a2y United States Patent
Kiperberg et al.

US009756048B2

US 9,756,048 B2
Sep. 5, 2017

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHODS FOR EXECUTING
ENCRYPTED MANAGED PROGRAMS

(71) Applicant: TRULY PROTECT OY, Jyvaskyla
(K1)

(72) Inventors: Michael Kiperberg, Ashkelon (IL);
Amit Resh, Even Yehuda (IL); Nezer
Zaidenberg, Hod Hasharon (IL)

(73) Assignee: TRULY PROTECT OY, Jyvaskyla
(K1)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/938,015

(22) Filed: Nov. 11, 2015

(65) Prior Publication Data

US 2016/0094555 Al Mar. 31, 2016
Related U.S. Application Data

(63) Continuation-in-part ol application No. 14/088,403,
filed on Nov. 24, 2013, now Pat. No. 9,471,511.

(30) Foreign Application Priority Data
Nov. 27, 2014 (FI) oo, 20140326
(51) Int. CL
GOo6l’ 12/08 (2016.01)
HO4L 29/06 (2006.01)
(Continued)

(52) U.S. CL
CPC ... HO4L 63/0876 (2013.01); GO6F 12/0888
(2013.01); GOGF 12/1408 (2013.01);

(Continued)

M OB E E am B A E aE W SE B aE E SE B S B SN B SN R SN B am B am B Am B SE AN B BN SE LE R Lm . m s

(38) Field of Classification Search
CPC GO6F 12/0888; GO6F 12/1408; GO6F
2212/1052; HO4L 63/0876; HO4L

63/0435; HO4L 63/064
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5/1998 Glew
1/2015 Pohlack

(Continued)

5,751,996 A
8,943,278 B2

OTHER PUBLICATTIONS

TrulyProtect, “Enter TrulyProtect: An Innovative Crypto-Based
Copy Protection System”, White Paper, Sep. 2013 [online],
[retreived on Apr. 29, 2015], pp. 1-14; http://www.trulyprotect.com/
wp-content/uploads/2013/04/TP__white Paper v2.pdf.

Primary Examiner — Hiep Nguyen
(74) Attorney, Agent, or Firm — Yagod Morris &
Associates

(57) ABSTRACT

The present disclosure relates to systems and methods for
enabling execution of encrypted managed programs in com-
mon managed execution environments. In particular the
disclosure relates to method of loading and associating an
extension module to the managed execution environment
configured to receive execution event notifications. The
events corresponding to the execution of encrypted methods
are 1ntercepted and passed on to a decryption module
operable to execute within an hypervisor environment, such
that the managed encrypted program 1s decrypted, executed
in a secured location, preventing access of untrusted party.
The decryption module 1s further configured to discard
decrypted mstruction 1f cooperation of the extension module
1s required, or upon program termination.

20 Claims, 13 Drawing Sheets

E E —E B LN R o B B aE O B S SR - e o B N B o e aE e O B A T A e E Ee am oy

" LOAD ENCRYPTED SEGM|
1 i BY (CPU

ENT TO BE EXECUTED

| DECRYPT INSTRUCTION SEGMENT IN CACHE

Ol

§ > \{w CPU DELEGATES ENCRYPTED SEGMENT TO

3 KERNEL MODE DRIVER

i !

4 <] STOP PRE-EMPTION AND ALL INTERRUPTS BY |
1 KERNEL DRIVER =
i :

454

T RETRIEVE DECRYPTION KEY

| 455

N
A
g

L EXECUTE INSTRUCTIONS

S~ DISCARD CACHE AND RESTORE PRE-EMPTION

AND INTERRUPTS

L—IE—IE—IE—I‘-—I‘-—I.—-I‘-—.-I—-I‘—-.-I—-I—-I-I—--I—-I—-i—-.l—-ll—!--i—-.h--H

W v B = B bt B =l B vt B b B v B 1 B o S =i B % B — S —& B —8 B —8 B -8 B -8 ¥

US 9,756,048 B2
Page 2

(51) Int. CL
GOGF 12/14 (2006.01)
GOGF 12/0888 (2016.01)

(52) U.S. CL
CPC ... HO4L 63/0435 (2013.01); HO4L 63/064
(2013.01); GO6F 2212/1052 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0042846 Al* 2/2010 Trottercccoevvnn, GOOF 21/31
713/182

2011/0246767 Al 10/2011 Chaturvedi et al.

2014/0006805 Al* 1/2014 Colp ..coooeeeeeiennnn, GOO6F 12/1425
713/193

2014/0040616 Al 2/2014 Barber
2014/0337637 Al 11/2014 Kiperberg et al.

* cited by examiner

U.S. Patent Sep. 5, 2017 Sheet 1 of 13 US 9,756,048 B2

PR B R DR S D D B S S o) RN B D SR B DI D DI D DI BT SR D DU S S DI DI S DI DI DT DI DI S N DI DI S SR DI B S DI DT S SR DI T S W DI D SR SR S o)

rp| ENCRYPTION
| MODULE I R

/\ 102 TP AUTHORITY :

SERVER
106

PRODUCT DEVELOPMENT
ENVIRONMENT

T RUNTIME
1P MODUL

]
]
]
]
] ‘
]
]
]

<04

INJECTED
COMPONENT

108

KERNEL DRIVER

Fig. 1A

US 9,756,048 B2

Sheet 2 of 13

Sep. 5, 2017

U.S. Patent

'/ 100B

iy gk ngln gy gl gy ey ngih iy gl iy gy Bl iy g gl gy gl iy, i Tl i g iy gy gl iy g o, iy R i, ay gl iy gt g, iy g il gl Rl i B iy i gl iy g iy iy g iy g gl iy gl i, g R iy, Mg Bl iy Tl iy

gl

wiy g nglh, gy gl gy g b iy g i iy R gl g g i B gy iy

AUTHORITY |

SERVER

TP

PR T S A Syt TR St Syt SRy St Ayt S Syt Sglt SR Syt A Sage Sy

SOFTWARE
Vendor

o

ENCRYPTION and
STARTUP CODE

1P

R g

Exccutable

~~
-
LS
N

210

o
D5
o I
o 2
2
[
RRANLS

4.
e
g}

|
o

216

CLIENT
COMPUTER

Fig. 1B

U.S. Patent Sep. 5, 2017 Sheet 3 of 13 US 9,756,048 B2

/ 200A

e \

ENfCR.YPTED§4 g ENCRYPTED

PROGRAM CODE
" CONTEXT =

e VAR S ¢ A — \L ;

v | "
it EXTENSION | b DECRYPTION

_ ENV. < nn MODULE

P .

i-—r--n—--il-—-—---r--r-q-—-ﬁ-""

S gl fm bk piw bl afe A wh S e i bt iy Sae i w et pbm Bl e Al wi

I~
I
N2
bora |
I N R
S =
o |
ol |
b
e

MANAGED EXECUTION ™77 HypERVISOR 230 |

ENVIRONMENT 220 SR By

MANAGED EXECUTION

.......................................

SYSTEM R

Fig. 2A

9z "84 IO VORI -

US 9,756,048 B2

Sy P —— 092 P .
Tsyuswindie “ _ ajnpojA uondAnag 084

] uoindsIsuj pardAidag | @1ndaxg _

79T 77 | m 987 T
(o31149X7 03 ABAUOD) (paadAnuaun al.cony, —— * piedsiq ok

rairrincsinerincsine sl incsinrincsinerireairrincsinrincainerirsairnsinrincsine sl ncsin i sine sl Fincsinerincsinc sl Fincsinrincsine sl sinrincain O
.
-
L)

_ paidAidug poadeuein

..........................

7

Sheet 4 of 13

Sep. 5, 2017

| apnpoy uoisuaxg |

U.S. Patent
o0
&S
g

U.S. Patent Sep. 5, 2017 Sheet 5 of 13 US 9,756,048 B2

; CLIENT COMPUTER | AI&%%{LTY ;
| HELLO, CPU & OS VERSIONS | ;
§ S—302 l ;
E | | HELLO, CERTIFICATE,
; | VIRTUAL MAPPING & :
i | CHALLENGE ;
5 —| < START TIMER > &3
; [| 306 ;
E RUN CHALLENGE : ;
% l S~ 308 I E
i PUBLIC KEY ENCRYPTION | |
; (CHALLENGE RESULTS & | ! ;
_: RANDOM MATERML} | ;
E I Y
: I RANDOM MATERIAL ;
; ENCRYPT (GAME :
; I DECRYPTION KEY) ;
| 312 5

U.S. Patent Sep. 5, 2017 Sheet 6 of 13 US 9,756,048 B2

\]. LOAD EXECUTABLE PROGRAM INTO MANAGED
EXECUTION ENVIRONMENT

330 INVOKE EXTENSION MODULE
(in Managed Execution Environment)

P |EXECUTE A METHOD OF THE LOADED PROGRAM |
(in Managed Execution Environment)

l .
} .
‘ .
! X
iI

COMMUNICATE EXECUTION EVENT
NOTIFICATIONS TO EXTENSION MODULE

ENCRYPTED EVENT
_NOTIFICATION? _

YES

(i HY PERVISOR ENVIRONMENT)

!

g EXECUTE ENCRYPTED INSTRUCTIONS
(in Decryption Module)

g S I S W ISR LN R IR s g I IR SN I SN S I W L W N S L N W IR IR I I I IR WL I S I S W S W I S I W I UL W (UL IR IR I WL IR L IR S I W R IR W I S N S SN e I IR W SN I I S g S S

360\4‘» INVOKE DECRYPTION MODULE

U.S. Patent Sep. 5, 2017 Sheet 7 of 13 US 9,756,048 B2

| DPECRYPT"ENCRYPTED METHOD" OF A
LOADED PROGRAM

374 i

“~~ INTERPRET METHOD INSTRUCTIONS

" REQUIRES EXTERNAL
T~ EXECUTION? ___—
T 375

376 y NO
“~t EXECUTE INTERPRETED INSTRUCTIONS

L o

OBTAIN EXTERNAL EXECUTION RESULTS
380

TERMINATING
__INSTRUCTION? ___

YES

U.S. Patent Sep. 5, 2017 Sheet 8 of 13 US 9,756,048 B2

Wiy ek iy Sk el Wt ey et ey e Trh AT T, T T e Tt T T iy Bt ey Tt ey AT ey Pl T e T, T et e T T Tt iy et ey Wt e ATt wely g Ty T T T Tt T Tt T T ey Tt ey Wt el el ey T T T T e et T Tt T Tk ey T ey Wt el Mg ey T e A

by

s <~ Runtime

Registers
426 a
KERNEL

| 444
|4 et

i
kgl gk gy el gy gl e el sy sl vl g bpl gy gl g el gl gk gy el gy gl ol el e, syl o g bl ey g g ek gy Dk gy el gl Tk

sl

s, g gl gl g

‘i ..

3! | LOAD ENCRYPTED SEGMENT TO BE EXECUTED
) BY fPU

CPU DELEGATES ENCRYPTED SEGMENT TO
I KERNELM%DEDRIVER ___ |
53 [STOP PRE-EMPTION AND ALL INTERRUPTS BY
KERNEL DRIVER

i
;
J
;
i
;
i
:
i
;
;
!
i
J
i
¥
;
;
;
i
;
i
;
i
:
i
..)
;
454 Y ‘
i
¥
i
¥
;
¥
;
i
;
i
;
;
:
i
;
;
}
;
I
i
¥
;
¥
;
i
;
i
;
i
:
i
;

\} RETRIEVE DECRYPTION KEY

{_| DECRYPT INSTRUCTION SEGMENT IN CACHE

456 !
| EXECUTE INSTRUCTIONS

gy pig! Tpih gy’ Tyl pliy Sl pig Ty iy Sgil iy Sgil gy JSgf fgih Syl gl Py’ Tpik Py’ TSyl iy Sl gy Sl iy Hgl iy gl gl SgFf gk Syl Il Py’ Ipik Sy’ Tyl gy Sgl gy Syl iy SHgl gy Sgl gl SgF gk gt Il Py’ Ipih Sy Syl gy SEgl gy EeF iy gl

U.S. Patent Sep. 5, 2017 Sheet 9 of 13 US 9,756,048 B2

W Ly N by gl Gy gy Bl gy iyl Bl gy g Rl gy g Gl gy Mgt M ply gt Gl ply Eg Gl iy Mgl G ply Sl G ey Bl W, ply gl Gy sy el Gy iy Bl gy gl Bl gy g Gl by ' Bl iy gl Bl g, g G gy g G gy Mgt Rl ey gt G pEy g W, gy RpE

2171 WRITE PROTECTED DATA BLOCK TO
DESIGNATED CACHE LINE
520

| IPENTIFY CONFLICTING DATA BLOCK MAPPING
TO DESIGNATED CACHE LINE

i 500
. 530 !
. . PREVENT CONFLICTING DATA BLOCK TO BE :
i CACHED E
I e —_—_—_, E
: \J\LIMIT NUMBER OF CONFLICTING DATA BLOCKS ; ;
550 'L
NG CHANGE LOCATION OF EACH CONELICTING :
L. bATABLOCK
Fig. 5A
510
{“?‘\”“""“"“'“"""“""”"""”“"'”""'”'"'“'"""""""""""“""""“""'”"“'”""'”'"'”'"'”'"i
; , WRITE PROTECTED DATA BLOCK TO CACHE LINE j
- 512 '
O OBTAIN AN ENCRYPTED DATA BLOCK :
514 T - i
- " \]. PLACE THE ENCRYPTED DATA BLOCK IN FREE | !
; LOCATION OF DESIGNATED CACHE LINE :
516 !
T RECEIVE A DECRYPTION KEY ;
S — B ;
. . DECRYPT THE DATA BLOCK USING THE ,
E DECRYPTION KEY i

U.S. Patent Sep. 5, 2017 Sheet 10 of 13 US 9,756,048 B2

PREVENT CONFLICTING DATA BLOCK TO BE
CACHED

530 |

PENDING DATA BLOCK

I

537 CHECK DATA BLOCK MEMORY MAPPING
INDICATION

NO MAP TO PROTECTED n

| PASS ACCESS
| REQUEST

. " / T —— [rr—— -y

§ 538\ REJECT ACCESS 5,
; = REQUEST SE

U.S. Patent Sep. 5, 2017 Sheet 11 of 13 US 9,756,048 B2

— 600

STATE - UN PROTECTED

10| RECEIVE AN ACCESS REQUEST FROM A
;; PROTECTED DATA-BLOCK TO A DESIGNATED
:s CACHE LINE

: G2 ©TT TS
\J\ CHANGE STATE OF DESIGNATED CACHE-LINE

, TO PROTEC TED STATE i

U.S. Patent Sep. 5, 2017 Sheet 12 of 13 US 9,756,048 B2

IDENTIEY A SET OF SAID CONFLICTING DATA-
\F BLOCKS

v

CHANGE CACHEBILITY-STATE FLAG
| ASSOCTIATED WITH THE CONFLICTING DATA-
: | BLOCKS FROM A CACHEABLE STATE TO A
NON-CACHEABLE STATE

o
s
.
we

640C

RECEIVE AN ACCESS REQUEST TO CACHE OF A
PENDING DATA BLOCK

| CHECK MEMORY MAPPING INDICATION OF THE
' PENDING DATA BLOCK

“—*“*”“*”"ﬂ
(S8

646C !
. REJECT ACCESS REQUEST IF MAPPING |
INDICATION MATCHES DESIGNATED CACHE LINE |

U.S. Patent Sep. 5, 2017 Sheet 13 of 13 US 9,756,048 B2

]
-
Va4

~ UNSHIELDED CPU STATE
i 7 10 S LU U DD ¢ .. -

: " IDENTIFY LOADED ENCRYPTED CODE SECTION |
720 l _
T CHANGE TO SHIELDED CPU STATE

| [DISABLE PRE-EMPTION / INTERRUPTS]

A

\{ SHIELDED CPU STATE) i

E \L‘ ____________________________________ l _____________________________________ i i
: DECRYPT LOADED ENCRYPTED CODE SECTION

LLLL&L*LLL&L*LLL*L*MLLL&L*LLL*L*LLL*LLLJ—J—J—J—J—J—J—J—J—J—J—J—J—J—-I—J--I-J-J-J--I-LJ—LJ—J—!J-J-J-J-J-J-J-J-J-J—J--I-J—-I-J—J—J—-I—J—J—J—J—J—-I—J—J—LLL&LLLLL*LLLLL*LLLLL*LLMLLLLL*LLLLL*LLLLL*LLLL

E ~F STORE DECRYPTED CODE INSTRUCTIONS IN

CPU CACHE BUFFER =
750 I

N
EXECUTE A DECRYPTED INSTRUCTION

~J
\rd
-_—

MORE CODE
CINSTRUCTIONS?

YES

~J3
~J
Z
-

i ' RESTORE UNSHIELDED CPU STATE L]
i [ENABLE PRE-EMPTION / INTERRUPTS]

US 9,756,048 B2

1

SYSTEM AND METHODS FOR EXECUTING
ENCRYPTED MANAGED PROGRAMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a Continuation-in-Part of Applicant’s
co-pending U.S. patent application Ser. No. 14/088,405 filed
Nov. 24, 2013, and claims the benefit of prionty from
Finnish Patent Application No. 20140326 filed Nov. 27,
2014. The contents of the above-referenced applications are
incorporated herein by reference 1n their entirety.

FIELD OF THE INVENTION

The disclosure herein relates to systems and methods of
software-based management for executing encrypted man-
aged programs, maintaining secrecy and privacy of the
decrypted 1nstructions and associated decryption keys. In
particular the disclosure relates to allowing execution of a
partially encrypted program written for execution environ-
ments.

BACKGROUND OF THE INVENTION

Digital content such as games, videos and the like may be
susceptible to unlicensed usage, having significant adverse
impact on the profitability and commercial viability of such
products. Commonly, such commercial digital content may
be protected by a licensing verification program; however
these may be circumvented by reverse engineering of the
soltware 1structions of the computer program which leaves
them vulnerable to misuse.

One way of preventing circumventing ol the software
licensing program, may use a method of “obfuscation”. The
term obluscation refers to making soitware instructions
difficult for humans to understand by deliberately cluttering
the code with useless, confusing pieces of additional soft-
ware syntax or instructions. However, even when changing
the software code and making 1t obfuscated, the content 1s
still readable to the skilled hacker.

Additionally, publishers may protect their digital content
product by encryption, using a unique key to convert the
software code to an unreadable format, such that only the
owner ol the unique key may decrypt the solftware code.
Such protection may only be effective when the unique key
1s kept secured and unreachable to an unwanted party.
Hardware based methods for keeping the umique key secured
are possible, but may have significant deficiencies, mainly
due to an mvestment required 1n dedicated hardware on the
user side, making it costly, and therefore, impractical. Fur-
thermore, such hardware methods have been successtully
attacked by hackers.

Software copy-protection 1s currently predominantly gov-
ermed by methodologies based on obfuscation, which are
volatile to hacking or user malicious activities. There 1s
therefore a need for a better technique for protecting sensi-
tive software sections, such as licensing code.

Further, software programs operable in managed execu-
tion environments have become widespread and more com-
mon, in recent years. Unlike native programs, managed
programs are not executed directly by the CPU. Rather
managed programs may require a native program to interpret
the managed program. Managed execution environments
may be considered superior to native environments in terms
of memory management, debugging and profiling support,

10

15

20

25

30

35

40

45

50

55

60

65

2

making this type of programs advantageous to developers of
desktop and mobile applications.

It 1s particularly noted that even 11 it may be reasonable to
assume that a sequence of native program instructions may
not be mtercepted, for read or modification, during execu-
tion, such an assumption would not be reasonable for a
managed execution environment. A managed execution
environment may be susceptible to unexpected behaviors
introduced into the software implementing the execution
environment. There 1s therefore a need for a technique for
executing securely encrypted managed programs on existing
managed execution environments.

The invention below addresses the above-described need.

SUMMARY OF THE INVENTION

Embodiments described herein, relate to systems and
methods for software-based management of executing a
managed program 1n a managed program execution envi-
ronment. Specifically, the invention addresses various vul-
nerabilities associated with executing encrypted managed
programs in common managed execution environments,
mainly as decrypted instructions and decryption keys may
be accessible to an untrusted party or otherwise susceptible
to hacking. The techniques described herein allow the
execution of partially encrypted managed program, ensuring
that the program cannot be reverse engineered, bypassed or
circumvented. For example, a license check code for soft-
ware based products, 1f present, may be executed eflectively
without being bypassed or circumvented.

In particular, embodiments described herein allow the
encrypted executable mnstruction sequence to be decrypted,
executed and discarded inside the CPU memory, preventing
any unauthorized use of the encrypted code.

Managed programs, in contrast to native programs may
not be mterpreted directly by the CPU, requiring a special
execution environment to mterpret the program or translate
the executable code partially to equivalent native programs.
Managed execution environments may allow external soft-
ware modules to be loaded upon execution. The software
modules may be notified of various events that may occur
within the managed execution environments.

The execution of a managed program 1s controlled via an
extension module loaded by the managed program environ-
ment. The extension module, based upon execution event
analysis controls the execution, such that unencrypted
instructions are executed within the managed program envi-
ronment, enabling the execution of the decrypted code
within a decryption module. The decryption module resides
in a hypervisor environment, thus preventing unauthorized
access to the decryption key and to the decrypted instruc-
tions.

According to one aspect of the disclosure a method 1s
hereby taught for executing an encrypted code section 1n the
CPU memory cache, where the encrypted code section
comprising a plurality of encrypted code instructions, the
method comprising: writing the encrypted code section to
the CPU memory cache; changing said CPU memory cache
from an unshielded state into a shielded state; decrypting the
encrypted code section; storing the decrypted code struc-
tions of the encrypted code section mnto the CPU memory
cache; and executing the decrypted code instructions from
the designated cache-line 1n the CPU memory cache.

Additionally, the method of executing an encrypted code
section may further comprise deleting the decrypted code
from the CPU memory cache following execution of the
decrypted code.

US 9,756,048 B2

3

Where appropriate, the method of executing an encrypted
code section may comprise restoring the CPU memory
cache state to the unshielded state following the deleting of
the decrypted code.

Additionally and as appropriate, wherein referencing
unshielded state, 1s characterised by at least one of preemp-
tion and CPU interrupt handler being enabled.

Additionally and as appropriate, wherein referencing
shielded state, 1s characterised by at least one of preemption
and CPU 1nterrupt handler being disabled.

The method for executing bullered encrypted code section
in the CPU memory cache, wherein the step of decrypting
the encrypted code section further comprises obtaining an
encryption key.

Optionally, the encryption key 1s stored in a CPU register.

Optionally, the encryption key 1s stored 1n a a hypervisor
environment.

According to another aspect of the disclosuer a method 1s
taught for executing an encrypted code section in a CPU
memory cache, the encrypted code section comprising a
plurality of encrypted code instructions, the method com-
prising: writing the encrypted code section to the CPU
memory cache; copying the encrypted code into a decryp-
tion module, the dycryption module 1s loaded 1n a hypervisor
environment; decrypting the encrypted code section using a
decryption key, the decryption key 1s stored in the hypervi-
sor environment; storing decrypted code instructions of the
encrypted code section in the CPU memory cache; executing
the decrypted code instructions from the designated cache-
line of the CPU memory cache; and discarding the decrypted
code 1nstructions from the said CPU memory cache.

In yet another aspect of the disclosuer another method 1s
taught for using a managed execution system 1n an improved
manner to execute an encrypted managed program, the
system comprising a managed execution environment, an
extension module and a decryption module, the encrypted
managed program comprising a plurality of executable
blocks, each executable block comprising at least one
istruction sequence, the method comprising: loading the
encrypted managed program onto the managed execution
environment; obtaining the at least one 1nstruction sequence
associated with the encrypted managed program; 1if the at
least 1nstruction sequence 1s not encrypted then executing
the at least one 1nstruction sequence; and 1 the at least one
istruction sequence 1s encrypted then transferring, by the
extension module, the encrypted instruction sequence to a
decryption module; and executing, by the decryption mod-
ule, the encrypted instruction sequence.

Accordingly, the encrypted managed program is config-
ured to overwrite original methods with an equivalent
encrypted instruction sequence.

As appropriate, the step of loading the managed encrypted
program comprises: invoking the extension module within
the managed execution environment.

As appropriate, the step of obtamming the at least one
instruction sequence, comprises: analyzing the at least one
instruction sequence; and communicating at least one execus-
tion event notification associated with the at least one
istruction sequence to the extension module;

As appropriate, the step of executing said encrypted
istruction sequence, comprises: invoking the decryption
module within an hypervisor environment; decrypting, by
the decryption module, the encrypted instruction sequence
into a decrypted instruction sequence; analyzing the
decrypted 1nstruction sequence to determine an execution-
locator; if the execution-locator 1s local, then executing the
decrypted instruction sequence; and 1f the execution-locator

10

15

20

25

30

35

40

45

50

55

60

65

4

1s external, then transmitting the decrypted instruction
sequence to the extension module.

As appropriate, the step of executing the decrypted
instruction sequence comprises: interpreting said decrypted
instruction sequence.

As appropriate, the step of decrypting the encrypted
instruction sequence comprises: obtaiming a decryption key
from an authority server; and decrypting the encrypted
istruction sequence using the decryption key.

As appropriate, the step of transmitting the decrypted
instruction sequence comprises: discarding all the decrypted
istructions sequence except a current instruction; execut-
ing, by the extension module, the current instruction; and
communicating, by the extension module, at least one result
associated with the execution of the current instruction to the
decryption module.

Optionally, the decryption key 1s protected by said hyper-
visor environment.

Additionally, the managed environment system further
comprises a context monitor operable to synchronize execu-
tion context status between the extension module and the
decryption module.

Variously, the at least one execution event notification 1s
selected from a group of: a method entry indication, a
specific 1nstruction execution, a method mvocation indica-
tion, a program loading indication, an occurrence ol an
exception condition and combinations thereof.

It 1s noted that i order to implement the methods or
systems of the disclosure, various tasks may be performed or
completed manually, automatically, or combinations thereof.
Moreover, according to selected instrumentation and equip-
ment of particular embodiments of the methods or systems
of the disclosure, some tasks may be implemented by
hardware, software, firmware or combinations thereof using,
an operating system. For example, hardware may be imple-
mented as a chip or a circuit such as an ASIC, integrated
circuit or the like. As software, selected tasks according to
embodiments of the disclosure may be implemented as a
plurality of software 1nstructions being executed by a com-
puting device using any suitable operating system.

In various embodiments of the disclosure, one or more
tasks as described herein may be performed by a data
processor, such as a computing platform or distributed
computing system for executing a plurality of instructions.
Optionally, the data processor includes or accesses a volatile
memory for storing instructions, data or the like. Addition-
ally or alternatively, the data processor may access a non-
volatile storage, for example, a magnetic hard-disk, tlash-
drive, removable media or the like, for storing instructions
and/or data. Optionally, a network connection may addition-
ally or alternatively be provided. User interface devices may
be provided such as visual displays, audio output devices,
tactile outputs and the like. Furthermore, as required user
iput devices may be provided such as keyboards, cameras,
microphones, accelerometers, motion detectors or pointing,
devices such as mice, roller balls, touch pads, touch sensitive
screens or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the embodiments and to
show how 1t may be carnied nto effect, reference will now
be made, purely by way of example, to the accompanying
drawings.

With specific reference now to the drawings 1n detail, 1t 1s
stressed that the particulars shown are by way of example
and for purposes of 1illustrative discussion of selected

US 9,756,048 B2

S

embodiments only, and are presented in the cause of pro-
viding what 1s believed to be the most useful and readily

understood description of the principles and conceptual
aspects. In this regard, no attempt 1s made to show structural
details 1n more detail than 1s necessary for a fundamental
understanding; the description taken with the drawings
making apparent to those skilled 1n the art how the several
selected embodiments may be put into practice. In the
accompanying drawings:

FIG. 1A 1s a schematic block diagram of the main module
components representing the system architecture for sofit-
ware copy-protection used for secure software distribution;

FIG. 1B 1s a schematic block diagram of the main
components of a distributed computing system supporting
soltware copy-protection used for secure software distribu-
tion;

FIG. 2A 1s a schematic block diagram of the main
components representing system architecture for execution
of encrypted managed programs;

FIG. 2B 1s a flowchart representing the execution flow of
an encrypted managed program in a managed execution
environment;

FIG. 3A 1s a flowchart representing selected actions of a
method for performing key exchange communication
between a client system computer and an authority server;

FIG. 3B 1s a flowchart representing selected actions of a
method of an encrypted managed program execution 1n a
managed execution environment;

FIG. 3C 1s a flowchart representing selected actions of a
method of an encrypted method execution 1n a decrypted
module residing 1 a hypervisor environment;

FIG. 4A 1s a schematic block diagram representing the
main components of a client system CPU configured with a
kernel driver combined showing a possible execution flow
of protected code 1nstructions;

FIG. 4B 1s a flowchart representing selected actions of a
method for executing encrypted code instructions 1n a pro-
cessor’s CPU;

FIG. 5A 1s a flowchart representing selected actions of a
method for preventing a protected data-block from being
evicted from a CPU memory cache;

FIG. 5B 1s a flowchart representing selected actions of a
method for writing a protected data-block into a CPU
memory cache;

FIG. 5C 1s a flowchart representing selected actions of a
method for preventing conflicting data-block from being
cached;

FIG. 6 A 1s a flowchart representing selected actions of a
method for protecting a line of a CPU memory cache from
an access request that may expose protected data to a
malicious activity;

FIG. 6B 1s a flowchart representing selected actions of a
method for changing caching access policy;

FIG. 6C 1s a flowchart representing selected actions of a
method for filtering data-block access requests; and

FIG. 7 1s a flowchart representing selected actions of a
method for buflered execution of encrypted code section.

DETAILED DESCRIPTION

It 1s noted that the systems and methods of the invention
herein may not be limited in their application to the details
of construction and the arrangement of the components or
methods set forth 1n the description or illustrated in the
drawings and examples. The systems and methods of the
invention may be capable of other embodiments or of being
practiced or carried out 1n various ways.

10

15

20

25

30

35

40

45

50

55

60

65

6

Alternative methods and materials similar or equivalent to
those described herein may be used 1n the practice or testing
of embodiments of the disclosure. Nevertheless, particular
methods and materials are described herein for illustrative
purposes only. The materials, methods, and examples are not
intended to be necessarily limiting.

In various embodiments of the invention, one or more
tasks as described herein may be performed by a data
processor, such as a computing platform or distributed
computing system for executing a plurality of instructions.
Optionally, the data processor includes or accesses a volatile
memory for storing instructions, data or the like. Addition-
ally or alternatively, the data processor may access a non-
volatile storage, for example, a magnetic hard-disk, flash-
drive, removable media or the like, for storing instructions
and/or data. Optionally, a network connection may addition-
ally or alternatively be provided. User interface devices may
be provided such as visual displays, audio output devices,
tactile outputs and the like. Furthermore, as required user
iput devices may be provided such as keyboards, cameras,
microphones, accelerometers, motion detectors or pointing,
devices such as mice, roller balls, touch pads, touch sensitive
screens or the like.

One Aspect of the present disclosure relates to systems
and methods for executing encrypted managed programs 1n
common managed execution environments such that
decrypted instructions and decryption keys may not be
susceptible to hacking or accessible to an untrusted party.

Another aspect of the present disclosure relates to tech-
niques for ensuring that a given set of protected data blocks
are not accessible from the main memory, by using a system
and software-based management of cache pinning triggered
by an encrypted section of code.

As used herein, a “managed program™ refers to a software
program that contains a sequences of istructions organized
in blocks, each such block 1s called a method. In contrast to
native programs, a managed program may not be able to be
interpreted directly by the CPU and requires a special
execution environment. Such execution environment 1s
operable to mterpret a managed program or translate the
program, partially, to an equivalent native program.

As used herein, an “encrypted managed program’ refers
to a managed program, in which the mstructions of at least
some of the methods are encrypted and the original 1nstruc-
tions of the methods are either removed or overwritten such
that a reconstruction of the original instructions 1s unfea-

sible.

Additionally, a managed execution environment may
allow an external software module to be loaded when an
execution of a managed program is triggered. The software
module may be configured to receive notifications of various
events that may occur within the managed execution envi-
ronment.

As used herein a “hypervisor” refers to software operable
to be executed by a CPU with privileges superior to priv-
cleges granted to the operating system. A hypervisor may be
configured to intercept access to essential resources inside
the CPU.

As used herein, an “untrusted party”, in the context of the
current disclosure, refers to any computer program that 1s
not intended by the system architecture described herein to
access the decryption key or the decrypted instructions.

As used herein, a “client system™ refers to any kind of
consumer data unit having a memory region and a region for
processing digital information such as a software program,
blocks of data, or any other digitally stored information
including but not limited to applications such as wvideo,

US 9,756,048 B2

7

audio, or gaming programs, and including gaming programs
played synchronously and non-synchronously among two or
more participants.

Managed Environment:

Some embodiments described herein disclose managed
program execution systems enabling execution of an
encrypted managed program. Such systems may be config-
ured so as to ensure that the program may not be reverse-
engineered. Furthermore, the systems may allow critical
routines, such as license check code in software based
products, 11 present, to be executed without being bypassed
or circumvented. In particular, the invention allows
encrypted code to be decrypted, executed and discarded
inside the CPU memory, preventing any unapproved use of
the encrypted code.

Managed program environments have become wide-
spread and more common, providing functionality consid-
ered superior as compared to native environments, espe-
cially in terms of memory management. Two known systems
of such execution environments are the Java Virtual
Machine (JVM) and the Common Language Runtime (CLR)
and various other executions environments exist, each hav-
ing 1ts own benefits. Further, the structure of a managed
program 1s described by the specification of the execution
environment for which the program was written. The
encrypted instructions, of an encrypted managed program,
may be stored in a location different from the method’s
original location. Furthermore, it 1s noted that the original
instructions of the methods are erased or overwritten, pre-
venting a possible rebuilding of the original instructions. It
1s Turther noted that the decryption key may not be stored
with the encrypted managed program, as detailed hereinai-
ter.

Managed execution environments allow loading of exter-
nal software modules upon execution of a managed pro-
gram. The managed execution environment may be config-
ured to transmit notifications of various execution events to
the external modules. For example, execution events may
refer to method 1mvocation, program loading, occurrence of
exception conditions and the like. The managed execution
environment may be configured to communicate with the
external module by mnvoking a function defined in the
external module. The associated function may allow inter-
action with the managed execution environment, to suppress
or complement the normal execution of flow a managed
program, for example.

It 1s specifically noted that the hardware architecture of
the CPU 1s required to allow execution of a hypervisor. The
hypervisor may be configured to define accessibility rights
of memory regions. Particularly, memory regions hosting
the decryption key or the decrypted instructions, disables
access to code mstructions outside the hypervisor. Further,
the access rights, granted to the currently executed code are
inherited by any code instructions called by 1t. Thus, the
code 1nstructions that 1s configured to be executed inside the
hypervisor may not call any code 1instructions to be executed
outside the hypervisor.

It 1s also noted that the embodiments described herein
offers a unique approach to software copy-protection, pro-
viding a system and methods based on encrypting critical
soltware product functionality. Accordingly, the critical soft-
ware section may be decrypted and the decrypted code
stored inside the CPU where 1t can also be executed and
eventually erased.

Execution 1n Managed Environment:

Embodiments described herein address the problem of

executing encrypted managed programs i common man-

10

15

20

25

30

35

40

45

50

55

60

65

8

aged execution environments such that the decrypted
instructions and the decryption key are not susceptible or
accessible to an untrusted party.

The technique, as described hereinatter, allows execution
of programs, encrypted or partially encrypted, to ensure that
a program may not be reversed engineered or bypassed.
Furthermore, the present disclosure provides protection for
critical code sections such as license check encrypted
instructions of software based products, if present, enabling
the license check to be executed effectively without being
bypassed or circumvented. In particular, the disclosure
allows the encrypted instructions to be decrypted, executed
and discarded inside the CPU memory, preventing any
unapproved use of the encrypted instructions for reverse-
engineering, bypassing and the like.

Execution of an encrypted managed program, initially
uses the managed execution environment for executing the
unencrypted parts of the computer program, communicating
execution events to an extension module, as described
hereinbelow 1n relation to FIG. 2A. Upon reaching an
encrypted method (a sequence of encrypted instructions
organized 1n blocks), the managed execution environment
transfers control to the extension module, which further
transiers control to a decryption module, being executed in
a hypervisor environment. The decryption module 1s oper-
able to decrypt the encrypted instructions and 1s further
configured to interpret and execute, accordingly. During
execution, an instruction may be encountered requiring the
cooperation of the managed execution environment for
interpretation. At this point, the decryption module may be
configured to discard the decrypted instructions, except of
the current instruction, transfering the control back to the
extension module. The extension module 1s then iterpreting
the current decrypted instruction, transfering control to the
decryption module or to the managed execution environ-
ment, as appropriate.

Thus, 1t 1s particularly noted that having the decryption
module operable inside a hypervisor environment prevents
unauthorized access to decryption key(s) and decrypted
instructions.

Copy-Protection Aspects:

Various other embodiments described herein disclose a
soltware copy-protection system based on modern cryptog-
raphy to ensure that the license check code for software
based products 1s executed successiully and not bypassed or
circumvented. In particular, the disclosure prevents pro-
tected data blocks from being evicted from the CPU cache,
by 1dentitying the set of conflicting data blocks which may
share a memory cache line with the protected data blocks,
thereaiter making the regions of memory containing con-
flicting data blocks non-cacheable.

Software copy-protection 1s currently predominantly gov-
ermned by methodologies based on obfuscation, which are
vulnerable to hacking Hackers have demonstrated they can
break these methodologies within several weeks from
release. The current disclosure offers a different approach to
soltware copy-protection, providing a system and methods
based on encrypting critical software product functionality.
Accordingly, the critical software section may be decrypted
to store the decrypted data-blocks 1n memory cache, while
making the contlicting data-blocks un-cacheable, and thus
avoilding cache eviction of the protected data-blocks.
Caching Functionality:

A central processing unit (CPU) 1s designed with a
memory hierarchy organized into several levels, each of
which 1s smaller but faster than the level below. The cache
1s the memory level between CPU and main memory and

US 9,756,048 B2

9

may be used by the CPU of a computer to reduce the average
time of accessing memory, increasing the data execution
speed. The cache 1s divided into lines, which is the unit data
transfer between the memory and the cache. Once a line
reaches the cache, any access to the data elements 1n the line
1s a cache hit, and 1f a data element 1s not found, a cache miss
occurs. As the cache size 1s smaller than main memory, when
new data 1s brought 1n, some of the data stored 1n the cache
may need to be replaced.

Typically, the memory cache sub-system 1n modern CPUs
consists of at least three levels, specified as L1, L2 and L3.
The CPU {further maintains an inclusion consistency
between memory cache levels such that 1.3 contains all the
data content of .2 and L2 contains all the data contentof LL1.
Therefore, L3 1s the largest level but slower compared to L1
and L2. The L1 can be accessed very quickly by the CPU,
so 1t”s a good place to keep the code and data that the CPU
1s most likely to request

It 1s noted that the L1 may be accessed very quickly by the
CPU, so the code and data that the CPU 1s most likely to
request may be kept there. When the CPU needs data, 1t may
check the smaller cache L1 first. If the L1 misses (cache
miss) then the CPU may further check L2. If another miss
occurs, then L3 1s being checked before finally looking 1n
system’s main memory.

The CPU 1s operable to fill the memory cache with data
content of main memory when the data 1s accessed, but only
if the data content resides 1n a cacheable memory region. If
the data content 1s already cached, then the CPU may use the
data content directly from memory cache without accessing
main memory. Accordingly, for determining whether some
data content exists 1n memory cache, every block of data
stored 1n memory cache 1s tagged by its address.

Where appropriate, there may be personalized license
schemes associated with a software package, such as gaming
soltware, media soitware, functional software applications
or the like. The license scheme may further be tied to user
credentials, and may be referred to as a license check.
Additionally, the target computer system may contain a
location where keys may be hidden. Such locations com-
monly exist in modern desktop CPU as well as many modern
devices using technologies like near field communication
(NFC) or trusted platform modules (TPM) modules.

It 1s noted that the target computer system may be
validated to be a real machine, not a virtual machine (VM)
such as emulators, simulators, or having any hypervisors
installed. Thus the stored decryption keys may remain
hidden, 1n a CPU register, for example. The architecture of
the systems and methods described herein may provide the
necessary tools for such validity check.

System’s Architecture:

It 1s noted that the system software architecture provides
the development and runtime environments for executing
checks of the protected data-blocks successtully, avoiding
bypassing or circumventing by any unwanted party.

The distributed system’s architecture, as described here-
inafter with reference to FIG. 1A, comprises of three main
module components: an encryption module component 102,
a runtime module component 104 and an authority server
component 106. The encryption module 102 may allow for
integration with the customer’s development environment to
produce encrypted source code instead of standard execut-
able machine code. The runtime module 104 1s structured 1n
two parts, where the first sub-component 108 may be
injected into the product encrypted executable and the
second sub-component 110 may act as the kernel driver on
the target computer system, operable in kernel mode (privi-

10

15

20

25

30

35

40

45

50

55

60

65

10

lege ring 0). The authority server 106 1s configured to
provide the necessary decryption key for the software to
operate correctly.

Optionally, encrypting the whole source code 1s possible,
but generally does not contribute effectively and may fur-
ther, incur a degree of performance degradation. In practice,
encrypting only a set of critical executable functions to
allow for the license check and software to function prop-
erly, may be suflicient.

Optionally again, a two layered encryption may be used
in which a section of protected code, say a section including
the critical functions, may be encrypted with a first key to
produce a first level encrypted executable file. Furthermore,
the first level encrypted executable file may be further
encrypted by a second key to produce a second level
encrypted executable file. It 1s noted that even 1t the second
key 1s obtained, or the first level encrypted executable file 1s
obtained by some means, the encrypted section of protected
data will still require the first decryption key in order to
execute the code. According to embodiments of the current
disclosure, this section of protected code may only be stored
in its decrypted state within the cache of the CPU.

Additionally, when encrypting a product source code, the
encryption module component may inject elements of the
runtime code and data-structures into the created executable.
Accordingly, the resulting executable may be operable to
load, run and automatically kick-start the runtime module
component and execute successiully, 11 the correct decryp-
tion key 1s available from the authority server. Since the
encryption may use modern cryptography, such as using
Advanced Encryption Standard (AES) or the like, reverse
engineering ol the critical encrypted functions may not be
possible, as the idustry considers AES or the like to be
practically unbreakable.

As appropriate, once associated software 1s executed, the
runtime module component established secured communi-
cation channel with the authority server to obtain the asso-
ciated decryption key for software operability, as described
heremnafter in FIGS. 1 and 2. Accordingly, for providing the
necessary decryption key, the authority server may validate
the request 1s arriving from a “‘real” target computer system
and not from a virtual machine. As appropriate, any requests
from a virtual machine, emulator, simulator or any possibly
running hypervisor, may be rejected.

Where appropnate, the authority server may further vali-
date that the target computer system 1s equipped with
operating system (OS) running a known OS kernel.

Additionally or alternatively, the authority server may
validate that the target computer 1s clean ol potentially
malicious drivers.

Additionally or alternatively, the authority server may
validate that the target computer system 1s representing an
authorized/licensed user, namely, a paying customer.

It may be noted that the kernel driver must be mitially
installed on a target computer system, using conventional
driver installation methods.

It may further be noted that the kernel driver may be
freely distributed, in various forms such as part of a pro-
tected software installation process or the like.

Systems and methods of the disclosure are not limited to
the details of construction and the arrangement of the
components or methods set forth in the description or
illustrated in the drawings and examples. The systems and
methods of the disclosure may be capable of other embodi-
ments or ol being practiced or carried out 1n various ways.

Alternative methods and materials similar or equivalent to
those described hereinafter may be used in the practice or

US 9,756,048 B2

11

testing of embodiments of the disclosure. Nevertheless,
particular methods and materials are described herein for
illustrative purposes only. The matenals, methods, and
examples are not intended to be necessarily limiting.
System’s Embodiments

Reference 1s made to the system block diagram of FIG.
1A showing schematic distributed system architecture rep-
resentation 100A of the main module components.

The distributed system’s architecture 100A may provide
the platform for various secured software functionalities
such as solftware integration, encrypted packaging, software
triggering and flow management, providing secured com-
munication channel to allow run-time authentication, obtain-
ing/storing/hiding of decryption keys, validation and prod-
uct itegrity checking and the like.

The distributed system’s architecture 100A includes an
encryption module component item 102 operable to 1inte-
grate with the product development environment, a runtime
module component item 104 and an authority server com-
ponent 1tem 106, configured to manage secured communi-
cation channel with a client computer system providing
decryption key, to allow secured functioning and operabaility
of the encrypted code sections. The runtime module com-
ponent item 104 further includes two sub-components: an
injected code sub-component 1item 108 and a kernel driver
sub-component item 110.

The encryption module item 102 may inject the runtime
sub-component item 108 including runtime code elements
and data-structures 1nto the software executable 1tem 212 (as
described 1 FIG. 1B). The resulting encrypted software
executable 1tem 214 (as described i FIG. 1B) may be
operable to load, run and automatically kick-start the run-
time module. The second sub-component 1tem 108 of the
runtime module may be operable as a kernel driver, func-
tioming in the kernel space and may be operable to establish
a secured communication channel with the authornty server,
to manage handling of the decryption keys, for example.

Optionally, the decryption key may be obtained upon
every request to decrypt an encrypted code segment.

Additionally or alternatively, the decryption key may be
obtained and stored in a CPU register for further usage.
Accordingly, upon the next request for the decryption key,
may verily the availability of the key 1in the CPU register and
only 1 not present, a further request may be 1ssued to the
authority server item 106. Optionally, the number of uses of
a stored decryption key may be limited such that the
decryption key 1s deleted from the registry when the number
of usages exceeds a maximum threshold number. Once the
maximum threshold 1s reached, the decryption key may be
automatically deleted and upon the next request a new
decryption key may be obtained from the authority server,
possibly following a verification procedure.

Additionally or alternatively, the decryption key may be
obtained and stored 1n a hypervisor environment for further
usage.

Reference 1s now made to the system block diagram of
FIG. 1B, showing schematic representation of the main
components of a distributed computing system 100B, based
on disclosure’s module components, supporting soiftware
copy-protection used {for secure software distribution.
According to various embodiments, such a software distri-
bution system may for example be used for distributing
media such as gaming soiftware, audio software, video
soltware, application soitware and the like.

The distributed computing system 100B may be used to
tacilitate the authentication of a client computer system to
provide protected license checking while supporting func-

10

15

20

25

30

35

40

45

50

55

60

65

12

tionality of hiding the decryption keys and secured oper-
ability of a third party software products’ vendor.

The distributed computing system 100B includes a client
computer i1tem 202, in communication with an authority
server item 204 through commumnication network 1tem 206.
The software vendor 1tem 208 produces a solftware product
comprising a set of executable computer instructions item
210 coupled with mjected encrypted startup code 1tem 212
to form an encrypted executable product item 214.

It 1s noted that the client computer 1tem 202 may retrieve
a decryption key item 216 from the authority server item
204, to allow decryption of encrypted instructions.

The distributed computing system 100B may provide an
integrated environment for a third party software product
vendor to allow encapsulating a soiftware product with
encrypted functionality to avoid hacking and miss-use of the
software product. The distributed computing system 100B
may provide various functionalities such as software inte-
gration, encrypted packaging and run-time protection.

The software product vendor 1tem 208 may integrate its
development environment with the encryption and runtime
modules to allow the product source code to produce
encrypted instead of standard executable machine code.
Additionally, the encryption module may be used to inject
into 1ts vendor’s product executable item 210 the required
runtime code and data-structures such as start-up code and
the like 1tem 212 to provide an encapsulated encrypted
product item 214 operable to run on a client computer
system 1tem 202 with the desired protected functionality of
the vendor’s product.

Accordingly, when the vendor’s product item 214 1is
activated on the client computer, the injected code interacts
internally with the pre-installed kernel driver, 1n a kernel-
mode context and communicating with the remote authority
server to obtain the necessary decryption key, allowing for
proper functionality of the vendor’s software product.

It 1s noted that the system may be used for protection of
gaming soltware such as war games, sports, gambling and
various other games. Included are games played by a single
person, games played synchronously by multiple players,
and games played non-synchronously by multiple players.
In this context, “played synchronously” means either that
multiple players are acting at the same time, or players
respond to each other essentially 1n real-time.

It 1s further noted that the distributed computing system
100B may support various soltware and gaming products
operable on various computer operating systems (OS), and
may further include support for communication devices such
as mobile communication devices, handheld devices, tablet
computers and the like.

Accordingly, the distributed computing system 100B may
be operable to share various software applications. Such
software applications may include, for example, gaming, use
of graphics, picture, video, text, music files supporting
various file formats, multimedia files, combinations thereof
or any other data type files, including data collection files
and the like.

Reference 1s now made to the system block diagram of
FIG. 2A, showing a schematic representation of the main
components of a managed execution system 200A. The
system 200A 1s operable to allow execution of encrypted/
partially encrypted managed programs, based upon the mod-
ule architecture as described hereinaftter.

It 1s noted that critical sections may be used, for example,
to facilitate the authentication of a client computer system,
provide protected license checking while supporting func-
tionality or hiding the decryption keys and secured oper-

US 9,756,048 B2

13

ability of a third party software products’ vendor. Such
operations may be used, variously 1n software based prod-
ucts, and 1s commonly encrypted 1n products such as gaming,
soltware, audio software, video software, application soit-
ware and the like.

The managed execution system 200A, as described
herein, with reference to FIG. 2A, comprises a managed
execution environment item 220 and a decryption module
item 232. The managed execution environment item 220,
comprises an execution component item 222 and an exten-
sion module 1tem 224. The execution component i1s operable
to execute program 1instructions of a managed encrypted
program 1tem 242 and further configured to load the exten-
sion module item 224, which 1s configured to control the
execution tlow by receiving or transmitting execution event
notifications.

As stated above, the execution environment item 222 1s
operable to load the extension module item 224 upon
execution ol a managed program. Accordingly, the extension
module 1tem 224 may call functions of the managed execu-
tion environment 1tem 220, the extension module 1tem 224
may further alter and update the execution state of the
currently executing managed program item 242, and may
still further communicate with the decryption module item
232, by calling associated decryption module item 232
functions.

It 1s particularly noted that the decryption module i1tem
232 may be the only system component configured to be
executed within the hypervisor environment item 230.

Further, where appropriate, the decryption key item 248
may only be accessible via the hypervisor environment 1tem
230 and by the decryption module item 232 executing an
encrypted code (method) 1tem 246 withun the hypervisor
environment item 230. The encrypted program item 242 1s
a regular managed program in which instructions of some
methods were erased or overridden 1n a way that prevents
reconstruction of the original instructions. The erased func-
tions are encrypted and stored in the encrypted form item
103 that 1s used by the decryption module (though accessible
to all components). Note that although the encrypted pro-
gram 1s presented as separate from the encrypted code
purely for ease of comprehension; in practice these compo-
nents may be stored together or these components may
reside 1 any other memory layout as appropniate. The
extension module item 224 and the decryption module 1tem
232 both act as interpreters of the decrypted code. The
decryption module 1tem 232 interprets all the instructions
that do not require cooperation with the managed execution
environment 1tem 220. The extension module i1tem 224
complements the decryption module 1tem 232 and interprets
all the instructions that do require cooperation with the
managed execution environment. The information about the
execution state stored 1n the context 1item 244 of the method
that 1s currently being executed in the decryption module
item 232 1s shared between the extension module item 224
and the decryption module item 232.

Reference 1s now made to the flowchart of FIG. 2B of the
execution flow 200B representing selected actions 1n the
various system modules (system 200A of FIG. 2A), while
executing an encrypted managed program. The managed
execution environment item 260 1s operable to load and
execute the unencrypted part of the encrypted managed
program (242, FIG. 2A), and further communicating execu-
tion events to the extension module item 270. The decryp-
tion module 1tem 280 1s operable to decrypt and execute the
encrypted instruction sequence of the managed program.

10

15

20

25

30

35

40

45

50

55

60

65

14

The execution tlow 200B 1ncludes the steps of: executing,
by the managed environment, the unencrypted instruction
sequence of the pre-loaded managed execution program—
step 262; 1 the struction sequence 1s encrypted, then
transmitting the encrypted instruction sequence to the
decryption module for execution, via the extension mod-
ule—step 264; decrypting, by the decryption module, the
encrypted instruction sequence—step 282; executing, by the
decryption module, the decrypted instruction sequence—
step 284; 11 the instruction sequence requires cooperation
externally, then discarding the decrypted instruction
sequence, but the current instruction—step 286; and execut-
ing, by the managed environment, the current decrypted
istruction—step 266. Alternatively and according to the
program execution sequence, executing, by the extension
module, the current decrypted instruction of step 266.

It 1s noted that the decision point “A” represent a result of
an analysis of the decrypted instruction sequence to deter-
mine an execution-locator. If the execution-locator result 1s
local, then the execution of the decrypted instruction
sequence 1s performed locally by the decryption module. If
result indicates that the execution-locator 1s external, then
the decrypted code 1s discarded and the current istruction 1s
transmitted to the extension module.

Reference 1s now made to the flowchart of FIG. 3A
representing selected actions of a method for performing key
exchange communication between a client computer system
and an authority server in a distributed computer system
300A.

Executing a protected solftware function requires a
decryption key for the software on the client computer
system side for decrypting the encrypted section, making the
protected soltware operable. Such decryption key may be
obtained from the authority server. Thus, when the software
code 15 executed, the runtime module residing on the client
computer system may be triggered to establish a secured
communication channel with the authority server, over Pub-
lic Key Infrastructure (PKI). The authority server may
provide the requested decryption key, based upon a success-
tul validation process. The validation process may comprise
checking various parameters applicable to the target client
computer, such as: target client computer 1s a “real
machine”, not a virtual machine, emulation or the like; target
client computer 1s running a known OS kernel; target client
computer 1s clean of potentially malicious drivers; the user
1s an authorized/licensed customer and a combination
thereto.

The secured communication channel over PKI between
the client computer system and the authority server guaran-
tees the privacy of the information exchanged between the
two entities. The client computer system may communicate
ID information of the client target computer, identifying the
owner, providing additional target computer environment
parameters and kernel OS version currently running. The
authority server may respond by sending a challenge tunc-
tion to be executed by the kernel-mode driver portion of the
client target computer. The challenge function may mnvolve
check-summing critical portions of the client target com-
puter’s memory, and may further monitor several hardware
side-ellects.

Where appropnate, the challenge response may be con-
figured to timeout by the authority server, such that a correct
result within a predetermined period constitutes prootf of the
validation process, namely being a real machine running a
known OS kemel. It may further vernily that the correct
version ol the runtime module 1s executing on the client
target computer. The challenge code may be generated by

US 9,756,048 B2

15

the authority server and may contain a pseudo-random
component, making every challenge different, avoiding any
replay-attacks. The runtime module, as a trusted computer,
may further verily that client target computer i1s clean of
potentially malicious drivers, by scanning the target
machine.

The method for performing key exchange communication
between a client computer system and an authority server in
a distributed computer system 300A may include sending an
initiation message of introduction by the client computer
system containing CPU and operating system (OS) param-
cters for 1dentification—step 302; The authority server may
respond to client’s introduction with a message containing,
its certificate, virtual mapping parameters and a challenge
tfunction—step 304; which may be run on the client com-
puter system—step 308 after a timer 1s activated—step 306;
the public key encryption may be encapsulated with the
results of the challenge function with additional material
transmitted to the authority server side—step 310; and the
encrypted random maternal received on the authority server
side, and decrypted—step 312 as part of the identification
process.

It 1s noted that the client computer system may check the
authority server certificate’s validity period, for example. If
the current date and time are outside of a range, the licensing,
process may not go any further.

Reference 1s now made to FIG. 3B, representing selected
actions of a method 300B {for executing an encrypted
managed program 1n a managed execution system, such as
described herein above 1n FIG. 2A. The encrypted managed
program (item 242, FIG. 2A) 1s operable to execute by the
managed execution environment (item 220, FIG. 2A) and
controlled by the extension module (item 224, FI1G. 2A). The
managed execution environment 1s configured to execute the
non-encrypted program instructions, while the the decryp-
tion module (item 232, FIG. 2A) 1s operable to control and
execute the encrypted instructions inside the hypervisor
environment (item 230, FIG. 2A). Additionally, the exten-
sion module 1s configured to execute decrypted instructions
requiring cooperation of the managed execution environ-

ment.

The method 300B includes the steps of: loading an
encrypted executable program into the managed execution
environment (item 220, FIG. 2A)——step 320 by the execu-
tion environment (item 222, FIG. 2A); imnvoking the exten-
sion module (item 224, FIG. 2A) in the managed execution
environment (item 220, FIG. 2A)—step 330, by the execu-
tion environment (item 222, FIG. 2A); and executing an
executable block containing at least one sequence of mstruc-
tions—step 340, where the managed execution environment
1s configured to execute the unencrypted instructions, first;
Accordingly, and as the execution environment (item 222,
FIG. 2A) may be configured, communicating execution
event notifications, 1ssued by the execution environment to
the extension module of subsequent execution events—step
350.

The extension module may further perform analysis for
cach such event, deciding 11 the associated event represents
an execution ol an encrypted method (an executable block of
istructions” sequence)—step 355, or a non-encrypted
sequence; 1f the executed sequence 1s not encrypted, then,
repeating step 340 and the execution control i1s returned to
the managed execution environment. Otherwise, for an
encrypted sequence, mvoking the decryption module (item
232, FIG. 2A) loaded onto the hypervisor environment (1tem

5

10

15

20

25

30

35

40

45

50

55

60

65

16

230, FIG. 2A); executing the encrypted instruction
sequence—step 370, to provide secured execution of the
encrypted sequence.

It 1s noted that the hypervisor 1s operable to intercept and
prevent unauthorized access to the various resources inside
the CPU, as the hypervisor 1s granted with higher privileges
than the operating system.

It 1s further noted that the with current disclosure, the
extension module 1s configured to control the execution of
the non-encrypted instruction sequences in the managed
execution environment and the decrypted module 1s config-
ured to control the execution of the encrypted instruction
sequences 1n the hypervisor environment.

Reference 1s now made to FIG. 3C, representing selected
actions of a method 300C {for executing an encrypted
instructions sequence (a method) in managed execution
system as described in FIG. 2A.

It 1s noted that method 300C details the flow of executing
encrypted instructions (step 370, FIG. 3B) within the
decryption module being loaded 1n the hypervisor environ-
ment 1tem 315. It 1s further noted that the method 1s
essentially performed by the decryption module, with exit
points to further the execution of decrypted instructions, 1t
cooperation of the managed environment 1s required.

The method 300C, executing step 370 (of FIG. 3B) in the
decryption module, includes the steps of: decrypting the
encrypted 1nstruction sequence using the decryption key
(1item 248, FIG. 2A) of which, the decryption module 1s
having exclusive access—step 372; analyzing the decrypted
istruction sequence—step 374; examining if execution
requires cooperation externally, with the managed execution
environment—step 375; if execution 1s to continue by the
decryption module, then, interpreting the instructions
sequence repeatedly—step 376, until encountering an
instruction that may not be interpreted without cooperation
with the managed execution environment; if execution
requires cooperation externally, with the manage execution
environment (1item 220, FIG. 2A), then, discarding all
decrypted 1nstructions except the current instruction—step
3778; exporting the current executable instruction and related
argcuments to the extension module—step 380, including
transfer of control; and upon execution of the current
instruction 1n the managed execution environment, then
obtaining the execution result—step 382 by the extension
module; analyzing the interpreted instruction executed
externally in the managed execution environment—step
385, and if this mstruction 1s a terminating instruction (for
example, by returning normally or abnormally or by 1nvok-
ing another method), the managed execution environment
resumes control over the encrypted method, returning to step
340 (FIG. 3B) to continue execution of the managed
encrypted program; otherwise, returning to step 340 (FIG.
3B), invoking the decryption module to continue execution.

It 1s noted that wherein referencing interpretation, may
refer to direct interpretation by emulating instructions
semantics one-by-one, or a binary translation in which a
sequence of instructions are converted to a sequence of
machine instructions that may be executed directly by the
CPU. Additionally or alternatively, interpretation may refer
to any other method of execution of the decrypted mnstruc-
tions.

For a better understanding and purely by a way of
example, the techniques described hereinabove may use
various execution events. The method entry event may occur
cach time a method 1s 1nvoked by another method or when
the first method i1s invoked by the managed execution
environment. The event may occur prior to the first mstruc-

US 9,756,048 B2

17

tion of the method 1s executed, but after the arguments of the
method are evaluated. While this event may clearly be used
for the described technique, the performance toll of this
approach may be undesirable since the event may occur on
invocation of all, even non-encrypted methods. Thus, alter-
natively, the current invention presents another approach in
which the instructions of the encrypted method are over-
written by a special instruction whose execution generates
an execution event. Any instruction that generates an execu-
tion event notification 1s suitable for this approach. The
breakpoint 1s an example of such istruction.

Reference 1s now made to the schematic block diagram of
FIG. 4A, representing the main components of a client
system’s CPU 400 configured with kernel driver, operable to
execute encrypted data-blocks combined with superimposed
execution flow steps.

It 1s noted that the superimposed directional arrowed
lines, mndicating the encrypted code execution flow, marked
1 through 4 1s further expanded and described hereinatter 1n
FIG. 4B, 1n a form of a flowchart.

The processor architecture may allow the CPU to operate
in two modes: kernel mode and user mode and where
appropriate, the hardware struction allows switching from
one mode to the other. Accordingly, when the CPU 1s
running in user mode, the CPU may access memory in user
space only, and any CPU attempts to access memory 1in
kernel space, results 1n a “hardware exception”. The kernel
space 1s strictly reserved for running the kernel, kernel
extensions, and most device drnivers. Thus, installing the
kernel driver in the kernel space provides the kernel driver
with higher priority 1n managing the protected data-blocks
and may have full access to all memory and machine
hardware.

The client CPU system 400 includes main components of
a CPU 1tem 420 and a main memory 1tem 440 connectable
through a system bus item 430. The CPU item 420 may
turther include a Cache component item 422, a CPU Core
component item 424, CPU set of registers 1tem 426 and CPU
TLB (Translation Look-aside Builer) item 428. The main
memory item 440 may further include the user space item
442 and the kernel space item 444, which may optionally be
independent and implemented in separate address spaces.
The user space item 442 may contain the encrypted execut-
able code including the runtime module section 1tem 443,
while the kernel space 1tem 444 may be hosting the instal-
lation of the kernel driver item 445.

The CPU Core component item 424 may be configured as
the processing unit which reads in instructions to perform
specific actions, while CPU TLB 1tem 428 1s used to map
virtual addresses to physical addresses, commonly 1n a form
of a table 1n the processor memory, enabling faster comput-
ing by allowing the address processing to take place inde-
pendently from the normal address-translation pipeline.

The execution flow may start with the loading of the next
encrypted segment 443 to be executed from the user space
item 442 to the CPU Core item 424—step 1; the CPU further
delegates the encrypted segment to the kernel drniver item
445 1n the kernel space 1tem 444—step 2; the kernel driver
then, shuts down pre-emption and all interrupts, while
interacting with CPU registers item 426—-step 3; retrieves
the decryption key from the registry; and with the retrieved
decryption key, optionally may be retrieved from the author-
ity server (not shown) 1f not already stored 1n one of the CPU
registers 426, decrypts the encrypted segment, placing 1t into
the CPU Cache 1tem 422—step 4; allowing the mnstructions
of the decrypted segment to run 1n the kernel driver context.

10

15

20

25

30

35

40

45

50

55

60

65

18

Subsequently, the CPU Cache 1tem 422 1s discarded and the
kernel may restore pre-emption and interrupts.

Reference 1s now made to the flowchart of FIG. 4B,
representing selected actions of a method 450 for executing
encrypted code instructions 1n the client system’s CPU.

It 1s noted that the method 450 may be operable on a client
system’s CPU 400 configured with kermel dniver as
described heremabove 1n FIG. 4A. The method may be used
to change the state of section instructions from an un-
executable or encrypted state to an executable or unen-
crypted state.

The encrypted instruction code segment may be executed
on the target computer by runtime module upon completion
of the decryption process. As appropriate, after the authority
server positively validates the target computer, as described
hereinabove, the authority server may transier the appropri-
ate decryption key over a PKI-secure communication chan-
nel. The distributed computer system may be configured to
store the decryption key 1n privileged (protected) registers
and may also be configured to monitor and prevent access-
ing these registers for the duration of the software execution.
The distributed computer system then disconnects the com-
munication link to the authority server and execution of the
protected software may commence.

When the CPU reaches an encrypted section 1 an un-
executable state but that it needs to execute, the runtime
module 1s 1nvoked, using the obtained decryption key to
perform the decryption of the machine instructions and to
render the 1nstructions executable.

It 1s particularly noted that the instructions in the CPU
cache, while 1n an executable state, the unencrypted nstruc-
tions are not stored to memory. The CPU may execute the
decrypted instruction directly from cache, under the context
of the kernel-mode driver, under no-preemption and all-
interrupts-disabled mode. It may subsequently discard the
cache contents just before normal control 1s returned to the
system soltware.

The decryption key and decrypted machine-code seg-
ments may be locked in the CPU and may never be placed
on the CPU BUS or stored to external memory. Therefore,
malicious users may only have access to the code whose
critical segments are encrypted. This property of the current
disclosure may prevent the making of copies for unauthor-
1zed distribution or bypassing critical code sections such as
license check.

Referring to FIG. 4B, the method for executing encrypted
code 1nstructions 1n the client system CPU 4350 may include

the steps of: loading the encrypted code segment into the
CPU Core (1tem 424, FIG. 4A) from the user space (item

442, FIG. 4A) to be executed by the CPU—step 431; the
CPU may then delegate the encrypted code segment to the
kernel driver (item 445, FIG. 4A), residing in the kernel
space (1tem 444, FIG. 4A)—step 452; at this stage, the
kernel driver may perform two subsequent steps: the first
one 1s shutting down pre-emption and all interrupts—step
4353 and retrieving the decryption key(s) from the authority
server (not shown)—step 454; using the decryption key to
decrypt the encrypted code mstructions, placing the
decrypted mnstruction segment into the memory cache (item
422, FIG. 4A)y—step 455; executing the decrypted instruc-
tion segment under the kernel driver context—4356; and
upon completion of code segment execution, discarding the
memory cache and restoring pre-emption and interrupts—
step 457.

Optionally, the decryption key may be obtained from the
authority server (item 206, FIG. 2) and thereafter stored in
a CPU register (item 426, F1G. 4A) for further usage. The

US 9,756,048 B2

19

next request for a decryption key, may verity the availability
of the decryption key 1n the CPU register (item 426, FIG.
4A) and only 11 not available, a further request may be 1ssued
to the authornty server.

Optionally again, the decryption key may be obtained
from the authonty server (item 206, FIG. 2) upon every
request for decrypting an encrypted code segment.

Reference 1s now made to the flowchart of FIG. SA
presenting selected actions of a method 500 for preventing,
a protected data-block from being evicted from a CPU
memory cache. It 1s noted that this method may be used to
change the state of a cache line from a non-protected state
to a protected state for as long as a decrypted data block 1s
stored therein.

The CPU memory cache (item 422, FIG. 4A) 1s a partial
mirror-image of a portion of computer’s main memory (item
440, FIG. 4A), comprises a plurality of cache-lines, where
cach cache-line comprises a plurality of data-blocks, of fixed
s1ze, tagged with the memory address of the data-block. The
CPU memory cache i1s faster than main memory, thus
requiring maximizing 1its utilization, in particular as the
content of the memory cache 1s changing when new nstruc-
tions or data are required. As appropriate, freeing space for
new entries into the cache follows the current cache eviction
policy, as described hereiafter.

Accordingly, running the protected code segment,
requires placement nto memory cache the decrypted
instructions set, thus the set of data-blocks 1n memory cache
needs to remain cached, disallowing eviction of the
decrypted data-blocks. It 1s a particular feature of the current
disclosure to change the state of the cache line storing the
decrypted data-block from non-protected to protected state
by 1dentifying the conflicting data-blocks, which map to the
protected memory cache-line, making them un-cacheable.

The method for preventing a protected data-block from
being evicted from a CPU memory cache 500 may include
the steps of: writing the protected data-block to a designated
cache-line—step 510; i1dentifying at least one contlicting
data-block having a mapping indication to the designated
cache-line—step 520; and preventing the at least one con-
flicting data-block from being cached—step 530.

The CPU may use the memory cache to store instructions
that are repeatedly required to run programs, improving
overall system speed with the average time to access
memory reduced, thus crucial in terms of computer perfor-
mance. The content of the memory cache 1s constantly
changing upon computer program execution, requiring
replacement functionality of data-blocks. Freeing space in
the memory 1s performed according to the associated
“replacement policy”, also termed “‘eviction policy”. The
eviction policy dictates which data blocks currently 1n
memory cache will be evicted by any new data block that
gets fetched in. When the CPU needs to store a new block
of data 1n the cache, 1t may need to determine the cache-line
that corresponds to the memory address of the block, further
check whether the cache-line 1s full, thereafter, may evict a
data block according to 1ts eviction policy to allow for
placing a the new data-block in the freed space.

Eviction policy may use various methodologies, such as
random replacement, First in First out (FIFO), Last 1in First
out (LIFO) or a combination thereto.

Protected data blocks that are encrypted, such as may be
associated with licensing check, may need to remain 1n
cache whilst mn a decrypted state so as to avoid being
vulnerable to attack, copying, hacking or the like.

For example, given a data-block B, the set of all blocks of
data that may conflict with B may be denoted by C(B), that

5

10

15

20

25

30

35

40

45

50

55

60

65

20

1s, C(B) 1s the set of data blocks that may potentially share
a cache-line with B. In order to guarantee that data blocks
are not altered even 1f the memory 1s modified, the current
disclosure may store the data-blocks in the CPU.

In order to load data block B,, B,, . . . B, to the memory
cache 1t 1s suflicient to access those blocks of data. In order
to make sure that these data-blocks will not be evicted by
future accesses to other data-blocks, the current disclosure
changes the cache lines in which protected data block are
stored to a protected state, thereby making the regions of
memory that contains the conflicting blocks of data C(B,),

C(B,) ... C(B,) non-cacheable.

Additionally or optionally, the method for preventing a
protected data-block from being evicted from a CPU
memory cache 500 may include the step of limiting the
number of conflicting data-blocks—step 540. More specifi-
cally, 1t 1s aimed that for every ‘1’, each data-block Bi1, may
conilict with only a partial number “L” of data-blocks of the
set B,, B,, ...B,. The “L” parameter, may reach a maximum
value of data-blocks 1n each memory line.

Additionally or optionally, the method for preventing a
protected data-block from being evicted from a CPU
memory cache 500 may further include the step of to
changing the locations of the conflicting data-blocks, such
that the conflicting data-blocks C(B,), C(B,) . . . C(B,)
become non-conflicting—step 550.

Reference 1s now made to the flowchart of FIG. 3B
presenting selected actions of a method 510 for writing a
protected data block into the CPU memory cache-line.

It may be noted that prior to writing the protected data-
block, the execution instruction may further check whether
the cache-line 1s full, and may evict a data block according
to 1ts eviction policy, as described hereinabove, to allow for
placing the protected data-block in the freed space.

The method for writing a protected data-block to memory
cache line 510 may include the steps of: obtaining an
encrypted data-block—step 512; placing the encrypted data-
block 1n a free location of designated memory cache line—
step 514; receiving a decryption key, from the authority
server (not shown)—step 516; and decrypting the encrypted
data-block with the decryption key—step 518.

Reference 1s now made to the flowchart of FIG. 35C
presenting selected actions of a method for preventing
conflicting data block to be cached 530.

A memory cache-line may contain a data field storing data
from computer’s memory and a tag field, storing the
memory address of the data-block. The memory system may
use cache mapping methods to quickly address memory
references and determine 11 a given address 1s 1n the memory
cache.

By way of example, there are three popular methods of
mapping addresses to cache locations: Fully Associative
Mapping, Direct Mapping, and Set Associative.

Wherein referenced Direct Mapping, main memory loca-
tions may only be copied 1nto one location 1n the cache. This
may be accomplished by dividing main memory into pages
that correspond 1n size with the cache.

Whereimn referenced Fully Associative Mapping, main
memory locations may be placed anywhere 1n the memory
cache, and 11 full, then a replacement algorithm may be used
to determine which data-block 1n the cache gets evicted by
the new data-block.

Wherein referenced Set Associative Mapping, blocks of
main memory data may still map into as specific set as with
Direct Mapping, but they may now be in any N-cache block
frames within each set.

US 9,756,048 B2

21

Additionally, 1t may be noted that the writing of a con-
flicting data block into the CPU memory cache-line 1is
possible according to current “‘caching access policy”
(known also as cache placement policy), unless overridden
by an UN-CHACHEABLE flag associated with the data
block to be written.

The caching access policy may be associated with cache
updating with new data, or allocating a new data block in the
cache 11 a specific write 1s a write miss (data block not 1n the
cache).

By way of illustration, only, there may be two main
caching access policies related to updating the cache with
new data: (a) a Wnte-Through (WT) policy, and (b) a
Write-Back (WB). The Write-Through (W) policy “writes”
that go to the cache are also “written through” to the next
level in the memory hierarchy. The Wnte-Back (WB),
“writes” go only to the cache, and are not (immediately)
written through to the next level of the hierarchy.

Further, there may be two additional caching access
policies related to allocating a new block in the cache, 1f a
write misses: (a) a Write-Allocate (WA) policy, and (b) a
Write-No-Allocate (NA). The Write-Allocate (WA) 1s typi-
cally used with the Write-Back (WB) policy. The Write-No-
Allocate (NA) must be used 1n conjunction with Write-
Through (WT).

Accordingly, as an example, the cache policy encoding,
may use for a memory region configured as a cacheable
memory, a memory attribute for encoding the policy. For
example, a single bit flag may indicate whether a data block
1s 1n a NON-CACHEABLE state or CACHEABLE state, 1n
still another example a two bit memory attribute may be
used to indicate: [00] cache policy to be Non-Cacheable;
[01] cache policy to be Write-Back, Write-Allocate; [10]
cache policy to be Write-Through, No Write-Allocate; and
[11] cache policy to be Write-Back, No Write-Allocate,
accordingly, the [00] indication may be used to flag an
NON-CACHEABLE state. Still other memory attribute cod-
ing protocols may be used as required.

The current disclosure allows for interacting with the
memory system mapping methods to determine relevant
memory cache locations, disallowing access requests which
may cause eviction of protected data blocks.

The method for preventing contlicting data block to be
cached 530 may further include a method for filtering
data-blocks for access requests 335.

The method for filtering data-blocks for a access request
535 may include the steps of: receiving a access request to
cache a pending data block—step 536; checking data-block
memory mapping indication of pending data-block—step
537; and 11 the pending data block has a memory mapping
indication matches to the designated cache-line, then reject-
ing access request—step 338, and otherwise passing the
request to the cache so that the non-conflicting data block 1s
stored—step 539.

Reference 1s now made to the flowchart of FIG. 6A
presenting selected actions of a method for protecting a line
of a CPU memory cache 600 from an access request that
may expose protected data to a malicious activity. It 1s noted
that this method may change the state of a cache line from
a non-protected state to a protected state for as long as a
decrypted data block 1s stored therein. Accordingly, the
change of state may apply when the first protected data block
1s written into the memory cache.

The method for protecting a line of a CPU memory cache
600 may start with the designated cache line 1n a non-
protected state 605, and may include the steps of: receiving,
an access request from a protected data block to the desig-

10

15

20

25

30

35

40

45

50

55

60

65

22

nated cache line—step 610; optionally, upon identifying of
loading of a protected data block (encrypted code), the state
of the designated cache line may change into a protected
state—step 620 denoted 1n the flowchart as protected state
625; saving the protected data-block to the designated
memory cache line, after decrypting the protected (en-
crypted) data-block—step 630, in a free location; changing
caching access policy of conflicting data-blocks 1n the
designated cache—step 640; and preventing contlicting data

blocks from being accessed in the designated cache line—
step 650.

Reference 1s now made to the flowchart of FIG. 6B
presenting selected actions of a method for changing cach-
ing access policy 640B8.

The method for changing caching access policy 6408
may include the steps of: identifying a set of contlicting
data-blocks—step 642B; and changing the cacheability state
flag associated with each data-block of the set of conflicting
data-blocks from a cacheable state to a non-cacheable
state—step 644C.

It may be noted that wherein referenced non-cacheable
state, may be configured to use the existing current caching
access policies, such as Write-back, Write-through and may
turther be coupled with write-allocate, where appropriate.

Reference 1s now made to the flowchart of FIG. 6C
presenting selected actions of a method for filtering data-
block access requests 640C.

The method for filtering data-block access requests 640C
may include the steps of: receiving an access request for a
pending data-block—step 642C; checking the memory map-
ping indication of the pending data-block—step 644C; and
rejecting the access request, 11 the mapping indication of the
pending data-block 1s of the designated cache line—step
646C.

Reference 1s now made to the flowchart of FIG. 7 pre-
senting selected actions of a method for buflered execution
of encrypted code section 700.

Modern computer architecture 1s CPU interrupt driven,
where the interrupt mechanism may suspend the currently
executing process to mvoke a scheduler, determining the
next process to be executed. Furthermore, preemption 1s the
act of temporarily interrupting a task being carried out by a
computer system without requiring cooperation of the inter-
rupted task, which may be resumed at a later time, thus
losing control over CPU cache content. Such a change may
normally be carried out by a privileged task or part of the
system known as a preemptive scheduler, which has the
privilege to preempt, or iterrupt.

It 1s noted, that the control of the current state of the CPU,
and 1dentification when an encrypted code section 1s loaded
into the CPU cache 1s a specific feature of the current
disclosure and may change CPU state, to a shielded state, for
example to allow secured execution of critical code sections.

Moreover, the protocol stack execution of existing meth-
ods decrypts a single encrypted instruction at a time, so an
instruction that 1s executed 1n a loop, may get decrypted on
every iteration of the loop, making buflering a possible
technique to eliminate the possible degradation of the com-
puter system performance.

It 1s particularly noted that although the CPU may builer
these instructions 1n 1ts cache 1n an executable state, the
decrypted instructions are not stored to memory. The CPU
may execute the decrypted instruction directly from cache,
under the context of the kernel-mode driver, under a
SHIELDED state of no-preemption and all-interrupts-dis-
abled mode. It may subsequently delete the cache content

US 9,756,048 B2

23

just before normal UNSHIELDED state of CPU 1s resumed
and control 1s returned to the system software.

It 1s noted that the bufler holding the decrypted code
instructions may be a page in memory configured as a
cacheable page, and as such any writing request reaches the
cache, but 1s not written 1nto the main memory.

This cycle of decrypt-execute-discard occurs for every
instance of encrypted code execution, during the normal
tlow of the software. Which critical sections are encrypted in
the 1nstruction set may be selected carefully so as to mini-
mize the performance hit, due to the decryption cycle, while
still providing copy-protection.

The decryption key and decrypted machine-code seg-
ments may be locked in the CPU and may never be placed
on the CPU BUS or stored to external memory. Therelore,
malicious users may only have access to the code whose
critical segments are encrypted. This property of the current
disclosure may prevent the making of copies for unauthor-
1zed distribution or bypassing critical code sections such as
license check.

It 1s noted that the decryption key may be obtained from

the authority server (206, FIG. 2) each time a protected code

section 1s being executed, 1f not available 1n a CPU register
(426, F1G. 4A).

Optionally, the decryption key may be stored and locked
in a CPU register (426, FIG. 4A) for as long as the protected
code section 1s being executed and may further be discarded
upon specific instruction.

The method for buflered execution of encrypted code
segment 700 may start with normal UNSHIELDED CPU
state 705, while performing regular computer processes and
activities or executing computer soltware programs.

The method 700 may include the steps of: identifying a
loaded encrypted code section—step 710, by the resident
runtime module of current disclosure; theretore, the CPU
state may be change to a diflerent state, shielded state—step
720; resulting 1n a shielded state 723 where pre-emption and
all interrupts are disabled; decrypting the loaded encrypted
code section—step 730, possibly using the decryption
obtained from the authority server (206, FIG. 2) and stored
in the CPU registers (426, FIG. 4A); storing the decrypted
code instructions mm a CPU cache bufler—step 740; and
turther executing code instruction obtained from the bui-
ter—step 750; this step 1s continuously repeated as long as
there are more code instructions buflered for execution; 1f no
additional code mstructions are available 1n the buller—step
760; then CPU cache content is cleared and discarded—step
770; restoring normal UNSHIELDED CPU state—780 by
enabling pre-emption and all interrupts.

Remarks:

Technical and scientific terms used herein should have the
same meaning as commonly understood by one of ordinary
skill 1n the art to which the disclosure pertains. Nevertheless,
it 1s expected that during the life of a patent maturing from
this application many relevant systems and methods will be
developed. Accordingly, the scope of the terms such as
computing unit, network, display, memory, server and the
like are intended to include all such new technologies a
Priori.

As used herein the term “about” refers to at least £10%.

The terms “comprises”, “comprising’, ‘“includes”,
“including”, “having™ and their conjugates mean “including
but not limited to” and indicate that the components listed
are included, but not generally to the exclusion of other
components. Such terms encompass the terms “consisting

of” and “consisting essentially of”.

10

15

20

25

30

35

40

45

50

55

60

65

24

The phrase “consisting essentially of” means that the
composition or method may include additional ingredients
and/or steps, but only 1f the additional ingredients and/or
steps do not materially alter the basic and novel character-
istics of the claimed composition or method.

As used herein, the singular form “a”, “an” and *“the” may
include plural references unless the context clearly dictates
otherwise. For example, the term “a compound™ or *“at least
one compound” may include a plurality of compounds,
including mixtures thereof.

The word “exemplary” 1s used herein to mean “serving as
an example, istance or illustration”. Any embodiment
described as “exemplary” 1s not necessarily to be construed
as preferred or advantageous over other embodiments or to
exclude the incorporation of features from other embodi-
ments.

The word “optionally” 1s used herein to mean “1s provided
in some embodiments and not provided in other embodi-
ments”. Any particular embodiment of the disclosure may
include a plurality of “optional” features unless such fea-
tures conflict.

Whenever a numerical range i1s indicated herein, 1t 1s
meant to mclude any cited numeral (fractional or integral)
within the indicated range. The phrases “ranging/ranges
between” a first indicate number and a second indicate
number and “ranging/ranges ifrom™ a {irst indicate number
“t0” a second 1ndicate number are used herein 1nterchange-
ably and are meant to include the first and second indicated
numbers and all the fractional and integral numerals ther-
ebetween. It should be understood, therefore, that the
description in range format 1s merely for convenience and
brevity and should not be construed as an inflexible limita-
tion on the scope of the disclosure. Accordingly, the descrip-
tion of a range should be considered to have specifically
disclosed all the possible sub-ranges as well as individual
numerical values within that range. For example, description
of a range such as from 1 to 6 should be considered to have
specifically disclosed sub-ranges such as from 1 to 3, from
1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc.,
as well as mdividual numbers within that range, for
example, 1, 2, 3, 4, 5, and 6 as well as non-integral
intermediate values. This applies regardless of the breadth of
the range.

It 1s appreciated that certain features of the disclosure,
which are, for clarity, described 1n the context of separate
embodiments, may also be provided 1n combination 1n a
single embodiment. Conversely, various features of the
disclosure, which are, for brevity, described in the context of
a single embodiment, may also be provided separately or 1n
any suitable sub-combination or as suitable 1n any other
described embodiment of the disclosure. Certain features
described 1n the context of various embodiments are not to
be considered essential features of those embodiments,
unless the embodiment 1s 1noperative without those ele-
ments.

Although the disclosure has been described 1n conjunction
with specific embodiments thereof, it 1s evident that many
alternatives, modifications and variations will be apparent to
those skilled 1in the art. Accordingly, 1t 1s intended to
embrace all such alternatives, modifications and variations
that fall within the spirit and broad scope of the appended
claims.

All publications, patents and patent applications men-
tioned 1n this specification are herein incorporated 1n their
entirety by reference into the specification, to the same
extent as 1f each individual publication, patent or patent
application was specifically and individually indicated to be

US 9,756,048 B2

25

incorporated herein by reference. In addition, citation or
identification of any reference 1n this application shall not be
construed as an admission that such reference 1s available as
prior art to the present disclosure. To the extent that section
headings are used, they should not be construed as neces-
sarily limiting.

The scope of the disclosed subject matter 1s defined by the
appended claims and includes both combinations and sub
combinations of the various features described hereinabove
as well as variations and modifications thereot, which would
occur to persons skilled 1n the art upon reading the foregoing
description.

The 1nvention claimed 1s:

1. A method for executing an encrypted code section 1n a
CPU memory cache, said encrypted code section comprising
a plurality of encrypted code instructions, the method com-
prising:

writing said encrypted code section to said CPU memory

cache;

changing said CPU memory cache from an unshielded

state 1n which preemption and CPU interruptions are
cnabled 1nto a shielded state 1n which preemption and
CPU interruptions are disabled;

decrypting said encrypted code section;

storing decrypted code instructions of said encrypted code

section 1n said CPU memory cache; and

executing said decrypted code instructions from a desig-

nated cache-line of said CPU memory cache.

2. The method of claim 1, further comprising deleting said
decrypted code from said CPU memory cache following
execution of said decrypted code.

3. The method of claim 2, further comprising restoring
said CPU memory cache to the unshielded state following
the deleting of the decrypted code.

4. The method of claim 1, wherein said unshielded state
1s characterized by at least one ol preemption and CPU
interrupt handler being enabled.

5. The method of claim 1, wherein said shielded state 1s
characterized by at least one of preemption and CPU inter-
rupt handler being disabled.

6. The method of claim 1, wherein said decrypting said
encrypted code section further comprises obtaining an
encryption key.

7. The method of claim 6, wherein said encryption key 1s
stored 1n a CPU register.

8. The method of claim 6, wherein said encryption key 1s
stored 1n a hypervisor environment.

9. A method for executing an encrypted code section in a
CPU memory cache, said encrypted code section comprising
a plurality of encrypted code instructions, the method com-
prising:

writing said encrypted code section to said CPU memory

cache;

copying said encrypted code into a decryption module,

said decryption module 1s loaded 1n a hypervisor envi-
ronment,

decrypting said encrypted code section using a decryption

key, said decryption key 1s stored in said hypervisor
environment:

storing decrypted code instructions of said encrypted code

section 1n said CPU memory cache;

executing said decrypted code mnstructions from a desig-

nated cache-line of said CPU memory cache; and
discarding said decrypted code instructions from said
CPU memory cache.

10. A method for using a managed execution system in an

improved manner to execute an encrypted managed pro-

10

15

20

25

30

35

40

45

50

55

60

65

26

gram, said system comprising a managed execution envi-
ronment, an extension module and a decryption module, said
encrypted managed program comprising a plurality of
executable blocks, each executable block comprising at least
one instruction sequence, the method comprising:

loading said encrypted managed program onto said man-

aged execution environment;

obtaining said at least one instruction sequence associated

with said encrypted managed program;

11 said at least instruction sequence 1s not encrypted then

executing said at least one instruction sequence; and
11 said at least one instruction sequence 1s encrypted then
transierring, by said extension module, said encrypted
istruction sequence to a decryption module; and

executing, by said decryption module, said encrypted
instruction sequence.

11. The method of claim 10, wherein said encrypted
managed program 1s configured to overwrite original meth-
ods with an equivalent encrypted instruction sequence.

12. The method of claim 10, wherein said step of loading
said managed encrypted program, comprises:

invoking said extension module within said managed

execution environment.

13. The method of claim 10, wherein said step of obtain-
ing said at least one 1nstruction sequence, comprises:

analyzing said at least one instruction sequence; and

communicating at least one execution event notification
associated with said at least one instruction sequence to
said extension module.

14. The method of claim 10, wherein said step of execut-
ing said encrypted instruction sequence, comprises:

invoking said decryption module within an hypervisor

environment;

decrypting, by said decryption module, said encrypted

istruction sequence i1nto a decrypted instruction
sequence;

analyzing said decrypted instruction sequence to deter-

mine an execution-locator;

i said execution-locator 1s local, then executing said

decrypted instruction sequence; and

11 said execution-locator 1s external, then transmitting said

decrypted instruction sequence to said extension mod-
ule.

15. The method of claim 14, wherein said step of execut-
ing said decrypted instruction sequence, comprises:

interpreting said decrypted instruction sequence.

16. The method of claim 14, wherein said step of decrypt-
ing said encrypted instruction sequence, comprises:

obtaining a decryption key from an authority server; and

decrypting said encrypted 1nstruction sequence using said
decryption key.

17. The method of claim 14, wherein said step of trans-
mitting said decrypted instruction sequence, comprises:

discarding all said decrypted instructions sequence except

a current instruction;

executing, by said extension module, said current instruc-

tion; and

communicating, by said extension module, at least one

result associated with the execution of said current
istruction to said decryption module.

18. The method of claim 16, wherein said decryption key
1s protected by said hypervisor environment.

19. The method of claim 10, further comprising a context
monitor operable to synchronize execution context status
between said extension module and said decryption module.

20. The method of claim 10, wherein said at least one
execution event notification 1s selected from a group of: a

US 9,756,048 B2
27

method entry indication, a specific mstruction execution, a
method 1nvocation indication, a program loading indication,
an occurrence of an exception condition and combinations
thereof.

28

	Front Page
	Drawings
	Specification
	Claims

