module 610 1s configured to assign a value of an 1dentifi-
cation variable associated with a respective program code
segment, as the unique value, to the detection variable of a
respective state machine.

In some other embodiments, as shown and described with
respect to FIGS. 3 and 35, the assignment module 610 1s
configured to assign a value calculated based on the value of
the i1dentification variable associated with the respective
program code segment, as the unmique value, to the detection
variable of the respective state machine. In such embodi-
ments, for example, the unique value assigned to the detec-
tion variable can be determined by a predefined function that
takes the value of the 1dentification variable associated with
the respective program code segment as an input. Further-
more, the predefined function can be any mathematical
and/or logical function where the value of the identification
variable can be uniquely determined from the result of the
function by a reverse calculation.

The retrieving module 620 1s configured to, among other
functions, determine a current value of the detection variable
corresponding to an abnormal program exit during a process
of the set of program code segments operating at least one
state machine. Similarly stated, the retrieving module 620 1s
configured to perform S102 of the method 100 described
with respect to FIG. 1. In some embodiments, to determine
the current value of the detection vanable, the retrieving
module 620 1s configured to retrieve a context associated
with a state machine when the abnormal program exit
occurs, and then determine the current value of the detection
variable based on the retrieved context.

In some embodiments, to determine a current value of the
detection variable corresponding to an abnormal program
exit, the retrieving module 620 1s configured to retrieve a
core file generated 1n response to the abnormal program exit.
The retrieving module 620 1s also configured to parse the
core file to determine a context associated with the respec-
tive state machine when the abnormal program exit occurs.
The retrieving module 620 1s further configured to determine
the current value of the detection vanable based on the
context.

The searching module 630 1s configured to, among other
functions, determine a suspicious program code segment
from the set of program code segments based on a compari-
son of the current value of the detection variable with the
unique values of the respective 1dentification variables asso-
ciated with the set of program code segments. Similarly
stated, the searching module 630 1s configured to perform
S103 of the method 100 described with respect to FIG. 1.
Specifically, by comparing the current value of the detection
variable with the values of the respective identification
variables associated with the set of program code segments,
the searching module 630 1s can determine that the current
value of the detection variable was 1dentical to the value of
the i1dentification variable associated with the suspicious
program code segment, or the current value of the detection
variable was calculated using the predefined function that

10

15

20

25

30

35

40

45

50

55

60

65

16

takes the value of the 1dentification variable associated with
the suspicious program code segment as an input.

The output module 640 1s configured to, among other
functions, output debug information for the abnormal pro-
gram ¢xit, where the debug information includes informa-
tion of at least one statement 1n the suspicious program code
segment. Similarly stated, the output module 640 1s config-
ured to perform S104 of the method 100 described with
respect to FIG. 1. In some embodiments, the debug infor-
mation includes location information of an assignment state-
ment for the detection variable or other statement in the
suspicious program code segment. In some embodiments,
the location information includes, for example, a line num-
ber associated with the assignment statement or another
statement 1ncluded in the suspicious program code segment,
a name of a function that includes the assignment statement
or another statement included in the suspicious program
code segment, a file name of a source file that includes the
assignment statement or another statement included in the
suspicious program code segment, and/or the like. In some
embodiments, the location information can include any
other information usetul for locating the potential bug 1n the
program code.

FIG. 6B 1s a block diagrams illustrating modules of
another apparatus 60 for finding bugs 1 program code 1n
accordance with some embodiments. The apparatus 60 can
be structurally and functionally similar to the apparatuses
described with respect to FIGS. 1-5. Particularly, the appa-
ratus 60 can be similar to the apparatus 600 shown and
described above with respect to FIG. 6A. As shown 1n FIG.
6B, the apparatus 60 1ncludes an assignment module 61, a
retrieving module 62, a searching module 63, an output
module 64 and a storing module 65. In some embodiments,
the apparatus 60 can include more or less modules than those
shown 1n FIG. 6B.

In some embodiments, each module included in the
apparatus 60 can be a hardware-based module (e.g., a DSP,
an ASIC, a FPGA, etc.), a software-based module (e.g., a
module of computer code executed at a processor, a set of
processor-readable 1nstructions executed at a processor,
etc.), or a combination of hardware and software modules.
Instructions or code of each module can be stored in a
memory of the apparatus 60 (not shown in FIG. 6B) and
executed at a processor (e.g., a CPU) of the apparatus 60 (not
shown 1n FIG. 6B). Overall, the assignment module 61, the
retrieving module 62, the searching module 63, the output
module 64 and the storing module 65 can be configured to
collectively perform the methods 100-500 shown and
described with respect to FIGS. 1-5.

Specifically, similar to the assignment module 610 of the
apparatus 600 in FIG. 6A, the assignment module 61 is
configured to, for each program code segment from a set of
program code segments, assign a unique value to a detection
variable of a state machine 1n a process of the respective
program code segment operating the state machine. Similar
to the retrieving module 620 of the apparatus 600 i FIG.
6A, the retrieving module 62 1s configured to determine a
current value of the detection varniable corresponding to an
abnormal program exit during a process ol the set of
program code segments operating at least one state machine.
Similar to the searching module 630 of the apparatus 600 1n
FIG. 6, the searching module 63 1s configured to determine
a suspicious program code segment from the set of program
code segments based on a comparison of the current value
of the detection variable with the unique values of the
respective 1dentification variables associated with the set of
program code segments. Similar to the output module 640 of

US 9,772,924 B2

17

the apparatus 600 in FIG. 6A, the output module 64 1s
configured to output debug information for the abnormal
program exit, where the debug information includes infor-
mation of at least one statement in the suspicious program
code segment.

Furthermore, the storing module 65 1s configured to,
among other functions, store the current value of the detec-
tion variable and the debug information 1n a data structure
such as, for example, a list. Such a list can use a variable
name of the detection variable as a key. In such embodi-
ments, the apparatus 60 can efliciently and quickly retrieve
the stored current value of the detection variable and/or the
debug information from the data structure by using the
variable name of the detection variable as a search key.

FIG. 7 1s a block diagram illustrating components of an
apparatus 700 for finding bugs in program code 1n accor-
dance with some embodiments. The apparatus 700 can be
structurally and functionally similar to the apparatuses
shown and/or described above with respect to FIGS. 1-6B.
As shown 1n FIG. 7, the apparatus 700 includes a processor
701, a communication bus 702, a user interface 703, a
network mterface 704, and a memory 705. In some embodi-
ments, an apparatus can include more or less devices,
components and/or modules than those shown 1n FIG. 7.

The processor 701 can be any processing device capable
of performing the methods 100-500 described with respect
to FIGS. 1-5. Such a processor can be, for example, a CPU,
a DSP, a FPGA, and/or the like. The processor 701 can be
configured to control the operations of other components
and/or modules of the apparatus 700. For example, the
processor 701 can be configured to control operations of the
network interface 704 and the user interface 703. For
another example, the processor 701 can be configured to
execute mstructions or code stored 1n a soltware program or
module within the memory 705.

The communication bus 702 1s configured to implement
connections and communication among the other compo-
nents of the apparatus 700. The user interface 703 1s con-
figured to interact with users operating the apparatus 700 by
using various input/output means. In some embodiments,
operations of the user interface 703 (e.g., a display screen,
a keyboard) are controlled by instructions or code stored 1n,
for example, a user interface module (not shown 1n FIG. 7)
within the memory 705.

The network interface 704 1s configured to provide and
control network interfaces of the apparatus 700 that are used
to mteract with other devices (e.g., a computing executing a
program code). The network interface 704 can include, for
example, a standard wired interface and/or a standard wire-
less 1nterface (e.g., a Wi-F1 interface). In some embodi-
ments, operations of the network intertace 704 are controlled
by instructions or code stored 1n, for example, a network
communications module (not shown 1 FIG. 7) within the
memory 705.

In some embodiments, the memory 705 can include, for
example, a random-access memory (RAM) (e.g., a DRAM,
a SRAM, a DDR RAM, etc.), a non-volatile memory such
as one or more magnetic disk storage devices, optical disk
storage devices, tlash memory devices, or other non-volatile
solid state storage devices. In some embodiments, the
memory 705 can include one or more storage devices (e.g.,
a removable memory) remotely located from other compo-
nents of the apparatus 700.

As shown 1n FIG. 7, the memory 705 includes at least an
operating system 7051 and an application program 7052.
The application program 7052 can be associated with per-
forming the methods 100-500 for debugging a program

10

15

20

25

30

35

40

45

50

55

60

65

18

code. In some embodiments, each component, program,
application or module included 1n the memory 705 can be a
hardware-based module (e.g., a DSP, a FPGA), a soltware-
based module (e.g., a module of computer code executed at
a processor, a set ol processor-readable instructions
executed at a processor), or a combination of hardware and
soltware modules. Instructions or code of each component,
program, application or module can be stored 1n the memory
705 and executed at the processor 701. Particularly, imstruc-
tions or code of the methods 100-500 shown and described
above with respect to FIGS. 1-5 can be stored in the
application program 7052 within the memory 705. In some
embodiments, the processor 701 1s configured to perform the
instructions or code stored in the application program 7052
within the memory 705, as shown and described above with
respect to the methods 100-500 1n FIGS. 1-5.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments.
However, the 1llustrative discussions above are not intended
to be exhaustive or to limit the present application to the
precise forms disclosed. Many modifications and variations
are possible 1 view of the above teachings. The embodi-
ments were chosen and described 1n order to best explain the
principles of the present application and its practical appli-
cations, to thereby enable others skilled 1in the art to best
utilize the present application and various embodiments with
vartous modifications as are suited to the particular use
contemplated.

While particular embodiments are described above, 1t will
be understood 1t 1s not intended to limit the present appli-
cation to these particular embodiments. On the contrary, the
present application includes alternatives, modifications and
equivalents that are within the spirit and scope of the
appended claims. Numerous specific details are set forth 1n
order to provide a thorough understanding of the subject
matter presented herein. But 1t will be apparent to one of
ordinary skill in the art that the subject matter may be
practiced without these specific details. In other instances,
well-known methods, procedures, components, and circuits
have not been described 1in detail so as not to unnecessarily
obscure aspects of the embodiments.

Terms “first,” “second,” “third,” “fourth,” and the like (1f
any) 1n the specifications and claims and the foregoing
accompanying drawings of the present application are used
for distinguishing similar objects, and need not be used for
describing a specific sequence or precedence order. It should
be understood that data used in this case may be exchanged
1in a proper situation, so that the embodiments of the present
application described herein can be performed 1n a sequence
besides, for example, sequences shown or described herein.
In addition, terms “include” and “have” and any forms
thereol are intend to cover non-exclusive including, for
example, including a process, a method, a system, a product
or a device of a series of steps or units, but not limited to the
steps or umits that are clearly listed, and may include other
steps or units which are inherent in the process, method,
product or device or which 1s not clearly listed.

The terminology used 1n the description of the present
application herein 1s for the purpose of describing particular
embodiments only and 1s not intended to be limiting of the
present application. As used 1n the description of the present

application and the appended claims, the singular forms *“a,”
“an,” and “the” are mtended to include the plural forms as
well, unless the context clearly indicates otherwise. It will
also be understood that the term “and/or” as used herein
refers to and encompasses any and all possible combinations
of one or more of the associated listed items. It will be

US 9,772,924 B2

19

turther understood that the terms “includes,” “including,”
“comprises,” and/or “comprising,” when used 1n this speci-
fication, specily the presence of stated features, operations,
clements, and/or components, but do not preclude the pres-
ence or addition of one or more other features, operations,
clements, components, and/or groups thereof.

As used herein, the term “1” may be construed to mean
“when” or “upon” or “in response to determining” or “in
accordance with a determination” or “in response to detect-
ing,” that a stated condition precedent is true, depending on
the context. Similarly, the phrase “if it 1s determined [that a
stated condition precedent 1s true]” or “if [a stated condition
precedent 1s true]” or “when [a stated condition precedent 1s
true]” may be construed to mean “upon determining” or “in
response to determining” or “in accordance with a determi-
nation” or “upon detecting” or “in response to detecting”
that the stated condition precedent 1s true, depending on the
context.

Although some of the various drawings illustrate a num-
ber of logical stages 1n a particular order, stages that are not
order dependent may be reordered and other stages may be
combined or broken out. While some reordering or other
groupings are specifically mentioned, others will be obvious
to those of ordinary skill in the art and so do not present an
exhaustive list of alternatives. Moreover, it should be rec-
ognized that the stages could be implemented 1n hardware,
firmware, software or any combination thereof.

What 1s claimed 1s:

1. A method of finding bugs in program code, comprising:

at an apparatus having one or more processors and
memory for storing programs to be executed by the one
O MOre Processors:

for each respective program code segment from a plural-
ity of program code segments, assigning a unique value
to a detection variable of a state machine 1n a process
of the respective program code segment operating the
state machine, the unique value being based on a value
of an 1dentification variable associated with the respec-
tive program code segment;

determining a current value of the detection variable
corresponding to an abnormal program exit during a
process of the plurality of program code segments
operating at least one state machine, wherein the deter-
mining the current value of the detection variable
includes:

retrieving a context associated with the at least one state
machine when the abnormal program exit occurs,
wherein the retrieving the context includes:

retrieving a core file generated 1n response to the abnor-
mal program exit; and

parsing the core file to determine the context associated
with the at least one state machine when the abnormal
program exit occurs; and

determining the current value of the detection variable
based on the retrieved context;

determining a suspicious program code segment from the
plurality of program code segments that has contributed
to the abnormal program exit, wherein the determinming
includes:

comparing the current value of the detection variable with
the unique values that are based on the respective
identification variables associated with the plurality of
program code segments; and

identifying a first program code segment as the suspicious
program code segment based on a comparison of the
current value of the detection variable and the unique

5

10

15

20

25

30

35

40

45

50

55

60

65

20

value that 1s based on the identification variable asso-
ciated with the first program code segment; and

outputting debug information for the abnormal program
exit, the debug information including information of at
least one statement in the suspicious program code
segment.

2. The method of claim 1, wherein, for each program code
segment from the plurality of program code segments, the
value of the identification variable associated with the
respective program code segment 1s a current value of the
identification variable determined in the process of the
respective program code segment operating the state
machine.

3. The method of claim 1, wherein, for each program code
segment from the plurality of program code segments, the
unique value assigned to the detection variable of the state
machine 1n the process of the respective program code
segment operating the state machine 1s identical to the value
of the i1dentification variable associated with the respective
program code segment.

4. The method of claim 1, wherein, for each program code
segment from a plurality of program code segments, the
unique value assigned to the detection variable of the state
machine in the process of the respective program code
segment operating the state machine 1s determined by a
predefined function that takes the value of the 1dentification
variable associated with the respective program code seg-
ment as an put.

5. The method of claim 1, further comprising: wherein the
determining the suspicious program code segment 1includes
determining the suspicious program code segment based on
a determination that the current value of the detection
variable was assigned to the detection variable based on the
value of the i1dentification variable associated with the first
program code segment.

6. The method of claim 1, wherein, for each program code
segment from the plurality of program code segments, the
assigning a unmque value to the detection variable includes
assigning the unique value to the detection variable using an
assignment statement for the detection variable in the
respective program code segment.

7. The method of claim 1, further comprising;:

storing the current value of the detection variable and the

debug information 1n a list, the list using a variable
name ol the detection variable as a key.

8. The method of claim 1, further comprising:

storing a plurality of values of identification variables,

cach value from the plurality of values being associated
with a respective program code segment from the
plurality of program code segments.

9. The method of claim 1, wherein the debug information
includes location information of an assignment statement for
the detection variable 1n the suspicious program code seg-
ment.

10. The method of claim 9, wherein the location infor-
mation includes at least one of a line number associated with
the assignment statement, a name of a function that includes
the assignment statement, and a file name of a source file that
includes the assignment statement.

11. An apparatus, comprising:

one or more central processing units (CPUs); and

memory storing one or more programs to be executed by

the one or more CPUs, the one or more programs
comprising instructions for:

for each respective program code segment from a plural-

ity of program code segments, assigning a unique value
to a detection variable of a state machine in a process

US 9,772,924 B2

21

of the respective program code segment operating the
state machine, the unique value being based on a value
of an 1dentification variable associated with the respec-
tive program code segment;

determining a current value of the detection variable

corresponding to an abnormal program exit during a
process ol the plurality of program code segments
operating at least one state machine, wherein the deter-
mining the current value of the detection variable
includes:

retrieving a context associated with the at least one state

machine when the abnormal program exit occurs,
wherein the retrieving the context includes:

retrieving a core file generated 1n response to the abnor-

mal program exit; and

parsing the core file to determine the context associated

with the at least one state machine when the abnormal
program exit occurs; and

determining the current value of the detection variable

based on the retrieved context:

determining a suspicious program code segment from the

plurality of program code segments that has contributed
to the abnormal program exit, wherein the determining,
includes:

comparing the current value of the detection variable with

the unique values that are based on the respective
identification variables associated with the plurality of
program code segments; and
identifying a first program code segment as the suspicious
program code segment based on a comparison of the
current value of the detection variable and the unique
value that 1s based on the identification variable asso-
ciated with the first program code segment; and

outputting debug information for the abnormal program
exit, the debug mnformation mncluding information of at
least one statement in the suspicious program code
segment.

12. The apparatus of claim 11, wherein, for each program
code segment from the plurality of program code segments,
the unique value assigned to the detection variable of the
state machine 1n the process of the respective program code
segment operating the state machine 1s 1dentical to the value
of the 1dentification variable associated with the respective
program code segment, or determined by a predefined
function that takes the value of the identification variable
associated with the respective program code segment as an
input.

13. A non-transitory computer readable storage medium
storing one or more programs, the one or more programs
comprising instructions, which, when executed by one or
more processors, cause the processors to perform operations
comprising;

at an apparatus:

for each respective program code segment from a
plurality of program code segments, assigning a
unique value to a detection variable of a state
machine 1n a process of the respective program code

10

15

20

25

30

35

40

45

50

55

22

segment operating the state machine, the unique
value being based on a value of an identification
variable associated with the respective program code
segment;

determining a current value of the detection variable
corresponding to an abnormal program exit during a
process of the plurality of program code segments
operating at least one state machine, wherein the
determining the current value of the detection vari-
able 1ncludes:

retrieving a context associated with the at least one
state machine when the abnormal program exit
occurs, wherein the retrieving the context includes:

retrieving a core file generated in response to the
abnormal program exit; and

parsing the core file to determine the context associated
with the at least one state machine when the abnor-
mal program exit occurs; and

determining the current value of the detection variable
based on the retrieved context;

determining a suspicious program code segment from
the plurality of program code segments that has
contributed to the abnormal program exit, wherein
the determining includes:

comparing the current value of the detection variable
with the unique values that are based on the respec-
tive 1dentification variables associated with the plu-
rality of program code segments; and

identifying a first program code segment as the suspi-
cious program code segment based on a comparison
of the current value of the detection variable and the
unique value that 1s based on the identification
variable associated with the first program code seg-
ment; and

outputting debug information for the abnormal pro-
gram ¢xit, the debug information including informa-
tion of at least one statement in the suspicious
program code segment.

14. The non-transitory computer readable storage medium
of claim 13, wherein the determining the suspicious program
code segment 1includes determining the suspicious program
code segment based on a determination that the current
value of the detection variable was assigned to the detection
variable based on the value of the identification variable
associated with the first program code segment.

15. The non-transitory computer readable storage medium
of claim 13, wherein the debug information includes loca-
tion information ol an assignment statement for the detec-
tion variable in the suspicious program code segment.

16. The non-transitory computer readable storage medium
of claim 15, wherein the location information includes at
least one of a line number associated with the assignment
statement, a name of a function that includes the assignment
statement, and a file name of a source file that includes the
assignment statement.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

