US009760345B2

a2y United States Patent (10) Patent No.: US 9.760,345 B2

Diez 45) Date of Patent: Sep. 12,2017
(54) RECURSIVE ONTOLOGY-BASED SYSTEMS 8,732,655 B2* 5/2014 Pfeiferccoon..... GOGF 8/10
ENGINEERING 7077797
2008/0082959 Al* 4/2008 Fowler GO6F 8/24
- . . 717/104
(71) Applicant: Alfonso Diez, Madnd (E5) 2009/0007084 Al* 1/2009 Conallen ... GOGF 8/35
. . 717/146
(72) Inventor: ~ Alfonso Diez, Madrid (ES) 2009/0150854 Al* 6/2009 Elaasar GOGF 8/35
717/104
(*) Notice: Subject to any disclaimer, the term of this Continued
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 37 days.
(b) by 37 days OTHER PUBLICATIONS
(21) Appl. No.: 14/809,053 Cuong V. Nguyen, Towards automated model driven development
4 with model transformation and domain specific languages, Interna-
(22) Filed: Jul. 24, 2015 tional Journal of Computer Science and Electronics Engineering
(65) Prior Publication Data (8151(;3135) vol. 1, Issue 1 (2013) ISSN 2320-4028 (Online), pp.
US 2016/0026441 Al Jan. 28, 2016 (Continued)
Related U.S. Application Data
(60) Provisional application No. 62/029,441, filed on Jul. rr fr:-'wr Y Examf;izer — lhuy Dao
26, 2014, Assistant Examiner — Mongbao Nguyen
(74) Attorney, Agent, or Firm — Ferraiuoli LLC; Eugenio
(51) Imt. CL J. Torres-Oyola; Victor Rodriguez-Reyes
GO6l’ 9/44 (2006.01)
GO6Il’ 9/45 (2006.01)
GO6F 17/30 (2006.01) (57) ABSTRACT
GO6F 17/27 (2006.01) . . .
) US. Cl The present disclosure proposes a new model engineering
(52) Ci’ C ' GOGEF 8735 (2013 01): COGF 17/30734 method and system that permits the creation of application
""""" 2013 01): G(O pen 8 /36)5 2013 01 GOGE systems without the need of program development. The
(01); ; ; 7 5 2)6 13.01 system allows organizations to search for high performance
_ _ _ (01) development teams and methods, and develop high quality
(58) Field of Clasmﬁca.tmn Search | | solutions. The present disclosure covers the three central
CPC .. GOOE 8/35; GOOL 17/30734; GOOL 17/2785; arcas ol systems engineering: (1) a method for creating
Q Leation file Lot h h(_}?6F 8/36 models which represent reality in a standardized way; (2) a
©C applitdtionl L€ 10T cOmPpIete searcll STory. procedure for transforming models mto computable arti-
(56) References Cited facts, that 1s, computer systems that behave as specified 1n

the model; and (3) a collaborative method based 1n knowl-

U.S. PATENT DOCUMENTS edge representations.

8,209,660 B2
8,407,593 B2

6/2012 Sundararajan et al.

3/2013 Korpipaa et al. 7 Claims, 9 Drawing Sheets

Pa
Reality 110

of Specific Case
150

Formalization

Metamode| 120
MZ2M

Transformations

)
I
-
!
I
I
I
!
!
I
I
I

ontologies o
131 Domain Specific | “omplies with Model 160
— Ontologies 130 =
Inheritance
132

M2Z2T
Transformations

Case Application
Enacted with 170

Domain Specific
Languages 141

DSL Processors 142

US 9,760,345 B2

Page 2
(56) References Cited 2013/0290926 A1 10/2013 Tavarez
2014/0040312 Al1* 2/2014 Gorman GOGF 17/2785
U.S. PATENT DOCUMENTS 707/771
2014/0214399 Al1* 7/2014 Gulwani GO6F 17/246
2010/0175054 Al1* 7/2010 Matusikova GO6F 17/227 704/8
717/136 2014/0280370 Al* 9/2014 Oberlecceevveen.... GO6F 8/51
2010/0199257 Al* 8/2010 Biggerstaff GOGF 8/76 707/803
717/104 2014/0282409 Al1* 9/2014 Nassarc........... GO6F 11/362
2010/0269094 Al* 10/2010 Levenshteyn GOGF 8/20 717/124
| 717/109 2014/0297676 Al1* 10/2014 Bhatia GO6F 17/3043
2010/0325606 Al 12/2010 Sundararajan et al. 707/760
2011/0197197 AL1* 8/2011 Ni veoveveveeeeeeieenn, GOG6F 9/547
718/104
2011/0219044 Al1* 9/2011 Peukert GOG6F 17/30734 OTHER PUBLICATTONS
707/805
2012/0102451 Al 4/2012 Kulkarni et al. T. Reiter, A Generation Framework for Domain-Specific model
2013/0047155 Al* 2/2013 Caspole GOG6F 9/445 transformation languages, 2006, pp. 1-9.*

718/1 Viet-Cuong Nguyen, Domain Specific Language Approach on

S
2013/0061204 Al 3/2013 Makey ...oooooovvnen. GOOK ;};ﬁ?gj Model-driven Development of Web Services, 2014, pp. 1-18.%
2013/0080993 Al* 3/2013 Stravers GOGF 8/35 Javier Luis Canovas lzquierdo, A domain specific language for

717/104 extracting models 1n software modernization, 2009, pp. 1-15.*

2013/0232464 Al 9/2013 Jacquin et al.
2013/0239089 Al* 9/2013 Ekstenccoo..... GO6F 8/70
717/120 * cited by examiner

US 9,760,345 B2

Sheet 1 of 9

Sep. 12, 2017

U.S. Patent

0LT
uolledlddy ase)

suoljewdJojsued]
1ZIN

09T |2POIN

suolljewJojsuel]
WCN

uoljeZijew.io

0ST
957 J14103dg

Yim pajoeu

yaMm sa11dwio)

71T $10SS320.1d 150

T{T So3ensue
21}123dg ulew o

0T s91380|01UQ
D14129dS Ulew o

0ZT |2poweladn

01T Alljeay

0Pl

[435

RN [ATPETSIN]

T€T
$3130|01U0

NI

T ‘51

US 9,760,345 B2

Sheet 2 of 9

Sep. 12, 2017

U.S. Patent

....u_...........H ety Lt Y Bttt R e Mttty Pty it vy v e Pyt By ety e RV it N W e en./.ﬂ,.x

W

)
—— | RY4 ,.
¢S [043U0D
5]020]10.1d A
JusaWwINJlsu| s
|EQTULD))
o
..mw._...
_.uf.xﬂ.... SO Ly By iy Y W iy Py Yt s L L by Ly e Yty D oY ?..?f....

057 dnoJuo saido|ojuQ |ed11IA

T, R AR T, B, AT e A, WL M

9t (
90e}I2]u|

°|IqOIN

.__.-...r..r._.._.tu. L, AR bR WhR T WA e B \ W, ?Jﬁ-

pem EEm R -
N\
Q¢ \ /
mumtmu—c_

iy

s

ZETE
i

e

€C
|9POA B3e(

f/‘& Ay WA A W

- o
€ET -
T€Z |°POIN 3
CRIIBERT] -— Em_u%ou o
uewni R

.u./ '
o A

. o
TN AN WWWR WY AOVYR WRRRY MR OAUNYY SR MOV AW SO VWA RRRRY ROV R MW WWRY A ¢

0€Z dnoJo A3ojojuQ [ed1uyda]

!

G IR IS i,. »
iy

et g

' ay

X

Fa'a i tffi’:

4;.’#

e

r

I

ot Y

W

SO

LA

L

O, I

5774

W

guiioday

Tarde

JOJIUOA

..Hyﬂx. TR L

oo |

e

ANAIDY

bttty

Nl Y

s1daJuo)
ssauisng

Pty

O,

v INdg

Lttt b

L L W

BRY MY

Bl

e N

ey

ot By

A

€7¢ SS320.d
ssaulsng

)

LY o Ny O P Y i LWL [R ?/r...?..

N\

~

N

3

"

e

R

3

3

o

3

o

2

n,

Y

T y
S9DIAIBS m
- o

Ny

9\ R

s B St B bttt Rttt S, gt T Lttty At

Otz dnoJo ASojo1uQ ssaulsng

LN T, I WY Y O, O

1{C U0
-13eziues. o

ssauisng

"
N
&

by Ve M e L Ve M oy Y e Y Vet by .n.........,._...u.,._...

0ZZ dnodo ASojolu(Q [euolldun

US 9,760,345 B2

Sheet 3 of 9

Sep. 12, 2017

U.S. Patent

0L¢ 219|9(

09€ P37

0G€ g

O € @1ea4)

0€€

3JI0AU|

[°@POIA

eS|

0CE
UOI11OVJ3S

AQ P3N OAU| S|

sey

0T€
103lgQssaulsng

A30|01UQ

¢ "Bl

US 9,760,345 B2

Sheet 4 of 9

Sep. 12, 2017

U.S. Patent

0SP

097

0St 10SS920.d
ogensue’
UOISUIIX]

09v

o8ensue

\
\
\
\ -
\ 0ZY S1SA nduy
01 10SS320U(
0Tt eieq indu

¥ "SI

085 d1 —— e

US 9,760,345 B2

0/G suol1eal}12ads 1sq

oYl YUM 47 9yl 91eal) —
0SS $1SQ 01ul Ado|ojuo

&N
= JO UOIlBWIOJSURI) 3Ulja(
\f,
2
et
’»
0€S 0ZS [epowelaw

d1 pa1adxa ayl auljaq ay1 JoJ sa18ojo1uo auleQ
=
g |
o
a3 —
3 0TS Ulewoq ay}

10] [9PO0OWE]lIIW B 9Ul]la(

00G ulewoq Aljeay

U.S. Patent

09§
suollewJojsuels)

1N

OtS S1011pa
AS0|01u0 91e3al)

G "SI

US 9,760,345 B2

Sheet 6 of 9

Sep. 12, 2017

U.S. Patent

d1 UOISud1x3

0€9
d7 UoIsuaix3

Sy

,'II‘.

SMO|} [BUI1U]|

P[4OM 131N0 3Y1 ¥
YIM uolldelaiu| A

0€9
d7 UOISUdIX3

019
S1SQ ISPON

uoneISIY2I0

JUSWDeU]
|9POIA

uonewaJojsuel] 1ZN

g Sl

105527044

ogengue ule|n

009
2PON

064 08/

|I2POA 21EPIIEA d1 Ule|A MELS

US 9,760,345 B2

0LL
uollisodwo’) |9poN
51994107 PUB JU3WUOJIAUT
9POIA UOI11NI3X] 0] DAOIN]
SOA _
- Va
= 09L
Ny 261 16/ °N (uonesauan 15a)
,w suoljewojsueld] [ZIA —
= 074
7 suolewJiojsuel|
NN
I~
o
—
|
R 0S/ 0c/L
Ml $9130[01UQ S9150|01U0-RIB A
2 3uIsn [9pow 11p3 guisn [9pOIA 1pP3

0T.
wia|qoud azijew.o

U.S. Patent

U.S. Patent Sep. 12, 2017 Sheet 8 of 9 US 9,760,345 B2

6E€8 SSuUlyl
JO 12UJ3]U]| pUB SI0SUIS

Q¢g jJuswaseuen
1U31U0) 1USWND0Q puUe |lew3

- O g
/€] uolleausawnioq Jasn %‘ >

pue [edxiuyosa] ‘jeuoloun

g€] S$9|NY ssauisng

830

GCQ SJO1BeJaUN)
pJeoqyseq pue 10day

Ontologies
Meta ontologies

¥
Q
LS_
QS S
-50"]
@)
o
q)(l)
T
QL
e
O
>

Business Solution

€8 (""9|IQON
‘09/\\) S928)31U| UBWNH

€es8
3UlIOIUOIA AlIAINDY Ssaulsng

7EQ SODIAIDS
Jo/M\ PUe S2J3BLI31U| Wa1SAS

Fig. 8

TEY
lJudWaseue|A JUSA] pue |AIdg

U.S. Patent Sep. 12, 2017 Sheet 9 of 9 US 9,760,345 B2

\ 900

960

Platform

920
940

Input Module
922

Fig. 9

D
-
O
@
=
!
)
Q.
4
-
@

US 9,760,345 B2

1

RECURSIVE ONTOLOGY-BASED SYSTEMS
ENGINEERING

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/029,441 filed on Jul. 26, 2014, which 1s
hereby incorporated-by-reference 1n its entirety.

FIELD OF THE INVENTION

The present disclosure relates generally to the field of
computer-aided software engineering.

BACKGROUND

Computer-aided Software Engineering tools originated in
1982. This family of techniques has had little evolution
outside the mainframe industry. The term CASE systems
was very promising on the origins, but at the end 1t produced
little results. During the 90°s and early years of XXI century
new concepts took traction: Business Process Management
(BPM) tools, and Model Driven Architecture (MDA). BPM
remains as a good mechanism to support certain business
needs, while MDA disappeared with no practical results. At
around the year 2000, the new term Model Driven Engi-
neering (MDE) was coined.

The foundational work has evolved mostly in the Aca-
demia, with few commercial solutions. The quest of MDE 1s
the development of information systems (we will refer to
them as business solutions from now on) in an automated
way, using the description of the intended product as the
only source of work for its automated generation. The
theoretical work produced in relation to MDE 1s grounded in
the canonical definition of the modeling spaces (Atkinson
and Khiine, Model-Driven Development: A Metamodeling
Foundation, (2003) IEEE SOFTWARE; Stahl, T., & Lter,
M. (2006). Model-driven software developmems Tecknol—
ogy, engineering, management. Chichester, England: John
Wiley). Very succinctly, they propose four spaces: objects,
models, meta-models (such as UML), and meta-meta-mod-
els (such as MOF), related hierarchically with an 1nstantia-
tion operation, plus two additional transformations, one
between spaces (Model to Model or M2M) and one to text
(Model to Text or M2T). M2T transformations produce the
final software product that 1s defined by the models. There
have been two schools of thinking 1n relation with the idea
ol generation of business solutions. The most important one
(referred to as Indirect Modeling) attempts to ‘automate
programmers’, while the other (referred to as Direct Mod-
cling) attempts to ‘execute the models’. Indirect Modeling
attempts to generate source code in General Purpose Lan-
guages (GPL) such as JAVA and .NET, as if a programmer
had developed the code. In summary, they attempt to create
technologies that are able to read UML-like specifications
and behave like programmers. Direct Modeling attempts to
make the model an executable artifact by itself, as-is,
without production of code nor intermediate transforma-
tions. Direct Modeling has large problems in terms of
scalability of solution and its application to general prob-
lems.

The critical limitations of the current MDE standard
model are: (1) the standard model does not provide a
prescription or a technique for the transformation of models
into executable business solutions; and (2) models do not
support multilevel meta-modeling 1n a natural way, which 1s
a standard feature of all large models and an 1mperative

10

15

20

25

30

35

40

45

50

55

60

65

2

requirement for model reusability. When humans look at a
complex reality, they tend to apply processes of abstraction
at many levels, which creates mappings between the reality,
our language and our mental patterns. Without this abstrac-
tion capability we are unable to lead with complex realities
as we do. For this reason, the second limitation 1s of great
importance.

These two theoretical limitations greatly restrict the
development of large model-based inirastructures. The cur-
rent state-of-the-art makes the erroneous assumption that
every model can be transformed 1n a computable system, by
unknown means, and that multilevel meta-models are not a
critical feature i every large-scale deployment. The char-
acteristics that should be required for a large implementation
of a successful modeling tool are the following:

(1) Scalability: Target realities can be very large, so
models have to support very large problems. For instance, in
the domain of Enterprise Systems, models can be of the size
of large organizations such as banks, mnsurance companies,
manufacturing industries, and others. Thus, the models must
be able to emulate every process and aspect of those
companies.

(2) Persistence: Fach model has to contain all the com-
plexity of the target system in such a way that the evolution
of the system 1s done through modifications in the model and
transformations, and there 1s no relevant information outside
of the model. This 1s equivalent as saying that the model
persists through time.

(3) Composition: To make scalable and persistent prop-
ertics manageable, the capability of decomposing large
problems into small manageable ones 1s imperative. Later,
these decomposed models are enacted as an executable
solution that solves the problem as a whole.

(4) Automated deployment: If the model 1s persistent, the
translation of the model to an executable form has to be
automatic, in negligible time, without the need of any ad-hoc
development, manual adjustments, and technical testing.
Only functional testing related with the completeness and
correctness of the model, including performance testing,

should be required.

SUMMARY OF THE

DISCLOSURE

The present disclosure proposes a new model engineering
method and system that permits the creation of application
systems without the need of program development. The
system allows organizations to search for high performance
development teams and methods, and develop high quality
solutions. The present disclosure covers the three central
areas ol systems engineering: (1) a method for creating
models which represent reality in a standardized way; (2) a
procedure for transforming models into computable arti-
facts, that 1s, computer systems that behave as specified 1n
the model; and (3) a collaborative method based 1n knowl-
edge representations.

The disclosed system has been applied mitially to enter-
prise business solutions, that 1s, computer systems used to
manage every aspect ol business processes such as customer
relationships, operations management, logistics, imventory
control, manufacturing processes, clinical processes,
accounting and billing and many others. However, the
methods described here can be used 1n other contexts. The
only requisite for using the disclosed system 1s the existence
of a semantic representation of Reality.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 shows a general overview of the Model Repre-
sentation Method.

US 9,760,345 B2

3

FIG. 2 shows an exemplary Lattice of Ontologies.
FIG. 3 shows an exemplary Ontology Classes and Model

Instances.

FIG. 4 shows an embodiment of the Language Processor
(LP).

FIG. 5 shows an exemplary procedure to create a Lan-
guage Processor.

FIG. 6 shows an exemplary diagram of the enactment of
a model using Language Processors.

FIG. 7 shows an exemplary procedure to create a solution,
under a set of ontologies.

FIG. 8 shows a diagram of the Large Model Scope,
Coherence and Completeness.

FI1G. 9 shows a lock 1llustration of an exemplary disclosed
system for recursive ontology-based system engineering in
a platform-independent environment.

DETAILED DESCRIPTION

The present disclosure proposes a new model engineering
method and system that permits the creation of application
systems without the need of program development. The
system allows organizations to search for high performance
development teams and methods, and develop high quality
solutions. The present disclosure covers the three central
areas ol systems engineering: (1) a method for creating
models which represent reality in a standardized way; (2) a
procedure for transforming models into computable arti-
facts, that 1s, computer systems that behave as specified 1n
the model; and (3) a collaborative method based 1n knowl-
edge representations.

FIG. 1 shows a general overview of the Model Repre-
sentation Method. This method creates a standardized way
to generate models about Reality with the following prop-
erties: (1) it 1s able to create representations ol any type of
reality, provided 1t can be enclosed 1n a semantic field; (2)
supports unlimited abstraction levels and abstraction hier-
archies; (3) makes decomposable models 1n parts that can be
arranged or composed 1n different ways; (4) mduces a
method for creating multilevel abstract representations of
the reality 1n a canonic way; (5) provides the technical
editors and repositories for that models conforming the
ontologies; and (6) transforms models 1nto executable infor-
mation systems in an automated way and without the need
of programming.

As shown 1n FIG. 1, the Model Representation 1s divided
into two parts, divided by the dotted arrow. The leit side
permits the creation of standard techmnical solutions for
ontologies, while the right side shows how these standard
solutions can be used to solve specific problems. The Model
Representation comprises:

Realities 110

A Reality 110 can be any part of the Human Experience.
The preferred embodiment here refers to the business
domain, but any other domain can be considered. Realities
are described using specialized languages called metamod-
¢ls 120. The same Reality can be understood using different
metamodels, which produce different comprehensions and
propositions about Reality. For instance, a wire can be
described 1n terms of 1ts mechanical properties or 1n terms of
its electrical properties, or a computer system can be
described 1n terms of technical features (user interfaces, data
bases) or 1n terms of the business processes supported by it.
In other words, the specialized language used to describe
ontologies comprises a description of terms selected from a
group comprising physical properties (corresponding to
physical descriptions of the reality, e.g. mechanical or elec-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

trical properties) and non-physical properties (correspond-
ing to logical models or semantic data properties).
Ontologies 130

An Ontology 1s a normalization of a conceptualization,
that 1s, a formal representation of the understanding of the
Reality 110 using specific metamodels 120. Thus, following
the previous examples, we will have domain ontologies for
electrical and mechanical characteristics, or for information
system components and for business process mapping.
Ontologies have two different relations between them: meta-
ontologies 131 and inheritance 132. The inheritance rela-
tionship between classes 1n the same or different ontologies
1s the same that the inheritance used 1n Object Oriented
Programming. A metaontology 1s an ontology that 1s an
abstraction of another ontology. For instance, given a tradi-
tional class-oriented ontology to describe classes 1n business
applications, one could create a more abstract ontology that
classifies classes 1n term of their ‘Purpose’ in the business.
Such an ontology would be an abstraction of the first one.
Meta-ontologies 131 are able to produce statements about
the underlying ontology 130, therefore they are very pow-
erful for creation of M2M transformations.

FIG. 2 shows an example of a lattice of ontologies 1n
different domains and the relations between ontologies.
Most of the relations between ontologies are hidden and
only some ontological groups are represented. Solid arrows
represent inheritance and dotted arrows represent M2M
transformations. The figure shows four ontology groups: the
functional ontology group 220, the technical ontology group
230, the business ontology group 240, and the vertical
ontologies group 250. Each ontology grouop 1s composed of
different ontologies. For example, the functional ontology
group 220 may contain ontologies for Business Organization
221, Business Concepts 222, and Business Processes 223;
the technical ontology group 230 may contain ontologies for
Concept Model 231, Data Model 232, Human Interface 233,
System Interface 235, Secunity 234, and Mobile Interface
236; the business ontology group 240 may contain ontolo-
gies for Web Services 241, Business Process Management
(BMP) 242, Events 243, Activity monitor 244, and Report-
ing 245; and the vertical ontologies group 250 may contain
very different ontologies such as Clinical Protocols 251,
Instrument Control 252, or Documents 253.

In an embodiment, ontologies only contain class defini-
tions (classes, relations, attributes, axioms, etc) but do not
contain 1stances, except when they are a fixed enumeration
of the class (for instance, gender options).

Technical Solutions 140

A Technical Solution 1s an artifact that 1s able to 1mple-
ment models and execute them. In the preferred embodi-
ment, Technical Solutions 140 are composed of two parts:
Domain Specific Languages 141 and Language Processors
142.

1. Domain Specific Languages (DSLs): It 1s known that
any ontology can be represented in a Domain Specific
Language. These languages can be ontology-oriented
such as OWL, market standards such as SQL, or ad-hoc
languages, often with XML o JSON structures. When
an Ontology 1s defined, one or more DSLs are speci-
fied, along with the transformations M2T that map the
Ontology characteristics into textual files with the
DSLs formats.

2. Language Processors (LPs): A Language Processor 1s a
computer program, or a part of it, that process DSLs

and data to produce some result. For instance, a
RDBMS engine takes SQL and data files to generate

datasets: an Internet Browser takes HI' ML, CSS and JS

US 9,760,345 B2

S

to produce pages. LPs are created to process DSLs, and
can generate output data or other DSLs.
When we develop a family of ontologies, we create a
number of DSLs and LPs for them. For instance, if we create
an ontology to describe computer screens (pages, controls,
etc.) we will produce a transformation of the description of
a computer screen i some DSL (could be XForms, Polymer,
html, ad-hoc, etc.), along with the system to process the DSL
(an 1nternet browser, an ad-hoc client system, etc)
Specific Cases 150

Specific Cases 150 are examples of a Reality 110 that we
want to analyze. For instance, within the domain of Business
Applications a Procurement System for ABC Company will
be a Specific Case. When we take the Specific Case and
analyze 1t using the metamodel(s) 120 that we used for the
embedding Reality 110, we can map the characteristics of
the Specific Case 150 m terms of the Domain Specific
Ontologies 130. For instance, we will describe business
concepts (classes), user actions (human interfaces), etc. This
description 1s a Model 160.

Models 160

A Model 160 1s the description of a Specific Case 150 1n
conformance with a number of Domain Specific Ontologies
130, which are relevant for that Specific Case 150. Thus,
Models 160 are sets of formal definitions about Reality 110
that are done following the formalisms defined by the
Domain Specific Ontologies 130. The same reality can be
described using different ontological layers (inheritance
132) or resources (meta-ontologies 131). For instance, using
a previous example, we can describe a Business Application
directly, or we can use the ‘Purpose’ ontology and then
generate the application template using an M2M transior-
mation. An embodiment of the relation between models and
ontologies 1s shown 1n FIG. 3. Ontology classes are abstract
descriptions as BusinessObject 310 or UserAction 320, that
are referred by model instantiations, such as the Busines-
sObjetct Invoce 330, with the UserActions Create 340, Print
350, Edit 360, and Delete 370.

Case Applications 170

Once we have developed a Model 160 (totally or par-
tially), 1t 1s transformed in order to enact it as an Case
Application 170 that satisfies all the requirements that have
been added in the Model 160. The enactment of a model 1s
done 1n two steps:

1. Transformation of the Model mto a set of DSLs. This
can be done 1n a general way because we have created
previously M2T transformations between ontologies
and DSLs. Given that Models are conformant with
ontologies, every model can be transformed mto DSLs
following the same transformations.

2. Enactment of the DSLs using their corresponding
Language Processors. This 1s done 1n a general way,
because LPs have been designed precisely for that. The
primary use of DSLs 1s to support the rules for ad-hoc
Language Processors (LP) that will perform the func-
tions that the final information system 1s expected to do.
For instance, 1n the ontology of Information Systems, a
JISON-based language may describe the composition of
a user nterface, or an XML-based language may
describe a business process model (BPM) diagram.
Frequently, a mixture of standard and ad-hoc languages
will be used.

The present disclosure 1s directed to a recursive ontology-
based model engineering method and system useful for
providing architecture-agnostic systems engineering. In an
embodiment, shown in FI1G. 4, this model-based architecture
1s comprised of:

5

10

15

20

25

30

35

40

45

50

55

60

65

6

(1) An orchestrator LP 430 (main LP), that receives the
complete structure of the model to be executed. The LP 430
receives mput data 410 and mput DSLs 420 with the rules
that 1t has to follow. The LP 430 processes the data using the
iput DSLs 420 and produce two kind of outputs: traditional
outputs 460 readable by humans, machines or programs, or
enactments of Extension LPs 450.

(2) A number of extension LPs 430 that will perform
specific functions. The LP 430 will pass mput data 410 and
DSLs 420 to the Extension LP 4350. This process can iterate
many times. Frequently the extension LPs will be commer-
cial standard products, such as RDBMS, Internet browsers,
operating systems programs or components, etc. Extension
L.LPs 450 may also be ad-hoc systems performing specific
tasks associated with an ontology. Examples of these ad-hoc
LLPs can be User Interface Manager, Event Management,
BPM Engines, Report Generation, Web Service Publication,
Document Management, and Organization Management.

An embodiment of a technique for the creation of an
ad-hoc Language Processor 1s depicted i FIG. 5. Given a
Reality Domain 500, a language about that domain 1is
defined as a Metamodel 510. The metamodel 1s formalized
as an ontology 520 and also the technical characteristics and
functional behavior of the objective LP are specified 530.
Now, using 520 we create the ontology editors 540, and the
structure of the transformations that will serialize the ontol-
ogy mnto DSLs 550. Using rules defined into DSLs 550, we
create the M2T transformations 360 that will be used to
transform models mto DSLs. With the definition of DSLs
550, and the requirements defined 1mn 3530, the LP 580 1s
created. This 1s often done using traditional programming,
but can be created using the same model-driven methods
described 1 FIG. 8. The instantiation 590 of the LP 580 is
done using the resulting transformation of 560. This 1nstan-
tiation 1s shown 1n FIG. 6, where a model 600 1s transtormed
using M2T transformations into a number of DSLs 610.
Since any ontology o can be transformed 1nto a number of
DSLs, every model 600 conforming o can be transformed
into the same set of model DSLs 610. If a set of LPs 1s able
to process that set of DSLs, that LP-set can process any
model conforming o. In other words, we have solved the
problem of model instantiation, without source-code pro-
duction, at large scale.

The DSLs 610 are used by Main LP 620 to obtain the rules
that has to follow. The Main LP 620 will orchestrate a
number of Extension LPs 630, providing additional DSLs
and or raw data. These Extension LPs 630 can also exchange
information between them and with the outer world 640:
other programs, machines, and human beings.

In one embodiment, the information flows between the
Main LP 620 and Extencion LPs 630 can be structured 1n
various layers to produce a web dialog based on a User
Interface Ontology. First, the Main LP 620 receives the
event for producing a web dialog, as specified 1n the Model
600. The Main LP 620 analyzes the definition of the web
dialog, and decomposes its components: controls, lists, tabs,
buttons, etc (being this terms part of the User Interface
Ontology). Later, for each component in the model defini-
tions, the Main LP 620 orchestrates the requests for retriev-
ing data (1.e. preparation of SQL and SQL execution to a
given RDBMS; requests from web services; reading data
from flat files; instantiation of data from class definitions and
SO on).

Following the rules in the Model 600, the Main LP 620
dynamically prepares the raw data and the description
language of the requested web dialog. Since the description
language of the web dialog 1s defined in the User Interface

US 9,760,345 B2

7

Ontology, the data requests are passed to the User Interface
LP (an extension LP 630) corresponding to the User Inter-
tace Ontology, which converts the received requests into

other languages and data structures based on the underlying
technologies (1.e. XML, XSL, CSS, HIML, SVG, IS, etc.).
The User Interface LP then passes the data to the Web
browser, which produces the final result for the user.

This embodiment shows how a simple event can trigger
the composition of many actions using many LPs and
languages, and that part of LPs can be intermediate layers to
transform data and languages.

In another embodiment, a “User Interface” for a “mobile
smartphone” may be described. The descriptive elements of
the decomposition of the “User Interface” concept, both
static and dynamic, are part of the ontology, and the trans-
lation of them into Reality (1.e. wirelrame of the interface
into real smartphones) 1s done by the metamodel. With this
information, an LP 1s able to produce real user interfaces 1n
real smartphones using the semantic decomposition of the
ontology.

It 1s clear that a specific ontology can be transformed 1nto
more than one DSL, and also that LPs can process more than
one DSL. For instance, the User Interface Ontology can be
transformed into a language for screen formating, another
for transition rules between screens, another for temporary
storage of data, among others.

Dynamic Creation of Models

Another mventive aspect of the disclosure 1s dynamic
creation of models. Dynamic creation of models can be
achieved by creating recursive ontology-based LPs, where
the output of a first LP 1s directed as the input of a second
LP. A straightforward example for this i1s the real-time
creation SQL or HTML sentences. In the traditional
approach, the business logic 1s a fixed set of behaviors,
which has to be designed and developed in advance. In this
ontology-based approach, the business logic can be gener-
ated dynamically using information about the business prob-

lem, the user that 1s interacting with 1t, and the context 1n
which this interaction occurs. The result can be as variable
and complex as admitted by the embedded heuristics, the
only limit 1s the semantic of the languages and the capacities
given to the LPs.

The process for the creation of systems formalized as a set
of ontologies, 1s diflerent when a combination of ontologies,
models and LPs 1s required. As shown 1n FIG. 7, this process
can based on the following steps:

(1) Problem formalization 710. The problem that has to be
solved 1s described formally using a model editor 720 and
730 that 1s compliant with the set of ontologies that are
relevant for the problem and domain. For this work, two
types of Domain Experts are need: one for the problem
domain, and one for ontologies and models. For instance, 1f
the problem 1s the procurement process 1n a manufacturing,
company, we need experts about manufacturing and pro-
curement, and also experts about the involved ontologies.
Knowledge about ontologies and models can be very spe-
clalized, as the number and complexity of ontologies
1ncreases.

(2) If meta-ontologies have been used in the modeling
process, generation of models using M2M transformations
740 1s performed.

(3) Once the Model 750 with a reasonable coverage of the
problem has been described in the model repository, 1t 1s
transformed, using M2T Transformations 760, into the lan-
guages associated with the ontologies used. These transior-
mations are automated by the system and generate a number

10

15

20

25

30

35

40

45

50

55

60

65

8

of computer files that contain the model specifications in the
proper languages. This set of computer files will be called

Executable Model.

(4) The Executable Model 1s transferred to the Execution
Environment 770.

(5) The Main LP 780 1s started, reads the Executable

Model, and prepares to manage the events relevant for the
problem. Once the events appear (a user login transaction, a
message 1n a port, a time controlled event, etc.), the Main LP
processes the actions and orchestrates the extension LPs.

(6) The system 1s then validated 790 by the domain
experts, to check 1 the transformation of the problem
description into a model, done by the model experts, satisties
their expectation 1 terms ol functionality, quality, perfor-
mance, user experience, efc.

Systems consistent with the present disclosure implement
a number of techniques to improve development, reducing
the time needed to produce solutions to a minimum. These
techniques are the following:

In some embodiments, meta-ontologies are applied to
many components of the system. Meta-ontologies allow the
transformation of a small number of definitions into a large
number of technical specifications i1n areas such as data
models, user interfaces, systems integration, reporting and
dashboards, etc. Meta-ontologies also allow design tem-
plates, simplifying the compliance with design standards
and conventions. Importantly, meta-ontologies allow incor-
poration of expert domains in the modelling step.

In some embodiments, 1t 1s interesting to use functional
ontologies to gather the functional information about the
intended solution. These ontologies will help to collect all
information about the domain, even if this information will
not be transtformed 1nto DSLs. The use of such ontologies
diminishes the comprehension and validation eflorts, and
simplifies the production of functional descriptions such as
process descriptions, user manuals, etc. Importantly, high-
level specifications may document the life cycle of the
model, incorporating control features that frequently are
essential for a comprehensive solution management.

In some embodiments, graphical language ontologies are
provided to implement solutions using graphical represen-
tations. This improves user experience, simplifies the devel-
opment of the models by domain experts and model experts,
and facilitates faster validation of results. Specific ontolo-
gies and languages can be developed for this purpose, to be
applied 1n model editors.

In some embodiments, tools for problem composition and
decomposition are provided. Problems can be fragmented 1n
two main characteristics: by functional grouping (for
example, Finance, Procurement, HR, etc.) and problem
abstraction (for instance, Customer Layer, Product Layer,
etc.). Large problems are decomposed in small models that
are managed by smaller teams. Each model has its own life
cycle for development and evolution. Models can be totally
independent of can have inheritance relationships that allow
a model to use or modily classes defined by other models.
Models are composed again 1n execution: the main LP
engine will receive the union of the models as the model to
execute.

In some embodiments, a model can be transformed 1nto an
ontology, as a way to reuse 1t in many solutions. The model
and 1ts behavior are transformed into a formal metamodel,
ontology, DSLs and LPs.

One of the fundamental requirements of solutions devel-
opment based on models 1s the capability to model realities

US 9,760,345 B2

9

of any type, size and complexity. The disclosed system 1s
able to give support to this large-scale characteristic in the
following way.

FIG. 8 shows how the use of models 820 based on
ontologies 810 produce a comprehensive approach for any
s1ze ol business solution 830, regardless of 1ts functional
complexity. The functional areas 830 shown 1n FIG. 8 are
the most frequently found 1n business solutions (BMP and
Event Management 831, System Interfaces and Web Ser-
vices 832, Business Activity Monitoring 833, Human Inter-
taces 834, Report and Dashboard Generators 835, Business
Rules 836, Functional Technical and User Documentation
837, Document Content Management 838, Sensors and
Internet of Things 839), however the generality of the
approach permits the adaptation of the diagram to any
business requirement. It 1s important to note that the creation
and evolution of solutions 1s always done from the more
abstract layer 810 to the more concrete one 830. This 1s the
characteristic of model persistence, which guarantees that a
model 1s always applicable and evolves smoothly on time,
depending only 1n the evolution of the business requirements
and regardless of the evolution of the technology.

One of the main problems 1n systems development 1s that
we have to apply different technologies for diflerent regions
of the problem domain. For instance, 11 a problem requires
web transactional capabilities, analytic functions, mobility
teatures, along with BPM, document management and sys-
tems automation, a traditional approach will eventually
gather six or more systems all of them covering the different
parts the problem, with different technical implementations,
suppliers, evolution life cycles and obsolescence situations.
Also, many integration schemas have to be created and
maintained. The use of ontologies, and the orchestration of
the models by the Main LP, eliminates all these problems.
Coherent models are able to describe the business problem
from a Business Process-Centric view, without taking into
account the technical implementations. However, this does
not mean that all technologies have to be reduced to model-
based technologies. The implementation of an ontology by
a Language Processor can encapsulate a given technology,
making 1t part of a model description. WSLD or REST1ul
languages will usually support this interaction, although
many other integration schemas can be used.

In addition to Model Persistence and Model Coherence,
the characteristic of Completeness 1s also needed to be
compliant with the Large-Scale requirement. A model 1s
complete if all parts of the final solution can be described 1n
some model, that is, that no fragments of ad-hoc code have
to be written or maintained. For example, suppose a web
model-based management system, which 1n a point of 1ts life
cycle requires ofl-line support using mobile devices such as
smartphones. These mobile systems can be developed using
traditional technologies, as ad-hoc programs, or can be built
as mobile LPs, managed by models, extending the modeling
capabilities to mobile devices. This second scenario 1s
complete, while the first 1t 1s not. That 1s, a model 1s
complete 11 all parts have supporting ontologies. If the model
1s complete, model capabilities can be optimized. For
instance, we can create M2M transformations, transforming
web models into mobile models with little cost.

The embodiments of the present disclosure may be imple-
mented, through the use of general-programming languages
(such as C or C++). The program code can be disposed 1n
any known computer-readable medium including semicon-
ductor, magnetic disk, or optical disk (such as CD-ROM,
DVD-ROM). For example, the model engineering tool 900
1s disposed 1n a computer readable medium as a computing

10

15

20

25

30

35

40

45

50

55

60

65

10

platiorm 960. In the embodiment of FIG. 9, the computing
plattorm 960 may include a cloud computing provider, a
standalone web-server, a personal computer (PC), a main-
frame computer, or a laptop computer configured to perform
various functions and operations. That 1s, computing plat-
form 960 may include software functionality and hardware
capabilities to implement the features of the present disclo-
sure according to an embodiment of the disclosure. Com-
puting platform 960 may be implemented, for example, by
a general purpose apparatus selectively activated or config-
ured by software stored in memory of the apparatus, or may
be a specially constructed computing platform for carrying
out the features and operations of the model engineering tool
900. It 1s contemplated, that the computing platform 960
may be accessible via a web browser without the need to
download and install an application on every device 1n
which the user desires to experience the model engineering
tool features 1n the manner enabled by the present disclo-
sure. That 1s, the model engineering tool features of the
present disclosure reside 1n the cloud and thus are executable
over a web browser or may reside locally, such as 1n a smart
phone application downloaded from an application market-
place or preloaded by the smart phone’s manufacturer.
However, the model engineering tool may be accessible
through a computing platform 960 having locally executed
soltware to perform the model engineering tool features of
the present disclosure.

In order to perform these tasks, computing platform 960
may also be implemented or provided with a wide variety of
components or subsystems including, for example, one or
more of the following: a processor 962, a co-processor 964,
a register 966, and/or other data processing devices and
subsystems. Computing platform 960 may also communi-
cate or transifer model-related data as well as and feedback
provided by the user or third parties via input module 920
and/or output module 940 through the use of wired connec-
tions, wireless connections or other means of communica-
tion, as depicted in FIG. 9.

In an exemplary embodiment, a firewall may prevent
access to the computer platiorm 960 by unauthorized exter-
nal entities. It 1s further contemplated that computing plat-
form 960 may require user authentication, such as password
verification, biometrics, pattern recognition, speech recog-
nition or similar means, in order to prevent unauthorized
users from gaining access to sensitive information, files, and
recursive ontology-based engineering preferences associ-
ated with a particular individual.

It 1s further contemplated that communication between
computing platform 960 and 1nput and output modules 920,
940 can be achieved through the use of a network architec-
ture (not shown). In such an embodiment, the network
architecture may include, alone or 1n any suitable combina-
tion, a telephone-based network (such as a PBX or POTS),
a local area network (LAN), a wide area network (WAN), a
VPN, a dedicated intranet, and/or the Internet. Further, the
network architecture may include any suitable combination
of wired and/or wireless components and systems necessary
in order to carry out the present disclosure. By using
dedicated communication links or a shared network archi-
tecture, computing platform 960 may be located in the same
location or at a location geographically remote from 1nput
and/or output modules 920, 940.

Input module 920 may include a wide variety of devices
to recerve and/or provide the data as mput to computing
platform 960. As illustrated 1n FIG. 9, input module 920 may
include an mput device 922, a storage device 924, and/or a
network interface 926. Input device 922 may include a

US 9,760,345 B2

11

keyboard, mouse, touch screen, stylus, touchpad, disk drive,
video camera, magnetic card reader, or any other suitable
input device for communicating data to computing platform
960.

Memory 1000 may be implemented with various forms of 53
memory or storage devices, such as read-only memory
(ROM) devices and random access memory (RAM) devices.
Storage device 924 may include a memory tape, disk drive,

a flash memory card, an SD card or a microSD card for
reading and providing data (including video files) as input to 10
computing platform 960. Network interface 926 may receive
data over a network (such as a LAN, a WAN, a mobile
network, such as EDVO, 3G, 4G, GSM, an intranet or the
Internet) and provide the same data as mput to computing
platform 960. For example, network interface 926 may be 15
selectively connected or connectable to a public or private
database for purposes of receiving information about one or
more users, user files, video clips and other related data from
computing platform 960.

Output module 940 may include a display 942, a printer 20
device 944, and/or a network interface 946 for receiving the
information provided as output from computing platform
960. As 1indicated above, the output module 940 from
computing platform 960 may include a display showing
model engineering tools 1n the manner described herein. The 25
output from computing platform 960 may be displayed or
viewed through display 942 (such as a CRT, LCD, CSTN,
TFT, TFD, OLED, capacitive, resistive, AMOLED, super
AMOLED, haptic/tactile, Gorilla glass or Retina type) and
printer device 944. Network interface 946 may also facilitate 30
the communication of the output from computing platform
960 over a network (such as a LAN, a WAN, a mobile
network, such as BDYO, 3G, 4G, GSM, an intranet or the
Internet) to remote locations for debugging, reviewing or
providing backup. 35

What 1s claimed:

1. A model engineering non-transitory computer-readable
medium comprising:

at least a first description of reality, said first description

of reality comprising at least a first ontology, said first 40
ontology comprising a specialized language, said spe-
cialized language comprising a selected description of
a selected term, wherein said selected description 1s
selected from a group comprising physical properties
and non-physical properties; 45
at least a first model based on said first ontology, wherein
the first model 1s transformed via a model-to-text
transformation nto at least a first domain specific
language, wherein said first domain specific language
comprises a textual representation of said first ontol- 50
ogy; and
at least a main language processor, wherein said main
language processor receives said first domain specific
language and enacts said first domain specific language
as an executable solution, wherein said main language 55
processor further enacts at least one extension language
Processor;

further comprising a second ontology and a second model
based on said second ontology, wherein the second
model 1s further transformed via a model-to-text trans- 60
formation mto a second domain specific language,
wherein said second domain specific language com-
prises a textual representation of said second ontology,
wherein said main language processor receives said
second domain specific language and further enacts 65
said second domain specific language as an executable
solutions:

12

wherein the at least one extension language processor 1s
a model editor for models based on the second ontol-
ogy; and

wherein said first ontology 1s recursive.

2. A computer-implemented model engineering system

comprising: a processor,

an input device,

an output device; and

a computer platform for receiving said model and com-
municating an output data to said output device,
wherein said computer platform comprises:

stored 1information, wherein said stored information com-
prises one or more ontologies,

wherein each of the one or more ontologies comprises a
specialized language, said specialized language com-
prising a selected description of a selected term,
wherein said selected description 1s selected from a
group comprising physical properties and non-physical
properties;

at least a first model based on said first ontology, wherein
the first model 1s transformed via a model-to-text
transformation into at least a first domain specific
language, wherein said first domain specific language
comprises a textual representation of said first ontol-
OgY;

a main language processor, wherein said main language
processor receives said first domain specific language
and enacts said first domain specific language as an
executable solution, wherein said main language pro-
cessor further enacts at least one extension language
Processor;

turther comprising a second ontology, wherein the second
model 1s further transformed via a model-to-text trans-
formation into a second domain specific language,
wherein said second domain specific language com-
prises a textual representation of said second ontology,
wherein said main language processor receives said
second domain specific language and further enacts
said second domain specific language as an executable
solution;

wherein the at least one extension language processor 1s
a model editor for models based on the second ontol-
OgY;

wherein said first ontology 1s recursive.

3. The computer-implemented model engineering system

of claim 2, wherein said second ontology 1s recursive.

4. A computer-implemented model engineering method

comprising a processor executing the steps of:

recerving stored information, wherein said stored infor-
mation comprises one or more ontologies, wherein
cach of the one or more ontologies comprises a spe-
cialized language, said specialized language compris-
ing a selected description of a selected term, wherein
said selected description 1s selected from a group
comprising physical properties and non-physical prop-
erties:

receiving a first ontology selected from the one or more
ontologies,

recerving at least a first model based on said first ontology,

transforming via a model-to-text transformation into at
least a first domain specific language, wherein said first
domain specific language comprises a textual represen-
tation of said first ontology;

recerving a main language processor, wherein said main
language processor further receives said first domain
specific language, and

US 9,760,345 B2
13

enacting said first domain specific language as an execut-
able solution, wherein said main language processor
further enacts at least one extension language proces-
SOT';
receiving a second ontology selected from the one or 5
more ontologies;
receiving at least a second model based on said second
ontology, wherein the second model 1s transformed via
a model-to-text transformation into a second domain
specific language, wherein said second domain specific 10
language comprises a textual representation of said
second ontology;
enacting said second domain specific language as an
executable solution;
wherein the at least one extension language processor 1s 15
a model editor for models based on the second ontol-
ogy; and
wherein said first ontology 1s recursive.
5. The computer-implemented model engineering method
of claim 4, further comprising transforming the first model 20
based on said first ontology 1nto the second model based on
said second ontology.
6. The computer-implemented model engineering method
of claim 4, wherein the at least one extension language
processor 15 a model editor for models based on the first 25
ontology.
7. The computer-implemented model engineering system
of claim 4, wherein said second ontology 1s recursive.

¥ H H ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

