US009772889B2

a2 United States Patent (10) Patent No.: US 9,772,889 B2

Lu et al. 45) Date of Patent: *Sep. 26, 2017

(54) EXPEDITED PROCESSING AND HANDLING (38) Field of Classification Search
OF EVENTS CPC GO6F 17/2247; GO6F 17/30905; GO6F
17/30896; GO6F 17/30893; GO6F 9/542;
(71) Applicant: Famous Industries, Inc., San GO6F 2209/545
Franciscoj CA (US) S PO i e e et e er e s e enans 715/234

See application file for complete search history.

(72) Inventors: Mark H. Lu, Berkeley, CA (US); |
Steven E. Newcomb, Berkeley, CA (56) References Cited

(US); Brian R. Maissey, Berkeley, CA .
(US); Andrew J. L. de Andrade, San U.S. PATENT DOCUMENTS

Francisco, CA (US) 6,731,314 Bl 5/2004 Cheng et al.
6,922,724 B1* 7/2005 Freeman GO6F 9/505
(73) Assignee: Famous Industries, Inc., San 709/223
Francisco, CA (US) 7,069,507 B1* 6/2006 Alcazar GO6F 9/542
715/202
(*) Notice: Subject to any disclaimer, the term of this 7,152,210 BL 1272006 Yﬂn Den Hoven et al.
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 8 days. | |
| _ | | ‘ FOREIGN PATENT DOCUMENTS
This patent 1s subject to a terminal dis-
claimer. WO 0129702 A2 4/2001
WO 03081458 Al 10/2003
(21) Appl. No.: 14/329,860 WO WO 2011063561 Al * 6/2011 ... GOGF 17/30896
(22) Filed: Jul. 11, 2014 OTHER PUBLICATIONS
(65) Prior Publication Data International Search Report and Written Opinion for PCT/US2013/

065124, mailed Mar. 10, 2014 (18 pages).
US 2014/0325530 Al Oct. 30, 2014

Primary Examiner — Kyle Stork

Related U.S. Application Data Assistant Examiner — Hassan Mrabi

(74) Attorney, Agent, or Firm — Patent Law Works LLP
(63) Continuation-in-part of application No. 14/054,570,

filed on Oct. 15, 2013. (57) ABSTRACT

Various implementations for expedited processing and han-

(60) Provisional application No. 61/714,130), filed on Oct. dling of events are described. A first event associated with a

15, 2012. set of one or more surfaces rendered for display in a
multi-dimensional space 1s detected. The first event is routed
(51) Int. CL to a first set of one or more event processors for processing.
Gool 15/16 (2006.01) The first event 1s processed using the first set of one or more
Goor 9/54 (2006.01) event processors and atter the processing, the first event 1s
(52) U.S. CL handled using one or more first event handlers.
CpPC ... GO6F 9/542 (2013.01); GO6F 2209/545
(2013.01) 26 Claims, 9 Drawing Sheets
600
— —— ehtmit> R R K N X X ¥ ¥ X K
| i :
<head> l : -
S w— -
<titie= <metas ——-] <gdiy> l

fexxt | <y i

“hutton>

rm-—-—.l

I . . ' I - .
<rlive

US 9,772,889 B2

Page 2
(56) References Cited 2010/0229186 Al1* 9/2010 Sathish GOG6F 9/545
719/318
U.S. PATENT DOCUMENTS 2010/0325575 A1 12/2010 Platzer et al.
2011/0164029 Al 7/2011 King et al.
7469381 B2 12/2008 Ording 2011/0196864 Al 8/2011 Mason et al.
7,479,949 B2 1/2009 Jobs et al. 2011/0202847 Al 8/2011 Dimitrov
7,786,975 B2 8/2010 Ording et al. 2011/0261083 A1 10/2011 Wilson
701.032 Bl 4/2014 Zhai et al. 2011/0264787 Al* 10/2011 Mickens GOGF 11/3414
8,752,183 B1* 6/2014 Heiderich GO6F 21/577 709/224
796/77 2012/0013619 A1 1/2012 Brath
9,323,503 Bl 4/2016 Fontes et al. 2012/0017147 Al 1/2012 Mark
2001/0001879 Al 5/2001 Kubik et al. 2012/0062604 Al 3/2012 Lobo et al.
2002/0036618 Al 3/2007 Wakai et al 2012/0137233 Al* 5/2012 Lewontin GOGF 17/30905
2002/0194388 Al* 12/2002 Boloker ...o.oovvviiiii., GOGF 8/38 715/760
719/310 2012/0173977 Al 7/2012 Walker et al.
2003/0063073 Al 4/2003 Geaghan et al. 2012/0174121 A1* 7/2012 Treat ...oocoovvvvvinnnnn.. GO6F 9/542
2003/0101235 Al* 5/2003 Zhangccco...... HO041. 51/04 719/318
700/718 2012/0191993 Al 7/2012 Drader et al.
2004/0194115 Al* 9/2004 Mogilevsky GO6F 9/542 gg;gigégggﬁ i.} 1%8;3 g/hgnen
719/318 1 1 13 Rodgers
2004/0230903 Al* 11/2004 Elza GOGF 17/2241 §8§§S}§§§§.§ i-; %8; }Arl}dertsi] ettali
715/234 1 1 15 Nemeth et al.
2004/0261083 Al* 12/2004 Alcazar GOG6F 9/542 ggfgﬁgig‘éggg i; ggg;g Tiud‘ﬁflgftlal*
719/318 . . 10 Lewin ¢ al.
2005/0012723 Al 1/2005 Pallakoff gg:gfgéigig? ir ;ggg gm‘iﬂer o
2005/0022211 Al* 1/2005 VeseloV ...oovvveiiii., GO6F 9/542 P 013/0766790 AL% 10013 s.;f dragwe al. HOAN 0/70
19318 1 1 13 Sandrewooooin..
| . 386/282
2006/0010400 A1 1/2006 Dehlin et al.
5006/0080604 Al 4/7006 Anderson 2013/0326430 ALl* 122013 DeVi woovooooii, GOﬁFﬁé%lg
2006/0101354 Al 5/2006 Hashimoto et al. | | |
2006/0218511 Al* 9/2006 Kapoor GOGF 17/212 gg;%%‘%gé if 12/{3833 %e‘iclet 1
715/854 . , o LJalal et al.
2007/0110083 Al* 5/2007 Krishnamoorthy HOAL 12/66 2014/0250360 AL* 972014 Jiang .ooooooverver. qoor Ty 2288
370/401 | | | .
2007/0250823 AL* 10/2007 KONO eoneeoeooen GOG6F 17/2247 §8r~j§8§?2§% ir lgggrj gﬂléila .
717/143 ; ! 1 ct al.
2008/0098296 Al 4/2008 Brichford et al. gg:é‘fggggggg ir 1%8:2‘ Eﬁliaﬂ o
2008/0126944 Al* 5/2008 CurtiSoovoevn... GOG6F 17/30896 ; ; 1> 1101z ¢ dl.
vises 2015/0073907 Al 3/2015 Purves et al.
2015/0091790 A1 4/2015 Forut t al.
2008/0168384 Al 7/2008 Platzer et al. 5015/0005474 Al 72013 D?)f;alfome
2008/0209442 Al;k 8/2008 Setllll‘ ***************** HO4M 1/0222 205/0243324 A:;: 8/205 Sandrew ““““““““ GllB 27/031
719/318 126/278
2009/0106775 Al"{{ 4/2009 Cermak ************** GOﬁF 17/2247 2015/0277569 Al 10/2015 Sprenger et .‘:11
) 719/318 2015/0371023 Al 12/2015 Chen et al.
2009/0210819 Al 8/2009 Fujimoto et al.
2010/0197395 Al 82010 Geiss * cited by examiner

US 9,772,889 B2

Sheet 1 of 9

Sep. 26, 2017

U.S. Patent

R

001

UuglL|
YIoMmaLie

soueuLIoMNad

ugol
uoneolddy

1USID

0907
90IA8(] JUBIID

0]

upll

uoneolddy

90IA8(] JUBIID

qv0lL

gl |
yiomswel

SouUBWIONS

q801
uoneonddy

Jusifo
4901

c0l
MIOMISN

e0L1

epll
uolneosliddy

eCL1
NETNES

EQL|
MIOMBWIEL 4

soueuLIoNad

801

uoneonddy
UMD

2907
90IA8(JUBIID

ev0l

L 21nb14

US 9,772,889 B2

Sheet 2 of 9

Sep. 26, 2017

U.S. Patent

9l¢
sadiAa(] Induy

————

q9i¢

4%4

uglc celtclq SVINS(] SVINS(aoIna(] Aeidst
anded | @ @ @ Indu 1ojUI0d ®>_w_mcww _os%
abew| pieogAa) OSNON - Bt

eJ%4
19]|0JU0D

0¢cc
18]|0JU0D) B0BLBIU

Q/] SSOJ8IAA 1O [BoIsAyd

cee
LWBISAQ Jomod

90¢

80¢
aoeaU|

50T ¢0¢

92IAD(] JUSBID 10S5990.d IOMION

911
MJomawel

¥0c

oUBLLOLO uoneolddy jusi) wielsAg bunesedQ AIOWON

V¢ 2Inbi

VoL

US 9,772,889 B2

Sheet 3 of 9

Sep. 26, 2017

U.S. Patent

D¢ 9Inbi

oce
aulbu3

uone|suel] aseung

oLl
MJOMBWEI{ 9oUBWIONSd

d¢ 24nbi 4

8¢c¢e 0ce
aulbu3 auibu3
uonoelalu| | | buuspusy

09¢
uoneolddy aiemyos

US 9,772,889 B2

Sheet 4 of 9

Sep. 26, 2017

U.S. Patent

cle

WwalsAg bunessd

¢3¢

J8)aidisiul duogener

0% ¢ auibug buuspusy

474

80¢

S0BLIBIU| YIOMION

0S¢

sJo|puen
JUBAT

SINPOIA UOI108)18(] JUBAT
Qc7 aulbug uonoelau|

Otz oulbug uone|suel| 92BUNS

vEC (s)auibug soisAyd

8v¢

S10SS9201d
JUBAT

25 ¢ suibug jnduj

0v¢ sidv

*] 24

S|NPOA;
BuiNoOy JUBAT

dc ainbi4

Induj ainisen

UOIIO|

1Indu] pieogAsy

Induj yosnoj

1nduj 8SNo;

08¢

U Bgye sodA] 1nduj

U.S. Patent Sep. 26, 2017 Sheet 5 of 9 US 9,772,889 B2

300

Detect event associated with set of surface(s) rendered for display

IN multi-dimensional space
302

Route event to set of event processor(s) for processing
304

Process event
306

Handle event using handler(s)
308

Render visual effect(s) in relation to surface(s) based on handling

310

Figure 3

U.S. Patent Sep. 26, 2017 Sheet 6 of 9 US 9,772,889 B2

Render set of surface(s) for display in multi-dimensional space
402

Receive user input triggering event on surface(s)
404

Determine event characteristics describing event
406

Bypass
event

processing?

408

YES>®

NO

Discard event and any
processing required for

event
412

Terminate
event?
410

YES

NO

Determine route for event based on event characteristics
414

Route event to set of event processor(s) using route
416

e Figure 4A

U.S. Patent Sep. 26, 2017 Sheet 7 of 9 US 9,772,889 B2

Process event data associated with event to interpret objective

associated with user input
418

Further
processing
required?
420

set of event processor(s) for

YES further processing

422

o Pass event to event handler(s) for handling
424

NO

Event Apply
Includes physics iIsual effect(s) tC
NO
parameters? surface(s)?
426 432
YES YES

Determine physics Render surface

parameters for event movement and/or
428 effects based on

event
434

Send event including
physics parameters {o
physics engine for
processing
430

Figure 4B

US 9,772,889 B2

Sheet 8 of 9

Sep. 26, 2017

U.S. Patent

V 8inoy

004

upse
Jo|pueH

q0G¢

la|pueH

e0G¢
Jo|pueH

G 2.nbi4

o10] 24
10SS920.1d

ugv e

10S$S8201d

4g8y¢
10SS920.1d

EQVC
10SS3001d

$] 24
OINPOA
bunnoy jJusA

vve
S|NPOA
UOI1)09)9(] JUBAT

(s)uan3

US 9,772,889 B2

Sheet 9 of 9

Sep. 26, 2017

U.S. Patent

709

H
o W .. 4% W o AN . .

¢09

OQO0

0 ainbi4

1x8}

I“‘I 0000

<l

<iM

<MD

L R K N X N X N N N N

<UORNG»

<A
<M

< AifI> <Biatil

4 RRIES 3

009

US 9,772,889 B2

1

EXPEDITED PROCESSING AND HANDLING
OF EVENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 14/054,5770, entitled “Eflicient Manipu-
lation of Surfaces in Multi-Dimensional Space Using
Energy Agents™ filed Oct. 15, 2013, which claims the benefit
under 35 U.S.C. §119(e) of U.S. Provisional Patent Appli-
cation No. 61/714,130, entitled “User Input Conversion
System Using Vector Agents for Rendering Images™ filed
Oct. 15, 2012, the entire contents of each of which are
incorporated herein by reference.

BACKGROUND

The present disclosure relates to expedited processing and
handling of events.

The DOM, as defined by the World Wide Web Consor-
titum (W3C), includes an event model for managing event
flow including registering event listeners for various event
targets that listen for and handle certain event types. How-
ever, the DOM event model requires working through an
entire path of a document tree from the document object to
the relevant target node, or vice versa, each time an event 1s
received, including intervening segments that are unrelated
to the event, which can take additional time and introduce
lag 1nto the processing and handling of the event.

SUMMARY

The technology described in this disclosure cures the
deficiencies described above in the background section by,
for example, expediting the processing and handling of the
events. According to one mnovative aspect ol the subject
matter described 1n this disclosure, a system includes one or
more processors and one or more memories storing mstruc-
tions that, when executed by the one or more processors,
cause the system to, detect a first event associated with a set
of one or more surfaces rendered for display i a multi-
dimensional space, route the first event to a first set of one
or more event processors for processing, process the first
event using the first set of one or more event processors, and
handle the first event using one or more {irst event handlers
alter the processing.

In general, another innovative aspect of the subject matter
described 1n this disclosure may be embodied 1n methods
that include detecting, using one or more computing devices,
a lirst event associated with a set of one or more surfaces
rendered for display 1n a multi-dimensional space; routing,
using the one or more computing devices, the first event to
a first set of one or more event processors for processing;
processing the first event using the one or more computing,
devices and the first set of one or more event processors; and
after the processing, handling the first event using the one or
more computing devices and one or more first event han-
dlers.

Other implementations of one or more of these aspects
include corresponding systems, apparatus, and computer
programs, configured to perform the actions of the methods,
encoded on computer storage devices.

These and other implementations may each optionally
include one or more of the following features, such as that
routing the first event to the first set of one or more event
processors includes determining, using the one or more

10

15

20

25

30

35

40

45

50

55

60

65

2

computing devices, event characteristics describing the first
event, determining, using the one or more computing
devices, a route for the first event based on the event
characteristics, and routing, using the one or more comput-
ing devices, the first event to the first set of one or more
event processors using the route; that the route bypasses a
standard path defined by a document object model for event
processing; that processing the first event includes process-
ing event data associated with the first event to interpret an
objective associated with an input provided by a user, the
iput triggering the first event associated with the one or
more surfaces of the set; after the processing by first set of
one or more event processors, determining, using the one or
more computing devices, whether further processing 1s
required for the first event; responsive to determining that
the further processing 1s required, routing, using the one or
more computing devices, the first event to a second set of
one or more event processors for the further processing; that
handling the first event includes determining, using the one
or more computing devices, one or more physics parameters
for the first event and translating, using the one or more
computing devices, the one or more surfaces of the set
associated with the first event based on the one or more
physics parameters; detecting, using the one or more com-
puting devices, a second event associated with the set of one
or more surfaces rendered for display in the multi-dimen-
sional space; determining, using the one or more computing
devices, the second event to meet a predetermined process-
ing criterion; handling the second event using the one or
more computing devices and one or more second event
handlers without previously processing the second event
using event processors; rendering, using the one or more
computing devices, one or more visual eflects 1n relation to
the one or more surfaces of the set based on the handling;
that the first event includes one of a touch event, a mouse
pointer event, a keyboard event, and a motion gesture event;
and that the one or more surfaces correspond to one or more
DOM elements that are rendered for display via a web
browser.

These implementations are particularly advantageous 1n a
number of respects. For mstance, the technology described
can reduce and/or eliminate unwanted artifacts that surface
during routine event flow management by the DOM, such as
input lag (a discernible period of time between the time a
user input was provided and handled by the DOM). The
technology described herein can further bypass unnecessary
processing for an event or terminate the event 1n early phases
of the standard event processing procedure or tlow defined
by the current DOM event model. This 1s further advanta-
geous as 1t saves additional time and computing resources
that are utilized 1n the standard event processing procedure.
It should be understood, however, that this list of features
and advantages 1s not all-inclusive and many additional
features and advantages are contemplated and fall within the
scope of the present disclosure. Moreover, i1t should be
understood that the language used 1n the present disclosure
has been principally selected for readability and instruc-
tional purposes, and not to limit the scope of the subject
matter disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

This disclosure 1s illustrated by way of example, and not
by way of limitation 1n the figures of the accompanying
drawings 1n which like reference numerals are used to refer
to similar elements.

US 9,772,889 B2

3

FIG. 1 1s a block diagram illustrating an example system
for expediting the processing and handling of the events.

FIG. 2A 1s a block diagram 1llustrating an example client
device.

FIG. 2B 1s a block diagram illustrating an example
software application.

FIG. 2C 1s a block diagram illustrating an example
performance framework.

FIG. 2D 1s a block diagram illustrating various structure,
acts, and/or functionality of the example performance
framework.

FI1G. 3 1s a flowchart of an example method for expediting
the processing and handling of the events.

FIGS. 4A and 4B are flowcharts of a further example
method for expediting the processing and handling of the
events.

FIG. 5 1s a graphical representation of an example data
flow diagram depicting how one or more events are routed
for processing and handling.

FIG. 6 1s a graphical representation of an example user
interface depicting handling and processing of events when
applied to DOM elements.

DETAILED DESCRIPTION

The performance technology described herein can expe-
dite the processing and handling of one or more events
received on a rendered context (e.g., surfaces, HIML docu-
ments, DOM elements, document Iragments, etc.). An
observer/user, which can be a person providing control
inputs using a pointer device, a touch surface, open-air
gesture device, etc., can view surfaces via viewport. The
viewport acts like a window for viewing into a multi-
dimensional (e.g., 3D) space where the surfaces are rendered
and translated. The viewport may be fixed or may be
translated by the performance technology independent of or
in conjunction with the surfaces viewable via the viewport.
In some 1mplementations, the viewport may correspond to
the surface that coincides with either a screen of the device
being used (e.g., a smartphone, tablet, television, projector,
etc.) or a window or sub-window displayed on such a device.

The surfaces can be rendered and displayed within the
viewport. Surfaces include documents or document frag-
ments. Example surfaces include, but are not limited to,
stylized HTML elements (e.g., divs, spans, tables, etc.),
images, and videos. The surfaces may or may not be
displayed within the viewport. If a surface 1s “ofl-screen”, 1t
may still exist but not be visible and not require computation
to render 1t. Every surface, including the viewport, can be
arbitrarily translated to anywhere else 1n the multi-dimen-
sional space and every one of these surfaces can have their
translation 1mpacted by the calculations produced by the
control mnputs.

The performance technology, which may be embodied, at
least 1n part, by the performance framework discussed
herein, can convert the control inputs (also referred to herein
as 1nputs) mnto a series of energy agents with direction and
magnitude. Example inputs that can be used as a source for
computing the energy agents include, but are not limited to
(1) touch screen gestures (e.g., swipes, taps, pinches, etc.);
(2) pointer device inputs (e.g., mouse mputs like click, drag,
etc.), (3) keyboard mputs (e.g., arrow up, down, left, right,
etc.), and (4) motion gesture system inputs (e.g., 3D point
clouds computed by Microsoit Kinect, LeapMotion, etc.).
The energy agents include vectors having magnitude and/or
directionality. The energy agents may emulate forces like
acceleration, Iriction, tension, elasticity, gravity, torque,

10

15

20

25

30

35

40

45

50

55

60

65

4

thrust, drag, damping, greasing, etc. For instance, example
energy agents may include, but are not limited to, accelera-
tion 1n a first direction, friction in a second dimension,
grease and damping. These simulated forces may corre-
spond to real-world phenomena such as a spring, friction,
drag, magnet, motor (applied force), etc. However, these
kinematic forces are not limited to real-world forces and
approximations thereof, and may include 1dealized forces or
imaginary forces. The usage of idealized and imaginary
forces can be used to create novel eflects that are super-
natural but cognitively consistent across the entire system of
surfaces subject to such forces.

The application of these energy agents by the perfor-
mance technology to a surface may cause one or more
surfaces to translate in multi-dimensional space 1n accor-
dance with the summation of the applied energy agents. For
example, the movement of a finger on a touch screen 1n a
first direction may be converted directly into energy vector
agents corresponding to applied force 1n that first direction.
In addition to the application of energy agents to surfaces,
energy agents may also be applied to the viewport.

Different kinematic effects can be applied to the surfaces
by applying multiple energy agents to a surface. In addition,
energy agents may be produced programmatically, without
and/or i conjunction with the receipt control nputs, to
create kKinematic amimations of the surfaces or modity the
behavior of those surfaces in the presence of an applied
force. For example, a friction energy vector agent may be
applied to surface and activated when a force 1s applied to
that surface. An applied force agent 1n a first direction could
activate a Iriction agent in a second direction opposite to the
first direction. Energy can be opposing or complementary
and more than two can be applied to a surface at one time.
This can result 1n an effect 1n a wide range of sophisticated
ellects, such as torque on a surface anchored to a point or
skidding on a slippery surface when a first applied force 1s
added 1n a first direction to that surface and a second applied
force 1s added to that surface 1n a second direction differing
from the first direction, but not opposite to it, while that

surface 1s still under the influence of the force agents acting,
in the first direction.

Although various implementations are described herein
within the context of web browsers, 1t should be understood
that these and other implementations may also apply to other
soltware applications, including for example, operating sys-
tems, 1 which access to Graphics Processing Unit (GPU)
rendering and GPU primitives for allowing translation of
surfaces 1n 3D space 1s made available. In addition, while the
performance framework 116 (e.g., see FIG. 1) 1s described,
in various implementations, as interacting with a rendering
engine 230 (e.g., see FIG. 2B) and/or DOM of a web
browser, 1t should be understood that other technologies,
such as Web GL, Open GL, or other technologies may also
be applicable and be used.

FIG. 1 1s a block diagram of an example system 100 for
expediting the processing and handling of the events. The
illustrated system 100 includes client devices 106qa . . . 106+
and servers 112a . . . 112», which are communicatively
coupled via a network 102 for interaction with one another.
For example, the client devices 106a . . . 1062 may be
respectively coupled to the network 102 via signal lines

104a . . . 104n, and may respectively include client appli-
cations 108a . . . 108z and performance Iframeworks
116a . . . 116n. The servers 112a . . . 1127 may be

respectively coupled to the network 102 via signal lines
110a . . . 110%. The use of the nomenclature “a” and “n” 1n

US 9,772,889 B2

S

the reference numbers indicates that the system 100 may
include any number of those elements having that nomen-
clature.

The network 102 may include any number of networks.
For example, the network 102 may include, but 1s not limited
to, one or more local area networks (LANs), wide area
networks (WANs) (e.g., the Internet), virtual private net-
works (VPNs), mobile (cellular) networks, wireless wide
area network (W WANSs), WIMAX® networks, peer to peer
(P2P) networks, close proximity communication networks
(e.g., Bluetooth®, NFC, etc.), various combinations thereof,
etc.

The client devices 106a . . . 106n (also referred to
individually and collectively as 106) are computing devices
having data processing and communication capabilities. In
some i1mplementations, a client device 106 may include a
processor (e.g., virtual, physical, etc.), a memory, a power
system, a network interface, a GPU, a touch controller, a
physical or wireless 1I/O interface controller, a display
device, an mput device as shown 1 FIG. 2A, and/or other
software and/or hardware components, including, for
example, wireless transceivers, keyboard, camera, sensors,
firmware, operating systems, drivers, various physical con-
nection 1interfaces (e.g., USB, HDMI, etc.). The client
devices 106q . . . 1062 may couple to and communicate with
one another and the other entities of the system 100 via the
network 102 using a wireless and/or wired connection.

Examples of client devices 106 may include, but are not
limited to, mobile phones, tablets, laptops, desktops, net-
books, server appliances, servers, virtual machines, TVs,
set-top boxes, media streaming devices, portable media
players, navigation devices, personal digital assistants, etc.
While two or more client devices 106 are depicted 1n FIG.
1, the system 100 may include any number of client devices
106. In addition, the client devices 106a . . . 1062 may be the
same or different types of computing devices.

In the depicted implementation, the client devices
106a . . . 106n respectively contain mstances 108a . . . 108%
of a client application (also referred to individually and
collectively as 108) and instances of a performance frame-
work 116a . . . 116n (also referred to individually and
collectively as 116). The client application 108 and the
performance framework 116 may be storable in a memory
(e.g., memory 204 as shown 1n FIG. 2A) and executable by
a processor (e.g., processor 202 as shown 1n FIG. 2A) of a
client device 106, implementable using a hardware solution
(e.g., ASICs, field programmable gate arrays), a combina-
tion of the foregoing, etc.

The client application 108 may include a browser appli-
cation that can retrieve and/or process information hosted by
one or more entities of the system 100 (for example, the
servers 112) and can present the information on a display
device (e.g., touch sensitive display device 214 as shown 1n
FIG. 2A) on the client device 106. The performance frame-
work 116 1s configured to etliciently manipulate surfaces in
multi-dimensional space using energy agents and/or pro-
cessed events 1n cooperation with the client application 108,
an operating system, and/or other components. In some
implementations, the performance framework 116 may
determine the state of physics for a surface and map 1t to the
state of the scene, optimize the state of the scene, and then
provide the state of the scene to the rendering engine 230
(e.g., see FIG. 2B-D) to be mapped to a corresponding DOM
representation. Additional acts, structure, functionality and/
or description of the client application 108 and the perfor-
mance framework 116 are discussed in further detail else-
where herein.

10

15

20

25

30

35

40

45

50

55

60

65

6

The servers 112a . . . 112» (also referred to individually
and collectively as 112) may each include one or more
computing devices having data processing, storing, and
communication capabilities. For example, a server 112 may
include one or more hardware servers, server arrays, storage
devices and/or systems, etc. In some 1implementations, the
servers 112a . . . 1127z may include one or more virtual
servers, which operate 1 a host server environment and
access the physical hardware of the host server including, for
example, a processor, memory, storage, network interfaces,
etc., via an abstraction layer (e.g., a virtual machine man-
ager).

In the depicted implementation, the servers 112a . . . 112#
include applications 114a . . . 114» (also referred to indi-
vidually and collectively as 114) operable to provide various
computing functionalities, services, and/or resources, and to
send data to and receive data from the other entities of the
network 102, such as the client devices 106. For example,
the application 114 may provide functionality for user
account management, internet searching; social networking;
web-based email; word-processing; banking; finance; blog-
ging; micro-blogging; photo management; video, music and
multimedia hosting, distribution, and sharing; business ser-
vices; news and media distribution; any combination of the
foregoing services; etc. It should be understood that the
application 114 1s not limited to providing the above-noted
services and may include other network-accessible services.

The applications 114 may transmit electronic files and/or
data embodying the services they provide to the client
devices 106 for rendering by the client application 108
operable thereby. In some implementations, the electronic
files and/or data streams may be formatted using a markup
language(s) (e.g., HIML, XML, etc.), style sheet(s) (e.g.,
CSS, XSL, etc.), graphic(s) (e.g., PNG, IPG, GIF, efc.),
and/or scripts (e.g., JavaScript, ActionScript, etc.), and the
client devices 106 may interpret and/or execute the elec-
tronic files and/or data streams and render an interactive
Web User Interface (WUI) for presentation to users on a
display device (e.g., touch sensitive display device 214 as
shown 1n FIG. 2A).

It should be understood that the system 100 1llustrated 1n
FIG. 1 1s representative of an example system for expediting
the processing and handling of the events, and that a variety
of different system environments and configurations are
contemplated and are within the scope of the present dis-
closure. For instance, various structural and/or functional
aspects may be moved from a server to a client, or vice versa
and some 1mplementations may include additional or fewer
computing devices, services, and/or networks, and may
implement various acts, functionality, etc., client or server-
side. Further, various entities of the system may be inte-
grated into to a single computing device or system or
additional computing devices or systems, efc.

FIG. 2A 1s a block diagram of an example client device
106, which includes various hardware and/or software com-
ponents. As depicted, the client device 106 may include a
processor 202, a memory 204, a network interface 208, a
GPU (graphical processing unit) 210, a touch controller 218,
a physical or wireless 1/0 1nterface controller 220, a power
system 222, a touch sensitive display device 214, and one or
more put devices 216a . . . 216n (also referred to indi-
vidually and collectively as 216), which may be communi-
catively coupled by a communication bus 206. The client
device 106 depicted in FIG. 2A 1s provided by way of
example and it should be understood that it may take other
forms and include additional or fewer components without
departing from the scope of the present disclosure.

US 9,772,889 B2

7

The processor 202 may execute software instructions by
performing various input/output, logical, and/or mathemati-
cal operations. The processor 202 may have various com-
puting architectures to process data signals including, for
example, a complex instruction set computer (CISC) archi-
tecture, a reduced 1nstruction set computer (RISC) architec-
ture, and/or an architecture implementing a combination of
instruction sets. The processor 202 may be physical and/or
virtual, and may include a single core or plurality of pro-
cessing umts and/or cores. In some implementations, the
processor 202 may be capable of generating and providing,
clectronic display signals to a display device (e.g., the touch
sensitive display device 214), supporting the display of
images, capturing and transmitting images, performing com-
plex tasks including various types of feature extraction and
sampling, etc. In some implementations, the processor 202
may be coupled to the memory 204 via the bus 206 to access
data and 1nstructions therefrom and store data therein. The
bus 206 may couple the processor 202 to the other compo-
nents of the client device 106 including, for example, the
memory 204, the network interface 208, the GPU 210, the
touch controller 218, the physical or wireless 1/0O interface
controller 220, the power system 222, the touch sensitive
display device 214, and the input devices 216.

The memory 204 may store and provide access to data to
the other components of the client device 106. In some
implementations, the memory 204 may store instructions
and/or data that may be executed by the processor 202. For
example, as depicted, the memory 204 may store an oper-
ating system 212, the client application 108, and the per-
formance framework 116. The memory 204 1s also capable
of storing other instructions and data, including, {for
example, hardware drivers, other soltware applications,
databases, etc. The memory 204 may be coupled to the bus
206 for communication with the processor 202 and the other
components of the client device 106.

The memory 204 includes a non-transitory computer-
usable (e.g., readable, writeable, etc.) medium, which can be
any apparatus or device that can contain, store, communi-
cate, propagate or transport instructions, data, computer
programs, soltware, code, routines, etc., for processing by or
in connection with the processor 202. In some 1implemen-
tations, the memory 204 may include one or more of volatile
memory and non-volatile memory. For example, the
memory 204 may include, but 1s not limited, to one or more
of a dynamic random access memory (DRAM) device, a
static random access memory (SRAM) device, a discrete
memory device (e.g., a PROM, FPROM, ROM), a hard disk
drive, an optical disk drive (CD, DVD, Blu-ray™, etc.). It
should be understood that the memory 204 may be a single
device or may include multiple types of devices and con-
figurations.

The bus 206 can 1include a communication bus for trans-
ferring data between components of a computing device or
between computing devices, a network bus system including,
the network 102 or portions thereof, a processor mesh, a
combination thereof, etc. In some implementations, the
memory 204, the network interface 208, the GPU 210, the
touch controller 218, the physical or wireless 1/O interface
controller 220, the power system 222, the touch sensitive
display device 214, and/or the mput devices 216 operating
on the client device 106 may cooperate and communicate
via a software communication mechanism implemented in
association with the bus 206. The software communication
mechanism can include and/or facilitate, for example, secure
and/or unsecure mter-process communication, local function
or procedure calls, remote procedure calls, an object broker,

10

15

20

25

30

35

40

45

50

55

60

65

8

direct socket communication among soiftware modules,
UDP broadcasts and receipts, HI'TP connections, efc.

The network interface 208 may include one or more
interface devices for wired and wireless connectivity with
the network 102 and the other entities and/or components of
the system 100 including, for example, the servers 112, eftc.
For instance, the network interface 208 may include, but 1s
not limited to, CAT-type interfaces; wireless transceivers for
sending and receiving signals using Wi-F1™; Bluetooth®,
cellular communications, etc.; USB interfaces; various com-
binations thereof; etc. The network interface 208 may be
coupled to the network 102 via the signal line 104 and may
be coupled to the other components of the client device 106
via the bus 206. In some implementations, the network
interface 208 can link the processor 202 to the network 102,
which may 1n turn be coupled to other processing systems.
The network interface 208 can provide other connections to
the network 102 and to other entities of the system 100 using
various standard communication protocols, including, for
example, those discussed elsewhere herein.

The GPU (graphical processing unit) 210 may render one
or more 1mages for display by performing various iput/
output, logical, and/or mathematical operations. The GPU
210 may have various computing architectures to process
data signals including, for example, a parallel processing
architecture, a complex instruction set computer (CISC)
architecture, a reduced instruction set computer (RISC)
architecture, and/or an architecture implementing a combi-
nation of istruction sets. The GPU 210 may be physical
and/or virtual, and may include a single core or plurality of
processing units and/or cores. In some implementations, the
GPU 210 may be capable of generating and providing
clectronic display signals to the touch sensitive display
device 214, supporting the display of images, capturing and
transmitting 1mages, performing complex tasks including
various types of feature extraction and sampling, etc. In
some 1mplementations, the GPU 210 may be coupled to the
memory 204 via the bus 206 to access data and instructions
therefrom and store data therein. In some 1mplementations,
the GPU 210 may perform 1ts acts and/or functionalities as
described herein in cooperation with the processor 202
and/or one or more components of the client device 106. For
instance, the bus 206 may couple the GPU 210 to the
processor 202 and other components of the client device 106
including, for example, the memory 204, the network inter-
face 208, the touch controller 218, the physical or wireless
I/O interface controller 220, the power system 222, the touch
sensitive display device 214, and/or the input devices 216. In
some 1mplementations, the GPU 210 may be integrated with
the processor 202.

The touch sensitive display device 214 1s a touch-screen
display (e.g., OLED, AMOLED, etc.) capable of receiving
input from one or more fingers of a user. For example, the
touch sensitive display device 214 may be a capacitive
touch-screen display capable of detecting and interpreting
multiple points of contact with the display surface. The
touch sensitive display device 214 may be managed by a
touch controller 218, which relays and/or passes the inputs/
signals received on the display device 214 to one or more
components of the client device 106 including, for example,
the GPU 210, the processor 202, the memory 204, the
network interface 208, etc., via the bus 206. The touch
sensitive display device 214 may include one or more
transparent touch sensitive layers that are integrated with the
touch sensitive display device 214 and capable of sensing
input/gestures from the one or more fingers of a user. While
a touch sensitive display 1s described, 1t should be under-

US 9,772,889 B2

9

stood that a conventional display device (e.g., LCD, projec-
tor, TV, etc.) 1s also applicable and may be used.

The 1nput devices 216a . . . 216» (also individually and
collectively referred to as 216) may include motion-detect-
ing mput devices, pointer devices, keyboards, audio mput
devices, other touch-based mput device, etc. For example,
the 1nput devices 216 may include a touch-screen, micro-
phone, a front facing camera, a rear facing camera, and/or
motion sensors, etc. In particular, as depicted 1n the figure,
the mput devices 216 may include a mouse pointer device
216a, a keyboard mput device 216b, an i1mage capture
device 216n, etc. The mput devices 216 may be managed by
a physical or wireless I/O iterface controller 220, which
relays and/or passes the mputs/signals received from users
via the mput devices 216 to one or more components of the
client device 106 including, for example, the touch control-
ler 218, the touch sensitive display device 214, the GPU 210,
the processor 202, the memory 204, the network interface
208, etc., via the bus 206.

The mput devices 216a . . . 216n and/or the touch
sensitive display device 214 may be configured to receive a
variety of control mputs (e.g., gestures) from users. Non-
limiting examples of the mputs may include a single touch
gesture (e.g., swipe, tap, tlick, stroke, etc.), a multiple touch
gesture (e.g., zoom, grab, etc.), a mouse click, a keyboard
stroke, a voice gesture (e.g., speech to text, voice command,
etc.), a motion gesture (e.g., hand signal, body signal, eye
movement, etc.), etc. Various mputs received via the iput
devices 216a . . . 216» and/or the touch sensitive display
device 214 may be interchangeably referred to herein as
events.

The power system 222 includes a power source and/or
components for supplying electrical power to the compo-
nents of the client device 106. As depicted, the power system
222 may be coupled to the bus 206 to provide power to the
hardware components coupled thereto. In some 1mplemen-
tations, the power system 222 may include one or more of
a regulated power supply (e.g., AC power supply), a trans-
tformer (AC/DC converter), one or more energy storage
devices (e.g., a rechargeable battery), wiring, etc.

FIG. 2B 1s a block diagram of an example software
application 260. In some implementations, the software
application 260 represents the client application 108 and/or
the operating system 212, although the software application
260 may also represent other types of solftware like native
applications. As depicted, the software application 260 may
include a rendering engine 230 and an interaction engine
238.

The rendering engine 230 may include software and/or
logic for processing content and formatting mnformation for
display. The rendering engine 230 can coordinate visual
ellects (e.g., surface transformations, cosmetic eflects, etc.)
to be applied to a renderable context with the control mnputs
provided by a user for the context or based on one or more
events detected on the context so the experience 1s respon-
sive and satisiying to the user.

In some 1nstances, the rendering engine 230 may generate
a rendering from scene data, which can be displayed on a
display device, such as the touch sensitive display device
214. For example, the rendering engine 230 may receive a
scene graph from the surface translation engine 236 (e.g.,
see FIGS. 2C and 2D), 1n which necessary matrices trans-
formations have already been calculated. In some 1nstances,
geometric, modeling, camera, and/or other transforms may
already be performed by the surface translation engine 236
based on information received from the physics engine 234

and/or the mput engine 232 (e.g., see FIGS. 2C and 2D).

10

15

20

25

30

35

40

45

50

55

60

65

10

This can reduce or eliminate the amount of matrix multi-
plication (e.g., translation, scaling, rotation, projection, etc.)
that needs to be performed by the rendering engine 230, thus
substantially improving the overall performance (e.g., speed
and visual quality) of the software application 260. As a
turther example, a CPU (e.g., processor 202) may handle
computing the transformation matrices to place individual
surfaces from scene data, and a GPU (e.g., GPU 210) uses
those matrices, along with texture data, to actually place the
pixels within. For instance, the surface translation engine
236 may allow for eflicient computation of the individual
transformation matrices by utilizing high-level scene-spe-
cific data to eliminate the computation of some matrices
(c.g., low-level scene-specific data) and re-using various
pre-computed components.

The rendering engine 230 can utilize APIs that provide
direct access to GPU hardware acceleration and primitives
for eflicient translation of objects (e.g., surfaces, documents,
document fragments, etc.) in multiple dimensions (e.g., 2D,
3D, etc.). For example, the rendering engine 230 may utilize
a graphics stack to efliciently rasterize vector graphics into
raster images (e.g. pixels) for display via a screen. Using the
scene graphs generated and provided to the rendering engine
230 by the surface translation engine 236 (e.g., see FIGS. 2C
and 2D), the rendering engine 230 can render the content
suiliciently fast (e.g., @60 Ips) so that the animations being,
applied to the viewable surfaces are smooth and seamless to
the viewer, and undesirable artifacts (e.g., jitter) are elimi-
nated.

The rendering engine 230 may process the scene graph
progressively from the roots up through to the leaves, and
apply the matrices corresponding to nodes of the scene
graph to associated DOM elements that represent those
items on the display. For nodes that do not have correspond-
ing DOM elements (e.g., <divs>), the rendering engine 230
may interact with the DOM to create them. For nodes that
have been deleted, the rendering engine 230 may delete the
corresponding DOM elements. In some instances, the scene
graph may map the nodes of the scene graph with the DOM
clements using unique IDs, and the rendering engine 230 can
use these 1Ds to 1dentify the corresponding DOM elements.

In some implementations, the rendering engine 230 may
process markup content like HITML, XML, etc., apply
presentational instructions encoded 1n CSS, XSLT, etc. to
the markup content, interact with a JavaScript Interpreter to
execute various objects, methods, etc., that may manipulate
the content, and then provide the formatted content for
display to a user on the display device 214.

As shown 1n FIG. 2D, the rendering engine 230 may be
coupled to the network interface 208 to send and receive
data (e.g., via the network 102). The rendering engine 230
may be coupled to the JavaScript Interpreter 282 to interpret
JavaScript objects configured to handle and process events,
perform physics-related calculations, generate scene graphs,
control various aspects of the software application 260,
communicate with other entities (e.g., asynchronously),
mamipulate the content being process for display (e.g., DOM
clements, etc.), etc. The rendering engine 230 may be
coupled to the operating system 212 to store and access files
via a file system, access one or more databases, utilize
various APIs, etc., recelve 1nstructions, etc.

The interaction engine 238 may include software and/or
logic for recerving and interpreting user inputs and/or events
from the input devices 216. As depicted in FIG. 2D, the
interaction engine 238 may include an event detection
module 244. The event detection module 244 may be
coupled to recerve control inputs from touch controller 218

US 9,772,889 B2

11

that are input by users via the touch sensitive display device
214 and/or the 1input devices 216. In some implementations,
the event detection module 244 may be configured to detect
one or more events on one or more surfaces that are rendered
for display to the user based on the control inputs provided
by the user. For instance, the control input provided by the
user may trigger one or more events on the one or more
surfaces. In some implementations, the touch controller 218
may determine and provide positional information associ-
ated with each point of contact with the touch sensitive
display device 214 to the interaction engine 238. The event
detection module 244 of the interaction engine 238 may
interpret the mputs and provide events associated with the
inputs to the mput engine 232 for further processing.

FIG. 2C 1s a block diagram of an example performance
framework 116, which includes an input engine 232, a
physics engine 234, a surface translation engine 236, and
APIs 240. FIG. 2D 1s a block diagram 1illustrating various
structure, acts, and/or functionality of the example perfor-
mance framework 116. The input engine 232, the physics
engine 234, the surface translation engine 236, and/or the

APIs 240 may be communicatively coupled by the bus 206

and/or the processor 202 to one another and/or the other
components 204, 208, 210, 214, 216, 218, 220, and/or 222
of the client device 106. In some implementations, one or
more of the mput engine 232, the physics engine 234, the
surface translation engine 236, and/or the APIs 240 are sets
ol mstructions executable by the processor 202. In some
implementations, one or more of the mput engine 232, the
physics engine 234, the surface translation engine 236,
and/or the APIs 240 are stored in the memory 204 of the
client device 106 and are accessible and executable by the
processor 202. In any of the foregoing implementations, the
input engine 232, the physics engine 234, the surface
translation engine 236, and/or APIs 240 may be adapted for
cooperation and communication with the processor 202 and
other components of the client device 106.

The 1nput engine 232 includes soiftware and/or logic for
receiving and processing events provided by the interaction
engine 238. An event may be detected on a rendered context.
A renderable context can include one or more objects that
are capable of interacting with one another and that could
aflect another’s behavior within the context. The renderable
context and/or objects are also interchangeably referred to
herein 1n some cases as surfaces. In some 1implementations,
a rendered context may be a viewport (e.g., a window, a
frame, an HI'ML container element, etc.) and may include
clements within it, such as scroll views, containers, images,
media objects, etc. The elements may be visible or non-
visible to a viewer. In a 3D virtual space, a rendered context
may be a heads-up display that 1s presented to a user on top
of another context that 1s 3D interactive working space. Each
rendered context may be associated with one or more
instances of a physics engine 234, as discussed 1n further
detail elsewhere herein.

In some cases, a final specification for a renderable
context can be produced using a renderable object of the
performance framework 116. The renderable object may
include a render object that accepts a render specification as
an mput. The render specification may include:

Entity (e.g., surface) identifier

Transform definition (an object with the following keys)

target: mandatory (what to apply the transform on)

transform: the transformation matrix (use framework to
help generate)

opacity: opacity to apply

5

10

15

20

25

30

35

40

45

50

55

60

65

12

s1ze: treat everything inside target as a single surface with

defined size

origin: [0...1,0...1] coordinate to use for zero point

expressed as percentage offsets (1.e. [0, O]=top-left,
[0.5, 0.5]=center, [1, O]=top-right), [0.5, 0.5, O]=center
front of cube, [0.5, 1, 1]=center bottom of rear of cube,
etc.

Array of other render specs

The final specification can be used by the surface trans-
lation engine 236 to buld a corresponding scene graph. As
a further example, a renderable context may be a window
that includes a title bar, action buttons, and content area. As
shown, the contents of the window may have various
‘transform’ effects applied during the lifecycle of the win-
dow. In the context of a web browser, a rendered context
may default to an origin of [0, 0] when 1nstantiated to target
an HTML div.

In some cases, the performance framework 116 includes
a scene solftware object that allows a developer to conve-
niently define the scene of a renderable context. For
example, representative code for defining a scene may
include:

var FamousScene=require(‘famous/Scene’);

var myScene=new FamousScene(sceneDet);

myContext.contentFrom(myScene);
where sceneDel may be a software object representing the
structure of a scene. In the web browser context, the struc-
ture of the sceneDel may be scene that may share charac-
teristics with a scene graph and/or scene graph node. In
some cases, transforms may be defined as matrices like

transform:

rotateY: 0.1

scale: [2, 2, 1]

translate: [0, =10, O]

The format of a transform may specily a desired transform,
which may be based on applying a set of canonical trans-
forms 1n order. The scene soltware object may interpret that
definition and generate the transformation matrix to produce
that effect.

As a further example, a developer could define a scene
using a serialization language like YAML, JSON, etc., and
process/minily 1t for runtime by generating optimal code for
a JavaScript object that produces a corresponding scene
graph.

Returning to FIG. 2D, the events received and processed
by the mput engine 232 may correspond to various gestures
made by a user using one or more mput devices 216, as
described elsewhere herein. As depicted, the mputs types
242a . . . » may include mouse inputs, touch inputs,
keyboard 1nputs, motion (e.g., open-air) gesture 1mputs, etc.
In a further example, the mputs may be touch or motion-
based iputs respectively captured by the touch sensitive
display device 214 and the image capture device 216#%. As a
turther example, the representative mputs may include, but
are not limited to, a tap, swipe, pinch, rotation, hand motion,
body motion, etc. The interaction engine 238 may capture
the mputs and send them to the mput engine 232 {for
processing. In some mstances, a surtace rendered for display
may be notified of an event by the event detection module
244 of the interaction engine 238, and the event detection
module 244 may pipe the event to the input engine 232 for
processing.

In some instances, the interaction engine 238 of a web
browser, operating system, or other application may capture
an event with respect to one or more contexts, which may
trigger the event detection module 244 defined 1n association
with the context(s), and the event may be piped to the input

US 9,772,889 B2

13

engine 232, where 1t 1s processed and then output to one or
more instances of the physics engine 234 and/or the surface
translation engine 236 that correspond to the context(s).

As a further example, an input received from the inter-
action engine 238 may, 1n some cases, be received as an
HTML event and may be tied to one or more surfaces. The
HTML event may include positional information associated
with the user mput and information about what target
surface(s) are aflected. As an example, a given surface 1n an
HTML document rendered for display, and user inputs
received corresponding with that surface may be captured
upon 1nput by the interaction engine 238 and piped to the
input engine 232 for processing.

The mput engine 232 upon receiving one or more events
from the interaction engine 238 may determine a route for
routing the one or more events to one or more event
processors 248 for processing. For mstance, the event rout-
ing module 246 may determine a route for each event. In
some 1mplementations, the event routing module 246 may
determine a route for an event based on characteristics
associated with that event. For example, event characteris-
tics may include a force with which the event was detected
on a rendered context, a velocity associated with that event,
a position where the event was detected, a direction 1n which
the event was intended to be performed by a user, number of
points of contact associated with that event including a
single point contact (tap, swipe, drag, tlick, etc.), a multi-
point contact (zoom 1n, zoom out, two finger tap, rotate,
three-finger swipe, etc.), etc.

By determining the event characteristics for an event, the
event routing module 246 may accurately determine event
processor(s) 248 suitable to process that event and route the
event to the proper set of event processor(s) 248. For
instance, different event processors 248 may be configured
to process diflerent events with certain characteristics. Once
a route 1s determined for each event based on the event
characteristics, the event routing module 246 may then route
cach event to one or more event processors 248 for process-
ing using the route.

It should be understood that routing events based on event
characteristics 1s just one possible varnation used by the
event routing module 246 and that other vanations are also
possible and/or contemplated for routing events. For
example, an 1nitial routing segment may route the event to
an 1nitial event processor 248 for processing, but the sub-
sequent route segment from that event processor 248 to
another, or from that event processor 248 to an event handler
250, etc., may be dynamically determined based on the
output produced by the initial event processor 248. Further
segments 1n the series may be similarly dynamically deter-
mined. For instance, 1f the output processed by first event
processor 248 meets one or more {irst criteria, the first event
processor 248 may provide the output (as input) to a second
event processor 248 which may further process the input
accordingly. Alternatively, if the output processed by the
first event processor 248 meets one or more second critena,
the first event processor 248 may provide the output (as
input) to a third event processor 248, or another entity such
an event handler 250, and so forth. These dynamic route
determinations may be made individually by the event
processor(s) 248, by the routing module (246), by interac-
tion and/or cooperation between the foregoing, etc. It should
be understood that a nearly limitless number of variations in
sequences 1s possible and/or may be used to efliciently and
accurately process an event, such as a user mput.

In yet further examples, the event routing module 246
may route one or more events to one or more event proces-

10

15

20

25

30

35

40

45

50

55

60

65

14

sors 248 randomly using a randomness algorithm, may route
the one or more events to the one or more event processors
248 serially based on a serial order, 1n series parallel, etc.,
depending on the intended result.

In some 1mplementations, the event routing module 246
may decide to bypass processing for an event by event
processor(s) 248 based on the event characteristics associ-
ated with the event. For instance, the event routing module
246 may determine that the event meets a predetermined
processing criterion based on the event characteristics asso-
ciated with the event. By way of an example, the event
routing module 246 may determine that an objective that a
user 1s 1ntending to achieve on one or more surfaces by
providing an input triggering an event on the surfaces 1s
already accomplished based on the event characteristics
associated with the event. The event routing module 246
may then bypass the processing for the event and directly
route the event to one or more event handlers 250 for
handling, as further discussed below.

In some 1mplementations, the event routing module 246
may terminate an event. For instance, if the event routing
module 246 while trying to determine one or more charac-
teristics or properties for the event determines that no
characteristics or properties are associated with the event or
that the number of characteristics or properties are below a
certain threshold, the event routing module 246 may discard
the event and any processing/handling for the event. Bypass-
ing event processing or terminating an event by the event
routing module 246 1s advantageous as unnecessary pro-
cessing for the event can be eliminated in early phases as
opposed to the standard event processing procedure defined
by the document object model, for example, as depicted 1n
FIG. 6.

The event processors 248 include software and/or logic
for processing events recerved from the event routing mod-
ule 246. In some implementations, one or more event
processors 244 are each capable of processing diflerent
types ol events. Representative event processors 248 may
include, but are not limited to gesture processors like a pinch
processor for processing pinch-to-zoom gestures, a touch
processor for processing touch and tap gestures, a touch sync
for synchronizing events received from multiple sources, a
swipe processor for processing swipe gestures, a hand
motion gesture processor for processing one or more hand
motions, etc., although other events may also be processed,
such as time-triggered events, content-triggered events,
location-triggered events, resource-utilization-triggered
events, physical or virtual environment-triggered events, etc.
As a further example, the event routing module 246 can
receive a low-level event emitted by an event source, pipe 1t
to one or more processors 248, which can then process the
event and pipe higher-level events downstream, respond to
the event, etc.

In some 1nstances, an event processor 248 can consider
the 1input history of an event to determine how to process the
event. In some implementations, the event processor 248
may interpret and integrate a current mput (e.g., low-level
event) with a set of previous inputs retlecting higher level
event (e.g., a rotate gesture, zoom gesture, a combination of
the foregoing, etc.) based on the properties of the low-level
event. For instance, the event processor 248 may determine
whether the input event 1s a new touch or a continuation of
a series ol previous touches. This determination can be
based on the connection between the properties of the
previous event(s) received and the current event being
processed, including movement (target surface, difference in
position between events, continuity between events, time

US 9,772,889 B2

15

clapsed between events, etc.). As a further example, for a
series of raw 1nputs that collectively describe a finger swipe
across a touchscreen, the event processor 248 can 1dentily
the series of raw inputs as forming the swipe. In this
example, the event state for the first input in the series may
be determined as new, and the event states for the subse-
quent 1nputs 1n the series may be determined as continuous
with the first mnput.

In some implementations, one or more of the event
processors 248 may be an 1nput tracker that computes input
vectors for each input received. The input vectors may
represent the position and/or magnitude of the input. For
instance, for a swipe gesture with one finger, the input
tracker may compute vectors describing the position and
magnitude of the finger as it swipes across the touch-
sensitive surface. For a rotate gesture with two fingers, the
iput tracker may compute vectors describing the position
and magnitude of each of mputs corresponding to the fingers
as they move along curved trajectories on the touch-sensi-
tive surface. In some 1nstances, the input tracker may pipe
the mput vectors to one or more event processors 248 for
turther processing, which may interpret the input vectors to
determine the objective(s) the user 1s attempting to accom-
plish (e.g., zoom, rotate, pinch, select, etc.). For instance, a
rotate gesture mput may be handled by a rotate processor
that considers the vectors of the two points of contact
associated with the rotate event and determine tension and
rotation parameters based thereon. In some instances, the
input tracker may route the events to the proper sequence of
one or more event processors 248 based on the properties of
the events (e.g., input vectors, surfaces aflected, other meta-
data, etc.).

Once the events are processed by the event processors
248, the event processors 248 can pass processed events and
data describing or quantifying the processed events (e.g., a
zoom amount, pinch amount, select amount, etc.) to event
handlers 250 for handling. In some implementations, to pass
a particular event, an event processor 248 may implement an
emit method, which may be called by an event emitter to
provide notification to an handler 250 that the event has been
processed and ready for handling. The event emitter may
implement a pipe method, which adds a given event to a set
of one or more handlers 250 to which the event will be piped
to, and may implement an unpipe method to remove an
event from a handler 250. An event handler library may also
be used 1n conjunction with event emitters to handle the
events. The event emitter may emit an event, and the event
data for that event may be dispatched to a handler 250, for
instance, by calling an on(eventName, handler) function
with a corresponding argument. For example, the
emit()method may be used to emit an event, and the on()
function may attach a handler 250 to an event (which can be
dispatched on emit). The pipe()method may designate
downstream event handler 250 to emit events to. An event
handler 250 may be designated to be used for mput and
output. In some cases, if both the tunctions (e.g., mnput and
output) are desired, then two separate event handlers 250
may be required and used. An unbind(eventName, handler)
method may be called to step dispatching events to the
handler 250 that was added using the on method.

The event handlers 250 include software and/or logic for
handling the events received from the event processors 248
and/or the event routing module 246. In some 1instances,
handling an event may include determining for the event
whether the event 1s fully processed and whether the objec-
tive associated with that event that a user intends to achieve
1s clear or accomplished. In case, an event handler 250

10

15

20

25

30

35

40

45

50

55

60

65

16

determines that an event needs further processing, the han-
dler 250 may send that event to one or more event processors
248 for further processing. In some instances, the event
handlers 250 may send the event needing further processing
to the event routing module 246, which may then route the
cvent to event processor(s) 248 based on routing criteria as
described above with respect to the event routing module
246.

In case the event handler 250 determines that an event 1s
tully processed and interpreted and that no further process-
ing 1s required, the event handler 250 may, mm some
instances, determine whether there are any physics param-
cters and/or properties associated with the event that needs
to be processed. If the event handler 250 determines one or
more unprocessed physics parameters to be associating with
the event, the event handler 250 may then send the event
including the one or more unprocessed physics parameters
to one or more istances of the physics engine 234 for
processing. If on the other end the event handler 2350
determines no physics parameters to be associated with the
cvent, the event handler 250 may send the event to the
surface translation engine 236 to render one or more sur-
faces aflected and/or associated with the event for display as
described 1n further detailed below with respect to the
surface translation engine 236.

The physics engine 234 includes software and/or logic for
computing visual eflects (e.g., kinematic eflects such as
movements, translations, etc.) for a rendered context(s)
and/or one or more of the objects associated with that
context based on the associated energy agent(s) and/or
events. An energy agent 1s configured to act on a rendered
context and/or the objects of a rendered context. An energy
agent may be computed in terms magmtude and/or direc-
tionality. For example, an energy agent may include one or
more force vectors.

A rendered context may be associated with one to many
instances of a physics engine 234, and a physics engine 234
may be associated with one to many rendered contexts.
Thus, more than one instance of the physics engine may be
initialized upon the loading of a viewport. The viewport may
have more than one rendered context, and each of those
contexts may be associated with the same instance of the
physics engine 234 or a diflerent instance. For example, the
viewport may have a context for the camera/viewing surface
associated with the viewport which can be panned around,
rotated, etc., and have specific energy agents attached that
give the camera 1ts properties; a scroll view region that
allows the user to scroll and select from different items (e.g.,
folders, 1images, videos, files, etc.) 1n a multi-dimensional
space and has specific energy agents attached that give it
properties such as a bounce-back once the end of a list of
items has been reached, and main interaction region that
allows the user to interact with the 1items 1n a multidimen-
sional space which may have specific energy agents attached
to provide that context with 1ts own unique environmental
properties. Each of these contexts may be interacted with
independently from one another and the inputs associated
with each of these contexts may be piped to different
instances of the physics engine 234. In a further example,
related contexts that are loaded on disparate client devices
106 may share the same physics context, and the istances
of the physics engines 234 on those disparate devices 106
may be synchronized to provide this unified context. This
allows users at diflerent locations to control the same context
rendered on the disparate devices 106.

Energy agents can be programmatic or user defined for a
given context and/or one or more of 1ts objects. The energy

US 9,772,889 B2

17

agents may aflfect the kinematics of the physics of an object
in the physics engine 234. A given energy agent may be
added to a rendered context, and the context may inform the
agent to act on the context based on one or more triggering
criteria (e.g., events, random or systematic timers, predeter-
mined criterion, etc.). For example, using JavaScript, a
developer could add one or more energy agent objects to a
context (e.g., a <div> container) that define the wvirtual
physical attributes of the environment.

Render agents may also be added to objects to add
cosmetic eflects to objects. Render agents are agents that can
allect the rendering and/or display of the objects. For
example, a pulse eflect embodying a render agent may be
producing using the following example code:

var myEffect=new PulseEffect({duration: 500}):

var anotherEffect=new Transtorm(FM.rotateZ(0.1));

var someRenderable=new FamousSurface([300, 200],
‘Just an Example’,

[‘exampleClass’, ‘anotherClass’]);

mainCtx.contentFrom(myEflect).from(anotherEflect).
from(someRenderable);

When added, energy agent objects may be associated with
one or more instances of the physics engine 234, and the
context may be configured to inform the energy agent
objects to have their effects applied based on predetermined
triggers. In some 1mplementations, the performance frame-
work 116 can signal the rendering engine 230 to notily the
aflected surfaces when a certain triggering criterion occurs,
and the surfaces can then signal the associated instances of
the physics engine 234 to process the energy agents that are
also associated with the surfaces. The context may also
provide to any associated instances of the physics engine
234 other information about context, such as its attributes
(e.g., opacity, position, etc.) and/or the attributes of the
objects associated with the context, such as 1its children
clements. In further implementations, the physics engine
234 may obtain any information about the context and/or 1ts
associated elements from an API of the software application
260, such as a Document Object Model (DOM).

Energy agents can use one or more events as inputs when
being processed by the physics engine 234. For instance, a
given energy agent may represent the act to be performed
when a certain gesture iput by a user 1s received, and or
may vary based on the attributes (e.g., velocity, position,
ctc.) of the mput. Example energy agents may include a
velocity energy agent that applies movement to a surface or
set of surfaces when scrolled or panned, tracking energy
agent that applies a tracking movement to a surface or set of
surfaces when the user moves the controlling nput (e.g.,
finger, hand, etc.) around the control region (e.g., touch
sensitive surface), etc.

As a further example, the physics engine 234 may receive
the velocity and position associated with an event that
corresponds to a given surface/rendered context. From the
surface, the physics engine 234 can compute the effect of the
event on the surface relative to the other energy agent
constraints that are associated with that surface. For
instance, each time a finger presses and holds down on a
surface displayed via the touch sensitive display device 214,
and the surface has a tracking energy agent that says the
surface should track the movement of the finger, the physics
engine 234 computes the tracking effect the tracking energy
agent has on the surface relative to any other constraints that
may also govern the surface, such as boundary limitations,
friction, drag, bounce back, etc. As the finger moves around
the screen, the physics engine 234 1s informed of the
velocity and position of the finger and updates the surface

10

15

20

25

30

35

40

45

50

55

60

65

18

with this movement based on the vector(s) associated with
the tracking energy agent and relative to the other forces that
are applicable to the surface. When the finger 1s removed
from the screen, the mput engine 232 ceases to provide
events (e.g., touch vectors) to the physics engine 234 for that
surface, and the physics engine 234 1s thus informed that the
surface 1s no longer being controlled by the mput. At this
point, the physics engine 234 allows the other energy agents
associated with the surface to transition in and bring the
surface to a steady state (which could be a static or dynamic
state).

It should be understood that energy agents can, 1n some
cases, act independently of iput events. Stated differently,
an agent might or might not respond to an input, but has an
output, which can affect the state of an object. For instance,
there can be certain energy agents added to a rendered
context that define the environment of the context. As an
example, a rotational energy agent may be added to a
viewport to slowly rotate the objects (e.g., DOM elements)
of the viewport about a center point at a predetermined rate,
and after items are spun using a swipe by the user, the
spinning motion may eventually returns back to that base
rotational state and rate. In another example, a scroll view
may include several scrollable elements. The scroll view
may have two agents associated with it—a velocity agent
and a drag agent. The velocity agent allows the elements to
be scrolled quickly based on repeated, rapid user inputs, and
the drag agent slows down the scrolling to give 1t a slowing
cllect between iputs. As a further example, suppose a user
would like to move a few objects (e.g., DOM elements) in
a viewport together and basically uses a grab gesture to
tosses them 1nto a pile 1in the viewport. The objects may have
a sticky energy agent that adheres the objects together 1n the
pile, and may have a gravity energy agent that opposes the
sticky energy agent, causing some of the objects to unstick
and fall. Additionally or alternatively, the viewport may
have a vortex energy agent that causes all objects (e.g.,
DOM elements) to rotate around a center point when at
steady state.

The physics engine 234 1s capable of computing the
dynamic state of a context over time. The physics engine 234
can determine how an object (e.g., a surface, etc.) of a
context will be affected by events, energy agents, and
transitions associated with that context, and can output data
describing these eflects to the surface translation engine 236,
which can encapsulate these eflects in a scene graph and
output the scene graph to the rendering engine 230 for
rendering and display to the user. In some 1implementations,
the data output by the physics engine 234 can describe the
energy agents at least in terms of transformation matrices
describing how the corresponding object(s) are to be visu-
ally affected (e.g., transtormed).

The surface translation engine 236 includes software
and/or logic for applying translations and/or other visual
cllects to data reflecting object(s) associated with a render-
able context (e.g., viewport) based on 1nputs, events, and/or
transitions, and then feeds the data to the rendering engine
230 and GPU for rendering and display. The surface trans-
lation engine 236 may be coupled to the physics engine 234
and/or the mput engine 232 to recerve surface-related infor-
mation, such as corresponding nput events, energy agent-
related/transformation information, and transitions. The sur-
face translation engine 236 may translate the objects based
on the transformation information. In some 1mplementa-
tions, the surface translation engine 236 may apply the
translations and/or other visual eflects to surface(s) based on
the processed events received from the mput engine 232, the

US 9,772,889 B2

19

processed events being associated with the surface(s). In
some 1mplementations, the physics engine 234 may output
position and velocity information associated with an object,
which the surface translation engine 236 may then use to
apply the corresponding translation. By way of example, the
following code may be used by the surface translation
engine 236 to receive and apply transformation information
from the physic engine 234:

function getCurrentTransform() {
var position = physicsEngine.getPosition();
var velocity = physicsEngine.getVelocity();
return Matrix.move(Matrix.skew(velocity, 0, 0), [position, 0, 0]);

The above code may produce the transform for a moving
object that skews more the faster 1t moves.

In some 1mplementations, the surface translation engine
236 may apply the translations and/or other visual effects by
generating and mampulating a scene graph. A scene graph
includes a data structure including nodes that describe the
renderable content in the form of a tree structure, in which
a parent node contains one or more children nodes, and the
children nodes may further constitute parent nodes relative
to the children nodes they contain, and so one and so forth.
Each node of the scene graph may include positional,
rotational, scaling, and/or geometrical information, etc.,
associated with that node, and may include such information
in multiple dimensions (e.g., 2D, 3D, etc.), although 1t
should be understood that any other attributes may also be
included, such as opacity.

Below 1s an example scene graph generated by the surface
translation engine 236 for a translucent surface placed next
to another surface and the surfaces being rotated together:

[
1

transform: [1, 0, 0, 0, 0,1, 0,0, 0, 0, 1, 0, =100, 0, 0, 1],
opacity: 0.5,
target: 3

}
{
transform: [0.707, -0.707, 0, 0, 0.707, 0.707, 0, 0, 0, 0, 1, 0, 0, 0, 0,

1],
target: |
4,

{

transform: [1, 0, 0, 0,0, 1,0, 0, 0, 0, 1, 0, 100, O, 0, 1]
target: 5

h
]

h
]

In the above example, the transformation matrices, in
order, are: translate(—100, 0, 0), rotateZ(PI1/4), and translate
(100, 0, 0), which apply to entities (surfaces) with respective
1ds of 3, 4, and 5, where 3 1s positioned 100 pixels to the left
of the Pl/4-radian rotation of 4 and 5, and 35 1s positioned 100
pixels to the rnight of 4.

In some web browser-based implementations, the surface
translation engine 236 may generate the scene graph by
progressively applying the transforms beginning with the
leaves and ending with the roots, and the rendering engine
230 may apply the scene graph to the DOM 1n reverse order.

When generating the scene graph, the surface translation
engine 236 can format the data received from the physics
engine 234 and/or the mput engine 232, such as data

10

15

20

25

30

35

40

45

50

55

60

65

20

describing applicable events, energy agent eflects, and/or
transitions, into a scene-graph compatible format and incor-
porate it. For instance, a change 1n position, rotation, scale,
and/or geometry, etc., due to one or more energy agents may
be calculated (e.g., as vectors) by the physics engine 234 and
provided to the surface translation engine 236, which may
reflect these changes in the node. The surface translation
engine 236 may receirve information about the rendered
context and the one or more objects included therein, such
as current position, rotation, scale, geometry, etc., from the
rendering engine 230 (e.g., a DOM) and incorporate 1t mnto
the scene graph. In some 1implementations, a location matrix
can be computed based on scene graph data. The physics
engine 326 may be used as a source to compute the location
matrix, and the surface translation engine 236 may then
apply this location matrix to one or more elements of a
rendered context for translation.

The surface translation engine 236 may generate its own
distinct scene graph, which it can then provide to the
rendering engine 230. The rendering engine 230 can use
GPU accelerated rendering to process the scene graph and
produce the surface translations and/or other effects 1 the
viewport (e.g., browser window) without having to substan-
tially reprocess the scene graph. This can yield significant
performance improvements and eliminate unwanted visual
artifacts when rendering objects, for example, 1n a web
browser context. In some cases, the nodes of the scene graph
are not directly associated with the items being visually
displayed, but are rather representations of those items and
can be independently transformed by the surface translation
engine 236. This can allow the performance framework 116
to be over a magnitude more ethicient than when the ele-
ments are directly associated with the items being visually
displayed and the transformations are processed by the
rendering engine 230 1tsell.

In some implementations, the rendering engine 230 may
signal the surface translation engine 236 to output a scene
graph (e.g., based on the occurrence of one or more events)
for a given renderable context. In some implementations, the
surface translation engine 236 may provide the scene graph
to the rendering engine 230 responsive to receiving infor-
mation and/or mput events from the physics engine 234
and/or the input engine 232. Other variations are also
contemplated.

The APIs 240 include software and/or logic for interfac-
ing with and providing the acts, functionality, etc., of the
performance framework 116, and/or its constituent compo-
nents to another software applications, such as the software
application 260, the applications 114q . . . 114#n, etc. In some
implementations, the APIs 240 relays requests and responses
from the other software application to the appropriate com-
ponents of the performance framework 116 for processing.
For example, in an implementation where the application
114 and the performance framework 116 reside on distinct
computing devices coupled via the network 102, the appli-
cation 114 may interface with the performance framework
116 via the APIs 240. The APIs 240 may be electronically
communicatively coupled to the other components of the
performance Iramework 116 to relay information. For
example, 1n a multi-view implementation where the same
physics context 1s shared via two or more rendered contexts
on disparate computing devices, the APIs 240 can receive
inputs via the network 102 and the network interface 208,
from a remote 1nstance of the performance framework 116,
and provide the mputs to a local instance of the input engine
232 for processing and synchronization. The APIs 240 may
also provide access to data stored on the computing device.

US 9,772,889 B2

21

In some i1mplementations, the APIs 240 may require an
interfacing soiftware application to authenticate using a
standard authentication protocol to utilize 1ts functionality.

Additional structure, acts, and/or functionality of the one
or more components of the client application 108, the 5
soltware application 260, and/or the performance frame-
work 116 including the rendering engine 230, the interaction
engine 238, the imnput engine 232, the physics engine 234, the
surface translation engine 236, and/or the APIs 240 are
turther discussed elsewhere herein. 10

FI1G. 3 1s a flowchart of an example method for expediting
the processing and handling of the events. The method 300
may begin by detecting 302 an event. The event may retlect
an action taken by a user relative to a set of one or more
surfaces that are rendered for display to the user in a 15
multi-dimensional space (e.g., 2D, 3D, etc.). Non-limiting
examples of the event may include a touch event, a mouse
pointer event, a keyboard event, a motion gesture event, etc.
The method 300 may route 304 the event to a set of one or
more event processors 248 for processing. In some 20
instances, the operation 1n block 304 may be performed by
the event routing module 246 as described elsewhere herein.

The method 300 may then process 306 the event upon
receiving. For instance, an event processor 248 of the set
may receive the event from the event routing module 248, 25
process the event, may further send to another event pro-
cessor 248 1n the set for further processing, and so on and so
forth. Once the event 1s processed by the one or more event
processors 248 of the set, the method 300 may handle 308
the event using one or more event handlers 250. The one or 30
more event handlers 250 may perform their respective
handling operations on the event as described elsewhere
herein. The method 300 may then render 310 one or more
visual eflects m relation to the one or more surfaces of the
set based on the handling performed by the one or more 35
event handlers 250. In some instances, the surface transla-
tion engine 236 may generate a scene graph describing how
to render the one or more visual eflects based on the
handling, and the rendering engine 230 may, 1n cooperation
with the GPU, apply the one or more visual effects to the one 40
or more surfaces using the scene graph.

FIGS. 4A and 4B 1s a flowchart of another example
method 400 for expediting the processing and handling of
the events. The method 400 may begin by rendering 402, via
a web browser, a set of one or more surfaces for display in 45
a multi-dimensional space. For example, the rendering
engine 230 may render the one or more surfaces of a web
page 1n 3D space. In some 1instances, the one or more
surfaces may correspond to one or more of DOM elements,
HTML elements, etc. The method 400 may continue by 50
receiving 404 an 1nput from a user, the mput triggering an
event on the one or more surfaces of the set rendered for
display 1in block 402. The method 400 may determine 406
event characteristics associated with the event. The event
characteristics may describe one or more properties (e.g., 55
direction, position, force, velocity, etc.) that are associated
with the event and help to decide whether the objective that
the user 1s trying to achieve by providing the input 1s clear
based on those properties.

The method 400 may then determine in block 408 so
whether to bypass event processing by event processors 248
based on the event characteristics. In some instances, the
method 400 may make this determination based on whether
the event meets one or more pre-determined processing
criteria based on the characteristics associated with the 65
cvent. If the result of the determination in block 408 1is
aflirmative, then the method 400 may proceed to block 424

22

(see FIG. 4B) to pass the event directly to one or more event
handlers 250 for handling, as further described below. If on
the other hand, the result of the determination in block 408
1s negative, then the method 400 may determine 1n block 410
whether to terminate the event. For example, the event
routing module 248 may decide upon determining the event
characteristics of the event that the event i1s not a useful
event and 1s not worth processing. If the result of the
determination in block 410 1s athirmative, then the method
400 may discard 412 the event and any processing that 1s
required for the event. Otherwise, the method 400 may
proceed to block 414 to determine 414 a route for the event
based on the event characteristics associated with the event
and then route 416 the event to a set of one or more event
processors 248 for processing using the route as depicted for
example 1 FIG. 5. In some 1nstances, the operations 1n the
block 414 and 416 may be performed by the event routing
module 246 as described elsewhere herein.

Upon routing the event to the set of one or more proces-
sors 248 for processing, the method 400 may then process
418 event data associated with that event to interpret an
objective associated with the user input received in block
404. The event data may include one or more characteristics
or properties associated with the event as discussed else-
where herein. In some implementations, the event may be
routed from one event processor to another event processor
of the set for processing until the objective 1s clearly
interpreted and the event i1s ready for handling. In some
cases, an input recerved 1n block 404 may trigger a low-level
cevent (e.g., event with the unknown or unclear objective)
(e.g., including raw data) and the low-level event may be
converted into a high-level event (e.g., event with known
and clear objective) (e.g., including renderable data pro-
cessed from the raw data) based on the processing per-
formed by the set of one or more event processors 248.

Upon processing the event data, the method 400 may then
determine 1n block 420 whether further processing 1s still
required for the event. In some implementations, the method
400 may perform this determination based on whether the
event as processed by the set of one or more event proces-
sors 248 1s 1dentified into one particular event (e.g., a flick)
or a series of closely related events (e.g., tlick, swipe, scroll,
etc.). If the determination in block 420 1s atlirmative, then
the method 400 may route 422 the event to a subsequent set
of one or more event processors for further processing. The
subsequent set of one or more event processors may then
perform the same operations as discussed above with respect
to block 418 until the event objective 1s clearly known and
no further processing 1s required for the event.

Once the method 400 determines that no further process-
ing 1s required for the event 1n block 420, the method 400
may then pass 424 the event to one or more event handlers
250 for handling. In some instances, the method 400 may
use an algorithm to choose the one or more event handlers
250 appropriate for handling the event. In other instances,
the method 400 may choose the one or more event handlers
250 randomly and pass the event to those handlers 250.
Other vanations are also possible and contemplated.

The one or more event handlers 250 upon receiving the
cvent may determine 1 block 426 whether the event
includes any physics parameters that need processing. If the
result of the determination 1n block 426 1s athrmative, then
the one or more event handlers 250 may determine 428 one
or more physics parameters for the event and then send 430
the event including the one or more physics parameters to a
physics engine 234 for further processing. The physics
engine 234 may then perform its respective operation on the

US 9,772,889 B2

23

event as described elsewhere herein. Once the physics
engine 234 1s done performing its operation on the event, the
method 400 may proceed to block 432 to perform next set
ol operations as discussed below.

If on the other end, the determination in block 426 1s 5
negative, then the one or more event handlers 250 may
proceed to block 432 to determine whether to apply one or
more visual eflects to the one or more surfaces of the set that
are associated with the event. If the determination in the
block 432 i1s aflirmative, then the method 400 may render 10
434 surtace movement and/or effects based on the event. For
example, the one or more event handlers 250 may send the
event processed by event processors 248 to the surface
translation engine 236, which may then use the processed
event to generate a scene graph. The scene graph may 15
include transition and/or movement information based on
the processed event. The surface translation engine 236 may
send the scene graph to the rendering engine 230, which may
then use 1t to render the one or more visual eflects 1n relation
to the one or more surfaces. If on the other hand, the result 20
of the determination i block 432 1s negative, then the
method 400 may return to recerve another event for han-
dling.

FIG. 5 1s a graphical representation of an example data
flow diagram 500 depicting how one or more events are 25
routed for processing and handling. As depicted, the event
detection module 244 detects the one or more events. These
events may be received on surfaces that are rendered for
display to a user. In some 1implementations, the interaction
engine 238 may receive one or more puts from the user via 30
the mput devices 216 and/or the touch sensitive display
device 214 and the event detection module 244 may detect
the one or more events based on the one or more iputs
triggering those events. Upon detecting the one or more
events, the event detection module 244 may pass the events 35
to the event routing module 246 of the mput engine 232.

The event routing module 246 may determine for each
event, one or more characteristics associated with that event.
Determining characteristics for an event 1s advantageous as
it may help the event routine module 246 to appropriately 40
determine whether processing 1s needed for the event and 1f
needed which event processor 248 to route the event to that
1s suitable to process the event with those characteristics. In
some cases, the event routing module 246 may determine
that no processing 1s required for an event based on the event 45
characteristics and may simply route the event to one or
more event handlers 250 for handling as discussed else-
where herein.

Once a suitable event processor 248 1s determined to
process an event, the event routine module 246 may then 50
determine a route for routing the event to that processor.
Similarly, the event routing module 246 may determine
routes for any other events. The event routing module 246
may then use one or more routes determined by it to route
the one or more events to the one or more event processors 55
248a . . . n for processing. The event processors 248a . . .
248n may process the one or more events. In some 1nstances,
an event processor 248 upon processing an event may pass
the event to another event processor for further processing,
as discussed elsewhere herein. For example, as depicted in 60
the figure, the event processor 2485 may send an event to
processor 248¢ for further processing. This processing 1s
generally compact for eih

iciency but may iterate as long as
the necessary to clearly interpret the objective associated
with the event, as discussed elsewhere herein. 65
Once an event 1s processed by an event processor 248, the
event processor 248 may then pass the processed event to an

24

event handler 250 for handling. For example, as depicted 1n
the figure, the event processor 248a may pass the processed
event to handler 250q for handling, the event processor 248¢
may pass the processed event to handler 2506 for handling,
the event processor 248» may pass the processed event to
handler 2507 for handling, so on and so forth. Upon receiv-
ing a processed event, the event handler 250 may determine
whether to compute physics for the event and/or apply visual
ellect(s) to surface(s) associated with the processed event as
described elsewhere herein. In some cases, the event handler
250 can also determine for an event whether further pro-
cessing 1s still required for the event. If the event handler 250
determines that the further processing is required, the event
handler 250 may then determine a route for passing the event
to an appropriate event processor 248 for further processing.
For example, as depicted in the figure, the event handler
250a may determine a route A, the event handler 2505 may
determine a route B, the event handler 250¢ may determine
a route N, so on and so forth.

FIG. 6 1s a graphical representation of an example user
interface 600 depicting handling and processing of events
when applied to DOM eclements. The interface 600 depicts
two paths for defining a paragraph tag in an HIML docu-
ment. Path 602 represents defining the paragraph tag using
a standard, methicient approach. Path 604 represents defining
the paragraph tag using the eflicient technology described in
this disclosure. As depicted, using the standard approach
602, a body tag 1s needed to be defined along with 2 div
containers for incorporating the paragraph (e.g., <p> text)
and level 1 heading (e.g., <hl> text) respectively. On the
other hand as depicted by path 604, using the technology
described 1n this disclosure, the paragraph tag <p> can be
directly defined without needing to declare a body tag
(<body>) and a div container as required in the traditional
approach 602. This 1s advantageous as 1t eliminates any
additional time and lag that may be introduced upon defining
the tag using the traditional approach.

In the above description, for purposes ol explanation,
numerous specific details are set forth 1n order to provide a
thorough understanding of the present disclosure. However,
it should be understood that the technology described herein
can be practiced without these specific details. Further,
various systems, devices, and structures are shown 1n block
diagram form in order to avoid obscuring the description.
For 1nstance, various implementations are described as hav-
ing particular hardware, software, and user interfaces. How-
ever, the present disclosure applies to any type of computing
device that can receive data and commands, and to any
peripheral devices providing services.

In some instances, various implementations may be pre-
sented herein in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. An algorithm 1s here, and generally, conceived to
be a seli-consistent set of operations leading to a desired
result. The operations are those requiring physical manipu-
lations of physical quantities. Usually, though not necessar-
1ly, these quantities take the form of electrical or magnetic
signals capable of being stored, transtferred, combined, com-
pared, and otherwise manipulated. It has proven convenient
at times, principally for reasons of common usage, to refer
to these signals as bits, values, elements, symbols, charac-
ters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, 1t 1s appreciated that

US 9,772,889 B2

25

throughout this disclosure, discussions utilizing terms
including “processing,” “computing,” “calculating,” “deter-
mimng,” “displaying,” or the like, refer to the action and
processes ol a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories to other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

Various implementations described herein may relate to
an apparatus for performing the operations herein. This
apparatus may be specially constructed for the required
purposes, or it may include a general-purpose computer
selectively activated or reconfigured by a computer program
stored 1n the computer. Such a computer program may be
stored 1n a computer readable storage medium, including,
but 1s not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, and magnetic disks, read-only
memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMs, magnetic or optical cards, flash
memories icluding USB keys with non-volatile memory or
any type of media suitable for storing electronic instructions,
cach coupled to a computer system bus.

The technology described herein can take the form of an
entirely hardware implementation, an entirely software
implementation, or implementations containing both hard-
ware and software elements. For instance, the technology
may be implemented 1n software, which includes but 1s not
limited to firmware, resident software, microcode, etc. Fur-
thermore, the technology can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by
or 1n connection with a computer or any instruction execu-
tion system. For the purposes of this description, a com-
puter-usable or computer readable medium can be any
non-transitory storage apparatus that can contain, store,
communicate, propagate, or transport the program for use by
or 1n connection with the struction execution system,
apparatus, or device.

A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories that provide tem-
porary storage of at least some program code in order to
reduce the number of times code must be retrieved from bulk
storage during execution. Input/output or I/O devices (in-
cluding but not limited to keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or
through intervening 1/O controllers.

Network adapters may also be coupled to the system to
cnable the data processing system to become coupled to
other data processing systems, storage devices, remote print-
ers, etc., through intervening private and/or public networks.
Wireless (e.g., Wi1-F1™) transceirvers, Ethernet adapters, and
Modems, are just a few examples of network adapters. The
private and public networks may have any number of
configurations and/or topologies. Data may be transmitted
between these devices via the networks using a variety of
different communication protocols including, for example,
various Internet layer, transport layer, or application layer
protocols. For example, data may be transmitted via the
networks using transmission control protocol/Internet pro-
tocol (TCP/IP), user datagram protocol (UDP), transmission
control protocol (TCP), hypertext transier protocol (HTTP),

b

10

15

20

25

30

35

40

45

50

55

60

65

26

secure hypertext transfer protocol (HTTPS), dynamic adap-
tive streaming over HITTP (DASH), real-time streaming
protocol (RTSP), real-time transport protocol (RTP) and the
real-time transport control protocol (RTCP), voice over
Internet protocol (VOIP), file transier protocol (FTP), Web-
Socket (WS), wireless access protocol (WAP), various mes-
saging protocols (SMS, MMS, XMS, IMAP, SMTP, POP,
WebDAYV, etc.), or other known protocols.

Finally, the structure, algorithms, and/or interfaces pre-
sented herein are not inherently related to any particular
computer or other apparatus. Various general-purpose sys-
tems may be used with programs 1n accordance with the
teachings herein, or it may prove convenient to construct
more specialized apparatus to perform the required method
blocks. The required structure for a variety of these systems
will appear from the description above. In addition, the
specification 1s not described with reference to any particular
programming language. It will be appreciated that a variety
of programming languages may be used to implement the
teachings of the specification as described herein.

The foregoing description has been presented for the
purposes of i1llustration and description. It 1s not intended to
be exhaustive or to limit the specification to the precise form
disclosed. Many modifications and variations are possible 1n
light of the above teaching. It 1s intended that the scope of
the disclosure be limited not by this detailed description, but
rather by the claims of this application. As will be under-
stood by those familiar with the art, the specification may be
embodied 1n other specific forms without departing from the
spirit or essential characteristics thereof. Likewise, the par-
ticular naming and division of the modules, routines, fea-
tures, attributes, methodologies and other aspects are not
mandatory or significant, and the mechamsms that imple-
ment the specification or its features may have different
names, divisions and/or formats.

Furthermore, the modules, routines, features, attributes,
methodologies and other aspects of the disclosure can be
implemented as software, hardware, firmware, or any com-
bination of the foregoing. Also, wherever a component, an
example of which 1s a module, of the specification 1is
implemented as software, the component can be i1mple-
mented as a standalone program, as part of a larger program,
as a plurality of separate programs, as a statically or dynami-
cally linked library, as a kernel loadable module, as a device
driver, and/or 1n every and any other way known now or 1n
the future. Additionally, the disclosure 1s 1n no way limited
to implementation 1n any specific programming language, or
for any specific operating system or environment. Accord-
ingly, the disclosure 1s intended to be illustrative, but not
limiting, of the scope of the subject matter set forth in the
tollowing claims.

What 1s claimed 1s:

1. A computer-implemented method comprising:

detecting, using one or more computing devices, a first
event associated with a set of one or more surfaces
rendered for display via a web browser in a multi-
dimensional space;

determining, using the one or more computing devices,
event characteristics describing an input that triggers
the first event associated with the one or more surfaces
of the set;

determining, based on the determined event characteris-
tics, a route by at least determining a number of event
processors to be included 1n the route, determining a
type for each of the event processors to be included 1n
the route, and determining a sequence for the event

US 9,772,889 B2

27

processors to be included in the route, the event pro-
cessors forming a first set of event processors;

routing, using the one or more computing devices, the first
cvent to the first set of event processors for processing
via the web browser using the determined route that
bypasses a standard path defined by a document object
model for event processing;
processing the first event using the one or more comput-
ing devices and the first set of event processors; and

after the processing, handling the first event using the one
or more computing devices and one or more first event
handlers.

2. The computer-implemented method of claim 1,
wherein processing the first event includes processing event
data associated with the first event to interpret an objective
associated with the input provided by a user.

3. The computer-implemented method of claim 1, further
comprising;

after the processing by the first set of event processors,

determining, using the one or more computing devices,
whether further processing 1s required for the first
event; and

responsive to determining that the further processing 1s

required, routing, using the one or more computing
devices, the first event to a second set of one or more
event processors for the further processing.

4. The computer-implemented method of claim 1,
wherein handling the first event includes:

determining, using the one or more computing devices,

one or more physics parameters for the first event; and

translating, using the one or more computing devices, the
one or more surfaces of the set associated with the first
cvent based on the one or more physics parameters.

5. The computer-implemented method of claim 1, further
comprising;

detecting, using the one or more computing devices, a

second event associated with the set of one or more
surfaces rendered for display via the web browser 1n the
multi-dimensional space;

determining, using the one or more computing devices,

the second event to meet a predetermined processing
criterion; and

handling the second event using the one or more com-

puting devices and one or more second event handlers
without previously processing the second event using
event processors.

6. The computer-implemented method of claim 1, further
comprising;

rendering, using the one or more computing devices, one

or more visual eflects in relation to the one or more
surfaces of the set based on the handling.

7. The computer-implemented method of claim 1,
wherein the first event includes one of a touch event, a
mouse pointer event, a keyboard event, and a motion gesture
event.

8. The computer-implemented method of claim 1,
wherein the one or more surfaces correspond to one or more
DOM elements that are rendered for display via the web
browser.

9. A computer program product comprising a computer
usable medium including a computer readable program,
wherein the computer readable program when executed on
a computer causes the computer to:

detect a first event associated with a set of one or more

surfaces rendered for display via a web browser in a
multi-dimensional space;

10

15

20

25

30

35

40

45

50

55

60

65

28

determine, using the one or more computing devices,
event characteristics describing an input that triggers
the first event associated with the set of one or more
surfaces:

determine, based on the determined event characteristics,

a route by at least determiming a number of event
processors to be included 1n the route, determining a
type for each of the event processors to be included 1n
the route, and determining a sequence for the event
processors to be included 1n the route, the event pro-
cessors forming a {irst set of event processors;

route the first event to the first set of event processors for

processing via the web browser using the determined
route that bypasses a standard path defined by a docu-
ment object model for event processing;

process the first event using the first set of event proces-

sors; and

handle the first event using one or more first event

handlers aiter the processing.

10. The computer program product of claim 9, wherein to
process the first event includes processing event data asso-
ciated with the first event to interpret an objective associated
with the mput provided by a user.

11. The computer program product of claim 9, wherein the
computer readable program, when executed on the com-
puter, turther causes the computer to:

determine whether further processing is required for the

first event after the processing by the first set of event
processors; and

route the first event to a second set of one or more event

processors for the further processing responsive to
determining that the further processing 1s required.

12. The computer program product of claim 9, wherein to
handle the first event includes:

determining one or more physics parameters for the first

event; and

translating the one or more surfaces of the set associated

with the first event based on the one or more physics
parameters.

13. The computer program product of claim 9, wherein
the computer readable program, when executed on the
computer, further causes the computer to:

detect a second event associated with the set of one or

more surfaces rendered for display via the web browser
in the multi-dimensional space;

determine the second event to meet a predetermined

processing criterion; and

handle the second event using one or more second event

handlers without previously processing the second
event using event processors.

14. The computer program product of claim 9, wherein
the computer readable program, when executed on the
computer, further causes the computer to:

render one or more visual effects in relation to the one or

more surfaces of the set based on handling.

15. The computer program product of claim 9, wherein
the first event includes one of a touch event, a mouse pointer
event, a keyboard event, and a motion gesture event.

16. The computer program product of claim 9, wherein
the one or more surfaces correspond to one or more DOM
clements that are rendered for display via the web browser.

17. A system comprising;:

one or more processors; and

one or more memories storing instructions that, when

executed by the one or more processors, cause the
system to:

US 9,772,889 B2

29

detect a first event associated with a set of one or more
surfaces rendered for display via a web browser 1n a
multi-dimensional space;

determine, using the one or more computing devices,
event characteristics describing an iput that triggers
the first event associated with the one or more

surfaces of the set;

determine, based on the determined event characteris-
tics, a route by at least determining a number of
event processors to be included 1n the route, deter-
mining a type for each of the event processors to be
included in the route, and determining a sequence for
the event processors to be included 1n the route, the
event processors forming a {irst set of event proces-

SOTS;

route the first event to the first set of event processors
for processing via the web browser using the deter-
mined route that bypasses a standard path defined by
a document object model for event processing;

process the first event using the first set ol event
processors; and

handle the first event using one or more first event
handlers after the processing.

18. The system of claim 17, wherein to process the first
event includes processing event data associated with the first
event to interpret an objective associated with the input
provided by a user.

19. The system of claim 17, wherein the instructions,
when executed by the one or more processors, further cause
the system to:

determine whether further processing 1s required for the

first event alter the processing by the first set of event
processors; and

route the first event to a second set of one or more event

processors for the further processing responsive to
determining that the further processing 1s required.

20. The system of claim 17, wherein to handle the first
event includes:

determining one or more physics parameters for the first

event; and

translating the one or more surfaces of the set associated

with the first event based on the one or more physics
parameters.

21. The system of claim 17, wherein the instructions,
when executed by the one or more processors, further cause
the system to:

10

15

20

25

30

35

40

45

30

detect a second event associated with the set of one or
more surfaces rendered for display via the web browser
in the multi-dimensional space;

determine the second event to meet a predetermined
processing criterion; and

handle the second event using one or more second event
handlers without previously processing the second
event using event processors.

22. The system of claim 17, wherein the instructions,

when executed by the one or more processors, further cause

the system to:
render one or more visual etfects 1n relation to the one or

more surfaces of the set based on handling.

23. The system of claim 17, wherein {irst event includes
one of a touch event, a mouse pointer event, a keyboard
event, and a motion gesture event.

24. The system of claim 17, wherein the one or more
surfaces correspond to one or more DOM elements that are
rendered for display via the web browser.

25. A system comprising:

means for detecting a first event associated with a set of

one or more surfaces rendered for display via a web
browser 1n a multi-dimensional space;

means for determining, using the one or more computing

devices, event characteristics describing an input that
triggers the first event associated with the one or more
surfaces of the set;
means for determining, based on the determined event
characteristics, a route by at least determining a number
of event processors to be included 1n the route, deter-
mining a type for each of the event processors to be
included 1n the route, and determining a sequence for
the event processors to be included 1n the route, the
event processors forming a first set of event processors;

means for routing the first event to the first set of event
processors for processing via the web browser using the
determined route that bypasses a standard path defined
by a document object model for event processing;

means for processing the first event using the first set of
event processors; and

means for handling the first event using one or more {first

event handlers after the processing.

26. The method of claim 1, wherein the web browser, via
which the one or more surtaces are rendered for display and
via which the first event 1s routed to the first set of event

processors for processing, 1s the same web browser.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

