12 United States Patent

Andleman et al.

US009747339B2

US 9,747,339 B2
Aug. 29, 2017

(10) Patent No.:
45) Date of Patent:

(54) SERVER-BASED MANAGEMENT FOR
QUERYING EVENTUALLY-CONSISTENT
DATABASEL

(71)
(72)

Applicant: GetGo, Inc., Boston, MA (US)

Inventors: John S. Andleman, Camarillo, CA
(US); Albrecht Beyle, Karlsruhe (DE);
Mark Andrew Bishop, Newburyport,
MA (US); Paul Douglas Fife, Lompoc,
CA (US); Gerald Kleser, Karlsruhe
(DE)

(73)

(%)

Assignee: GetGo, Inc., Boston, MA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 201 days.

Notice:

(21) 14/730,475

(22)

Appl. No.:

Filed: Jun. 4, 2015

Prior Publication Data

US 2016/0357806 Al Dec. 8, 2016

(63)

Int. CIL.
GO6F 17/30

U.S. CL
CPC ..

(1)

(52)

(2006.01)

GO6F 17/30477 (2013.01); GO6F 17/30283
(2013.01); GOGF 17/30371 (2013.01); GO6F
17/30545 (2013.01); GOGF 17/30578
(2013.01)

Client

Machine
110

310 Receive Database
Requeast (160)

312: Construct 19
Query {182 with 1

Consistency Level
(C1)

322 11 1% Quiput (242),
Return Response (Done)

324 if 2™ Quiput (244),
Construct 2" Query (168) with
2r¢ Consistency Level (C2)

332: Return Response
(Done)

DB Interface

Server
150

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,390,131 B1* 7/2016 Fuller GOO6F 17/30477
9,613,104 B2 4/2017 Smith et al.

2015/0074063 Al 3/2015 Hugg

2016/0275085 Al 9/2016 Soundararajan et al.

* cited by examiner

Primary Examiner — William Spieler
(74) Attorney, Agent, or Firm — BainwoodHuang

(57) ABSTRACT

A technique for managing access to a distributed database
includes providing a server configured to receive database
requests from client machines over a network. The server
intelligently responds to a database request by (1) sending a
first query to the distributed database at a lower consistency
level to obtain a first response and (11) conditionally sending
a second query to the distributed database at a higher
consistency level to obtain a second response. The server
sends the second query conditionally based on whether the
first response meets a plausibility condition specified 1n the
database request. If the first response meets the plausibility
condition, the server returns the first response to the client to
satisly the database request and no second query 1s sent.
Otherwise, the server sends the second query to the distrib-

uted database and returns the second response to the client.

20 Claims, 5 Drawing Sheets

Lhistributed

Database
130

‘ 314: Submit 1% Query (162)

318: Receive 15t Query
Response (164

316 Execute 1%

Query (162) on 1%
Number of Nodes

\ 320: Perform Testing Operation
(240) to Generate 15 Qutput
(242) or 2™ Output (244)

326: Submit 2™ Query (168)

328 Execute 2

Query (166) on 2
Number of Nodes >
15t Number of
Nodes

330: Receive 2% Query
Response {168)

U.S. Patent Aug. 29, 2017 Sheet 1 of 5 US 9,747,339 B2

100
Configured
to requery if
Plausibility DB Interface
Condition Server
not met 150(1)
162

Data Center

130(1,1) 130(1,2) -

Configured
to requery If
Plausibility DB Interface
Condition Server
P 110(2) D1BO not met 150(2)

FIG. 1

U.S. Patent Aug. 29, 2017 Sheet 2 of 5 US 9,747,339 B2

DB Interface Server 250

— -
Network Interface(s) 210 -

Processing Circuitry 220

Memory 230

REST Interface 232

Response kvaluator 2338

Response 242 244
164 .

Plausibility
Condition
160b

FIG. 2

U.S. Patent Aug. 29, 2017 Sheet 3 of 5 US 9,747,339 B2

Distributed

DB Interface

Client

Database
130

Server
150

Machine
110

210 Recelve Database
Request (160)

312: Construct 19

Query (162) with 15t
Consistency Level

(C1)

Submit 15 Query (162)

316: Execute 15
318: Receive 15 Query Query (162) on 1st
Response (164) Number of Nodes

320 Perform Testing Operation
(240) to Generate 15 Qutput
(242) or 2™ QOutput (244)

322: 1f 15t Output (242),
Return Response (Done)

324 if 2™ Quiput (244),
Construct 2" Query (168) with
2" Consistency Level (C2)

326: Submit 2™ Query (166) 328: Execute 2

nd
330: Receive 2™ Query ' Query (166) on 2

Number of Nodes >
Response (168) 1st Number of

Nodes

232 Return Response
(Done)

FIG. 3

U.S. Patent Aug. 29, 2017 Sheet 4 of 5 US 9,747,339 B2

First Query Response
164(1)

<Null>

FIG. 4A

160b(1) Plausibility Condition

Not Empty

First Querv Response

164(2)
<Dataset>, <Timestamp>

FIG. 4B

Plausibility Condition
160b(2)

Newer than <Time>

First Query Response
164(3)

<Fleld 1 Val>, <Field 2 Val>

FIG. 4C

Plausibility Condition
160b(3)

Field 1 Val > 2 * (Field 2
Val)

U.S. Patent Aug. 29, 2017 Sheet 5 of 5 US 9,747,339 B2

100a
Configured f/
o requery if
Plausibility DB Interface
Condition Server
not met 150(1)

520 530
(Create (Join
@ Meeting) Session)

0,

Network
120

Data Center

130(2,1) 130(2,2) -

130(1,1) 130(1,2) -

@ Conﬁgure?
to requery if

"+ 560 Plausibility DB Interface

Condition - Server
not met 150(2)

Audio Bridge 560a 560b| —

210

US 9,747,339 B2

1

SERVER-BASED MANAGEMENT FOR
QUERYING EVENTUALLY-CONSISTENT
DATABASE

BACKGROUND

Computing applications deployed over networks, such as
the Internet, often use distributed databases for hosting
application-related data. A distributed database 1s a data
store that includes multiple database nodes, generally
deployed across multiple locations. The nodes operate 1n a
decentralized yet coordinated manner. A distributed database
can provide high availability and fault tolerance, such that
any one node can sufler a failure without the database as a
whole losing data or functionality. Well-known examples of
distributed databases include Apache Cassandra (open
source), Voldemort (open source), and Amazon DynamoDB,
for example.

Clients of distributed databases can direct commands,
such as Create, Read, Update, and Delete (CRUD), to one or
more database nodes, with the nodes coordinating to service
the commands. For example, a client may send a data update
command to one node of the distributed database, and that
node may propagate the update to other nodes over time.
Likewise, a client may direct a read query to one node. The
query may specily a number or percentage of database nodes
to check for the requested data. The distributed database
coordinates access to the specified number or percentage of
nodes and returns a response to the client. The response
generally imncludes the most recent version of the requested
data found among the accessed nodes.

Owing to the decentralized nature of certain distributed
databases, data written to one node 1s not always available
immediately from other nodes. This 1s especially the case for
so-called “eventually-consistent” databases, such as “AP”
databases, which provide guaranteed levels of Availability
and tolerance to network Partitioning, but no guaranteed
level of consistency. Indeed, the CAP Theorem states that 1t
1s 1mpossible for a distributed computing system to guaran-
tee Consistency, Availability, and Partition tolerance all at
the same time.

SUMMARY

Unfortunately, distributed databases can place particular
burdens on client machines and their programmers. For
example, a client machine programmed to obtain informa-
tion from a distributed database conventionally has to
choose between (a) submitting a lower-consistency, but
relatively eflicient, query directed to a small number or
percentage of database nodes and (b) submitting a higher-
consistency, but relatively ineflicient, query directed to a
large number or percentage of database nodes. Clients are
thus faced with a tradeofil between performance and the risk
of receiving stale data. Although clients can develop coun-
termeasures to cope with stale data, such countermeasures
place additional burdens on both client machines and their
programmers.

In contrast with the above-described approach, an
improved technique for managing access to a distributed
database includes providing a server configured to receive
database requests from client machines over a network. The
server 1ntelligently responds to a database request by (1)
sending a first query to the distributed database at a lower
consistency level to obtain a first response and (11) condi-
tionally sending a second query to the distributed database
at a higher consistency level to obtain a second response.

10

15

20

25

30

35

40

45

50

55

60

65

2

The server sends the second query conditionally based on
whether the first response meets a plausibility condition
specified 1n the database request. It the first response meets
the plausibility condition, the server returns the first
response to the client to satisiy the database request and no
second query 1s sent. Otherwise, the server sends the second
query to the distributed database and returns the second
response to the client.

Advantageously, example embodiments of the improved
technique relieve client machines and their programmers
from the burden of having to decide between good perfor-
mance and stale data, as well as from the burden of coping
with stale data when it arrives. Rather, the improved tech-
nique provides a generalized solution based on a client-
supplied plausibility condition. The plausibility condition
can take any suitable form and provides a standard for
assessing whether a response to a lower-consistency query 1s
suflicient for the client’s purposes or whether a higher

consistency response 1s desired.

Certain embodiments are directed to a method of man-
aging client access to a distributed database implemented
with multiple coordinating nodes on a network. The method
includes receiving, by a server and over the network, a
database request from a client machine, the database request

including (1) a query description and (11) a plausibility
condition. In response to receiving the database request, the
method includes submitting a first query to the distributed
database. The first query i1s based on the query description
and specifies a first consistency level. The first consistency
level 1s indicative of a first number of nodes of the distrib-
uted database to be accessed 1n performing the first query.
The method further includes receiving, 1n response to the
first query, a first query response Ifrom the distributed
database and performing a testing operation on the first
query response. The testing operation 1s arranged to generate
a first output when the first query response meets the
plausibility condition and to generate a second output when
the first query response does not meet the plausibility
condition. In response to the testing operation generating the
second output, the method further includes (1) submitting a
second query to the distributed database, the second query
based on the query description and specitying a second
consistency level, the second consistency level indicative of
a second number of nodes, greater than the first number of
nodes, of the distributed database to be accessed 1n perform-
ing the second query, (11) receiving, 1n response to the second
query, a second query response from the distributed data-
base, and (1) returning the second query response to the
client machine.

Other embodiments are directed to a server computer
constructed and arranged to perform a method of managing
client access to a distributed database implemented with
multiple coordinating nodes on a network, such as the
method described above. Still other embodiments are
directed to a computer program product. The computer
program product stores instructions which, when executed
by control circuitry, cause the control circuitry to perform a
method of managing client access to a distributed database
implemented with multiple coordinating nodes on a net-
work, such as the method described above. Some embodi-
ments mvolve activity that 1s performed at a single location,
while other embodiments involve activity that 1s distributed
over a computerized environment (e.g., over a network).

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The foregoing and other features and advantages will be
apparent from the {following description of particular

US 9,747,339 B2

3

embodiments of the invention, as illustrated in the accom-
panying drawings, 1n which like reference characters refer to

the same or similar parts throughout the different views. In
the accompanying drawings,

FIG. 1 1s a block diagram of an example environment in
which embodiments of the improved technique hereof can
be practiced;

FIG. 2 1s a block diagram of an example server computer,
which implements a database interface server as shown in
FIG. 1;

FIG. 3 1s a sequence diagram showing an example
sequence ol events that may be conducted when practicing
embodiments of the improved technique hereof;

FIGS. 4A, 4B, and 4C are block diagrams showing
example plausibility conditions and respective query
responses to which the plausibility conditions are applied;
and

FIG. 5 1s a block diagram showing an example modified
environment 1n which embodiments of the improved tech-
nique hereol can be practiced in the context of web confer-
encing, web seminars, and web training.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

Embodiments of the mnvention will now be described. It 1s
understood that such embodiments are provided by way of
example to illustrate various features and principles of the
invention, and that the invention hereof 1s broader than the
specific example embodiments disclosed.

An improved technique for managing access to a distrib-
uted database includes providing a server configured to
receive database requests from client machines over a net-
work. The improved technique relieves client machines
from having to choose between good performance and stale
data and relieves client machines and their programmers
from the burden of coping with stale data.

FIG. 1 shows an example environment 100 in which
embodiments of the improved technique hereof can be
practiced. Here, client machines 110(1) and 110(2) are
connected to a network 120 for accessing a distributed
database 130 wvia database interface servers 150(1) and

150(2). The distributed database 130 1s hosted from data
centers 140(1) and 140(2), with a first set of nodes (130(1,1),
130(1,2), . . .) of the database 130 operated within data
center 140(1) and a second set of nodes (130(2,1),
130(2,2), . . .) operated within data center 140(2). In an
example, the distributed database 130 1s an eventually-
consistent, AP database. Non-limiting examples of such
databases include Apache Cassandra (open source), Volde-
mort (open source), and Amazon DynamoDB, for example.

The environment 100 may include any number of client
machines 110, database interface servers 150, and data
centers 140, including a single one of each. In some
examples, no data center 1s required. Rather, nodes (N) of
the distributed database 130 may instead be provided on one
or more computers or other computing devices connected to
the network 120 and capable of running distributed database
software. In some examples, the data centers 140 are pro-
vided 1n different geographical locations. For large-scale,
Internet applications, data centers 140 hosting nodes of the
distributed database 130 may be deployed worldwide. In
some examples, the database interface servers 150 may
similarly be provided in large numbers and 1n different
geographical locations, to promote eflicient access from
client machines in the respective locations. The database
interface servers 150 may each be implemented using dedi-

10

15

20

25

30

35

40

45

50

55

60

65

4

cated server computers, using virtual machines, and/or using
any other computing technology. Diflerent database inter-
face servers 150 may be implemented differently. In some
examples, database interface servers 1350 are located within
respective data centers 140; however, this 1s not required.
Nor 1s there any requirement that the number of database

interface servers 150 be the same as the number of data
centers 140.

The client machines 110 may be realized as any type or
types of computing device or devices capable of executing
software and communicating over the network 120. For
instance, each client machine 110 may be provided as a
desktop computer, laptop computer, smartphone, tablet, per-
sonal data assistant, set top box, or gaming console, for
examples. The network 120 can be realized with any suitable

network or networks capable of conveying data, such as a
LAN (Local Area Network), WAN (Wide Area Network),

the Internet, a telephone network, cell phone network, data
network, or any combination of the foregoing, for example.

Each database interface server 150 acts as an intermediary
between one or more client machines 110 and the distributed
database 130. For example, each database interface server
150 receives database requests from client machines, pro-
cesses the requests, and sends commands corresponding to
the requests to the distributed database 130. For database
requests that entail responses, the database interface server
150 receives the responses from the distributed database 130
and returns the responses to the requesting client machines
110. In an example, each database interface server 150 acts
as an intermediary for all conventional CRUD (Create/Read/
Update/Delete) operations.

For database requests that specily reads from the distrib-
uted database 130, each database interface server 150 per-
forms 1intelligent processing to ensure that the requesting
client machines receive responses that are sutliciently con-
sistent 1n the context of the particular requests. As will be
described, this intelligent processing involves mitially que-
rying the distributed database 130 with a lower-consistency
level and checking whether a query response received from
the distributed database 130 meets a client-supplied plausi-
bility condition. If the response meets the condition, the
database interface server 150 returns the response to the
requesting client machine 110. Otherwise, the database
interface server 150 resubmits the same query to the dis-
tributed database 130, but this time specitying a higher level
of consistency. The database interface server 150 receives a
response to the resubmitted query and returns the response
to the requesting client machine 110. In this manner, the
database interface server 150 performs eflicient, lower-
consistency queries first, with such queries often returning
consistent-enough responses to satisty plausibility condi-
tions. The database interface server 150 1s therefore able to
operate the distributed database 130 at high efliciency much
of the time. But 1n cases where greater consistency 1is
needed, as indicated when plausibility conditions fail to be
met, the database interface server 150 obtains more consis-
tent responses, albeit with lower efliciency. In this manner,
the database interface server 150 makes profitable and
cllective use of the distributed database 130, benefiting from
its high efliciency when approprniate, but obtaining more
consistent results when needed.

The database interface servers 1350 perform their intelli-
gent processing on behall of client machines 110 and
thereby relieve the client machines from the burdens of
performing this processing themselves. Further, the database
interface servers 150 translate between a generic interface

US 9,747,339 B2

S

protocol exposed to client machines 110 and a database-
specific interface protocol particular to the distributed data-
base used.

The generic interface protocol may be the same regardless
of the particular type of distributed database 130. Program-
mers of client software can thus eflect database operations
without having to master the particular 1diosyncrasies of the
distributed database 130. Rather, once a programmer learns
the generic interface of the database interface server 150, the
programmer can generally accomplish necessary tasks with
little or no database-specific knowledge. The generic inter-
face protocol may be any implemented in any suitable way
and with any suitable technology, such as using REST
(Representational State Transfer), JSON (JavaScript Object
Notation), SOAP (Simple Object Access Protocol), and so
forth. In a particular example, the generic interface protocol
1s 1mplemented as REST over HT'TP (Hypertext Transfer
Protocol). The database-specific interface protocol 1s spe-
cific to the particular distributed database 130. For instance,
if the distributed database 130 1s implemented with Apache
Cassandra, then the database-specific interface protocol may
be CQL (Cassandra Query Language).

In example operation, the client machine 110(1) submits
a database request 160 to database interface server 150(1).
For example, the client machine 110(1) submits an HTTP
GET request specifying a particular REST URI (Uniform
Resource Identifier). The database request 160 includes a
query description 160a and a plausibility condition 1605.
The query description 160a specifies data to be read from the
distributed database 130 and may include, for example, one
or more field names, filter critenia, relationships, and the
like. The plausibility condition 1605 1s a condition that a
response to a lower-consistency query must meet to avoid
the need to submit a higher-consistency query. In an
example, the plausibility condition i1t based on a priori
information i possession of the client machine 110(1)
concerning data elements to be read, such as whether they
exist or not, when they were last updated, and so on.

The database interface server 150(1) recerves the database
request 160 over the network 120 and processes the database
request 160. Processing the database request 160 includes
constructing a first query 162 based on the query description
160a and sending the first query 162 over the network 120
to the distributed database 130. The database interface server
150(1) constructs the first query 162 1n accordance with the
database-specific protocol. The first query 162 specifies a
first consistency level, C1, which indicates a number of
nodes of the distributed database 130 to be accessed in
processing the first query. The number of nodes specified by
C1 1s generally a single node or a small number of nodes,
and may be expressed as an integer value, as a percentage of
total nodes (e.g., less than 10%), or 1n any other suitable
way. The distributed database 130 receives the first query
162, accesses the number of nodes indicated, and coordi-
nates responses from the accessed nodes to produce a first
query response 164. In an example, the first query response
164 includes the most recent version of data obtained from
the accessed nodes.

The database interface server 150(1) receives the first
query response 164 according to the database-specific pro-
tocol and proceeds to test the first query response 164
against the plausibility condition 1605. To provide an 1llus-
trative example, the plausibility condition 16056 may require
simply that the first query response 164 contain a non-empty
value. This condition may be based on a prior1 information
available to the client machine 110(1) that the distributed
database 130 has previously recerved a non-empty value for

10

15

20

25

30

35

40

45

50

55

60

65

6

the data being queried. If the plausibility condition 1605 1s
satisfied, e.g., 1f the first query response 164 contains
non-empty data, then the first query response 164 1s sufli-
cient. The database interface server 150(1) returns a
response 170 to the client machine 110(1) to satisty the
database request 160. The response 170 includes the data
provided 1n the first query response 164 and may be pro-
vided 1n the form of a response to the same HTTP GET
request that conveyed the database request 160.

I1 the plausibility condition 1605 1s not met, however, e.g.,
if the first query response 164 contains or otherwise 1ndi-
cates empty data, then the database interface server 150(1)
constructs a second query 166. The second query 166 1s also
based on the query description 160a and 1s provided in the
database-specific protocol. However, the second query 166
speciflies a second consistency level, C2, which indicates a
greater number of nodes of the distributed database 130 than
did the first consistency level, C1. In an example, the second
consistency level, C2, indicates half or more of the nodes of
the distributed database 130. As with C1, the number of
nodes specified by C2 may also be expressed as an integer
value, as a percentage of total nodes in the distributed
database 130, or 1n any other suitable way. The distributed
database 130 receives the second query 166, accesses the
number of nodes indicated by C2, runs the query on those
nodes, and coordinates responses from the accessed nodes to
produce a second query response 168. In an example, the
second query response 168 includes the most recent version
of data obtained from the greater number of accessed nodes.
The distributed database 130 returns the second query
response 168 to the database interface server 150(1). The
database interface server 150(1) returns the second query
response 168 to the client machine 110(1), 1.e., 1 the
response 170. The response 170 may be provided in the form
of a response to the same HI'TP GET request that conveyed
the database request 160.

In this manner, the database interface server 150(1) per-
forms only a lower-consistency query, 1f doing so produces
a query response suflicient to satisty the plausibility condi-
tion 1605. Otherwise, the database interface server 150(1)
performs both a lower-consistency query and a higher-
consistency query.

Although only two queries have been described, 1t should
be understood that the database intertace server 150(1) may
perform one or more additional queries. For instance, the
database interface server 150(1) may further operate to test
the second query response 168 to determine whether 1t meets
the plausibility condition 16054. I it does not, the database
interface server 150(1) may construct and submit yet another
query based on the recerved query description 160qa, but this
time specifying an even higher level of consistency, such as
all nodes, or nearly all nodes, of the distributed database
130.

In some examples, the environment 100 further supports
data updates (writes) to the distributed database 130. For
example, client machine 110(2) may submit an update
request 180 over the network 120 to database interface
server 150(2). The client machine 110(2) may provide the
update request 180 1n accordance with the generic interface
protocol, e.g., as a REST command within an HT'TP POST
istruction. In response to recerving update request 180, the
database interface server 150(2) translates the update request
180 into a corresponding update query 180a according to the
database-specific protocol and submits the update query
180a to the distributed database 130. The distributed data-
base 130 receives the update query 180a (e.g., at one or more
nodes thereot), updates the specified data, and propagates

US 9,747,339 B2

7

the specified data to other nodes of the distributed database
130. The database interface servers 150 may handle requests
from client machines 110 to perform create and delete
instructions 1 a similar ways, 1.e., by translating REST
commands received over HI'TP into respective commands
according to the database-specific protocol and submitting

the commands to the distributed database 130. Although this
example describes operation when it 1s the client machine
110(2) that submits the update request 180, 1t should be

understood that any client machine 110 may do so, including
the client machine 110(1).

As an optional optimization, each database interface
server 150, or any subset of them, may be configured with
a list of one or more write priority nodes of the distributed
database 130. In an example, the write priority nodes for a
particular database interface server 150 are nodes 1n close
network proximity to the respective database interface
server 150, e.g., as measured by a number of network hops
and/or round-trip time. It should be understood, however,
that other criteria may be used 1n assigning priority nodes
besides network proximity, such as available workload,
network bandwidth, and so forth. When receiving requests
180 that specily data updates to be written, the database
interface servers 150 may preferentially direct such updates
to their respective write priority nodes. If, soon after writing,
a database interface server 150 1s called upon to obtain
newly written data, that database interface server 150 may
direct a query to the same write priority node(s), thus
reflecting the expectation that the data will be available from
the same node(s) to which they were wrntten. Using this
approach, lower-consistency queries are more likely to
return current results than they would 1f nodes were chosen
randomly. Plausibility conditions are thus more likely to be
met and the need for higher-consistency queries 1s more
likely to be avoided.

In some examples, the database interface servers 150 may
also be configured with a list of read priority nodes. For
instance, the distributed database 130 may be configured to
receive data updates at the write priority nodes and quickly
to propagate the new data to the read priority nodes. Each
database interface server 150, or some subset of them, may
then be configured preferentially to direct database requests
160 to the read priority nodes. The use of read priority nodes
may also improve the likelithood that lower-consistency
queries will return responses that meet plausibility condi-
tions. Providing read priority nodes separately from write
priority nodes provides the additional benefit of reducing
network traflic and processing load on the write priority
nodes. In some examples, write priority nodes and read
priority nodes are segregated 1n diflerent data centers 140.
For example, the nodes 130(1,1), 130(1,2), . . . in data center
140(1) may be designated as write priority nodes, and the
nodes 130(2.1), 130(2,2), . . . 1n data center 140(2) may be
designated as read priority nodes. This 1s merely an example,
however, as write priority nodes and read priority nodes may
be provided 1n any suitable location or locations.

In some examples, client machines 110 access the data-
base interface servers 150 by directing requests 160 and 180
to a common site (not shown), such as a website having a
specified URL. Instructions executing at the website route
requests 160 and 180 to database interface servers 150,
based on, for example, network proximity between client
machines 110 and database interface servers 150.

FIG. 2 shows an example database interface server 150 in
greater detail. The database interface server 150 of FIG. 2 1s
intended to be representative of database interface servers

10

15

20

25

30

35

40

45

50

55

60

65

8

150(1) and 150(2) of FIG. 1. However, 1t should be under-
stood that different database interface servers 150 need not

be 1dentical.

The database interface server 150 1s seen to 1include a set
of network interfaces 210 (e.g., one or more FEthernet
adapters, WiF1 adapters, etc.), processing circuitry 220 (e.g.,
one or more processing chips and/or assemblies), and
memory 230. The memory 230 includes both volatile
memory (e.g., RAM) and non-volatile memory, such as one
or more disk drives, solid state drives, and the like. The
processing circuitry 220 and the memory 230 are con-
structed and arranged to carry out various methods and
functions as described herein. Also, the memory 230
includes a variety of software constructs realized 1n the form
ol executable 1nstructions. When the executable instructions
are run by the processing circuitry 220, the processing
circuitry 220 1s caused to carry out the operations of the
soltware constructs. Although certain software constructs
are specifically shown and described, 1t 1s understood that
the memory 230 typically includes many other software
constructs, which are not shown, such as an operating
system, various applications, processes, and daemons.

Executable instructions in the memory 230 are seen to
realize a REST interface 232, a query executor 234, and a
response evaluator 238. In an example, the REST interface
232 includes multiple regions of executable instructions at
respective URI’s to support each of the conventional CRUD
operations.

The query executor 234 1s constructed and arranged to
construct queries, such as queries 162 and 166, based on
query descriptions 160q and 1n accordance with a particular
database-specific interface protocol 236. The query executor
234 1s also constructed and arranged to submit queries
constructed as above to the distributed database 130. Such
queries may request the lower-consistency level, C1, or the
higher consistency level, C2. In some examples, additional
consistency levels may be requested. The query executor
234 also receives query responses, e.g., 164 and 168.

The response evaluator 238 performs a testing operation
240. The testing operation 240 1s arranged to test whether a
query response (e.g., the first query response 164) 1n
response to a database request 160 meets the plausibility
condition 16056 provided with that request 160. The testing
operation 240 1s arranged to generate a first output 242 (Yes)
when the query response meets the plausibility condition
1606 and to generate a second output 244 (No) when the
query response does not meet the plausibility condition
1605. I1 the testing operation 240 generates the first output
242, then the response evaluator 238 directs the REST
interface 232 to return the first query response 164, ¢.g., as
a response to a pending HI'TP GET request. Otherwise, the
response evaluator 238 directs the query executor 234 to
requery the distributed database 130 at the higher-consis-
tency level, C2. The REST interface 232 then returns a
subsequently arriving second query response 168, e.g., as a
response to the pending HT'TP GET request.

FIG. 3 shows an example sequence of activities per-
formed 1n the environment of FIG. 1 when a client machine
110 submits a database request 160 for reading data from the
distributed database 130.

At 310, the database interface server 150 receives the
database request 160. The request 160 includes a query
description 160a and a plausibility condition 16056. In an
example, the database request 160 1s received over the
network 120 as a REST instruction provided within an

HTTP request.

US 9,747,339 B2

9

At 312, the database interface server 150 constructs a first
query 162. The first query 162 implements the query
description 160q 1n the database-specific iterface protocol
236 of the distributed database 130 and specifies a first
consistency level, C1. The first consistency level indicates a
first number of nodes (e.g., a single node or a small number
of nodes; e.g., less than 10%) of the distributed database 130
to be accessed when running the first query 162. The first
number of nodes may be expressed as an integer, as a
percentage, or 1 any other suitable way.

At 314, the database interface server 150 submaits the first
query 162 to the distributed database 130. For example, the
database interface server 150 directs the first query 162 to a
single node of the distributed database 130. This may be the
case even 1if the first consistency level, C1, indicates greater
than one node.

At 316, the distributed database 130 executes the first
query 162. For example, the node to which the first query
162 was directed may execute the query 162. I the first
number of nodes indicates a number greater than one, the
node recerving the first query 162 directs the first query 162
to one or more other nodes of the distributed database 130,
with the total number of nodes receiving the first query 162
equal to the first number of nodes. Each node receiving the
first query 162 executes the first query 162, and the nodes
cooperate to generate the first query response 164, which
may retlect the most recent data obtained across all of the
queried nodes.

At 318, the database interface server 150 receives the first
query response 164 from the distributed database 130, e.g.,
from the particular node to which the first query 162 was
sent. The first query response 164 arrives in the database-
specific iterface protocol.

At 320, the database interface server 150 performs the
testing operation 240 on the first query response 164 to
generate either the first output 242 (Yes) or the second output
244 (No), based on whether the first query response 164
satisiies the plausibility condition 1605. It the testing opera-
tion 240 generates the first output 242 (Yes), then the
database interface server 150 simply returns the data pro-
vided 1n the first query response 164 to the client machine
110, e.g., as a response to the HT'TP GET request (at 322).
Otherwise, operation continues to 324.

At 324, the database interface server 150 constructs the
second query 166. In an example, the second query 166 1s
identical to the first query 162, except that 1t specifies the
second consistency level, C2.

At 326, the database interface server 150 submits the
second query 166 to the distributed database 130, e.g., in a
similar way to that described at 314. Here, however, second
query 166 specifies a second number of nodes, greater than
the first number of nodes, such as half or more of the nodes
in the distributed database 130.

At 328, the distributed database 130 executes the second
query 166, ¢.g., by executing the second query 166 on each
of the second number of nodes specified. The distributed
database 130 coordinates responses from the newly queried
nodes to arrive at a single query response 168, ¢.g., which
may reflect the most recent data obtained across all of the
newly queried nodes.

At 330, the database interface server 150 receives the
second query response 168 from the distributed database
130. The second query response 168 is received in accor-
dance with the database-specific interface protocol 236.

At 332, the database interface server 150 returns the
second query response 168 to the client machine 110, e.g.,
as a response to the HI'TP GET request.

10

15

20

25

30

35

40

45

50

55

60

65

10

The above-described sequence 1s intended to illustrate
example embodiments of the invention and 1s not intended
to be limiting. For instance, according to one variant, when
submitting the second query 166 at 326, the database inter-
face server 150 directs multiple second queries to different
groups ol nodes of the distributed database 130, contempo-
raneously and eflectively in parallel. Each second query
designates multiple nodes, and the database interface server
150 receives a response (like response 168) from each group
of nodes as the respective queries are completed. In an
example, the database interface server 150 checks the query
response from each group of nodes as it arrives, and returns,
to the client machine 110, the query response (like the query
response 168) that first meets the plausibility condition
1605.

FIGS. 4A-4C show different examples of plausibility
conditions 1605 and associated first query responses 164 and
provides examples of how testing operation 240 may be
conducted.

In FIG. 4A, a plausibility condition 1605(1) requires that
the first query response 164(1) be “Not Empty,” meaning
that the first query response 164(1) must include data. A
client machine 110 may specily this plausibility condition
16056(1), for example, if the client machine 110 has a priori
information that the queried data has previously been written
to the distributed database 130. Here, the first query
response 164(1) 1s <Null>, however. This Null response
indicates that the particular node or nodes accessed 1n the
distributed database 130 when executing the first query 162
did not 1nclude the expected data. Under these conditions,
the testing operation 240 generates the second response 244,
indicating that, “No,” the plausibility condition 1605(1) has
not been met and that a higher-consistency query should be
performed.

In FIG. 4B, the plausibility condition 1605(2) requires
that the first query response 164(2) be “Newer than
<Time>,” where <ITime> specifies a particular date and/or
time. Thus, the plausibility condition 1605(2) requires that
the data returned 1n the first query response 1645(2) has been
updated at least as recently as <Time>. A client machine 110
may specily this plausibility condition 1605(2), for example,
if the client machine 110 has a prior information that the
queried data was previously updated in the distributed
database 130 at the specified <ITime>. Here, the first query
response 164(2) specifies a <Dataset> providing the
requested data and a <Timestamp>. To perform the testing
operation 240, the database interface server 150 compares
the <Timestamp> 1n the first query response 164(2) with the
specified <T1me> 1n the plausibility condition 164(2). If the
<timestamp> 1s equal to or more recent than the <Time>, the
testing operation 240 generates the first output 242 (Yes),
such that no higher-consistency query is required. Other-
wise, the testing operation 240 generates the second output
(No) and a higher-consistency query 1s performed.

In FIG. 4C, the plausibility condition 16056(3) requires
that the first query response 164(3) satisty a particular
expression. Any expression can be used; the one shown 1s
merely 1llustrative. Here, the plausibility condition 1605(3)
requires that a value returned 1n a first database field (Field

1) be greater than twice the value returned i1n a second
database field (Field 2). The first query response 164(3)

provides values of Field 1 and Field 2 (i.e., <Field 1 Val>
and <Field 2 Val>) acquired as a result of a first query 162.
In this example, a client machine 110 may specily the
plausibility condition 1605(3), for example, if the client
machine 110 has a prior1 mnformation that the fields of the
distributed database 130 should reflect the indicated arrange-

US 9,747,339 B2

11

ment. If the returned field values meet the plausibility
condition 1605(3), the testing operation 240 generates the
first output 242 (Yes), such that no higher-consistency query
1s required. Otherwise, the testing operation 240 generates
the second output (No) and a higher-consistency query 1s
performed.

It should be understood that plausibility conditions may
be defined based on any pattern, comparison, or mathemati-
cal expression, and that the examples shown are merely
illustrative. Further, it should be understood that the scope of
the plausibility conditions may include “True,” meaning that
the condition 1s automatically met, such that no higher-
consistency query 1s needed, as well as “False,” meaning
that a higher-consistency query must be performed. In
instances where the plausibility condition 1s “False,” the
database interface server 150 may skip the low-consistency
query and jump straight to the high-consistency query.

FIG. 5 shows another example environment 100a in
which embodiments of the improved technique hereof may
be practiced. Here, the environment 100a 1s similar to the
environment 100, except that elements shown 1n the figure
have been arranged for web conferencing, web seminars,
and/or web training events. Here, the client machine 110(2)
has been replaced with an audio bridge 510. The audio
bridge 510 1s a type of client machine 110 that also serves
to blend voice input from telephone lines and/or computer-
1zed devices (e.g., arriving via Voice Over Internet Proto-
col—VOIP), as well as to distribute blended voice mput to
various participants. Audio bridges, like the audio bridge
510, are commonly found in web conferencing, web semi-
nar, and/or web training systems.

In this example, a user of client machine 110(1) wishes to
create a new web conference, seminar, or training event. For
example, the user operates mstructions on the client machine
110(1) to create a new “meeting,” a term that we use
generically to refer to conferences, seminars, training
events, and the like. The 1nstructions operate to generate an
update request 520 to create the new meeting. The update
request 520 1s of the same type as the update request 180
described 1n connection with FIG. 1 and specifies details
about the meeting to be created. As indicated with the
encircled numeral (1), the client machine 110(1) sends the
update query 3520 over the network 120 to the database
interface server 150(1). The database interface server 150(1)
then submits an update query according to the database-
specific protocol to one or more nodes of the distributed
database 130. Such one or more nodes receive the new data
and act to propagate the new data, over time, to other nodes
of the distributed database 130.

Shortly after creating the new meeting, at (2), the client
machine 110 sends a message 530 to the audio bridge 510 to
join the meeting. When the audio bridge 510 receives the
message 330, the audio bridge 510 generates a database
request 560 to lookup meeting-specific information about
the new meeting in the distributed database 130. The data-
base request 560 1s of the same type as the database request
160 (FIG. 1) and includes a query description 560q and a
plausibility condition 5605. The plausibility condition 5605
requires merely that the read query 560 return non-empty
data, 1n a manner similar to the example shown 1n FIG. 4A,
to retlect the fact that the audio bridge 510 has a priori
information (from the message 530) that a meeting has been
created and that the distributed database 130 stores meeting-
specific information.

At (3), the audio bridge 510 sends the database request
560 to the database interface server 150(2). In response, the
database 1nterface server 150(2) submits a first query (162)

10

15

20

25

30

35

40

45

50

55

60

65

12

at a low-consistency level (e.g., at C1; see FIG. 1) and tests
a query response (164) to determine whether the response
(164) meets the plausibility condition 560a. Given the close
timing 1involved, as well as the fact that the database
interface server 150(2) may be geographically remote from
the database interface server 150(1), a possibility exists that
the update submitted 1n the update query 520 has not yet
propagated to the node, or group of nodes, to which the
database request 560 1s directed. Thus, the query response
(164) may return an empty response, causing the testing
operation 240 (FIG. 2) to generate the second output 244
(No). Consequently, the database interface server 150(2)
submits a second query (166) specitying the same query
description 560a but with a higher-consistency level (e.g.,
C2). The second query (166) specifies a greater number of
nodes, which may include nodes now storing the updated
data specified in update request 520. The database 1nterface
server 150(2) receives a second query response (168) and
returns the response (168) to the audio bridge 510. The audio
bridge 510 then receives the meeting-specific information
and 1s able to begin the meeting.

An improved technique has been disclosed for managing
access to a distributed database 130. The technique 1ncludes
providing a database interface server 150 configured to
receive database requests 160 from client machines 110 over
a network 120. The server 150 intelligently responds to a
database request 160 by (1) sending a first query 162 to the
distributed database 130 at a lower consistency level, C1, to
obtain a first response 164 and (11) conditionally sending a
second query 166 to the distributed database 130 at a higher
consistency level, C2, to obtain a second response 168. The
server 150 sends the second query 166 conditionally based
on whether the first response 164 meets a plausibility
condition 16056 specified 1n the database request 160. If the
first response 164 meets the plausibility condition 1605, the
server 150 returns the first response 164 to the client 110 to
satisly the database request 160 and no second query 166 1s
sent. Otherwise, the server 150 sends the second query 166
to the distributed database 130 and returns the second
response 168 to the client 110.

Having described certain embodiments, numerous alter-
native embodiments or variations can be made. For example,
as an alternative to providing a separate database interface
server 150 (or multiple such database interface servers 150),
cach client machine 110 may be equipped with an SDK
(Software Development Kit) for deploying functionality
similar to that attributed above to the database interface
servers 150. Thus, for example, client machines 110, rather
than the database interface servers 150, may be configured
to generate and submit first queries 162, to test query
responses 164 against plausibility conditions 16056, and, it
necessary, to generate and submit second queries 166 and to
receive query responses 168.

Also, embodiments have been described in connection
with an eventually-consistent, AP database. It 1s known that
such databases are typically of the “NoSQL” varniety. How-
ever, the above-described techniques could also be used with
conventional databases supporting SQL (Structured Query
Language), including relational databases deployed over
multiple nodes.

Further, although features are shown and described with
reference to particular embodiments hereof, such features
may be included and hereby are included in any of the
disclosed embodiments and their variants. Thus, 1t 1s under-
stood that features disclosed in connection with any embodi-
ment are mcluded as variants of any other embodiment.

US 9,747,339 B2

13

Further still, the improvement or portions thereof may be
embodied as a computer program product including one or
more non-transient, computer-readable storage media, such
as a magnetic disk, magnetic tape, compact disk, DVD,
optical disk, tlash drive, SD (Secure Digital) chip or device,
Application Specific Integrated Circuit (ASIC), Field Pro-
grammable Gate Array (FPGA), and/or the like (shown by
way of example as medium 250 1n FIG. 2). Any number of
computer-readable media may be used. The media may be
encoded with instructions which, when executed on one or
more computers or other processors, perform the process or
processes described herein. Such media may be considered
articles of manufacture or machines, and may be transport-
able from one machine to another.

As used throughout this document, the words “compris-
ing,” “including,” “containing,” and “having” are intended
to set forth certain items, steps, elements, or aspects of
something 1n an open-ended fashion. Also, as used herein
and unless a specific statement 1s made to the contrary, the
word “set” means one or more of something. This 1s the case
regardless ol whether the phrase “set of” 1s followed by a
singular or plural object and regardless of whether 1t 1s
conjugated with a singular or plural verb. Further, although
ordinal expressions, such as “first,” “second,” “third,” and so
on, may be used as adjectives herein, such ordinal expres-
sions are used for identification purposes and, unless spe-
cifically indicated, are not intended to imply any ordering or
sequence. Thus, for example, a second event may take place
before or after a first event, or even il no first event ever
occurs. In addition, an identification herein of a particular
clement, feature, or act as bemng a “first” such element,
feature, or act should not be construed as requiring that there
must also be a “second” or other such element, feature or act.
Rather, the “first” i1tem may be the only one. Although
certain embodiments are disclosed herein, 1t 1s understood
that these are provided by way of example only and that the
invention 1s not limited to these particular embodiments.

Those skilled 1n the art will therefore understand that
various changes 1 form and detaill may be made to the
embodiments disclosed herein without departing from the

scope of the mnvention.

e 4

What 1s claimed 1s:

1. A method of managing client access to a distributed
database implemented with multiple coordinating nodes on
a network, the method comprising:

receiving, by a server and over the network, a database

request from a client machine, the database request
including (1) a query description and (11) a plausibility
condition, the plausibility condition based on a priori
information;

in response to receiving the database request, submitting

a first query to the distributed database, the first query
based on the query description and specilying a first
consistency level, the first consistency level indicative
of a first number of nodes of the distributed database to
be accessed 1n performing the first query;

receiving, in response to the first query, a first query

response from the distributed database;

performing, by the server, a testing operation on the first

query response, the testing operation arranged to gen-
crate a first output when the first query response meets
the plausibility condition and to generate a second
output when the first query response does not meet the
plausibility condition; and

in response to the testing operation generating the second

output,

10

15

20

25

30

35

40

45

50

55

60

65

14

(1) submitting a second query to the distributed data-
base, the second query based on the query descrip-
tion and specifying a second consistency level, the
second consistency level indicative of a second num-
ber of nodes, greater than the first number of nodes,
of the distributed database to be accessed in per-
forming the second query,

(11) rece1ving, 1n response to the second query, a second
query response from the distributed database, and

(111) returning the second query response to the client
machine.

2. The method of claim 1, wherein the method frees the
client machine from having to perform multiple queries of
the distributed database when the plausibility condition 1s
not 1nitially met.

3. The method of claim 2, further comprising implement-
ing the server with a particular computing machine, distinct
from the client machine and from the distributed database,
the particular computing machine constructed and arranged
to receive database requests, submit queries to the distrib-
uted database, receive query responses from the distributed
database, and test whether at least some query responses
meet plausibility conditions.

4. The method of claim 1, wherein the distributed data-
base 1s an eventually-consistent database in which data
updates propagate among multiple participating nodes over
time, such that the participating nodes are temporarily
inconsistent with one another with respect to at least one
data element stored 1n the distributed database.

5. The method of claim 4,

wherein receiving the database request from the client

machine 1s performed in accordance with a first inter-
face protocol,

wherein submitting the first query and submitting the

second query are performed i1n accordance with a
second interface protocol, the second interface protocol
supported by the distributed database and being ditfer-
ent from the first interface protocol, and

wherein receiving the first query response and receiving

the second query response are performed 1n accordance
with the second interface protocol.

6. The method of claim 5, wherein the first interface
protocol 1s a REST (Representational State Transfer) proto-
col, wherein, when recerving the database request, the query
description and the plausibility condition arrive in a REST
instruction conveyed 1n an HTTP (Hypertext Transier Pro-
tocol) request, and wherein the method further comprises, by
the server:

constructing the first query as a first query language

instruction in accordance with the second interface
protocol, the first query language instruction imple-
menting the query description and specifying the first
consistency level;

constructing the second query as a second query language

instruction in accordance with the second interface
protocol, the second query language instruction 1mple-
menting the query description and specitying the sec-
ond consistency level; and

returning the second query response to the client machine

in a response to the HT'TP request.

7. The method of claim 35, wherein, when submitting the
second query, the method further comprises submitting a set
of additional queries contemporaneously with submitting
the second query, each of the set of additional queries being
based on the query description and directed to a respective
set of nodes of the distributed database.

US 9,747,339 B2

15

8. The method of claim 5, further comprising:
receiving, by the server, an update request from the client
machine 1n accordance with the first interface protocol,

the update request specifying a set of data to be written

to the distributed database;

translating, by the server, the update request into an

update query in accordance with the second interface

protocol; and

submitting the update query to the distributed database.

9. The method of claim 8, further comprising;:

maintaiming, by the server, a list of priority nodes of the

distributed database, the list of priority nodes being a

subset of all nodes of the distributed database, wherein,

when submitting the update query to the distributed
database, the server directs the update query to one of
the priority nodes.

10. The method of claim 9, wherein receiving the update
request from the client machine 1s performed prior to
receiving the database request from the client machine, and
wherein submitting the first query includes directing the first
query to the one of the priority nodes.

11. The method of claim 8, wheremn the plausibility
condition 1s met when the first query response returns a
non-empty value.

12. The method of claim 8, wherein the plausibility
condition specifies a time, and wherein the plausibility
condition 1s met when the first query response returns a
value having a timestamp more recent than the specified
time.

13. The method of claim 8, wherein the plausibility
condition specifies a predetermined pattern of database field
values, and wherein the plausibility condition 1s met when
the first query response returns a value that matches the
predetermined pattern.

14. A server computer comprising a network interface
configured to access a distributed database over a network,
control circuitry including a set of processing units coupled
to the network interface and to memory, the control circuitry
constructed and arranged to:

receive, over the network, a database request from a client

machine, the database request including (1) a query

description and (11) a plausibility condition, the plau-
sibility condition based on a prion information;

in response to receiving the database request, submit a

first query to the distributed database, the first query
based on the query description and specilying a first
consistency level, the first consistency level indicative
of a first number of nodes of the distributed database to
be accessed in performing the first query;

receive, 1 response to the first query, a first query

response from the distributed database;

perform a testing operation on the first query response, the

testing operation arranged to generate a first output
when the first query response meets the plausibility
condition and to generate a second output when the first
query response does not meet the plausibility condi-
tion; and

in response to the testing operation generating the second

output,

(1) submit a second query to the distributed database,
the second query based on the query description and
specilying a second consistency level, the second
consistency level indicative of a second number of
nodes, greater than the first number of nodes, of the
distributed database to be accessed 1n performing the
second query,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

(1) receive, 1n response to the second query, a second
query response from the distributed database, and

(111) return the second query response to the client
machine.

15. The server computer of claim 14, wherein the control
circuitry 1s further constructed and arranged to:

recerve, over the network, a second database request from

a second client machine, the second database request

including (1) a second query description and (11) a

second plausibility condition;

in response to receiving the second database request,

submit a third query to the distributed database, the

third query based on the second query description and
speciiying the first consistency level;

receive, 1 response to the third query, a third query

response from the distributed database;

perform a second testing operation on the third query

response, the second testing operation arranged to
generate the first output when the third query response
meets the second plausibility condition and to generate
the second output when the third query response does
not meet the second plausibility condition; and

in response to the second testing operation generating the

first output, return the third query response to the

second client machine.

16. A computer-program product including a set of non-
transitory, computer-readable media having instructions
which, when executed by control circuitry of a server
computer, cause the control circuitry to perform a method
for managing client access to a distributed database 1mple-
mented with multiple coordinating database nodes on a
network, the method comprising:

recerving a database request from a client machine, the

database request including (1) a query description and

(11) a plausibility condition, the plausibility condition

based on a prior1 information;

in response to receiving the database request, submitting,

a first query to the distributed database, the first query

based on the query description and specitying a first

consistency level, the first consistency level indicative
of a first number of nodes of the distributed database to
be accessed 1n performing the first query;

receiving, 1n response to the first query, a first query

response from the distributed database;

performing a testing operation on the first query response,

the testing operation arranged to generate a first output
when the first query response meets the plausibility
condition and to generate a second output when the first
query response does not meet the plausibility condi-
tion; and

in response to the testing operation generating the second

output,

(1) submitting a second query to the distributed data-
base, the second query based on the query descrip-
tion and specitying a second consistency level, the
second consistency level indicative of a second num-
ber of nodes, greater than the first number of nodes,
of the distributed database to be accessed 1n per-
forming the second query,

(11) recerving, in response to the second query, a second
query response from the distributed database, and

(111) returning the second query response to the client
machine.

17. The computer program product of claim 16,

wherein receiving the database request from the client

machine 1s performed in accordance with a first inter-
face protocol,

US 9,747,339 B2

17 18
wherein submitting the first query and submitting the returning the second query response to the client machine
second query are performed in accordance with a in a response to the HTTP request.
second interface protocol, the second interface protocol 19. The computer program product of claim 18, wherein
supported by the distributed database and being differ- the method further comprises:
ent from the first interface protocol, and 5 receiving an update request from the client machine 1n
wherein receiving the first query response and receiving accordance with the first imnterface protocol, the update

request specilying a set of data to be written to the
distributed database;
translating the update request imnto an update query in
10 accordance with the second interface protocol; and
submitting the update query to the distributed database.
20. The computer program product of claim 19, wherein
the plausibility condition specifies any of the following:
an indicator of not-empty, wherein the plausibility con-
15 dition 1s met when the first query response includes a
value that 1s not empty;
a specified time, wherein the plausibility condition 1s met
when the first query response includes a value having
a timestamp more recent than the specified time; or
20 a predetermined pattern of database field values, wherein
the plausibility condition 1s met when the first query
response 1icludes a pattern of database field values that
match the predetermined pattern of database field val-
ues.

the second query response are performed 1n accordance
with the second interface protocol.

18. The computer program product of claim 17, wherein
the first interface protocol 1s a REST (Representational State
Transier) protocol, wherein, when receiving the database
request, the query description and the plausibility condition
arrive 1n a REST instruction conveyed 1mn an HT'TP (Hyper-
text Transfer Protocol) request, and wherein the method
turther comprises:

constructing the first query as a first query language

instruction 1n accordance with the second interface
protocol, the first query language instruction imple-
menting the query description and specifying the first
consistency level;

constructing the second query as a second query language

istruction in accordance with the second interface
protocol, the second query language instruction 1imple-
menting the query description and specitying the sec-
ond consistency level; and S I T

	Front Page
	Drawings
	Specification
	Claims

