US009762502B1

12 United States Patent 10) Patent No.: US 9,762,502 B1

Mogul et al. 45) Date of Patent: Sep. 12,2017

(54) METHOD AND SYSTEM FOR VALIDATING 7382728 B2* 6/2008 Chenocovevoon... HO4T. 12/5693
RATE-LIMITER DETERMINATION MADE 370/235

BY UNTRUSTED SOFTWARE 7,539,134 B1* 5/2009 BOWES ..oocoveven.... HO4L. 1/0072
370/230

(71) Applicant: Google Inc., Mountain View, CA (US) 7,636,308 B2* 12/2009 KwOn HO/—‘% ;03;;03808%

_ . 8,462,780 B2 6/2013 Vincent et al.
(72) Inventors: Jeffrey Clifford Mogul, Menlo Park, $477.610 B2 72013 Zuo et al

CA (US); Jakov Seizovic, Los Gatos, 8499.151 B2 7/2013 Durham et al.
CA (US); Yuhong Mao, Fremont, CA

(US); Benjamin Charles Serebrin, (Continued)
Sunnyvale, CA (US) FOREIGN PATENT DOCUMENTS
(73) ASSigﬂee: Google Inc., MOU.IltEliIl \ﬁew,, CA (US) WO 2013158115 Al 10/2013
WO 2014021839 Al 2/2014

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 112 days. OTHER PUBLICATIONS

Radhakrishnan, et al., SENIC: Scalable NIC for End-Host Rate
Limuting, 2013.

(22) Filed: Feb. 26, 2015 (Continued)
Related U.S. Application Data

(21) Appl. No.: 14/632,449

(60) Provisional application No. 61/991,835, filed on May Primary Examiner — Krisna Lim

12, 2014. (74) Attorney, Agent, or Firm — Lemer, David,
Littenberg, Krumholz & Mentlik, LLP

(51) Imt. CL
GO6F 15/16 (2006.01)
HO4L 12/863 (2013.01) (57) ARSTRACT
HO4L 12/825 (2013.01)
(52) U.S. CL The present application describes a system and method for
CPC .. HO4L 47/624 (2013.01); HO4L 47/25 a virtual machine to classily a packet. Once the virtual
(2013.01) machine (VM) classifies the packet, it bypasses a hypervisor
(58) Field of Classification Search to enqueue the packet directly on a hardware transmission
CPC e, HO4L 47/624;, HO4L 47/25 queue. The NIC will then Venfy that the VM classified and
See application file for complete search history. enqueued the packet correctly. If the packet was classified
properly, 1t 1s transmitted over the wire to its destination. In
(56) References Cited this regard, the system and method provides a technique for

veritying that the VM 1s enqueuing packets properly, while

U.S. PATENT DOCUMENTS improving performance by allowing high-rate flows to

6,952,401 B1* 10/2005 Kadambi HO041. 47/125 bypass the hypervisor.
370/232
6,987,733 B2* 1/2006 Mukouyama HO04I. 12/5601
370/236 21 Claims, 9 Drawing Sheets
100
/
TRUSTED HOST
PROCESS0OR MEMORY
1040 1080
210 220 230
\ N |
VM4 VM5 ViV,
Vi, NIC Driver Vi NIC Drriver Vi, NIC Driver
2010 2020 o 2030
2092 2094 2096
J J J
1100
¥ el
HYPERVISOR)
4»(NIC)«——
1200

300
EXTERNAL NETWORK

US 9,762,502 B1
Page 2

(56)

8,500,822
8,599,830
2004/0160914
2005/0122966

2008/0259798
2010/0061235
2010/0211946
2011/0019531
2011/0019552
2011/0023029
2011/0103389
2012/0250511

2013/0019042
2013/0227685

2013/0246619
2013/0343191

References Cited

U.S. PATENT DOCUMENTS

B2 10/2013 Diab et al.

B2 12/2013 Karaoguz et al.
Al 8/2004 Sarkar

Al* 6/2005 Bowes
Al 10/2008 Loh et al.

Al 3/2010 Pa et al.

Al 8/2010 Elzur

Al 1/2011 Kim et al.

Al 1/2011 Karaoguz et al.
Al 1/2011 Diab et al.

Al 5/2011 Kidambi et al.
Al* 10/2012 Neeser
Al 1/2013 Ertugay et al.
Al* 82013 McGee
Al 9/2013 Raja et al.

Al* 12/2013 Kim

HO4L 12/5601
370/360

...... HO041. 47/12

370/235

***** GOOF 21/51

726/22

****** HO4L 47/11

370/235

2013/0343399 Al* 12/2013 Kandula GO6F 9/5077
370/412

2014/0115578 Al 4/2014 Cooper et al.

2015/0146527 Al 5/2015 Kishore et al.

2016/0044695 Al 2/2016 Gunner

2016/0301601 Al* 10/2016 Anand HO4L 69/22

OTHER PUBLICATIONS

Radhakrishnan, et al., NicPic: Scalable and Accurate End-Host Rate
Limiting, 2013.

Broadcom FEthernet Network Controller Enhanced Virtualization
Functionality, Broadcom Corporation, Oct. 2009.

Keller, Eric, et al., NoHype: Virtualized Cloud Infrastructure with-
out the Virtualization, Princeton University, © 2010.

Ram, Kaushik Kumar, et al., sNICh: Efficient Last Hop Networking
in the Data Center, HP Laboratories, © 2010.

Mogul, Jeflrey C., et al., The NIC 1s the Hypervisor: Bare-Metal
(Guests 1n laaS Clouds, HP Labs, Palo Alto, 2013.

* cited by examiner

U.S. Patent Sep. 12, 2017 Sheet 1 of 9 US 9,762,502 B1

PROCESSOR MEMORY
1040 1060

l 210 590 — 0

NN R

VIV NIC Driver VM, NIC Driver

2010 | 2020
[2092 | | 2094
— [S I
I E *

ViVl NIC Driver

|
|
S|

~ 300

U.S. Patent Sep. 12, 2017 Sheet 2 of 9 US 9,762,502 B1

mmpa ey Y

L 2092 |
}

N

210 270
A §I>

T

VM, NIC |
Driver 2010

L mj}):mﬂ -

P e R R N R AT . '-""| P 1 Pl b e o AT ol WPtk T M A b e e WY

' PROCESSOR MEMORY
1040 ! 1060

230

_ =

VIVl] YWy

| [V, NI VM, NIC

| | Oriver 2020 | - Driver 2030
E
|

i 2094 |

| i —_—
L._w S — .

| PROCESSOR
i

[DATA 1262 l
} INSTRUCTIONS 1264 ||

{-verify pkts properly enqueue
4 [-compare header info. or flow |
look-up key

-transmit to external nework |

a I s _ o N i 300

U.S. Patent Sep. 12, 2017 Sheet 3 of 9 US 9,762,502 B1

230
100 \
| - T
}
VM;L' NIC Driver E F_’ VM, NIC Driver
2010 g 3) | 2030
i HYPERVISOR 1 | ooe
i 1100
B |
—1210A° 5@;0@5 ;:1210(:: :‘1220: ‘
= .ﬂ"’%’
S Ms::f:w:ﬂw M*"’wﬁﬁ e mpenemen
T MEMORY
1060
FLOW LOQOK-
1250 | Tx FLOW 1290
LOOK-UP]
I:3210Af -3210B3 [©3210C7 73210077 (73210E7 -3210F] 321060 . [3210H-
s S p———_yr .]_ —— . A
] L

U.S. Patent Sep. 12, 2017 Sheet 4 of 9 US 9,762,502 B1

210
f 100
mgwiﬁ}il N;C Driver E l VM, NIC Driver
| 2010 -. e w 2030
l "‘“‘ | HYPERVISOR E | | ”f;g;';m ;
2092 |
- 1100]
E B , |
- e o
f
o -) o
7 .
N E ; l
é}__Z]_U,ﬂj szem :1210(;:5 ‘ 12207 tC1230A7 [C1230BC ':1230(::_
| | ‘
i — E e e e
L MEMORY
1060
(i — i T T T T T A T S LA - o ""-‘,K
{;"‘
o FLOW LOOK-
1200 [SCHEDULER . 1P TABLE
1250 Tx FLOW 1790
LOOK-UP T
1270
[E | | ; e H
3210A7 [321087 [3210C] [3210D7 [3210E [E3210F] 1321067 ... [3210H-
|
N) e e e /!

(EXTERNAL NETWORK _
300

U.S. Patent Sep. 12, 2017 Sheet 5 of 9 US 9,762,502 B1

B HYPERVISOR
VML NIC H} — —
- Driver 2010 - FLOW E
 LOOK-UP ~1110-
| TABLE

E 2094 i

PRy

rrrrr

' SCHEDULER)
1250

TIXELOW | S 1200
LOOK-UP “}mmmm — ﬁ

3210A] [32108] [3210C] (3210D] [321061 [3210F] [3210G] ... [3210H

)
™
-
— -
P bl '
Pt e = Pl Eoi iy M AT N TR P FTCTR Rl PO TP O O I R I T T o TG T
— R — T i [T " - O e, L T SRR P L L A LN | Yl (L L P A L 1 TP UL % LA P T HAR MY B 8 Pl w S 1

U.S. Patent Sep. 12, 2017 Sheet 6 of 9 US 9,762,502 B1

U S
HYPERVISOR

VIV, NIC l / FLOW ‘ _
oriver 210 LOOK-UP | 1110

i TABLE

rakasatl

| 1190

priplyr'

o] |

e Bl T ate = e H N Ak e

— |
) ——— | MEMORY ,

B T N 1 — 106@ —
[1210A] [12108° ;1210ci | :ﬂzzozi

i
I“m ; k

[SCHEDULER
1250

FLOW
| LOOK-UP

TABLE
1290 ~ Tx FLOW

| | LOOK-UP
1270

v iﬂmﬂﬂﬂmﬁm@j PR TR L o PR T I PR D e TP P R T B Wl T e

NIC
1200

=

L | T

32101 [3210B] |[3210C '3210D1 [3210E:

TN TR I TW ol Wi T FT

U.S. Patent Sep. 12, 2017 Sheet 7 of 9 US 9,762,502 B1

2 wwwwﬂiﬂwuwwwwﬁwmmmw-

———— — 2100 HYPERVISOR
VM, NIC
Driver 2010

11107
—1110—

-

2097 i

FLOW | SCHEDULER
LOOK-UP . 1250
TABLE o
1290 | Tx FLOW
|) LOOK-UP
1270

32 10A- 2325052 3210C1 321000 Z321OEE 3210F] 321063 C .. [3210H]

STREEL b L L T PCI TR At SETIPERIY S ELPEFEE r—rue

U.S. Patent

5040

\

Sep-12,2017

Sheet 8 Of 9

j
VM NIC

DRIVER Tx
PACKET

Py 5020

GENERATE
FLOW KEY

ENQUEU

VIRTUAL MACHINE

ON Tx
_QUEUE

PACKET

E

HYPERVISOR

g

|
|

A

5030

2010

T SEND

PACKET TO

HYPERVISO
R

Lrbt ey e

NO—

5150

/

‘rir.fHi |

A
v

PROCESSING
FlG. 5B

T e b e d

o

5200

DEQUEUE
PACKET &

MEMORY

COPY TO NIC

-— 5050
|

......

GENERATE

NIC

UP KEY

5060

5070

< KEY IN FLOW >—

YES

!

5090 ~

PLACE PACKET
ON QUTPUT
QUEUE

U.S. Patent Sep. 12, 2017 Sheet 9 of 9 US 9,762,502 B1

PROCESSING | 900
- (FROM FIG. 5A)

}
) A % . L » P I T TP AR)

EXTRACT | 5210
FLOW KEY

R 5230

/
4

kT E T g T

HYPERVISOR
e \| G HANDLES
PACKET

A

S ELOW IN™

5220 — .
~_TABLE?

| W |

5250

|

packer [NVOTS

5240

| 5300

\ S
ENQUEUE |

\ PACKET ON
¥ ¥ Tx QUEUE

UPDATE VM UPDATE NIC OFNIC

NIC DRIVER DRIVER
FLOW TABLE FLOW TABLE

1
Ensrintte et v
WE—

US 9,762,502 Bl

1

METHOD AND SYSTEM FOR VALIDATING
RATE-LIMITER DETERMINATION MADE
BY UNTRUSTED SOFTWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to provisional application
No. 61/991,853, entitled “Method and System for Validating
Rate-Limiter Determination Made by Untrusted Software,”
filed on May 12, 2014, the disclosure of which 1s herein
incorporated by reference herein 1n 1ts entirety.

This application 1s also related to commonly owned co
pending U.S. application Ser. No. 14/632,464, entitled
“Method and System for Enforcing Multiple Rate Limuits
with Limited On-Chip Buflering,” the disclosure of which 1s
hereby incorporated by reference herein 1n 1ts entirety.

BACKGROUND

In systems that include a plurality of virtual machine
environments, trusted host software, such as a hypervisor or
virtual machine manager, 1s needed to manage network
resources. In particular, these virtual machines are required
to share network bandwidth. In order to enforce bandwidth
sharing amongst the virtual machines, a trusted host may
implement rate limiting.

Rate limiting 1s a technique used to limit traffic sent and
received by the virtual machines. In particular, there are two
types of rate-limiting: hardware rate limiting and software
rate limiting.

Hardware rate limiting i1s performed by a network inter-
tace controller (NIC). In this regard, a limited number of
hardware transmission queues are supported by the NIC. In
transmitting a packet, the operating system will transmit a
packet to the NIC, thereby notifying it of the packet and the
appropriate transmission builer to use. The NIC will subse-
quently decide the order in which the received packets are
transmitted. However, the limited number of hardware trans-
mission queues do not scale well and require a large amount
of memory, which increases the cost associated with hard-
ware rate limiting.

Software rate limiting 1s typically performed by a hyper-
visor. In this regard, a plurality of software transmission
queues are provided in the hypervisor. The hypervisor
receives packets from the virtual machines and transmits
them to the NIC in batches based on rate limiting classifi-
cation. In this regard, the packet tlow and other rate limiting
policies are enforced by the hypervisor. This results 1n high
overhead with the trusted host’s processor. Additionally, the
hypervisor does not have control of the packets once they are
transmitted to the NIC, so packets may be transmitted
out-of-order or at unpredictable times.

SUMMARY

The present application describes a system and method
that includes a trusted host with a plurality of wvirtual
machines (VMs). The trusted host includes a processor, a
memory including a plurality of rate limited transmission
queues, at least one hypervisor, and at least one network
interface controller (NIC). The NIC includes at least a
processor, a scheduler, a memory containing a plurality of
hardware transmission queues, and at least one connection
to an external network. The hypervisor exposes a plurality of
rate limited transmission queues to the virtual network
interface controller (vINIC) virtual device of the wvirtual

10

15

20

25

30

35

40

45

50

55

60

65

2

machine. In this regard, the hypervisor allocates the rate-
limited transmission queues to the virtual machines as
needed. Additionally, each virtual machine’s device driver 1s
turther provided with a transmission look-up table.

When the virtual machine transmits a packet, the VM
network interface controller (NIC) driver will classity the
packet according to the transmission look-up table. If an
entry for the packet exists in the VM NIC driver’s trans-
mission look-up table, the VM NIC driver will bypass the
hypervisor and enqueue the packet on the appropriate rate
limited hardware transmission queue. If no entry exists, then
the VM NIC driver will transmit the packet to the hypervisor
to be classified and transmitted.

The scheduler dequeues packets from the hardware trans-
mission queues assigned to the virtual machines and places
it 1n a high-speed memory of the NIC. The NIC’s processor
then verifies that the packet was placed on the approprate
transmission queue. If 1t was, the packet 1s re-enqueued on
a hardware output queue to be transmitted over a network.
In this regard, the NIC verifies that the virtual machine 1s
enqueuing packets properly, thereby improving performance
by allowing high-rate flows to bypass the hypervisor.

I1 the packet was not classified properly by the vNIC, the
NIC’s processor may reroute the packet to the hypervisor for
turther processing or drop the packet. Additionally, the VM
that attempted to take advantage of the hypervisor bypass
may be disciplined, such as losing the ability to bypass the
hypervisor or a readjustment of rate-limit allocated to the
VM.

The present application describes a computer-imple-
mented method that receives a packet on a rate limited
hardware transmission queue from a virtual machine device
driver. The packet i1s then verified, using one or more
processors ol a network interface controller (NIC), to deter-
mine whether the virtual machine device driver placed the
packet on a proper rate limited hardware transmission queue.

According to one example, verifying whether the virtual
machine device driver placed the packet on the proper rate
limited hardware transmission queue 1s done by referring to
an enfry 1n a classification table managed by trusted host
soltware. In some examples, the entry 1s indexed based upon
at least a portion of header information of the packet.

Additionally, the NIC may also determine whether the
virtual machine 1s authorized to send the packet.

For example, determining whether the virtual machine 1s
authorized to send the packet may include determining
whether the virtual machine has exceeded a first threshold.
In some examples, the first threshold may be an amount of
bandwidth allocated to the virtual machine.

According to another example determining whether the
virtual machine 1s authorized to send the packet includes
checking an access control list.

When the NIC determines that the packet was not placed
on the proper rate limited transmission queue, the packet
may be dropped.

When the NIC has determined that the packet was not
placed on the proper rate limited hardware transmission
queue, a right of a virtual machine to bypass a hypervisor
may be rescinded.

When the NIC has determined that the packet was placed
on the proper rate limited hardware transmission queue, the
packet 1s transferred to one of a plurality of hardware output
queues.

According to some examples, the rate limited hardware
transmission queue may be for packets intended for a
specific destination.

US 9,762,502 Bl

3

The present application also describes a system that
includes at least one rate limited transmission queue that
receives at least one packet from a virtual machine device
driver. The system also includes a processor that verifies that
the virtual machine device driver placed the packet on a
proper rate limited hardware transmission queue.

According to some examples, the system includes a
transmission flow look-up table managed by a trusted host
software.

The processor may determine whether the virtual machine
1s authorized to send the packet. For example, the processor
may determine whether the virtual machine has exceeded a
first threshold, such as an amount of bandwidth allocated to
the virtual machine.

According to other examples, the processor may deter-
mine whether the virtual machine 1s authorized to send the
packet by checking an access control list.

The processor drops the packet when 1t determines that
the virtual machine device driver did not place the packet on
the proper rate limited hardware transmission queue.

In another example, the processor notifies a hypervisor
when the NIC has determined that the packet was not placed
on the proper rate limited hardware transmission queue. In
this regard, the hypervisor may rescind a right of the virtual
machine to bypass a hypervisor.

The current application also describes a non-transitory
computer readable medium that includes that receive a
packet on a rate limited hardware transmission queue from
a virtual machine device driver. The instructions further
include veritying, using one or more processors ol a network
interface controller (NIC), whether the virtual machine
device driver placed the packet on a proper rate limited
hardware transmission queue.

As noted above, one of the advantages of the system,
method, and non-transitory computer-readable medium
described herein i1s realized by verifying that the VM’s
driver 1s enqueuing packets on the appropriate transmission
queue. The present application describes systems and meth-
ods that optimize network flows, while ensuring that the
VMs adhere to the rate limits set by the trusted host. Further
advantages will be realized by the wvarious examples
described herein and will be apparent from the following
detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1llustrates a schematic of virtual machines bypass-
ing the hypervisor;

FIG. 2 illustrates a schematic of virtual machines bypass-
ing the hypervisor with additional components of the Net-
work Interface Controller;

FIGS. 3A and 3B show the virtual machines bypassing the
trusted host hypervisor according to one example;

FIGS. 4A-4C show an example of a hypervisor handling
a packet that was classified improperly by the wvirtual
machine; and

FIGS. 5A and 5B show a flowchart for the processing of
packets.

DETAILED DESCRIPTION

The present disclosure relates to a system and method for
a virtual machine (VM) classiiying a packet and bypassing
a hypervisor to enqueue the classified packet on a rate-
limited transmission queue. The NIC may verity the virtual
machine’s classification.

10

15

20

25

30

35

40

45

50

55

60

65

4

In conventional virtual machine environments, virtual
machines transmit packets to a hypervisor, which then
classifies and enqueues the packet on a transmission queue
of the NIC. This 1s a resource intensive process. To address
this problem, some systems allow the virtual machine to
bypass the hypervisor and enqueue the packet on the appro-
priate rate limited transmission queue. However, some VMs
will attempt to take advantage of the system by enqueuing
packets improperly, for example on a transmission queue
with a higher rate limit. Veritying that the virtual machine 1s
enqueuing packets properly when bypassing the hypervisor
allows for improved performance by allowing high-rate
flows to bypass the hypervisor while providing a mechanism
that allows the NIC to verity the VM’s classification.

According to the examples described herein, a virtual
machine includes a virtual device driver. When the virtual
device driver receives a packet from the VM, it uses header
information of the packet to refer to a flow look-up table to
determine a proper transmission queue. If the packet’s
header information matches an entry 1n a flow look-up table
of the virtual device driver, the entry i1s reviewed to deter-
mine information that indicates the appropriate transmission
queue for the packet. The packet 1s subsequently enqueued
on the appropriate rate-limiting transmission queue. If the
header information does not match an entry in the flow
look-up table, the packet 1s routed to a hypervisor for further
processing.

The packet that was enqueued on the transmission queue
1s subsequently dequeued by the NIC’s scheduler and placed
in the NIC’s memory, such as an SRAM bufler. In this
regard, the dequeuing 1s subject to the transmission queue’s
rate limit before 1t 1s dequeued. Further, the hypervisor, and
not the VM, 1s able to set the rate limit for each transmission
queue. The NIC then verifies that the virtual device driver
classified the packet properly. 11 the packet has been prop-
erly classified by the virtual device driver, the packet may be
re-enqueued on an output queue to be transmitted to its
intended destination. In certain embodiments, the NIC may
perform additional processing on the packet, such as check-
ing an access control list, before transmitting the packet.

When the packet was not properly enqueued by the virtual
device driver, the NIC will either drop the packet or route 1t
to the hypervisor. In some examples, how the NIC handles
mis-queued packets may be controlled by a hypervisor-
controlled configuration flag associated with each queue. In
alternative examples, the configuration flag may have a
global eflect on how the NIC handles mis-queued packets
for every queue. When the configuration flag indicates that
mis-queued packets are to be re-routed to the hypervisor and
the hypervisor’s queue 1s full, the NIC may drop the packet
out of necessity.

When the hypervisor receives a packet, either from the
virtual device driver or the NIC, 1t will process the packet to
determine the appropriate rate-limited transmission queue to
assign the packet. In this regard, the hypervisor determines
whether the tlow 1s 1n its master transmission tlow table. I
the packet 1s not 1n the master transmission flow table, then
the hypervisor processes the packet according to appropriate
policies.

However, if the packet 1s 1n the master transmission flow
table, the hypervisor determines 11 the tlow 1s allowed. If the
flow 1s allowed, the hypervisor determines whether 1t should
be handled by an appropnate rate-limited queue of the NIC
or whether the flow should have 1ts own entry 1n the master
transmission flow table.

Determining when to include a tlow 1n the master trans-
mission flow table, and therefore the VM device driver’s

US 9,762,502 Bl

S

flow table and the NIC’s flow table, takes into consideration
several factors. In this regard, the NIC’s flow table 1s kept 1n
relatively expensive and small memory, such as SRAM. As

such, low-rate or short-duration flows should not consume a
slot 1n the NIC’s flow table. Therefore, the hypervisor should
decide whether an entry needs to be created for a tlow
according to which entries should be kept in the NIC’s tlow
table using any of a variety of well-known cache manage-
ment algorithms. If the hypervisor decides not to maintain a
NIC-table entry for a flow, then the hypervisor does not
allocate a rate-limited transmission queue to the VM {for this
flow. However, 1f the hypervisor determines that a NIC-table
entry should be maintained for the flow, then an entry is
created 1n the hypervisor master transmission flow table and
the tlow tables of the virtual device driver and NIC are
updated accordingly.

Accordingly, the trusted host system verifies that the VM
1s enqueuing packets on the appropriate rate-limited trans-
mission queues. Further, the trusted host system provides for
allocation and management of rate-limited queues for both
the virtual machine and individual flows out of the VM.

FIG. 1 illustrates a virtual machine (VM) environment
where the virtual machines (VMs) may bypass a hypervisor
to transmit packets to an external network. In this regard, the
VM environment includes at least one trusted host 100
connected to an external network 300. Although only one
trusted host 100 1s shown 1n FIG. 1, one of ordinary skill in
the art would recognize that several trusted hosts may exist
in a data center or server farm. The trusted host includes a
plurality of virtual machines (VMs) 210, 220, and 230, a
hypervisor 1100, and a network interface controller (NIC)
1200. The trusted host 100 may also include at least one
processor 1040 and at least one memory 1060.

The trusted host 100 may be any type of computing device
capable of hosting VMSs. In this regard, the trusted host 100
may be a server, preferably one located 1n a server farm or
a data center. The processor 1040 of the trusted host 100 may
be any conventional processor, such as processors from Intel
Corporation or Advanced Micro Devices. Alternatively, the
processor may be a dedicated controller such as an appli-
cation specific mtegrated circuit (ASIC), field program-
mable gate array (FPGA), etc. Additionally, the processor
1040 of the trusted host 100 may include multiple proces-
sors, multi-core processors, or a combination thereof.
Accordingly, references to a processor will be understood to
include references to a collection of processors or dedicated
logic that may or may not operate 1n parallel.

The memory 1060 of the trusted host stores information
accessible by the processor, including instructions and data
that may be executed or otherwise used by the processor.
The memory 1060 may also store the trusted host’s operat-
ing system and the hypervisor 1100. Additionally, the
memory 1060 may store a number of rate limited transmis-
sion queues to be allocated to each of the VMSs. In this
regard, the memory 1060 may be of any type of memory
capable of storing information accessible by the processor,
including a computer-readable medium, or other medium
that stores data that may be read with the aid of an electronic
device, such as a hard-drive, memory card, flash drive,
ROM, RAM, DRAM, DVD or other optical disks, as well as
other write-capable and read-only memories. In that regard,
the memory 1060 may include short term or temporary
storage as well as long term or persistent storage. Systems
and methods may include different combinations of the
foregoing, whereby different portions of the mstructions and
data are stored on different types of media.

10

15

20

25

30

35

40

45

50

55

60

65

6

In operation, the trusted host 100 may run an operating
system that manages the VMs. In this regard, the operating
system 1ncludes a hypervisor, such as hypervisor 1100, or a
virtual machine manager (VMM). For the purposes of this
application, hypervisor and VMM may be used interchange-
ably. Further, one of ordinary skill in the art would recognize
that the operating system of the trusted host 100 may be
Linux, Windows™, or any other suitable operating system
capable of supporting virtual machines.

The hypervisor 1100 may manage each VM such that the
VMs appear to be 1solated from one another. That 1s, each
VM 210, 220, and 230 believes itself to be an independent

machine with 1ts own hardware resources. In this regard, the
hypervisor 1100 may control the VMs access to the trusted
host’s resources (1.e. memory, network interface controller,
¢tc.). The hypervisor 1100 implements a hardware virtual-
1zation scheme that allocates hardware resources to the VMs

as necessary. According to some examples, the NIC 1200 1s
one of the hardware resources that VMs 210, 220, and 230

interact with via the hypervisor 1100.

The VMs 210, 220, and 230 are software implementations
of a computer. That 1s, VMs 210, 220 and 230 execute an
operating system. While only three VMs are shown in the
figures, one of ordinary skill in the art would recognize that
any number of VMs may be supported by the trusted host
100. The operating system of the various VMs 210, 220, and
230 may be the same operating system as the trusted host,
but do not necessarily have to be. Moreover, the operating
system ol each VM may be different from other VMs. For
example, the trusted host 100 may run a Linux-based
operating system, while the VM 210 may run a Windows™
operating system and the VM 220 may run a Solaris™
operating system. The various combinations of operating
systems would be readily apparent to those skilled 1n the art
and are not discussed 1n greater detail herein.

Each VM includes its own virtual network interface
controller (vINIC) driver 2010, 2020, and 2030. Each vNIC
driver 2010, 2020, and 2030 may include a transmission
look-up table 2092, 2094, 2096, respectively. In this regard,
cach look-up table may be configured to address the flows of
its associated VM. The vNICs may transmit and receive
packets for the VM. In this regard, the vINICs may format or
otherwise prepare the packet for transmission on the external
network 300.

External network 300 may comprise various configura-
tions and use various protocols including the Internet, World
Wide Web, intranets, virtual private networks, local Ethernet
networks, private networks using communication protocols
proprietary to one or more companies, cellular and wireless
networks (e.g., WikF1), data center networks, and various
combinations of the foregoing. Although only one trusted
host 1s depicted 1 FIG. 1, 1t should be appreciated that a
typical system can include a large number of connected
computers, trusted hosts, and VMs.

In operation, the VMs 210, 220, and 230 of FIG. 1
communicate with other destinations (i.e., other VMs, physi-
cal machines, servers, storage arrays, etc.). In this regard, the
VMs 210, 220, and 230 may transmit packets using drivers
2010, 2020, and 2030, respectively. For example, the VM’s
driver 2010 receives a packet from the operating system of
VM 210. The VM’s driver generates a transmission flow
look-up key from the received packet. Generating transmis-
sion tlow look-up keys will be discussed in greater detail
below. The VM’s driver 2010 then compares the generated
transmission tlow look-up key to the entries in the trans-
mission look-up table 2092.

US 9,762,502 Bl

7

If the generated tlow look-up key does not match an entry
in the transmission look-up table 2092, the VM’s dniver
2010 transmits the packet to the hypervisor 1100 to be
handled as discussed below.

If the generated flow look-up key matches an entry 1n the
transmission look-up table 2092, then the entry 1s further
evaluated to determine which rate limited transmission
queue the packet should be enqueued. The VM driver 2010
then bypasses the hypervisor and enqueues the packet
directly on a rate limited transmission queue based on the
entry 1n transmission look-up table 2092. The NIC may
subsequently perform a check on the packet to verity that the
VM driver enqueued the packet properly belore transmitting,
it to external network as discussed 1n greater detail below.

Turning to FIG. 2, an example of the hypervisor bypass 1s
shown. In this regard, the system includes a trusted host 100
and external network 300 as discussed above. Similarly, the

trusted host 100 includes at least one processor 1040, at least
one memory 1060, VM 210, VM 220, VM 230, a hypervisor

1100, and a NIC 1200. Each VM i1ncludes 1ts own virtual
driver 2010, 2020, and 2030, and each virtual driver 2010,
2020, and 2030 may include a transmission tlow-look-up
table 2092, 2094, and 2096, respectively. According to this
example, the NIC 1s shown with a processor 1240 and
memory 1260, which may include data 1262 and instruc-
tions 1264. Processor 1240 may be one of the processors
discussed above or a combination thereof. In other
examples, the processor 1240 may be fixed-function hard-
ware configured to perform the examples described herein.
Additionally, memory 1260 may be any type ol memory
previously discussed or a combination thereof. While only
one memory 1s shown 1n FIG. 2, one of ordinary skill in the
art will appreciate that this 1s merely illustrative and the NIC
1200 may include additional memories of varying types.

The instructions 1264 may be any set of mstructions to be
executed directly (such as machine code) or indirectly (such
as scripts) by the processor 1240. For example, the mstruc-
tions may be stored as computer code on the computer-
readable medium. In that regard, the terms “instructions”™
and “programs” may be used interchangeably herein. The
instructions may be stored 1n object code format for direct
processing by the processor, or in any other computer
language including scripts or collections of independent
source code modules that are interpreted on demand or
compiled 1n advance. The instructions may be executed to,
for example, dequeue packets from the rate limited trans-
mission queues, verily that the VM classified the packet
properly, re-queuing packets on output queues, etc. Func-
tions, methods and routines of the instructions are explained
in more detail below.

The data 1262 may be retrieved, stored or modified by
processor 1240 1n accordance with the imstructions 1264.
For mstance, although the system and method are not limited
by any particular data structure, the data may be stored in
computer registers, 1n a relational database as a table having
a plurality of different fields and records, XML documents
or flat files. The data may also be formatted in any computer-
readable format. The data may comprise any information
suilicient to identify the relevant information, such as num-
bers, descriptive text, proprietary codes, references to data
stored 1n other arecas of the same memory or different
memories (including other network locations) or informa-
tion that 1s used by a function to calculate the relevant data.

Turning to FIG. 3A, an example of the hypervisor bypass
and the various communication paths are shown. In this
regard, the system includes a trusted host 100 and external
network 300 as discussed above. Similarly, the trusted host

10

15

20

25

30

35

40

45

50

55

60

65

8

100 includes at least one processor (not shown), the memory
1060, VM 210, VM 220, VM 230, a hypervisor 1100, and a

NIC 1200. As shown 1n FIG. 3A, the memory 1060 may
include a plurality of rate limited hardware transmission
queues 1210A 12108, 1210C, 1220, 1230A, 1230B, and
1230C. The NIC 1200 may include a scheduler 1250, a
transmission flow-look-up 1270, a flow look-up table 1290,
and a plurality of output queues 3210.

According to some example, the memory 1060 of the
trusted host 100 may include a plurality of rate limited
transmission queues 1210A 12108, 1210C, 1220, 1230A,
12308, and 1230C. In this regard, the transmission queues
1210A, 1210B, and 1210C may be stored 1n memory 1060
that has been allocated to VM 210. Further, the transmission
queues 1230A, 1230B, and 1230C may be allocated 1n
memory 1060 that has been allocated to VM 230. Addition-
ally, the transmission queue 1220 may be stored in the
memory 1060 allocated to the hypervisor 1100. The trans-
mission queues stored 1 the memory 1060 may be first-in
first-out type of queues, or another type of transmission
queue, such as last-in first-out or a transmission ring builer.
According to some examples, the memory 1060 may be
dynamic random access memory (DRAM), or any other
suitable high-speed volatile memory may be used. The
high-speed volatile memory 1060 1s capable of holding more
than 10,000 rate limited transmission queues. In this regard,
the NIC 1200 exposes the plurality of rate limited hardware
transmission queues to the VMs.

In operation, the rate limited transmission queues 1210A,
1210B, and 1210C may be assigned to the VM 210. Further,
the rate limited transmission queues 1230A, 1230B, and
1230C may be allocated to the VM 230. Transmission queue
1220 1s assigned to the hypervisor 1100, and receives
packets that have been software rate-limited by the hyper-
visor. These packets are ready for immediate transmission.
While FIG. 3A only shows three transmission queues
assigned to each VM, one of ordinary skill in the art would
recognize that each VM may have more or less transmission
queues assigned thereto as determined by the hypervisor or
the NIC. Additionally, the hypervisor 1100 may have more
than one rate limited transmission queue assigned thereto.
For example, the hypervisor may have a hypervisor-owned
queue for each VM.

As noted above, the NIC 1200 includes the scheduler
1250, which may employ any type of scheduling algorithm,
such as round-robin. In this regard, the scheduler may
dequeue packets from the transmission queues 1210, 1220,
and 1230 so the NIC may determine whether they were
enqueued properly by the VM dniver.

The transmission flow look-up 1270 of the NIC 1200 may
also include a memory, such as an SRAM buller or any other
suitable high-speed memory. In some examples, transmis-
sion flow look-up 1270 may include mnstructions for com-
paring a flow look-up key to entries 1n a transmission flow
look-up table 1290.

The transmaission flow look-up table 1290 may be any
suitable table or database capable of indexing and storing
information for classitying the appropriate rate limited trans-
mission queue for the packet. The transmission flow look-up
table may be stored in a memory of the NIC, such as a
content addressable memory (CAM), ternary content
addressable memory (TCAM), SRAM, DRAM, or any other
suitable memory. In this regard, the transmission tlow look-
up 1270 may use the transmission flow look-up table 1290
to determine whether the flow look-up key 1s stored therein.

As noted above, the rate limited hardware transmission

queues 1210A, 12108, and 1210C are allocated to VM 210.

US 9,762,502 Bl

9

Additionally, the rate limited hardware transmission queues
1230A, 1230B, and 1230C are allocated to VM 230. In this
regard, FIG. 3A shows the various data paths that packets
may traverse to reach the external network 300.

Each rate limited transmission queue 1210A, 12108, and
1210C may have a diflerent class of traflic, destination, or
priority associated therewith. Similarly, the rate limited
transmission queues 1230A, 12308, and 1230C may also
have different classes of traflic, destinations, or priorities
associated with each queue. Each rate limited hardware
transmission queue may be dedicated to a particular class of
network tratlic, a priority associated with the network trafhic,
a specific destination (1.e. particular machines, another
trusted host with a plurality of virtual machines, a storage
area network, a specific data center, etc.) or any combination
thereof.

While only three rate limited hardware transmission
queues are shown as being allocated to each VM, one of
ordinary skill will appreciate that this 1s merely illustrative
and more or fewer rate limited hardware transmission
queues may be exposed to the VM as necessary. Allocating
rate limited hardware transmission queues will be discussed
below with respect to FIG. 5.

FIG. 3B illustrates the rate limited hardware transmission
queue 1220 being allocated to the hypervisor 1100. One of
ordinary skill in the art would recognize that additional rate
limited hardware transmission queues could be allocated to
the hypervisor 1100 as appropnate.

In operation, the operating systems of the VMs 210, 220,
and 230 transmit packets using VM drivers 2010, 2020, and
2030, respectively. For example, the VM drniver 2010
receives a packet from the operating system of VM 210. The
VM dniver generates a transmission flow look-up key from
the received packet. Generating transmission tlow look-up
keys will be discussed in greater detail below. The VM
driver 2010 then compares the generated transmission tlow
look-up key to the entries 1n the transmission look-up table
2092,

If the generated flow look-up key does not match an entry
in the transmission look-up table 2092, the VM driver 2010
transmits the packet to the hypervisor 1100 to be handled as
discussed 1n greater detail below.

If the generated tlow look-up key matches an entry in the
transmission look-up table 2092, then the entry 1s further
evaluated to determine which rate limited transmission
queue on which to enqueue the packet. VM driver 2010 then
bypasses the hypervisor and enqueues the packet directly on
one of the rate limited hardware transmission queues 1210A,
12108, or 1210C.

FIG. 3B illustrate one example of a VM enqueuing a
packet on a proper rate limited transmission queue. In FIG.
3B, the VM dniver 2010 enqueues a packet on the rate
limited hardware transmission queue 1210A. One of ordi-
nary skill in the art would recognize that this 1s merely
illustrative and that the VM driver may enqueue the packet
on either rate limited hardware transmission queues 12108
or 1210C. In some examples, the VM driver 2010 will
transmit the packet to hypervisor 1100 11 it does not match
any entries 1n the transmission look-up table 2092.

As shown 1 FIG. 3B, the scheduler 1250 may dequeue
packets from the transmission queues 1210, 1220, and 1230
according to any known scheduling algorithm after the
queue’s assoclated rate-limiter has released the packet. In
this regard, the packets are moved from their respectwe
transmission queue to a memory (1.e. on-chip buller or
SRAM) to generate the flow look-up key. Transferring the
packet from the transmission queue may involve a direct

10

15

20

25

30

35

40

45

50

55

60

65

10

memory access ifrom the DRAM where the transmission
queue 1s located to the high-speed memory of the NIC. The
scheduler 1250 may place at least a portion of the packet 1n
the high-speed memory of the NIC 1200. According to this
example, the portion of the packet may be used as the
transmission flow look-up key.

In this regard, a processor of the NIC 1200 may generate
a flow look-up key as described 1n greater detail below. The
flow look-up key may then be compared to the entries stored
in the flow look-up table 1290 to determine whether the VM
enqueued the packet properly (i.e., on the correct rate limited
transmission queue). It the tlow look-up key does not match
any of the entries 1n the flow look-up table 1290, the NIC
1200 will take appropniate action, such as droppmg the
packet or routmg the packet to the hypervisor 1100 for
further processing, as discussed further below.

I1 the flow look-up key matches one of the entries of flow
look-up table 1290 and the queue-ID field 1in the entry
matches the queue that the VM enqueued the packet on, then
the processor of the NIC 1200 determines that the VM NIC
driver has classified the packet properly. As such, the pro-
cessor will re-enqueue the packet on one of the plurality of
output queues 3210. In some examples, re-enqueuing a
packet on one of the output queues 3210 from the transmis-
s10n queues may include copying the packet from one of the
transmission queues to the output transmission queue. In
other examples, re-enqueuing the packet on one of the
output queues 3210 may include updating a queue descrip-
tor.

As shown 1n FIG. 3B, the NIC 1200 places the packet on
the output queue 3210B. The packet 1s then de-queued from
the output queue 32108 by another scheduler (not shown)
and transmitted to the external network 300. As noted above,
cach of the hardware output queues 3210 may be assigned
to handle a diflerent class of traflic, or a different priority of
tratlic. Thus, each packet will be handled i1n accordance with
its corresponding rate-limit.

FIGS. 4A-4C show an example where the NIC 1200
routes a packet that has failed a transmission tlow look-up to
the hypervisor 1100 for turther processing. As previously
discussed, the trusted host 100 includes a processor (not
shown), a memory 1060, a VM 210, a hypervisor 1100, and
a NIC 1200. The VM 210 has a VM driver 2010, which
includes a transmission look-up table 2092. The VM 230 1s
not shown 1n FIGS. 4A-4C for convenience.

The memory 1060 includes transmission queues 1210A,
1210B, 1210C, and 1220. In this regard, transmission

queues 1210A, 12108, and 1210C are allocated to the VM
210. The transmission queue 1220 1s allocated to the hyper-
visor 1100. While FIG. 4A only shows four transmission
queues, one of ordinary skill 1n the art would recogmize that
cach VM and the hypervisor may have more transmission
queues allocated thereto.

Similar to the examples discussed above, the NIC 1200
includes a scheduler 1250; a transmission tlow look-up
1270; a flow look-up table 1290; and a plurality of hardware
output queues 3210. As noted above, each of the output
queues 3210 may be dedicated to a particular class of
network traflic or a priority associated with the network
traffic.

FIG. 4A shows the various data paths that packets may
take from the VM to the hypervisor 1100. As shown 1n, FIG.
4A, the VM driver 2010 may place a packet on one of the
plurality of the rate limited hardware transmission queues
1210A, 12108, or 1210C based on the classification per-
formed by the driver 2010. The scheduler 12350 then

dequeues at least a portion the packet placed into one of the

US 9,762,502 Bl

11

transmission queues so that 1t may be validated by the NIC.
As with above, the packets are placed 1n a high-speed
memory (e.g. on-chip buller or SRAM) via a direct memory
access.

Accordingly, a processor or fixed-function hardware of °
the NIC 1200 may then generate a tlow look-up key. The
flow look-up key may then used to verity whether the packet
was enqueued properly by the VM dniver by referring to the
entries stored in the flow look-up table 1290.

If the tlow look-up key does not match any of the entries
in the flow look-up table 1290 or the key matches an entry
but the queue-ID 1n the entry does not match the queue that
the packet was placed on, the NIC 1200 routes the packet to
soltware transmission queue 1110 of the hypervisor 1100 for
turther processing as shown in FIG. 4A. Further, the NIC
1200 may provide an indication to the hypervisor 1100 that
the VM driver improperly enqueued the packet.

Referring to FI1G. 4B, the hypervisor 1100 performs a flow
look-up on the packets enqueued on the soitware transmis- 2
sion queue 1110. In this regard, the hypervisor 1100 may
generate a flow look-up key. The hypervisor 1100 will
compare the generated tlow look-up key to the entries stored
in the flow look-up table 1190. If the generated flow look-up
key matches one of the entries 1 the flow look-up table 25
1190, the hypervisor may update the tlow look-up table 1290
as discussed in greater detail below.

If the generated flow look-up key generated by the
hypervisor 1100 does not match any of the entries stored in
the flow look-up table 1190, then the hypervisor 1100 has 30
several options. For example, the hypervisor 1100 may drop
the packet. In other examples, the hypervisor 1100 may
analyze the packet to determine if a new rate limited
hardware transmission queue should be allocated to the VM.
Alternatively, the hypervisor 1100 may create a software 35
rate-limited queue for the tlow, and add the flow to the flow
look-up table 1190 with an indication that the flow should
use the created software rate-limited queue. Additionally, the
hypervisor 1100 may generate a sequence of packets for the
NIC 1200 to transmit. 40

In FIG. 4C, the hypervisor 1100 1s shown enqueuing the
packet on hardware transmission queue 1220. The NIC 1200
will handle the packets placed 1n transmission queue 1220
accordingly. That 1s, the scheduler 1250 will dequeue the
packets from the transmission queue 1220 into the high- 45
speed memory of the NIC 1200 as shown in FIG. 3B. The
packet may then be transierred to the appropriate hardware
output queues 3210 to be transmitted to external network
300. Subsequently, the at least one packet may dequeued
from 1ts respective output queue 3210 and transmitted to the 50
external network 300 by a scheduler (not shown).

In other examples, the hypervisor may software rate limit
the packet before transmaitting 1t to transmission queue 1220.

In this regard, the transmission queue 1220 may have a flag
value associated therewith. Accordingly, the hypervisor may 55
set the flag value to indicate that no further look-up 1s
required by the NIC. Furthermore, the flag value may
indicate the output queue 3210 to be used to transmit the
packet.

FIGS. 5A and 5B provide an example flowchart of a 60
process 5000 of transmitting a packet according to aspects of
the disclosure. The process begins with a VM NIC driver
transmitting a packet i block 5010. In block 5020, the VM
NIC dniver may generate or extract a flow look-up key from
data contained in the packet. According to some examples, 65
the tlow look-up key may be generated using data extracted
from a packet header.

10

15

12

In this regard, a packet contains a header and payload
information. The payload contains the data to be transmatted,
which may vary from packet to packet. Depending on the
protocol used, the header may contain static information,
such as the source address, a source port, the destination
address, a destination port, etc.

For example, the flow-look up key may be data extracted
from the header which 1s compared to information in the
flow look-up table. Additionally, information from the
header, such as the source address, may be subjected to a
mathematical operation, such as a hash function, 1n order to
generate the flow look-up key. Any combination of static
information from the packet header may be extracted and
subjected to a mathematical operation to generate the flow
look-up key. In some examples, generating the flow look-up
key may comprise concatenating information from the
header.

In other examples, the flow look-up key may be a value
placed 1n the packet by an application or the VM operating
system itself. According to these examples, a value may be
placed 1n one of the available fields in the packet header.
Accordingly, the location of the flow look-up key value 1n
the packet header need only be known 1n order to extract it.

Once the tlow look-up key has been generated, the VM
NIC drniver determines whether the tlow look-up key 1s 1n a
transmission flow look-up table stored in the VM NIC driver
in block 5030. In this regard, the transmission flow look-up
table may be any suitable table or database capable of
indexing and storing information for classitying the appro-
priate rate limited transmission queue for the packet.
Accordingly, the transmission flow look-up table may be
stored n CAM, TCAM, SRAM, or any other suitable
memory.

If the flow look-up key 1s not in the VM NIC driver’s
transmission flow look-up table, the packet 1s transmitted to
the hypervisor in block 5150. The packet 1s then subjected
to further processing by the hypervisor in block 5200, which
will be discussed 1n greater detail below with respect to FIG.
5B. In alternative examples, the NIC may drop the packet
without invoking the hypervisor if the look-up key does not
appear 1n the tlow-look-up table.

If the generated flow look-up key 1s present in the VM
NIC driver’s transmission flow look-up table 1n block 5030,
the VM NIC driver enqueues the packet on one of a plurality
of 1ts allocated rate limited transmission queues indicated 1n
the table entry 1n block 5040. Accordingly, in block 5040 the
VM NIC dniver bypasses the hypervisor to enqueue the
packet directly on the rate limited transmission queue.
Alternatively, the VM NIC dniver may passthrough the
hypervisor in block 5040 to enqueue the packet on the NIC.

In block 5050, a scheduler, as discussed above, dequeues
at least a portion of the packets from the rate limited
transmission queues. As noted above, any known scheduling
algorithm (i.e. round robin) may be used to dequeue packets
from the plurality of rate limited transmission queues.

Dequeuing packets from the rate limited transmission
queues may mnvolve transferring a portion of the packet from
memory to the NIC’s high-speed memory via a direct
memory access. As discussed above, the high-speed memory
may be one of a SRAM or any other type of memory.

In block 5060, the processor of the NIC may extract or
generate a flow look-up key according to one of the tech-
niques discussed above. The flow look-up key may be
generated according to any of the techmiques discussed
above. Alternatively, any known type of packet classification
technique may be used to determine the appropriate output
queue for the packet.

US 9,762,502 Bl

13

In block 5070, the NIC will then verify that the VM NIC
driver classified the packet properly by comparing the
generated look-up key stored in the high-speed memory to
entries 1n the tlow table stored i the memory of the NIC.

If the look-up key does not appear in the tlow table of the
NIC, then the packet 1s forwarded to be processed by the
hypervisor 1n block 5200. In some examples, the NIC may
drop the packet. Additionally, the NIC may keep track of the
number of packets mis-queued by each VM. The NIC may
then forward the count to the hypervisor via a counter-access
mechanism for further analysis. In this regard, the hypervi-
sor may compare the count to a threshold value. For
example, the threshold value may include a certain number
ol mis-queued packets 1n a predetermined amount of time.
Additionally, the threshold may include exceeding an
amount of bandwidth allocated to the virtual machine or
exceeding an amount of bandwidth to communicate with a
specific destination. If a VM exceeds a threshold of mis-
queued packets, the VM may be reprimanded by the trusted
host.

The reprimand for exceeding a threshold of mis-queued
packets may range from disabling the VMs ability to bypass
the hypervisor to throttling the VMs bandwidth. One of
ordinary skill 1in the art would recognize that other thresh-
olds and consequences could be used to ensure that the VMs
queued packets on the appropriate rate limited transmission
queue.

If the look-up key generated for the packet matches one
ol the entries stored 1n the flow table and the queue-ID field
in the entry matches the queue-ID of the queue that the
packet was placed on, then the entry may be further evalu-
ated to determine whether additional authorization 1is
required before the packet 1s transmitted. For example in
block 5080, the entry may contain an indication that the
packet should be compared to access control lists to deter-
mine whether 1t complies with the permissions granted to the
transmitting VM. According to another example, the entry
may indicate that the NIC should verity that the VM has not
exceeded 1ts permitted bandwidth as a whole. In this regard,
the NIC may check that bandwidth has not been exceeded
for a source-destination pair. One of ordinary skill 1n the art
would recognize that any combination of the additional
processing described above may be applied to the packet.
Alternatively, blocks 5060, 5070, and 5080 may be skipped
based on a per transmission queue configuration value that
1s controlled by the hypervisor.

After the packet has been verified as having an entry 1n the
flow look-up table of the NIC and has passed any further
processing, the packet 1s placed on the appropriate output
queue to be transmitted to the external network in block
5090.

As noted above with respect to FIGS. 3 and 4, there are
a plurality of output queues. A packet can be placed on a
particular output queue based upon fields in the packet
header, a configuration value associated with the transmis-
s10n queue, or a value found 1n the tlow table entry. In this
regard, each output queue may be for a certain class of rate
limited traflic or a certain priority-level of trailic. The output
queues can be any type of known queue, including first-in
first-out; last-in first-out; transmission ring buller, etc.
Knowing the type of queue used, a scheduling algorithm will
be used to dequeue the packets from the output queues and
transmit the packets to an external device or network in
accordance with the rate limit set for the class of tratlic or the
priority associated therewith.

If the packet fails the further processing performed in
block 5080, a determination 1s made whether to drop the

10

15

20

25

30

35

40

45

50

55

60

65

14

packet i block 5100. If the packet 1s to be dropped, the
transmission process ends 1n block 5110. Alternatively, 11 1t
1s determined that the packet i1s not to be dropped, the NIC
torwards the packet to the hypervisor for additional process-
ing.

Turming to FIG. 5B, a flowchart describing how the hyper-
visor handles packets 1s shown. In block 5200, the hyper-
visor recerves a packet from either the VM or the NIC.

In block 5210, the hypervisor may generate a flow look-
up key from data contained 1n the packet according to one
of the techniques discussed above. Alternatively, the hyper-
visor may use information from the packet header to per-
form the flow look-up directly.

Once the flow look-up key has been obtained, the hyper-
visor determines whether the flow look-up key 1s 1n a master
transmission flow look-up table for stored i1n the hypervisor
in block 5220. Similar to the previously discussed transmis-
sion flow look-up tables, the master transmission flow
look-up table 1190 may be any suitable table or database
capable of mndexing and storing information for classitying
the appropriate rate limited transmission queue for the
packet. Accordingly, the transmission flow look-up table
may be stored in CAM, TCAM, SRAM, or any other
suitable memory.

If the flow look-up key 1s not in the master transmission
flow look-up table the hypervisor may determine how the
packet should be handled 1n block 5230. That 1s, the hyper-
visor may further evaluate the packet to determine routing
information. For example, 1f the packet 1s destined fora VM
on the same trusted host, the hypervisor may route the
packet to the destination VM. Additionally, the hypervisor
may perform an analysis if whether the packet constitutes a
new tlow in block 5230. As discussed above, this may
include determining when a flow should be 1included 1n the
master transmission flow table, the VM device driver’s flow
table, and the NIC’s flow table; whether the packet should
be subjected to software rate limiting; or whether the packet
should be dropped. In some examples, the hypervisor may
advantageously allocate a rate-limited transmission queue to
the VM that 1s transmitting the new flow or class of traffic.

Further 1n block 5230, if the hypervisor determines that
the packet does not belong to a new flow or a new class of
traflic, then the hypervisor determines whether the packet
should be transmitted. If the hypervisor determines that the
packet should not be transmitted, the packet 1s dropped. IT
the hypervisor determines that the packet should be trans-
mitted, the packet may be enqueued on a transmission queue
allocated to the hypervisor.

When the flow look-up key 1s located in the master
transmission tlow look-up table, the process proceeds to
block 5240 where the hypervisor determines if the packet
complies with the policies set forth with respect to the class
of rate limited traflic. As above with respect to block 5080,
the packet may be compared to access control lists, rate
limits set for the VM, rate limits set for the source-destina-
tion pair, or any other appropriate check. Alternatively,
block 5240 may be skipped and the packet may be placed on
one of the plurality of output queues.

After the packet has been verified 1n steps S220 and S240,
the hypervisor enqueues the packet on one of the plurality of
output queues 1n block 5300. As noted above, enqueuing the
packet on an output queue may include copying the packet
into one of the output queues or updating a queue descriptor.
Alternatively, the hypervisor may have a certain number of
transmission queues allocated to 1t. Thus, the hypervisor will
enqueue the packet on a rate limited transmission queue 1n
block 5300 that 1s allocated to the hypervisor.

US 9,762,502 Bl

15

After enqueuing the packet, the hypervisor may make a
determination 1n block 5260 as to whether the tlow look-up
tables of the VM NIC driver and the NIC need to be updated

to include additional flows of tratlic. If the flow look-up
tables are to be updated, the hypervisor may update the VM
NIC dniver’s tlow look-up table 1 block 5270. Furthermore,
if the hypervisor may update the flow look-up table of the
NIC 1n block 5280. In some examples, updating the flow
look-up tables includes configuring the rate limit for each of
the VM’s transmission queues. If the flow look-up tables are
not be updated, subsequent packets may pass through the
hypervisor. In this regard, the packets may be software rate
limited.

Updating the transmission flow look-up table of the VM
NIC driver may be done via an interprocess communication
or remote procedure call. In some examples, updating the
transmission flow look-up table of the NIC mnvolves pro-
viding the hypervisor with means to access the transmission
flow look-up table 1290. In this regard, the hypervisor may
add/remove entries based on a variety of factors (e.g.
knowing which entries are used more frequently than oth-
ers). Various techniques for updating the transmaission flow
look-up tables would be readily apparent to those of ordi-
nary skill in the art and are not discussed in greater detail
herein.

The examples above provide for a NIC that verifies the
rate limited enqueuing performed by a VM. This helps to
prevent the VM from cheating rate limits imposed by the
trusted host. This further prevents malware or other mali-
cious soltware from communicating with external systems.
Thus, the system and method described in the present
disclosure optimize network flows by allowing VMs to
bypass the hypervisor, while ensuring that the VMs adhere
to the rate limits set by the trusted host. Moreover, the
system and method provide an added layer of security to a
virtual machine environment.

Most of the foregoing alternative examples are not mutu-
ally exclusive, but may be implemented in various combi-
nations to achieve unique advantages. As these and other
variations and combinations of the features discussed above
can be utilized without departing from the subject matter
defined by the claims, the foregoing description of the
embodiments should be taken by way of illustration rather
than by way of limitation of the subject matter defined by the
claims. As an example, the preceding operations do not have
to be performed 1n the precise order described above. Rather,
various steps can be handled 1n a different order or simul-

taneously. Steps can also be omitted unless otherwise stated.
In addition, the provision of the examples described herein,

as well as clauses phrased as “such as,” “including” and the
like, should not be mterpreted as limiting the subject matter
of the claims to the specific examples; rather, the examples
are mtended to illustrate only one of many possible embodi-
ments. Further, the same reference numbers in different

drawings can 1dentily the same or similar elements.

The invention claimed 1s:

1. A computer-implemented method comprising:

receiving at least one packet on a rate limited hardware
transmission queue from a virtual machine device
driver:

comparing, using one or more processors of a network
interface controller (NIC), header information of the at
least one packet to a classification table managed by
trusted host software;

10

15

20

25

30

35

40

45

50

55

60

65

16

determiming, using the one or more processors, based on
the comparison, whether the at least one packet was
properly placed on the rate limited hardware transmis-
sion queue; and

when the one or more processors have determined that the
at least one packet was properly placed on the rate
limited hardware transmission queue, transierring the
packet to one of a plurality of output queues.

2. The method of claim 1, wherein

comparing header information of the at least one packet to
a classification table managed by trusted host software
comprises determining whether a flow look-up key
associated with the packet matches an entry 1n a tlow
table stored 1 a memory of the NIC.

3. The method of claim 1, further comprising

determining, using the one or more processors, whether
the virtual machine 1s authorized to send the at least one

packet, the determiming comprising at least one of:

determining whether the virtual machine has exceeded
a first threshold; or
checking an access control list.

4. The method of claim 3, wherein the first threshold is an
amount of bandwidth allocated to the virtual machine.

5. The method of claim 1, further comprising:

dropping the at least one packet when 1t 1s determined that

the at least one packet was not properly placed on the
rate limited hardware transmission queue.

6. The method of claim 1, further comprising:

when the NIC has determined that the at least one packet

was not properly placed on the rate limited hardware
transmission queue, preventing the virtual machine
from bypassing a hypervisor to enqueue packets on the
rate limited hardware transmission queue.

7. The method of claim 1, further comprising:

rate limiting network traffic of the virtual machine; and

rate limiting a subset of the network traflic intended for a

specific destination.

8. The method of claim 1, further comprising:

dequeuing the at least one packet from the rate limited
hardware transmission queue prior to comparing the
header information to the classification table; and

copying the at least one packet to a memory of the NIC.

9. The method of claim 2, further comprising generating,
by the one or more processors, the flow look-up key using
information extracted from the header information.

10. The method of claim 1, further comprising tracking,
by the one or more processors in the NIC, a number of
packets misqueued by the virtual machine.

11. The method of claim 1, wherein comparing the header
information of the at least one packet to the classification
table comprises:

finding, using the one or more processors of the network

intertace controller (NIC), a table entry 1n the classifi-
cation table managed by the trusted host software that
matches the header information of the at least one
packet;

extracting, using the one or more processors, from that

table entry an identification of a second rate limited
hardware transmission queue; and

comparing, using the one or more processors, whether the

rate limited hardware transmission queue 1s 1dentical to
the second rate limited hardware transmission queue.

12. A system, comprising:

at least one memory storing at least one rate limited

transmission queue configured to receive at least one
packet from a virtual machine device driver;

US 9,762,502 Bl

17

a processor in communication with the at least one

memory, the processor configured to:

compare header information of the at least one packet
to a classification table managed by trusted host
software;

determine, based on the comparison, whether the at
least one packet was properly placed on the rate
limited hardware transmission queue; and

transier the packet to one of a plurality of output queues
when 1t 1s determined that the at least one packet was
properly placed on the rate limited hardware trans-
mission queue.

13. The system of claim 12, wherein the classification
table comprises

a transmission flow look-up table stored in the at least one

memory.

14. The system of claim 13, wherein the processor is
turther configured to determine whether the virtual machine
1s authorized to send the at least one packet, the determining
comprising at least one of:

determining whether the virtual machine has exceeded a

first threshold; or

checking an access control list.

15. The system of claim 14, wherein the first threshold 1s
an amount of bandwidth allocated to the virtual machine.

16. The system of claam 13, wherein the processor is
configured to drop the at least one packet when 1t 1s
determined that the at least one packet was not properly
placed on the rate limited hardware transmission queue.

17. The system of claim 13, wherein the processor is
turther configured to notify a hypervisor when the processor

10

15

20

25

30

18

has determined that the at least one packet was not properly
placed on the rate limited hardware transmission queue.

18. The system of claim 17, wherein the hypervisor

rescinds a right of the virtual machine to bypass a hypervi-
SOF.

19. The system of claim 12, wherein the processor 1s in a

network interface controller (INIC) and 1s further configured
to:

dequeue the at least one packet from the rate limited

hardware transmission queue prior to comparing the
header information to the classification table; and

copy the at least one packet to a memory of the NIC.

20. The system of claim 12, wherein the processor 1s
turther configured to track a number of packets misqueued
by the virtual machine.

21. A non-transitory computer readable medium compris-
ing instructions, that when executed by one or more pro-
cessors, perform:

receiving at least one packet on a rate limited hardware
transmission queue Irom a virtual machine device
driver;

comparing, using one or more processors of a network
intertace controller (NIC), header information of the at

least one packet to a classification table managed by
trusted host software; and

determining, based on the comparison, whether the least
one packet was properly placed on the rate limited
hardware transmission queue.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

