12 United States Patent

Rajamani et al.

US009760653B2

US 9,760,658 B2
Sep. 12,2017

(10) Patent No.:
45) Date of Patent:

(54) MEMORY-MAPPED OBJECTS

(75) Inventors: Kumar Rajamani, San Ramon, CA
(US); Hochak Hung, Foster City, CA

(US); Jaebock Lee, Sunnyvale, CA
(US); Philip Yam, San Carlos, CA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 923 days.

(21) Appl. No.: 12/576,140

(22) Filed: Oct. 8, 2009
(65) Prior Publication Data
US 2011/0087642 Al Apr. 14, 2011
(51) Imt. CL
GO6F 17/30 (2006.01)
(52) U.S. CL
CPC .. GO6F 17/30997 (2013.01); GO6F 17/30557

(2013.01); GOGF 17/30589 (2013.01)

6,654,029 B1* 11/2003 Chiuetal. 715/717
7,409,694 B2 8/2008 Forin et al.
2002/0078119 Al1* 6/2002 Brenner et al. 709/102
2004/0162841 Al* 8/2004 Bernstein et al. 707/100
2004/0252134 Al* 12/2004 Bhattetal. 345/619
2005/0240570 Al* 10/2005 Ozbutuncccoeeennnn. 707/3
2007/0226685 Al* 9/2007 Kaakani et al. 717/108
2007/0233970 Al* 10/2007 Sahaetal. 711/152
2008/0098046 Al 4/2008 Alpern et al.
2011/0072006 Al1* 3/2011 Yuetal ...l 707/718
2011/0191544 A1* 8/2011 Nagaetal. 711/133

* cited by examiner

Primary Examiner — Grace Park

(74) Attorney, Agent, or Firm — Hickman Palermo
Becker Bingham LLP

(57) ABSTRACT

A method and apparatus for efliciently managing cached
objects 1s provided. A mapping 1s a typed relationship
between cached objects. A base object contains content, and
a mapped object 1s mapped to a base object when there 1s a
particular relationship between the mapped object and the
base object. The type of mapping defines how the objects 1n
the relationship are treated when the mapped object 1s
created, read, or written. At creation time, the mapping type
may define how the mapping relationship 1s recognized.

(58) Field of Classification Search
CPC e GO6F 17/30389
USPC e 70°7/713, 718

See application file for complete search history.

Sometimes recognizing a relationship requires establishing
equivalence between the objects. At read and write time, the
mapping type may define on which object a mutual exclu-
s10n lock 1s held, which content 1s returned or which object’s
content 1s updated. A wide range of applications can benefit
from enhanced object caching performance, and 1n addition,
application may define application-specific semantics on
mapping types as well.

(56) References Cited
U.S. PATENT DOCUMENTS

4/1999 Attalun et al.
4/2001 Landau

5,897,634 A *

6,219,770 Bl 26 Claims, 9 Drawing Sheets

100
160
Application
Y \ A
Cache Manager 110

et 130 | 140

E%n © Handle | Content of
M o 'in » for Base Base

“4ppPe Object | Object

Obj@@t HBH HBH

HAH .

|

U.S. Patent Sep. 12, 2017

Sheet 1

of 9

US 9,760,658 B2

100

160

Application

Cache Mé.nager 1 1“6“

|

120
Handle
for
Mapped
Object
" AH

EEEE—

130
Handle
for Base

Object
HBH

o
140

Content of
Base

Object
HBH

mm___l\

FIG. 1

US 9,760,658 B2

Sheet 2 of 9

Sep. 12, 2017

U.S. Patent

¢ DIA

o[PUCH

314

SJUU0)) 193190
08¢

U]

199[q() paddey
GLC _

ddA 1 Surddey
0L¢C

surddepy
$9¢

UOIIBIO0SSY 19290

09¢

SUIBN

6GC

9[PUEH 06C

U.S. Patent Sep. 12, 2017 Sheet 3 of 9 US 9,760,658 B2

Reading Object A
Y .

310
Create non-versionable mappings
from Mapped Objects A and C to
Base Object B

\
320

Read Object A and receive contents of
Object B

Y

330
Write Object C, which changes the

contents of Base Object B

Y
340

Read Object A and receive updated contents
of Object B

FIG. 3A

U.S. Patent Sep. 12, 2017 Sheet 4 of 9 US 9.760,658 B2

360

Create versionable mapping from Object A
to Object B

¢

365
Request write lock on Object A

370
Copy contents of Base Object B

| into Object A

375
Delete the mapping between Mapped Object

A and Base Object B

Y

330
Make Object A a base object

FIG. 3B

U.S. Patent Sep. 12, 2017 Sheet 5 of 9 US 9,760,658 B2

_Cache 400

S

asSe

Object

420 / 430 ' |
Mapped Mapped |
Object Object
HWH xﬂXﬂ//
440 @ @
Mapped M M

apped apped

Object Object Object

F1G. 4

U.S. Patent

Query A.

Query B:

Query C:

Query A 510

Query B 520

_ Query
hash function ¢ ~ Execution

\‘hash function > k»

Query A 530
N

532
> =
Ihash function ~__ Execution

Sep. 12, 2017 Sheet 6 of 9 US 9.760,658 B2

510

Select empno from emp
_ 520

A

SELECT empno FROM emp
530

A

Select empname from emp

FIG. 5A

Base
Object A

Hash Table 212

Plan for A

Mapped 514

Object B

Base
522 -/ Object C

Plan tor C

U.S. Patent

User Joe 1ssuing
Query D:

Query E:

User Jane 1ssuing

Query F:

Sep. 12, 2017

Sheet 7 of 9

US 9,760,658 B2

540

Select empno, empname from emp

i"jO

Select empname, empno from emp

Select empname, empno from emp

FIG. 5C

Hash

QueryD 540 |

560

A

Base
Object D
542

\lh&S}l function >

1
./Mapped

Query E 550 l

Object E

|_hash functia%>

Query I 560

il kel

‘! hash function >

f” 332 i-/

Database
Cursor D

>44

Base
Object F
562

Database
Cursor F

564

US 9,760,658 B2

Sheet 8 of 9

Sep. 12, 2017

U.S. Patent

\EB@/

YIS

9 DId

e e e e M L F T e e e L e i A e e e et e

N... I T O e

J|PUEH 019

/e \

T

10SIN")

dwo woiy
b

oudu ‘sureudurs)09[9Q

i

T b R NS

S[PUeH (C9

g

r

FT R

—

SRR

gl I3
AT N T

S[PUeH 019

]
o
v o
v —
mm i/
3 1SOH
&N
w w2 '~ - -~ -~ -~ - - - - ----=--==
MHOM L3I v | | 0. a7
OML3N I 30OV443LN ” i

d0554004d

VOO0 NOILVOINNNNOD

10dLINOD

|
|
|
|
HOSHND
N _ .
-~
= |
&N
,w _
= 97, |
| 701 e
_ . SNg 39IA30 LNdNI
> |
—
S |
2.,
— |
=3
o _
7.
|
| oz 907
m ¥ 957 | 40IA30 AHONAN AV 1dSIq
3 NP | JOVHOLS NIV
s
g L 9l
-

US 9,760,658 B2

1
MEMORY-MAPPED OBJECTS

FIELD OF THE INVENTION

The present invention relates to eflicient cache manage-

ment using memory-mapped objects.

BACKGROUND

Within the context of computer systems, a cache 1s used
for temporarily storing data so that the data can be accessed
more quickly and/or efliciently than 1s possible in the
memory in which the data normally resides. Thus, volatile
memory 1s used to cache data that resides on non-volatile
memory, such as magnetic disks. Similarly, fast volatile
memory 1s used to cache data that resides i slower volatile
memory.

In an object system, the data 1s stored and managed as
objects. The objects may be shared across multiple concur-
rent threads within a single process or across multiple
processes. Thus provisions must be made for concurrency
control. Shared read locks allow multiple execution threads
to read the same object and prevent changes to the object
content while the content 1s being read by another execution
thread. An exclusive write lock provides non-shared access
to the object while the content of the object 1s being updated.

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therelore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described in this section quality as prior
art merely by virtue of their inclusion 1n this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and 1n which like reference numerals refer
to similar elements and 1n which:

FI1G. 1 1s a block diagram showing elements of the system.

FI1G. 2 shows attributes of an object handle for an embodi-
ment of the invention.

FIG. 3A 1s a flow diagram showing the semantics of
writing through a mapped object with a non-versionable
mapping to a base object for an embodiment of the inven-
tion.

FIG. 3B i1s a flow diagram showing the semantics of
writing through a mapped object with a versionable mapping,
to a base object for an embodiment of the invention.

FIG. 4 shows an example of an inheritance hierarchy
comprising inheritance mapping relationships among base
and mapped objects.

FIG. SA shows an example of a syntactic mapping rela-
tionship.

FIG. 5B 15 a diagram showing the eflect of evaluating the
queries 1n the example 1n FIG. SA for an embodiment of the
invention.

FIG. 5C shows an example of a semantic mapping rela-
tionship.

FI1G. 5D 1s a diagram showing the effect of performing the
queries 1n the example 1 FIG. 5C for an embodiment of the
invention.

FIG. 6 shows an example of a network of cached objects
having a variety of mapping types for an embodiment of the
invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 1s a block diagram that illustrates a computer
system upon which an embodiment of the invention may be
implemented according to one embodiment of the invention.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1n order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present invention.

(General Overview

The approaches and techniques described herein are
directed to efliciently managing objects 1n a volatile memory
cache. Relationships may exist among objects stored in the
cache. The approach includes creating a relationship called
a “mapping’ between two objects, where the mapping only
exists while the objects reside 1n the cache. The relationships
are directional in that one object, called the “base object,”
has content associated with 1t, and the other object, the
“mapped object,” maps to the base object. There may or may
not be object content stored directly in association with a
mapped object.

Different relationship types may be recognized. A map-
ping type 1s associated with the mapping. When relation-
ships exist between objects stored 1n a cache, knowledge of
the type of relationship between the objects may be used to
enable applications to use the cache more efliciently. For
example, one particular relationship allows for many objects
to be mapped to a common base object 1n the cache for
shared reading, but when an exclusive write lock 1s obtained
on a particular mapped object, a new base object 1s created
and updated in association with that particular mapped
object. In this example, the relationship between the mapped
object and the base object provides for copy-on-write
semantics that allows delaying the allocation of memory and
processing associated with creating a new copy until an
updated copy 1s actually needed.

As mentioned earlier, a mapping 1s a typed relationship
between a mapped object and a base object. When a new
object 1s created 1n the cache, a handle 1s created 1n asso-
ciation to represent the new object. In object-oriented sys-
tems 1n general, a handle 1s an opaque, 1indirect reference to
a region of memory that 1s managed by the object system. A
handle may be used by a program that 1s not part of the
object system to specily operations to be performed on the
object. When used 1n the context of the object system, the
word handle refers to the memory that 1s referenced by the
handle. When discussed tfrom the perspective of the program
using the object, handle refers to the object reference.

In addition to storing an object 1dentifier, such as 1ts name,
the handle may contain other metadata for the object such as
a mapping to another object, a mapping type, and a list of
other objects that map to the object. Rather than storing links
to other objects within the object contents, the mappings and
mapping types are stored in the object handle. The type of
mapping determines the semantics of various operations on
the objects, and thus the behavior (i.e. sequence of opera-
tions) performed on the objects in the mapping. The types of
behavior that depend on the mapping type include which
object content 1s returned when reading a mapped object,
which object content 1s written when writing a mapped

US 9,760,658 B2

3

object, which objects are notified when a base object’s
content 1s updated, the locking protocol (which handles are

locked for read and write operations), and the rules for
recognizing object equivalence.

In one embodiment, the volatile memory cache 1s used to
store database metadata for underlying database objects such
as schemas, tables, views, and cursors.

FIG. 1 depicts the components of the system described
herein. A computer (100) runs software components such as
Cache Manager (110). The Cache Manager (110) manages
the contents of the cache of objects stored 1n the computer’s
volatile memory. When a request 1s made for Object B, if
Object B 1s not already 1n the cache, the content of Object
B 1s loaded into a base object (140) and a handle 1s created
to represent the object (130). Later, a process can request
that a new Object A be mapped to Object B. In response, a
handle representing Object A (120) 1s created, and the handle
maintains the mapping information from Object A to Object
B Object A may or may not have 1ts own content. Object A
does not have 1ts own content as depicted in FIG. 1.

FIG. 2 shows more detail about the information main-
tained within an object handle (250). Name (255) contains
the name of the object. Object Association (260) records the
association between the handle and the Object Contents
(280) (11 the object 1s a base object). Mapping (2635) 1s a link
to another handle 1t Handle (250) represents a mapped
object. If Mapping (265) does not contain a link to another
handle, then Handle (250) represents a base object. How-
ever, a base object may also be a mapped object, and thus,
some base objects have Mapping (265) populated with a link
to another base object.

As shown 1n FIG. 2, Mapping (265) 1s linked to Handle
(285). Thus, Handle (250) represents a mapped object.
Mapping Type (270) 1s the type of mapping that, as men-
tioned above, defines the semantics of operations performed
on the mapped object. The handle for a base object may or
may not have the mapping type specified. Mapped Object
List (275) 1s a list of all the objects that map to the object.
In other words, all the handles that contain links to Handle
(250) can be found 1n the Mapped Object List (275).

A base object has object content. Content can be any
information that can be stored in volatile memory. Examples
of content that may comprise a base object are a {ile, a data
structure, a database result set, a database query, etc. A
mapped object may also have content, but 1s not required to.

In the next sections, various mapping types are described
along with their operational semantics.

Mapping Types and Semantics

As mentioned above, there are a variety of possible
relationships between cached objects that may be repre-
sented 1n the mapping between the objects. The relationship
1s stored in the mapping type of the object handle. The
relationship types include: non-versionable, versionable,
representative, dependency, syntactic, and semantic. Mul-
tiple mapping types may share similar semantics. Additional
relationships may also be defined.

A non-versionable relationship 1s one 1n which a mapped
object shares the contents of a base object such that writing
the mapped object updates the contents of the base object.
FIG. 3A shows an example flow for updating the content of
a mapped object 1n a non-versionable mapping to a base
object. Step 310 shows creating non-versionable mappings
from Object A to Object B and from Object C to Object B.
Step 320 shows reading from Object A and retrieving the
contents of Object B Step 330 shows updating Object C,

10

15

20

25

30

35

40

45

50

55

60

65

4

resulting 1n changing the contents of Object B. In Step 340,
reading Object A retrieves the updated contents of Object B.
The semantics of a write operation for a non-versionable
mapping type 1s that exclusive write locks are obtained not
only the object being explicitly written, but also an exclusive
lock 1s automatically obtained on the base object that will be
updated as a result of the write operation.

A versionable relationship provides for copy-on-write
semantics. FIG. 3B 1s a flow diagram that shows the opera-
tional behavior of reading from and writing to a mapped
object 1n a versionable mapping. In Step 360, a versionable
mapping 1s created from Object A to Object B. In Step 3635,
a write lock 1s requested on Object A. In Step 370, the
content of Object B 1s copied into the content of Object A.
In Step 375, the mapping between Object A and Object B 1s
deleted and each object has its own content. In Step 360,
Object A becomes a base object independent of Object B.
When a write request 1s received for updating A, an exclu-
sive write lock 1s obtained on A, but a shared read lock 1s
obtained on Object B. Thus, other objects with versionable
mappings to Object B may continue to access Object B’s
content while Object B’s content 1s copied into Object A,
and thus, other mappings to Object B are not blocked or
disturbed by writing through a versionable mapping to
Object B.

A representative relationship may be used 1n a hierarchy
ol objects where the root of a hierarchy 1s a base object, and
child nodes 1n the hierarchy are objects mapped to the base
object. The base object represents the children mapped
objects. FIG. 4 shows an object hierarchy. Performing an
operation on a base object in an object hierarchy causes the
operation or the effect of the operation to propagate recur-
sively through the hierarchy that 1s rooted at the base object.
An example of a representative relationship might be objects
that represent a hierarchy of locks. Obtaining a lock on

Mapped Object “X” (430) (“X”) would have the eflect of
locking Objects B (450) and C (460). In one embodiment,
the locking operation may be performed recursively at every
node 1n the subtree. In another embodiment, all nodes in the
hierarchy rooted at the locked node are implicitly locked
because the locking protocol requires obtaining a lock on the
base object before a mapped object may be locked.

A dependency relationship type represents that one object
relies on another object. In one embodiment, one object
relies on the existence ol anther object in the cache. For
example, an implicit dependency relationship exists between
all mapped objects and their associated base objects. A base
object continues to reside in the cache as long as there 1s at
least one object that 1s mapped to the base object. Another
example of a dependency relationship 1s a mapping between
a cursor and the schema of the table accessed by the cursor.
If the schema of the table changes, a cursor object depending
on the associated schema object might need to be recom-
puted. When the contents of a base object are updated, the
list of objects that are mapped to the base object can be
traversed to 1dentity the objects for which 1t 1s necessary to
perform operations in response to the base object content
update.

A syntactic relationship 1s one 1 which the name of the
mapped object may be rewritten by a set of rules to match
the content of a base object. Thus, there 1s a syntactic
equivalence relationship that allows the mapped object to
share the content of the base object. One example of the use
of a syntactic relationship 1s when the name of a cached
object 1s an expression, and the content of the base object
results from evaluating a function on the object name. In one
embodiment the function i1s a direct computation of the

US 9,760,658 B2

S

expression. In another embodiment, the expression may be
an SQL query. A database manager performs analysis,
optimization, and translation on a query, and the results of
this time-consuming computation may be stored as the
contents of a base object. The phrase “evaluating the expres-
sion” 1s 1tended to mean evaluating whatever function 1s
associated with the object type.

Syntactic mappings are created when an object being
placed 1n the cache 1s discovered to be syntactically equiva-
lent to another object already 1n the cache. Thus, the first
object placed in the cache becomes a base object. Subse-
quent objects placed 1n the cache are evaluated to determine
whether a syntactically equivalent object 1s already in the
cache. Syntactic equivalence 1s determined by running trans-
formations on the name of the newly cached object and the
names of the set of cached objects of the same object type
to determine 1f there i1s a syntactic match. The mapping
manager may call an application-provided function that
performs the analysis. In that way, each application may
utilize application-specific transformation rules for what
syntactic equivalence means. In one embodiment, syntactic
relationships are non-versionable mappings. In an alternate
embodiment, syntactic relationships are versionable map-
pINgs.

FIG. SA shows a set of example database queries, and
FIG. 5B shows the relationships among the objects created
when evaluating these queries. The same user 1ssues Queries
A (310), B (320), and C (530) 1n sequence. A base object
(512) 1s created to represent Query A. The query expression
itself 1s hashed, and the key returned from the hashing
function 1dentifies a corresponding base object (In this
example, Object A 1s the base object). The content of Object

A 1s the Query Execution Plan (514) for the optimized and
rewritten query expression for Query A (510). Next, Query
B (520) 1s received. Query B 1s hashed to determine whether
there 1s already an object 1n the cache whose associated
execution plan may be reused. No equivalent object will be
tfound until the application 1s called to determine whether
Query B 1s syntactically equivalent to Query A. The appli-
cation may apply a set of transformations that includes
stripping white space and 1gnoring diflerences in case insen-
sitive keywords to determine that Query A (510) and Query
B (520) are syntactically equivalent. As a result of the
determination, a mapped object (522), Object B, 1s created
for Query B (520) and mapped to Object A (512). Thus, the
content of Object A may be used as the query execution plan
associated with mapped Object B (522) without having to
re-compute the equivalent query. When Query C (530) 1s
received, the registered set of transformations may deter-
mine that there 1s no possible syntactic re-writing of Query
C that makes the name of Query C equivalent to an object
already 1n the cache. Thus, a new base object (532) 1s created
to represent Query C (530). A distinct query execution plan
(534) comprises the content of Object C (532).

A semantic relationship 1s similar to a syntactic relation-
ship 1n that 1t 1s useful when objects represent an expression
and the base object contents comprise the evaluation of the
expression. However, a semantic relationship requires only
that the results of the evaluation be the same, not that the
expression be syntactically equivalent. That 1s, simple
rewriting rules like removing white space or ignoring dif-
ferences 1n capitalization cannot reconcile the differences
between two expressions presented by cached objects. How-
ever, the expressions of the mapped and base objects must
have the same meaning such that the evaluation of each
yields the same results.

10

15

20

25

30

35

40

45

50

55

60

65

6

Two database queries may be semantically diflerent even
if the queries are syntactically identical. For example, a
schema 1s associated with each database user that defines the
set of database objects, such as table names, that the user
will use. The same table name may appear 1n multiple users’
schemas and yet refer to two different database tables. Thus,
il two users 1ssue a query, each using the same table name,
cach query might actually be reading from diflerent tables.
Thus, the queries might look 1dentical but request different
behavior.

FIG. 5C and 5D show an example to explain semantic
relationships where the cached objects represent database
query expressions. User Joe 1ssues Query D (540) that
requests a set of rows from an employee table with columns
for the employee number and employee name. As the first
query to be recerved, a base object, Object D (542), 1s
created to represent Query D (540), the query expression 1s
hashed to 1dentity Object D (542), and the contents of Object
D (542) 1s the database Cursor (5344) returned when the
query 1s executed at run time. When Joe 1ssues Query E
(550), a set of rules determines that the difference in the
query 1s the order of the columns 1n the output, but the same
return results could be shared between Queries D (540) and
E (550). As a result, a mapped object, Object E (552), 1s
created to represent Query E (350) and 1s semantically
mapped to Object D (540). When Query E (550) 1s run, the
results can be reused from Query D (540).

Next, user Jane 1ssues Query F (560). Jane also reads from
table emp, but Jane’s table emp 1s a diflerent database table
from Joe’s table emp. Although syntactically identical to
Joe’s Query E (550), Jane’s Query F (560) 1s semantically
different from either of Joe’s queries. Thus, a new base

object, Object F (562), 1s created to represent Jane’s Query
F (560). A distinct database cursor comprises the contents of
Object F (564).

FIG. 6 shows an example of four cached objects and their
mappings. Handles (610) and (630) have no object content
directly associated with the handles, and Handles (620) and
(640) have object content. Handle (610) represents a seman-
tic mapping between the database query (shown 1n the name
fiecld of the handle) and Handle (620). Handle (610) is
semantically related to Handle (620) because the name of
the base object has been determined to be semantically
equivalent to the name of the mapped object of Handle
(610). Thus, reading through Handle (610) retrieves the
content of cursor object (650) that 1s associated with Handle
(620). Handle (620) 1s a base object for Handle (610) and
also a mapped object to Handle (640). The content of cursor
object (650) depends on the version of the schema repre-
sented by Handle (640). The dependency relationship 1ndi-
cates that when a change occurs to the contents of the
schema object (660), some operation might need to be
performed on Handle (620) (e.g., the cursor object may need
to be recomputed). Handle (620) contains Handle (610) 1n its
list of objects that are mapped to Handle (620). Handle (630)
represents a newer version of the schema. Handle (630)
might be created by a patch process that 1s expecting to
update a copy of the schema object only for its own
purposes, and does not want the running system using
Handles (620) and (640) to be aflected by the changes.
Handle (630) 1s versionable because when the schema object
1s updated, a copy of the schema contents will become
associated with Handle (630). Until Handle (630) 1s used for
a write operation, reads through Handle (630) will return the
content of schema object (660). Handle (640) 1s a base
object that 1s mapped to by both the cursor object Handle

US 9,760,658 B2

7

(620) and new version Handle (630). The mapped object list
contains both of these handles.

Mappings are Dynamic and Transient

A mapping manager maintains the mapping imformation
stored within the object handle. When an object 1s created as
a mapped object, a mapping 1s created of the specified type.
The mapping type may change over the life of the object. It
1s not necessary to delete and recreate the object or the object
handle to change the mapping type. For example, the
mapping of Object A to Object B may orniginally be a
versionable mapping and later may be changed to non-
versionable mapping without aflecting the contents of
Object A or Object B or their status as cached objects.

Certain events 1n the system will cause a mapping to
become deleted. As already described, when a mapped
object having a versionable relationship with a base object
1s written, the mapped object becomes a base object, and the
mapping 1s deleted. However, there are other events that
cause a mapping to be deleted. A mapping only exists as long
as the corresponding objects reside in the cache. When the
mapped object of the mapping relationship ages out of the
cache or 1s 1tself deleted, then the handle that represents the
object, and thus the mapping contained 1n the handle, 1s also
deleted. Also, the mapping manager may respond to a direct
request to delete a mapping. A particular base object may
continue to reside 1n the cache for as long as there are other
objects 1n the cache that are mapped to the particular base
object. When all mappings to a base object have been
removed from the cache, then the base object may also be
removed from the cache.

The semantics of the mapping relationships described
herein are very different from other object-to-object links 1n
use. For example, symbolic and hard links used to map one
persistent file to another are different from the approach
described herein 1n that the links themselves are persistent
rather than transient. Once created, a file system symbolic
link cannot be changed to a hard link or vice versa without
deleting and recreating the link. In addition, when opening
a flle using a symbolic link, the target file 1s locked, not the
link 1tself.

The mapping relationships described herein are also dif-
ferent from in-memory pointers or object references sup-
ported by programming languages. For example, few 1f any
programming languages have typed pointers. A pointer may
be defined based on what kind of object the pointer points to,
but the pointer 1tself (analogous to the mapping) 1s not typed.
Even 11 a pointer were typed, the type 1s not mutable. Casting
may treat the object referenced through a pointer as a
different type, but casting does not change the type of the
relationship between the pointer and the target object.

Some operating systems provide memory pages to be
marked for copy-on-write, which 1s similar to the i1dea of a
versionable mapping relationship. However, these operating
systems mark the base object (memory page), not the
mapped object. Marking the base object means that each
base object 1s either versionable or non-versionable. In the
approach described herein, the relationship between the
mapped object and the base object 1s versionable or non-
versionable (not the base object itself). Thus multiple
mapped objects may map to the same base object where one
mapped object has a versionable relationship and the other
has a non-versionable relationship.

5

10

20

25

30

35

40

45

50

55

60

65

8

Applications Benefiting from Mapped-Object
Support

Many different kinds of applications can be built on top of
this same object cache where the mappings are assigned rich
types that direct the behavior of an operation on an object in

a mapping relationship.

One application that benefits from the use of a versionable
relationship 1s patching a running system. Previous
approaches to patching a large system required downtime so
that the system 1s not in operation while the system 1s
updated. However, large mission critical systems cannot be
taken down for as long as 1t may take to apply patches to
many files. Another technique 1s to lock mndividual files for
update, but that may result 1n inconsistencies in the system
while the patching process 1s running. Starting the patch
process, but delaying the acquisition of locks until the locks
are needed, can lead to deadlock. Locking all files before
starting essentially renders the system inoperable for its real
work.

A running system 1s a set ol objects, each with a particular
version. The patch process may be lengthy and require
installing new versions of many of the objects, but the
system cannot be taken offline while the update takes place.
The patch application can create mapped objects for all of
the system objects while the running system continues to use
the base objects for 1ts operation. As files are updated to the
new version, only those mapped objects that are written will
be copied into a new base object, and the presence of the
new object will not interfere with the running system that
continues to use the original base object. Once the patch
process 1s complete, the system can switch over to using the
latest object versions.

Objects 1n a mapping relationship may exist across nodes
in a clustered system where each node places cached objects
in local memory. For example, multiple nodes may cache a
mapped object to the same base object cached at a different
node. As each node may support concurrent processing, each
mapped object may also need mutual exclusion locking.
When the first processing unit (thread) requests a shared
read lock on the local mapped object, a shared read lock 1s
first obtained on the underlying base object. Once success-
tul, the read lock 1s 1ssued on the local mapped object. A
subsequent request for a shared read lock need not request
a lock on the base object. Without the use of a local mapped
object, all locking requests would require locking the base
object on a different node.

Another application of the techniques described herein 1s
re-implementing database synonym functionality that 1s
used as an alias for a database table. A database synonym 1s
created persistently and contains the link to the real database
table within its content. Thus, to perform an operation on the
underlying table using the synonym, the synonym object
must be brought into memory to determine the underlying
table, and then the underlying table must be brought into
memory and accessed. Synonyms can be implemented more
ciliciently by creating transient mapped objects during
execution (not persistently), and mapped to a base object
whose contents contains the target database table. The
semantics ol database synonyms may be preserved by
creating a non-versionable mapping. Thus, all operations
performed on the synonym result in the operations being
performed on the underlying table.

The example explaiming semantic relationships also dem-
onstrates the application of reusing cached query output
when two queries can be verified as semantically equivalent.

US 9,760,658 B2

9

Much processing time can be saved by avoiding having to
re-compute the query execution plan.

Inheritance semantics can be built based on a represen-
tative, non-versionable mapping type. An inheritance rela-
tionship 1s one 1n which content 1n a base object 1s shared
(inherited) by the set of mapped objects that have an
inheritance relationship with the base object, and 1n addition,
cach mapped object has content of its own. FIG. 4 may also
be viewed as an mheritance tree. Object Z (410) (“Z””) may

represent a base object from which all other objects 1n the
hierarchy inherit basic properties. Object W (420) (“W”) and

Object X (“X”) inhent the properties from “7Z” as well as
have content of their own. The data 1n “Z” 1s shared between
“W” and “X” and only needs to be updated once rather than
replicating updates to “W” and “X”. Also, Object B (*B”)
and Object C (“C”) each have content of their own 1n
addition to sharing the content of “X”. Thus, “Z” 1s only a
base object, “B” and “C” are only mapped objects, and “W”
and “X” are mapped objects to “Z” and are base objects to
“B” and “C.” For example, a database schema could be
represented as a hierarchical set of cached objects with
inheritance.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may 1nclude one or
more general purpose hardware processors programmed to
perform the techmiques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 7 1s a block diagram that 1llustrates a
computer system 700 upon which an embodiment of the
invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for
communicating information, and a hardware processor 704
coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general purpose
MmICroprocessor.

Computer system 700 also imncludes a main memory 706,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 702 for storing information
and 1nstructions to be executed by processor 704. Main
memory 706 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 704. Such nstruc-
tions, when stored 1n storage media accessible to processor
704, render computer system 700 imto a special-purpose
machine that 1s customized to perform the operations speci-
fied 1n the instructions.

Computer system 700 further includes a read only
memory (ROM) 708 or other static storage device coupled
to bus 702 for storing static information and instructions for
processor 704. A storage device 710, such as a magnetic disk

5

10

15

20

25

30

35

40

45

50

55

60

65

10

or optical disk, 1s provided and coupled to bus 702 for
storing 1information and instructions.

Computer system 700 may be coupled via bus 702 to a
display 712, such as a cathode ray tube (CRT), for displaying
information to a computer user. An iput device 714, includ-
ing alphanumeric and other keys, 1s coupled to bus 702 for
communicating information and command selections to
processor 704. Another type of user mput device 1s cursor
control 716, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 704 and for controlling cursor
movement on display 712. This mput device typically has
two degrees of freedom 1n two axes, a {irst axis (e.g., X) and
a second axis (e.g., y), that allows the device to specity
positions 1n a plane.

Computer system 700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 700 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 700 in response to
processor 704 executing one or more sequences of one or
more istructions contained i maimn memory 706. Such
instructions may be read nto main memory 706 from
another storage medium, such as storage device 710. Execu-
tion of the sequences of instructions contained in main
memory 706 causes processor 704 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “‘storage media” as used herein refers to any
media that store data and/or instructions that cause a
machine to operation 1 a specific fashion. Such storage
media may comprise non-volatile media and/or volatile
media. Non-volatile media includes, for example, optical or
magnetic disks, such as storage device 710. Volatile media
includes dynamic memory, such as main memory 706.
Common forms of storage media include, for example, a
floppy disk, a tlexible disk, hard disk, solid state drive,
magnetic tape, or any other magnetic data storage medium,
a CD-ROM, any other optical data storage medium, any
physical medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, NVRAM, any other
memory chip or cartridge.

Storage media 1s distinct from but may be used 1n con-
junction with transmission media. Transmission media par-
ticipates 1n transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 702. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be mvolved 1n carrying one
or more sequences of one or more instructions to processor
704 for execution. For example, the instructions may 1ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the 1nstruc-
tions 1nto 1ts dynamic memory and send the 1nstructions over
a telephone line using a modem. A modem local to computer
system 700 can receive the data on the telephone line and
use an 1nira-red transmitter to convert the data to an inifra-red
signal. An 1nfra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 702. Bus 702 carries the data to main memory
706, from which processor 704 retrieves and executes the
instructions. The instructions recerved by main memory 706

US 9,760,658 B2

11

may optionally be stored on storage device 710 either before
or after execution by processor 704.

Computer system 700 also includes a commumnication
interface 718 coupled to bus 702. Communication interface
718 provides a two-way data communication coupling to a
network link 720 that 1s connected to a local network 722.
For example, communication interface 718 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
718 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 718 sends and receives
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 720 typically provides data communication
through one or more networks to other data devices. For
example, network link 720 may provide a connection
through local network 722 to a host computer 724 or to data
equipment operated by an Internet Service Provider (ISP)
726. ISP 726 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 728. Local
network 722 and Internet 728 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 720 and through communication interface 718,
which carry the digital data to and from computer system
700, are example forms of transmission media.

Computer system 700 can send messages and receive
data, including program code, through the network(s), net-
work link 720 and communication interface 718. In the
Internet example, a server 730 might transmit a requested
code for an application program through Internet 728, ISP
726, local network 722 and communication intertace 718.

The received code may be executed by processor 704 as
it 1s received, and/or stored in storage device 710, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. Thus, the sole and exclusive indicator of what 1s
the mvention, and 1s intended by the applicants to be the
invention, 1s the set of claims that 1ssue from this applica-
tion, 1 the specific form 1 which such claims 1ssue,
including any subsequent correction. Any definitions
expressly set forth herein for terms contained 1n such claims
shall govern the meaming of such terms as used 1n the claims.
Hence, no limitation, element, property, feature, advantage
or attribute that 1s not expressly recited in a claim should
limit the scope of such claim in any way. The specification
and drawings are, accordingly, to be regarded 1n an 1llus-
trative rather than a restrictive sense.

What 1s claimed 1s:
1. A computer-implemented method for operating on
stored objects, the method comprising:

storing a base object handle representing a base object, the
base object handle comprising a base object content
association that links the base object to a base object
content,

storing a mapped object handle representing a mapped
object,

the mapped object handle comprising:
a mapping that identifies the base object handle, and

10

15

20

25

30

35

40

45

50

55

60

65

12

a mutable mapping type selected from a plurality of
mapping types, each of the plurality of mapping
types defining semantics ol one or more operations
on the mapped object;

recerving a request to perform an operation on the mapped

object;

responding to the request to perform the operation by:

determining one or more actions to perform based on a
semantic ol the operation defined by the mapping
type of the mapped object handle; and

performing the one or more actions;

wherein the mapping type 1s a syntactic relationship type,

the mapped object handle includes a name, and the base

object content includes an evaluation of a function
applied to the name;

wherein the one or more actions to perform, based on the

semantics defined by the mapping type, comprises

providing the base object content when the operation 1s

a read so that the mapped object has access to the

evaluation; and

wherein the method 1s performed by one or more com-

puting devices.

2. The method of claim 1, wherein the name 1s an
eXpression.

3. The method of claim 2, wherein the expression 1s a
database query expression and the evaluation 1s a query
execution plan.

4. The method of claim 1, wherein the mapping type
between the mapped object and the base object 1s altered
while the mapped object and the base object reside i a
cache.

5. The method of claim 1, wherein the mapped object
resides 1n a {irst cache and the base object resides 1n a second
cache.

6. The method of claim 1, wherein the mapped object and
the base object reside 1 a volatile memory cache and a
mapping relationship between the mapped object and the
base object 1s stored within the mapped object handle and 1s
retained as long as the mapped object handle resides in the
volatile memory cache.

7. The method of claim 1, wherein the mapped object
resides 1n a first volatile memory cache of a first computing
node and the base object resides 1n a second volatile memory
cache of a second computing node and a mapping relation-
ship between the mapped object and the base object 1s stored
within the mapped object handle and 1s retained as long as
the mapped object handle resides 1n the first volatile memory
cache.

8. A non-transitory computer-readable medium carrying
one or more sequences ol instructions for operating on
stored objects, wherein execution of the one or more
sequences of 1structions by one or more processors causes
the one or more processors to perform the steps of:

storing a base object handle representing a base object, the

base object handle comprising a base object content
association that links the base object to a base object
content;

storing a mapped object handle representing a mapped

object, the mapped object handle comprising:

a mapping that identifies the base object handle, and

a mutable mapping type selected from a plurality of
mapping types, each of the plurality of mapping
types defining semantics ol one or more operations
on the mapped object;

recerving a request to perform an operation on the mapped

object;

responding to the request to perform the operation by:

US 9,760,658 B2

13

determining one or more actions to perform based on
the semantic of the operation defined by the mapping
type of the mapped object handle; and

performing the one or more actions;

wherein the mapping type 1s a syntactic relationship type,

the mapped object handle includes a name, and the base

object content includes an evaluation of a function

applied to the name; and

wherein the one or more actions to perform, based on the

semantics defined by the mapping type, comprises
providing the base object content when the operation 1s
a read so that the mapped object has access to the
evaluation.

9. The non-transitory computer readable medium of claim
8, wherein the name 1s an expression.

10. The non-transitory computer readable medium of
claim 9, wherein the expression 1s a database query expres-
sion and the evaluation 1s a query execution plan.

11. The non-transitory computer readable medium of
claim 8, wherein the mapped object resides 1 a first cache
and the base object resides 1n a second cache.

12. The non-transitory computer readable medium of
claam 8, wherein the mapped object and the base object
reside 1 a volatile memory cache and a mapping relation-
ship between the mapped object and the base object 1s stored
within the mapped object handle and 1s retained as long as
the mapped object handle resides in the volatile memory
cache.

13. The non-transitory computer readable medium of
claim 8, wherein the mapped object resides 1n a first volatile
memory cache of a first computing node and the base object
resides 1n a second volatile memory cache of a second
computing node and a mapping relationship between the
mapped object and the base object 1s stored within the
mapped object handle and 1s retained as long as the mapped
object handle resides 1n the first volatile memory cache.

14. A computer-implemented method for operating on
stored objects, the method comprising:

storing a base object handle representing a base object, the

base object handle comprising a base object content
association that links the base object to a base object
content;

storing a mapped object handle representing a mapped

object,

the mapped object handle comprising:

a mapping that identifies the base object handle, and

a mutable mapping type selected from a plurality of
mapping types, each of the plurality of mapping
types defining semantics ol one or more operations
on the mapped object;

receiving a request to perform an operation on the mapped

object;

responding to the request to perform the operation by:

determining one or more actions to perform based on a
semantic of the operation defined by the mapping
type of the mapped object handle; and

performing the one or more actions;

wherein the mapping type 1s a semantic relationship type,

the mapped object handle includes a name, and the base

object content includes an evaluation of a function
applied to the name;

wherein the evaluation of the function has an associated

set of results:

wherein the one or more actions to perform, based on the

semantics defined by the mapping type, comprises

providing the base object content when the operation 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

14

a read so that the mapped object has access to the
associated set of results; and
wherein the method 1s performed by one or more com-

puting devices.

15. The method of claim 14, wherein the name 1s an
CXpression.

16. The method of claim 15, wherein the expression 1s a
database query expression and the evaluation i1s a query
execution plan.

17. The method of claim 14, wherein the mapping type
between the mapped object and the base object 1s altered
while the mapped object and the base object reside in a
cache.

18. The method of claim 14, wherein the mapped object
resides 1n a first cache and the base object resides 1n a second
cache.

19. The method of claim 14, wherein the mapped object
and the base object reside 1n a volatile memory cache and a
mapping relationship between the mapped object and the
base object 1s stored within the mapped object handle and 1s
retained as long as the mapped object handle resides in the
volatile memory cache.

20. The method of claim 14, wherein the mapped object
resides 1n a first volatile memory cache of a first computing
node and the base object resides 1n a second volatile memory
cache of a second computing node and a mapping relation-
ship between the mapped object and the base object 1s stored
within the mapped object handle and 1s retained as long as
the mapped object handle resides 1n the first volatile memory
cache.

21. A non-transitory computer-readable medium carrying
one or more sequences ol instructions for operating on
stored objects, wherein execution of the one or more
sequences of 1structions by one or more processors causes
the one or more processors to perform the steps of:

storing a base object handle representing a base object, the

base object handle comprising a base object content
association that links the base object to a base object
content;

storing a mapped object handle representing a mapped

object, the mapped object handle comprising:

a mapping that identifies the base object handle, and

a mutable mapping type selected from a plurality of
mapping types, each of the plurality of mapping
types defining semantics ol one or more operations
on the mapped object;

recerving a request to perform an operation on the mapped

object;

responding to the request to perform the operation by:

determining one or more actions to perform based on a
semantic ol the operation defined by the mapping
type of the mapped object handle; and

performing the one or more actions;

wherein the mapping type 1s a sematic relationship type,

the mapped object handle includes a name, and the base

object content includes an evaluation of a function
applied to the name;

wherein carrying out the evaluation of the function gen-

erates a set of results; and

wherein the one or more actions to perform, based on the

semantics defined by the mapping type, comprises

providing the base object content when the operation 1s

a read so that the mapped object has access to the set

of results.

22. The non-transitory computer readable medium of
claim 21, wherein the name 1s an expression.

US 9,760,658 B2
15

23. The non-transitory computer readable medium of
claim 22, wherein the expression 1s a database query expres-
sion and the evaluation 1s a query execution plan.

24. The non-transitory computer readable medium of
claim 21, wherein the mapped object resides 1n a first cache 5
and the base object resides 1n a second cache.

25. The non-transitory computer readable medium of
claam 21, wherein the mapped object and the base object
reside 1 a volatile memory cache and a mapping relation-
ship between the mapped object and the base object 1s stored 10
within the mapped object handle and 1s retained as long as
the mapped object handle resides in the volatile memory
cache.

26. The non-transitory computer readable medium of
claam 21, wherein the mapped object resides 1 a first 15
volatile memory cache of a first computing node and the
base object resides 1 a second volatile memory cache of a
second computing node and a mapping relationship between
the mapped object and the base object 1s stored within the
mapped object handle and 1s retained as long as the mapped 20
object handle resides 1n the first volatile memory cache.

G x e Gx o

16

	Front Page
	Drawings
	Specification
	Claims

