12 United States Patent
Ayub et al.

UsS009747217B2

(10) Patent No.: US 9,747,217 B2

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

DISTRIBUTED HISTORY BUFFER FLUSH
AND RESTORE HANDLING IN A PARALLEL
SLICE DESIGN

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Salma Ayub, Austin, TX (US);
Sundeep Chadha, Austin, TX (US);
Michael J. Genden, Austin, TX (US);
Cliff Kucharski, Austin, TX (US);
Dung Q. Nguyen, Austin, TX (US);
David R. Terry, Austin, TX (US)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 14/727,531

Filed: Jun. 1, 2015

Prior Publication Data

US 2016/0328330 Al Nov. 10, 2016

Related U.S. Application Data

Continuation of application No. 14/706,813, filed on
May 7, 2015.

Int. CL

GO6IF 3/06 (2006.01)

Go6rl’ 12/08 (2016.01)
(Continued)

45) Date of Patent: *Aug. 29, 2017
(52) U.S. CL
CPC GO6F 12/0875 (2013.01); GO6F 3/0604
(2013.01); GO6F 3/0619 (2013.01); GO6F
3/0647 (2013.01); GO6F 3/0673 (2013.01);
GO6F 12/0842 (2013.01); GOoF 12/0891
(2013.01); GO6F 973806 (2013.01);
(Continued)
(58) Field of Classification Search
CPC .. GO6F 12/0875; GO6F 3/0604; GO6F 3/0619;
GO6F 3/0647, GO6F 3/0673; GO6F
2212/45; GO6F 2212/62
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,870,612 A 2/1999 Cheong et al.
6,070,235 A * 5/2000 Cheong GOG6F 9/3824
712/218
(Continued)

OTHER PUBLICATIONS

Eisen et al., “Method and Apparatus for Recovery in a Micropro-
cessor Having a Multi-Execution Slice Architecture,” U.S. Appl.
No. 14/883,253, filed Oct. 14, 2015, 46 pages.

(Continued)

Primary Examiner — Ann] Lo

Assistant Examiner — Michelle Taeuber

(74) Attorney, Agent, or Firm — VanLeeuwen &
Vanl.eeuwen; Steven L. Bennett

(57) ABSTRACT

An approach 1s provided in which a computing system
captures content included in a history bufler entry that
corresponds to a flush ITAG. The computing system, 1n turn,
uses an execution unit to transmit the content over a results
bus to multiple registers and restore at least one of the
registers accordingly.

7 Claims, 8 Drawing Sheets

Computing System 300,

Cispaten Unit
31

k

F

Y
ouper Slice 315

! R
 _[Regiater! |
338 1!

1 q

Y

|

Super Slice 320

E Register |
B L

b

1
i .
| {Execution| |

Unit
328

1

.]
i |Execution} | !
1

Unit
359

[
' 1
F | 1Execution|

Unit
344

1 [Execution ;

Uit
352

. Stice 322 |

Results Bus |

35U

L |
H] i
| Slice 8330 |

| Slice D346 1

US 9,747,217 B2

Page 2
(51) Int. CL 2008/0189535 Al* 82008 Agarwal GOG6F 9/3863
Go6l 9/38 (2006.01) 712/245
GO6F 12/0875 (2016.01) 2010/0169622 Al1* 7/2010 Nguyen GO6F 9/3863
P 712/228
GO6F 12/0891 (2016'01) 2011/0167247 Al 7/2011 Gibbs et al.
GO6F 12/0842 (2016.01) 2015/0324204 Al 11/2015 Eisen et al.
(52) U.S. CL 2015/0324205 A1 11/2015 Eisen et al.
CPC GO6F 9/3832 (2013.01); GOOF 2212/45

(2013.01); GOGF 2212/60 (2013.01); GO6F
2212/62 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

6,842,811 B2 1/2005 Barry et al.
8,245,018 B2* 8/2012 Nguyen GO6F 9/3863
712/244
2006/0004988 Al* 1/2006 Jordan GO6F 9/3851
712/43

OTHER PUBLICATTONS

Software Patent Institute et al., “Concurrency Control and Recovery

in Multiprocessor Database Machines: Design and Performance
Evaluation,” IP.com No. IPCOMO000161111D, Dec. 31, 1983, 219

pages.
Ayub et al., “Distributed History Buffer Flush and Restore Handling
in a Parallel Slice Design,” U.S. Appl. No. 14/706,813, filed May 7,

2015.

* cited by examiner

U.S. Patent

Aug. 29, 2017

Sheet 1 of 8

Information Handling System

110 ‘
System Memory
! 120 K 12 IPracessor Interface Bus
Memory —————— North Bndge PCL gy :
- - | Graphics | 3
““““““““““““““““““ b i Memory Cﬁngclfer oo, Display
. Controller | 195 130
Memory “‘“‘“‘"""‘"""“""‘“‘“‘ 19 e
USBStorageDeme - 145
119 -l T R et oot A tvfosbrbet |
USBDeme Use
------------------------ Devices |
.............................. USB Device 1—42 :
,,, ’_, f 144
_______________ Keyboard and Trackpad i
————————————————————————— 148
e . S e B]uetOOth ;
ExpressCard: PGl Express 1-ane ST s 148
485 USB oot le Receiver
~~~~~~~~~ e I 5 Controller =150
------- USB M0 Y Camer

802 11 ereless

........

PCt Express $-lane

-------------------------

175 / 162 Audio line-in
"""""""" 172 S | pesr sy x h"‘}.--m and Oﬂtsca; digltal
i HD - P r a d I‘t
e [nterface : Audio : : EU 10N pC
EFI-Boot Mgr SP DS | - Circuitry - 164
180 / ' | f 160 :“ Optrcal digital
-------------------------------- 178 - SOU’{h Bridge i e outptit and
o - UO Device and | : headphone jack
RN = | _, DiSk Centmller ntarnal ¢ —
: |ntema{ | ATA .Orj UATA bus 1_3*@ M;Croph[}ﬂe\j . \ iﬂt@fﬁ&‘ Spe&kﬁrs
g Hard Drive ,. ' o 168 160
185 184 - . . Ethernet |
T Cantrotler
Serial ATA bus 170
S A e e
Optical drive ™. " 188 LPC Bus TPM
____________ - 190 e, | 195
‘Legacy’ Boot : T
.. LPC Bus
o - ] \PCBus T ROM
Dev:c_es | . 196
9 T

US 9,747,217 B2



U.S. Patent Aug. 29, 2017 Sheet 2 of 8 US 9,747,217 B2

Storage Device
145 . {e.g., USB drive)
1 I :"':5.--.-..-“ | PerSOnal COmpu’[er

J'I,.- "}r:l ' l n Se rt ...........................
insert 1
. Laptop computer .

N . o
e Workstation

™
-

[

a...a....-.._a...a....-...a...a....-...a..a....-.r

AR R T
ERCaUaCnt atalaCal Cal ] P
“. 4 N X | g Ly
. M e recrmr e et
..1-.“_‘ +k‘| i r._._.q- I
"-.\._L‘ .“*‘I '------.p----r-l-
- y {
ol H
£
x

-

'.‘-'l-

k
t
+

I | 24D
\ : . v .
L :
I
. .

-

'f- - A - L I B B I B I I I I I R I I O
‘r_ll e o o o o o g o g e o o o T T

-
i
o
X
i
i

Jr e e de ey
v T T e T e T
X ko K k¥

x P

Xy
E)

Eals
err:lr*
o
P
i

X
X
X
X
X
X
X

i

X
L
s

»

oy
X

I

e

e

Foay

e ey
i

i
e

XX
X ¥

X
¥
)
F
X
F

P

X a

o a Ty
e
i

ap

Py

s
Ll

iy
S

Tty

i
L)
-vr'*-\-"-u-*-u-:-u-*-\-*-r Xy
PN )
LN
i

i
Xy
Xy
el iy
i
o
Py
RN RN

o
"
o
x
3 dr dp ke dr dp e

[}
H - ——
- ——
L L1 S - —m N
- om.— - -
. =T—drmrE Em EE Eww ==R

-
Pt L SRR
-

60 - Server

PSR TR S SR SR T SO A S S S U S S S SRS S T SO S S

e [ A LA AL LT
o N 0 aE o oF 3
I dr by e ke
N )

¥
Xy
E
E
Xy
ES
E
Xy
E
E
Xy
ES

4
&

Py
Py
s
ol
For
o
Eo
Py
s
ol
For
o

B
S e
3 pEmen]
A L e e
s T e T e T T T T Ty
PEAE A NN NN NN
)
e e

W
4

i
ok

g g e b

&

I

Compuier Network
e.g., LAN, WLAN, the Internet,
PSTN, Wireless, etc.)
200

[}
o

o m m e EEE .. —--——--
| powrm e g .y
ARG N IR
] ' ™1 T AN
i a-*l-#-*a-*a-*:-#ﬂ F_,:'_. 1##__-
q ok LA
1¢+++h+tlxﬁhhqhiﬁ
| e r.rer LA A AT
§ [ s W

L Iy Y Ay
DEIEIENED RRNags
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]

Ul Rl gl ]
CRESERGS MW
CRESERGS s
CAERERGS

[

T
“E £ F FE Y o ]
A B ) +-|-*-I- EI-*-! e

N A S _F'I | 'Tlr:q

Hand held computet/
Mobiie telephone

- LI I R R Ll B A

T w T T W T W W T TFTWERTTWET T TS

e e A e e

- T e
N -_-' B

]

L]
'.'I
e
-
—_—r
4

-
- awr,

T
Y
AN

L . - -
-5 e
- - -
e WA - - - - W
- a-

T
f

t—= -
- -
L) T La -— -

/

———
——m o mm "
.

- -
e -

.
T

i
T R e o oW oy e T

Nonvolatile
Data Store
265

- -J'J

L e -
o
-

;*_I_I*I* e

SO N el

SR W

e g e g e e e e e e e e e e dp e dp e e e g

r
v
I
»

- - I
e R w s s

Information
andling oystem
286

‘ -

" Mainframe Computer

o e ko e et e
R APPSR YRS |

wult e wh
- E E OE OEOEEEEEEEEEm

1.
i

"
-

L]

¥
i
RN

M

i i i i i Ty T Ty iy Ty T Ty Tep Ty T Ty Ty Ty T T Ty T

e -
- -
S o, I
a4 . A e o o A A A am e e TS

-

ar
-

e e e e

i T

i

r
]
r
1
]
[ ]
i
'
r
b
'
L}
*
'
]
r
1
3
'
i
1
L]
1

Nonvolatile

4

S i .
-‘-\I‘q‘_ . -u-'* -
‘q e I e o _ﬁ_'-" - “.J
- -
""'-.,__ -*'""""'"--4----..........----l----"""_-'- __'_-""
v ""'--'.____H_ T -
'H'-\'" : .-F‘--"""-l—---.-- -----""_‘_- h-'rl--
- T — il er—r— T T -
S -
-

L]

H

I
fEEEEEE e e e .-

e
ay .
T S
-

b8

-
-
- -
]

Nonvolatile Data Store
.0., hard drive,
database, efc.

R T T o T e A A R b L o T e A ey ]

e N TEN TN TEN TREN TCHN EN AN TCHN EN TCH TEN N TCHN TN TCH EN U CCHE UEN TN U TN NN W W :.'-"‘- e

"

—_
ptam
B T

FIG. 2



US 9,747,217 B2

Sheet 3 of 8

Aug. 29, 2017

U.S. Patent

Execution
Unit

Super Slice 320

Slice C 338

Bur sar sder der der der der der der der der der e obe e ale

B "l
<)

roR R R B % B K & 3% _E _& _E _X % _E _®% X % X X _§ X _E X _ _§E _& & &L _& L & _% &L _& %L & _& L _% _ % &L _& L &L _R _& _& R &L _& B &L _% K ] L B

o o
o
-
L.
{2
vermrad
{0
.
RP,
.

350

Computing System 300

Results Bus

cxecution

Super Slice 315

FIG. 3



U.S. Patent Aug. 29, 2017 Sheet 4 of 8 US 9,747,217 B2

History Buffer Entry 400

ITAG of

Restore-in- Recovery

Pending bit

ITAG of evicting
instruction

Results Datla

corresponding

Progress NGNS
S insiruction

410 4 420 430 4 440 - 450 /




US 9,747,217 B2

Sheet 5 of 8

Aug. 29, 2017

U.S. Patent

sng SyNsSey
OJUO SIUBIUOY) PUaS 9

HUM UCHTNOSXS

0} SJUBJLOY) SSBd ‘G

Hupn

_ . | ananp) onss;
uonnoax3 ”

g

aneny) anss;
0} S}LBLOY) SSBH '

Ol

~ GH O} SjuBlU0Y BAIBSAId 7

(OV14) usni4 yotedsiq ‘¢

uoionasu yoyedsiq '

13)5169) 1aydjedsiqg




U.S. Patent Aug. 29, 2017 Sheet 6 of 8 US 9,747,217 B2

Restore
< Delay
Period

"Receive \

Register

! \ Contents

sinivinie: - sieluieie !-il-l-l-ll mmmmmmmm ! e wehetmint  chmtwiete  aleietele  wietmiehe  fetwinteh  Weieteiwt  ieteiuie  wemintele  wietebele
fo s S ,
'g et f’! .r;
o == ;
f.’lj.} - a ,*f i';
> f
Li

Resend
Contents w/ Data /



U.S. Patent Aug. 29, 2017 Sheet 7 of 8 US 9,747,217 B2

History Buffer Start

Receive flush instruction with FTAG and instruct
dispatcher to hold off dispatching instructions for
corresponding thread

Analyze history buffer entries and assert RP bits for |
entries with ITAG<FTAG<= ETAG '

Send history buffer entry contents (control bits and |
data) with asserted RP bit to isstie gueue '

Did history buﬁe.r entry
inciude resuits data”
730

No

Yes

‘Data received before pre- \
determined restore delay?

No

Execution
Unit

Yes

Clear history buffer entry
145

Registers Registers |
| 336 384 |

More HB entries with RP=17

Yes 750

FIG. 7




U.S. Patent Aug. 29, 2017 Sheet 8 of 8 US 9,747,217 B2

Siice 500 ™\ Stice 820 330 ™\

i L1 Htsteryf L2 H;story % L1 History L.2 History %% L‘i History L2 Histery ; E ;
o B i [ B
§ Recovery | H Recwr_y , %; Recovery § ; §
: Mask 805 \ 1 Mask 815 \ y 1+ Mask 825 L
UL g LI TITOTTTTT g

.L-—--‘-\‘n.—.nn-—na— _------.——..-..—.—-J hnm“mﬁnnnﬁnmnm e s e e oo e e B DA me e e e e e e e e e e e W A M e e e e e s e ] T W W o oM AR AR R ——

Bit-wise OR 840

Combined
RECOV@FY Y T . AT

5o YUl LLHHLLLTT

Dispatch Unit

310




US 9,747,217 B2

1

DISTRIBUTED HISTORY BUFFER FLUSH
AND RESTORE HANDLING IN A PARALLEL
SLICE DESIGN

BACKGROUND

The present disclosure relates to an approach to restore a

register with history bufler contents in a distributed history
butler architecture.
In traditional processors, a history bufler 1s a centralized
component of an execution unit that preserves register
contents when a register 1s a target of a newly dispatched
instruction and the target register’s contents require preser-
vation, such as during a branch instruction. However, pro-
cessors with distributed architectures may configure history
buflers and registers i a distributed manner instead of a
one-to-one configuration as 1n traditional processor designs.
As such, processors with a distributed architecture require a
substantial amount of ports, entries, and wires to connect
history buflers to registers to support flush and restore
operations.

BRIEF SUMMARY

According to one embodiment of the present disclosure,
an approach 1s provided mm which a computing system
captures content included in a history bufler entry that
corresponds to a flush ITAG. The computing system, 1n turn,
uses an execution unit to transmit the content over a results
bus to multiple registers and restore at least one of the
registers accordingly.

The foregoing 1s a summary and thus contains, by neces-
sity, simplifications, generalizations, and omissions of
detail; consequently, those skilled 1n the art will appreciate
that the summary 1s illustrative only and 1s not intended to
be 1n any way limiting. Other aspects, inventive features,
and advantages of the present disclosure, as defined solely
by the claims, will become apparent in the non-limiting
detailed description set forth below.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous objects, features, and advantages made apparent
to those skilled 1n the art by referencing the accompanying
drawings, wherein:

FIG. 1 1s a block diagram of a data processing system in
which the methods described herein can be implemented;

FIG. 2 provides an extension of the information handling
system environment shown in FIG. 1 to illustrate that the
methods described herein can be performed on a wide
variety of information handling systems which operate 1n a
networked environment;

FIG. 3 1s an exemplary diagram depicting a computing,
system that performs distributed history bufier flush and
restore functions using an execution unit and a results bus;

FIG. 4 1s an exemplary diagram depicting control fields
and data fields imncluded 1n a history bufler entry;

FIG. 5 1s an exemplary diagram depicting a computer
system preserving register contents 1 a history bufler and
restoring the register contents by sending the register con-
tents from the history bufler, to an issue queue, and to an
execution unit that, in turn, transmits the contents over a
results bus to the register;

FIG. 6 1s an exemplary timing diagram depicting a
computing system re-transmitting content from a history

10

15

20

25

30

35

40

45

50

55

60

65

2

bufler to an execution in response to the history bufler
receiving results data during a restore delay period;

FIG. 7 1s an exemplary tlowchart depicting steps taken by
a computing system to restore a register; and

FIG. 8 1s an exemplary diagram depicting an approach to
inform a dispatch unit 1n a multi-slice computer system of
threads 1n process of a flush operation.

DETAILED DESCRIPTION

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises™ and/or
“comprising,” when used 1n this specification, specily the
presence of stated features, integers, steps, operations, e¢le-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, matenals, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, matenal,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the disclosure 1n the form disclosed. Many
modifications and vanations will be apparent to those of
ordinary skill 1n the art without departing from the scope and
spirit of the disclosure. The embodiment was chosen and
described 1 order to best explain the principles of the
disclosure and the practical application, and to enable others
of ordinary skill 1n the art to understand the disclosure for
various embodiments with various modifications as are
suited to the particular use contemplated.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present 1nvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-




US 9,747,217 B2

3

guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program 1instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program 1instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including

10

15

20

25

30

35

40

45

50

55

60

65

4

instructions which implement aspects of the function/act
specified in the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions. The
following detailed description will generally follow the
summary ol the disclosure, as set forth above, further
explaining and expanding the definitions of the various
aspects and embodiments of the disclosure as necessary.

FIG. 1 illustrates information handling system 100, which
1s a simplified example of a computer system capable of
performing the computing operations described herein.
Information handling system 100 includes one or more
processors 110 coupled to processor intertace bus 112.
Processor interface bus 112 connects processors 110 to
Northbridge 115, which 1s also known as the Memory
Controller Hub (MCH). Northbridge 115 connects to system
memory 120 and provides a means for processor(s) 110 to
access the system memory. Graphics controller 125 also
connects to Northbridge 115. In one embodiment, PCI
Express bus 118 connects Northbridge 115 to graphics
controller 125. Graphics controller 125 connects to display
device 130, such as a computer monitor.

Northbridge 115 and Southbridge 135 connect to each
other using bus 119. In one embodiment, the bus 1s a Direct
Media Interface (DMI) bus that transfers data at high speeds
in each direction between Northbridge 115 and Southbridge
135. In another embodiment, a Peripheral Component Inter-
connect (PCI) bus connects the Northbridge and the South-
bridge. Southbridge 135, also known as the I/O Controller
Hub (ICH) 1s a chip that generally implements capabilities
that operate at slower speeds than the capabilities provided
by the Northbridge. Southbridge 135 typically provides
various busses used to connect various components. These

busses include, for example, PCI and PCI Express busses, an
ISA bus, a System Management Bus (SMBus or SMB),

and/or a Low Pin Count (LPC) bus. The LPC bus often
connects low-bandwidth devices, such as boot ROM 196
and “legacy” 1/0O devices (using a “super 1/0O” chip). The
“legacy” 1/0 devices (198) can include, for example, serial




US 9,747,217 B2

S

and parallel ports, keyboard, mouse, and/or a tfloppy disk
controller. The LPC bus also connects Southbridge 135 to
Trusted Platform Module (TPM) 195. Other components
often included 1n Southbridge 133 include a Direct Memory
Access (DMA) controller, a Programmable Interrupt Con-
troller (PIC), and a storage device controller, which connects
Southbridge 135 to nonvolatile storage device 185, such as
a hard disk drive, using bus 184.

ExpressCard 155 1s a slot that connects hot-pluggable
devices to the information handling system. ExpressCard
155 supports both PCI Express and USB connectivity as it
connects to Southbridge 135 using both the Universal Serial
Bus (USB) the PCI Express bus. Southbridge 1335 includes
USB Controller 140 that provides USB connectivity to
devices that connect to the USB. These devices include
webcam (camera) 150, infrared (IR) receiver 148, keyboard
and trackpad 144, and Bluetooth device 146, which provides
tor wireless personal area networks (PANs). USB Controller
140 also provides USB connectivity to other miscellaneous
USB connected devices 142, such as a mouse, removable
nonvolatile storage device 145, modems, network cards,
ISDN connectors, fax, printers, USB hubs, and many other
types of USB connected devices. While removable nonvola-
tile storage device 145 1s shown as a USB-connected device,
removable nonvolatile storage device 145 could be con-
nected using a diflerent interface, such as a Firewire inter-

face, etcetera.

Wireless Local Area Network (LAN) device 175 connects
to Southbridge 135 via the PCI or PCI Express bus 172.
LAN device 175 typically 1mplements one ol the IEEE
802.11 standards of over-the-air modulation techniques that
all use the same protocol to wireless communicate between
information handling system 100 and another computer
system or device. Optical storage device 190 connects to
Southbridge 135 using Serial ATA (SATA) bus 188. Serial
ATA adapters and devices communicate over a high-speed
serial link. The Serial ATA bus also connects Southbridge
135 to other forms of storage devices, such as hard disk
drives. Audio circuitry 160, such as a sound card, connects
to Southbridge 135 via bus 158. Audio circuitry 160 also
provides functionality such as audio line-in and optical
digital audio m port 162, optical digital output and head-
phone jack 164, internal speakers 166, and internal micro-
phone 168. Ethernet controller 170 connects to Southbridge
135 using a bus, such as the PCI or PCI Express bus.
Ethernet controller 170 connects information handling sys-
tem 100 to a computer network, such as a Local Area
Network (LAN), the Internet, and other public and private
computer networks.

While FIG. 1 shows one information handling system, an
information handling system may take many forms. For
example, an information handling system may take the form
of a desktop, server, portable, laptop, notebook, or other
form factor computer or data processing system. In addition,
an information handling system may take other form factors
such as a personal digital assistant (PDA), a gaming device,
ATM machine, a portable telephone device, a communica-
tion device or other devices that include a processor and
memory.

The Trusted Platform Module (TPM 195) shown in FIG.
1 and described herein to provide security functions 1s but
one example of a hardware security module (HSM). There-
tore, the TPM described and claimed herein includes any
type of HSM including, but not limited to, hardware security

devices that conform to the Trusted Computing Groups
(TCG) standard, and entitled “Trusted Platform Module

(TPM) Specification Version 1.2.” The TPM 1s a hardware

10

15

20

25

30

35

40

45

50

55

60

65

6

security subsystem that may be incorporated into any num-
ber of information handling systems, such as those outlined
in FIG. 2.

FIG. 2 provides an extension of the information handling,
system environment shown in FIG. 1 to illustrate that the
methods described herein can be performed on a wide
variety of information handling systems that operate 1n a
networked environment. Types of information handling sys-
tems range from small handheld devices, such as handheld
computer/mobile telephone 210 to large mainirame systems,
such as mainirame computer 270. Examples of handheld
computer 210 include personal digital assistants (PDAs),
personal entertainment devices, such as MP3 players, por-
table televisions, and compact disc players. Other examples
of information handling systems include pen, or tablet,
computer 220, laptop, or notebook, computer 230, worksta-
tion 240, personal computer system 250, and server 260.
Other types of information handling systems that are not
individually shown 1n FIG. 2 are represented by information
handling system 280. As shown, the various information
handling systems can be networked together using computer
network 200. Types of computer network that can be used to
interconnect the various information handling systems

include Local Area Networks (LANs), Wireless Local Area
Networks (WLANSs), the Internet, the Public Switched Tele-
phone Network (PSTN), other wireless networks, and any
other network topology that can be used to interconnect the
information handling systems. Many of the information
handling systems include nonvolatile data stores, such as
hard drives and/or nonvolatile memory. Some of the infor-
mation handling systems shown in FIG. 2 depicts separate
nonvolatile data stores (server 260 utilizes nonvolatile data
store 2635, mainirame computer 270 utilizes nonvolatile data
store 275, and information handling system 280 utilizes
nonvolatile data store 285). The nonvolatile data store can be
a component that 1s external to the various information
handling systems or can be internal to one of the information
handling systems. In addition, removable nonvolatile stor-
age device 145 can be shared among two or more informa-
tion handling systems using various techniques, such as
connecting the removable nonvolatile storage device 145 to
a USB port or other connector of the information handling
systems.

FIG. 3 1s an exemplary diagram depicting a computing,
system that performs distributed history bufler flush and
restore functions using an execution unit and a results bus.
Computing system 300, such as a processor or multi-
processor, includes a distributed, multi-slice architecture
that utilizes an execution unit results bus to distribute restore
content to registers and other history buflers.

As discussed herein, computing system 300 passes restore
content from a history bufler entry to a corresponding
execution unit through an issue queue. The execution unit,
in turn, transmits the restore content over results bus 350,
which a register snoops and restores the register contents
accordingly. As such, a history butler in one super slice (e g,
history bufler 324) may seamless restore a register 1n a
different super slice (e.g., register 354). As those skilled 1n
the art can appreciate, computing system 300 may include
more or less super slices than what 1s shown 1n FIG. 3, and
cach super slice may include more or less slices than what
1s shown 1n FIG. 3.

Computing system 300 includes two super slices 315 and

320, which includes two slices and a register. Super slice 315
includes register 336, slice A 322 and slice B 330. Each of
the slices 322 and 330 include a history butler (324, 332),
issue queue (326, 334), and execution umt (328, 355).




US 9,747,217 B2

7

Likewise, super slice 320 includes register 354, slice A 338
and slice B 346. Each of the slices 338 and 346 include a

history bufler (340, 348), i1ssue queue (342, 350), and
execution unit (344, 352).

Dispatch unit 310 dispatches an instruction to one of 1ssue
queues 326, 334, 342, or 350. In one embodiment, each 1ssue
queue handles specific threads and dispatch unit 310 selects
one of the 1ssue queues based upon an instruction’s targeted
thread. At times, 1n one embodiment, the instruction may
target one or more registers 1n registers 336 or 354 to store
information. During these times, the current content within
the targeted registers may require preservation (e.g., during,
a branch instruction). As such, the targeted registers store the
existing content 1n one of the history bullers within their
corresponding super slice, such as on a per-thread basis. For
example, registers 336 may store existing content 1n history
butler 324 or history bufler 332 based upon the thread that
evicted the current content. The current content includes
control information, such as an instruction tag (ITAG), and
may include results data of the corresponding instruction has

completed execution and the results data 1s available (see
FIG. 4 and corresponding text for further details).

At times, the registers may need to be restored to a prior
state using the content stored in the history buflers. For

ers.
example, computing system 300 may have predicted an
incorrect branch and needs to restore to a state prior to the
branch instruction. As such, an instruction Fetch Umt (IFU)
consolidates flush requests into a single flush point (e.g., an
oldest flush point), and then broadcasts a Flush Valid with a
Flush ITAG.

When a flush ITAG (FTAG) occurs, computing system
300 1dentifies history buller entries based upon relationships
between the FTAG, an instruction tag (ITAG), and an evictor
tag (ETAG) (see FIGS. 5, 8, and corresponding text for
turther details). The content 1s read from each identified
history buller entry and sent to an 1ssue queue within the
history bufler’s slice. For example, history butler 324 sends
matching recovery content to 1ssue queue 326 and history
builer 332 sends matching recovery content to 1ssue queue
334.

The 1ssue queues detects, via an arbitration process, that
the content corresponds to a restore operation and, 1n turn,
the 1ssue queue passes the recovery content to a respective
execution unit within the slice. For example, 1ssue queue
326 sends recovery content to execution unit 328.

The execution units recognmize that the content is recovery
content and, in turn, transmits the recovery content onto
results bus 350. In one embodiment, the history bulfler
detects 1f 1t has any registers to restore. If so, the history
butler sends a “recovery request” to the 1ssue queue and the
1ssue queue provides a “recovery grant” back to the history
bufler. With the grant, the contents of the selected history
bufler entry are passed to the issue queue and onto the
execution unit. As such, the execution unit reflects the
source data (instruction input data, which 1s the register
content of the HB entry we’re restoring) onto results bus
350.

Results bus 350 distributes the content to computing
system’s history bufllers and registers using existing wiring,
which reduces the wiring complexities of computing system
300. In turn, a register may snoop the results bus and restore
a register. In one embodiment,

FIG. 4 1s an exemplary diagram depicting control fields
and data fields included 1n a history bufler entry. Multiple
history bufler entries 400 are included 1n a history bufler and
include control fields and results data fields. As those skilled

10

15

20

25

30

35

40

45

50

55

60

65

8

in the art can appreciate, a history builer entry may have
more or less control fields than what 1s shown in FIG. 4.

A history buller sets restore in progress field 410 when the

history bufler sends an entry to the 1ssue queue without all
the results data included. RIP field 410 stores a marker that

indicates the entry 1s subject to the restore delay period
discussed herein 11 the write back results data arrive during
the restore delay period. RIP field bit functions include:

SE'T when an entry 1s sent to the 1ssue queue and the

history bufller entry did not include the entirety of the
results data.

IF (no write back occurs to a RIP=1 entry during restore
delay period) THEN clear RIP bit at the end of the
restore delay period

IF (wnite back occurs to a RIP=1 entry during the restore
delay period expires) THEN 1. Set the recovery pend-
ing bit (RP, discussed below) back to ‘1’ to indicate the
entry needs to be restored again, and 2. When the
second restore occurs, clear both the RP and RIP bits);

ITAG field 420 includes an ITAG corresponding to the

instruction of the content included 1n the history bufler entry.
As such, when results data i1s available for an executed
instruction, the results data 1s stored in data fields 450 of the
history bufler entry that includes the corresponding ITAG 1n
field 410. ETAG 430 1s includes an instruction tag of the
instruction that evicted the corresponding recovery content.
Recovery pending bit 440 1s set when the history buller
entry’s contents are 1n process of being restored to a register.

FIG. 5 1s an exemplary diagram depicting a computer
system preserving register contents 1 a history bufler and
restoring the register contents by sending the register con-
tents from the history bufler, to an issue queue, and to an
execution unit that, in turn, transmits the contents over a
results bus to the register.

The dispatch unit dispatches an instruction that targets a
register (1). When the dispatched instruction is, for example,
a branch instruction, the register preserves the original
register contents 1n the history bufler (2). At a later point in
time, the dispatch unit 1ssues a flush ITAG (3), such as 1n
response to an incorrectly predicted branch mstruction. The
history bufler identifies the history builer entry that includes
the contents to be restored, and passes the restore contents
to the 1ssue queue (4).

The 1ssue queue passes the restore contents to the execu-
tion unit (5). The execution unit sends the restore contents on
the results bus, which distributes the restore contents to the
registers 1 the computer system (6). In turn, the register
snoops the results contents ofl the results bus and restores
the register accordingly.

FIG. 6 1s an exemplary timing diagram depicting a
computing system re-transmitting content from a history
bufler to an execution in response to the history bufler
receiving results data during a restore delay period.

During a restore operation, history buller entry content 1s
sent from the history buller, starting at time t1, to the 1ssue
queue, to the execution unit, onto the results bus, and finally
being restored by a register at time t3. The time from the
content restoration initiation (t1) to restoring the register 1s
referred to herein as a restore delay period. When the history
bufler entry content does not include results data, such as
when results are not yet available for an instruction, the
history budl

er monitors whether the results data becomes
available during the restore delay time period. When the data
1s not available until after the restore delay time period, the
register snoops the results bus and collects the restore data
accordingly.




US 9,747,217 B2

9

FIG. 6 shows a situation when the restore data 1s available
during the restore delay period. When the data 1s available
at time t2, the history bufler captures the data. The history
bufler updates the restore data and re-transmits updated
restore data at time t4, which includes the restore control
information and results data. As such, the updated content
passes through the 1ssue queue, execution unit, and onto the
results bus whereupon the register updates at time t5 with the
updated restore contents.

FIG. 7 1s an exemplary flowchart depicting steps taken by
a computing system to restore a register. Processing com-
mences at 700, whereupon, at step 710, the process receives
a flush mstruction (FTAG) and 1instructs a dispatch unit to
discontinue dispatching mstructions for a thread correspond-
ing to the flush ITAG. At step 715, the process analyzes
history builer entries and asserts recovery pending (RP) bits
for entries whose ITAG and ETAG correspond to the FTAG
such that ITAG<FTAG<=ETAG.

At step 720, the process clears history builer entries where
the FTAG<ITAG, such as clearing write (W) bits, recovery
pending (RP) bits, ITAG valid bits, and ETAG valid bits. In
one embodiment, the flush point (FTAG) indicates the ITAG
of an instruction that failed or got corrupted and causes the
system to restore the state of the machine to a state 1t was
betore execution of the failed or corrupt instruction. As such,
when the FTAG<history bufler ITAG, the history bufler
entry was younger (newer) than the flush point and further
along i the program execution than where the fault
occurred. At step 7235, the process sends history bufler entry
content, such as control bits and results data it available to
an 1ssue queue (e.g., 1ssue queue 326).

The process determines as to whether the history bufler
contents 1nclude data (decision 730). If the history bufler
contents included data, then decision 730 branches to the
‘yes’ branch. On the other hand, 11 the history bufler content
does not include results data, but rather just control bits, then
decision 730 branches to the ‘no’ branch. The process
determines as to whether the history bufler receives data
during the restore delay period such as that shown 1n FIG.
6 (decision 735). If the history bufler did not receive data
during the restore delay period, then decision 735 branches
to the ‘no’ branch. On the other hand, i the history bufler
receives data belfore the restore delay period, then decision
735 branches to the ‘yes’ branch, whereupon, at step 740, the
process resends the history buller contents with the results
data. At step 745, the process clears the history builer entry.

The process determines as to whether more history bufler
entries have an asserted recovery pending bit (decision 750).
If more history bufller entries have RP=1, then decision 750
branches to the ‘yes’ branch to process additional history
butler entries. On the other hand, if there are no more history
bufler entries that have RP=1, then decision 750 branches to
the ‘no” branch. FIG. 7 processing thereaiter ends at 755.

FIG. 8 1s an exemplary diagram depicting an approach to
inform a dispatch unit in a multi-slice computer system of
threads 1n process of a flush recovery operation. In one
embodiment, the flush recovery might be slow and impact
overall thread performance. As such, a computing system
may discontinue dispatching instructions for threads that are
in process ol restoring registers, and focus on dispatching
instructions for threads that are not restoring registers.

FIG. 8 shows slices 800, 810, 820, and 830, each 1nclud-
ing multiple history buflers. The history buflers with recov-
ery pending bits generate a 32-bit mask per slice (recovery
masks 805, 815, and 825), which are bit wise OR’d (840) to
form combined recovery mask 850. Dispatch unit 320 stores
combined recovery mask 850 as a table of all the registers

10

15

20

25

30

35

40

45

50

55

60

65

10

that are 1n process of being recovered. In turn, i this
embodiment, the dispatch unit refrains from dispatching
instructions targeted to threads with current flush activity,
but continues to dispatch instructions targeted to threads
without current flush activity.

While particular embodiments of the present disclosure
have been shown and described, it will be obvious to those
skilled 1n the art that, based upon the teachings herein, that
changes and modifications may be made without departing
from this disclosure and its broader aspects. Therefore, the
appended claims are to encompass within their scope all
such changes and modifications as are within the true spirit
and scope of this disclosure. Furthermore, it 1s to be under-
stood that the disclosure 1s solely defined by the appended
claims. It will be understood by those with skill 1n the art that
i a specific number of an introduced claim element 1is
intended, such intent will be explicitly recited in the claim,
and 1n the absence of such recitation no such limitation 1is
present. For non-limiting example, as an aid to understand-
ing, the following appended claims contain usage of the
introductory phrases “at least one” and “one or more” to
introduce claim elements. However, the use of such phrases
should not be construed to imply that the introduction of a
claim element by the indefinite articles “a” or “an” limits any
particular claim containing such introduced claim element to
disclosures contaiming only one such element, even when
the same claim includes the introductory phrases “one or
more” or “at least one” and indefinite articles such as “a” or
“an’’; the same holds true for the use 1n the claims of definite
articles.

The mvention claimed 1s:

1. A method mmplemented by an information handling
system that includes a memory and a processor, the method
comprising;

sending recovery content included in a history bufler

entry to an 1ssue queue, wherein the history builer entry
corresponds to a flush instruction tag (ITAG), and
wherein the recovery content comprises the history
bufler entry 1n 1ts entirety that includes register contents
from a previous state;

passing the recovery content from the 1ssue queue to an

execution unit 1n response to the 1ssue queue determin-
ing that the recovery content corresponds to a restore
operation;

transmitting, by the execution unit included in the pro-

cessor, the recovery content to a plurality of registers
over a results bus; and

restoring at least one of the plurality of registers with the

recovery content.

2. The method of claim 1 wherein the history builer entry
1s 1included 1n a history buitler.

3. The method of claim 2 further comprising:

receiving, at the history bufler, results data corresponding

to the flush ITAG subsequent to sending the recovery
content to the 1ssue queue and belfore a pre-determined
restore delay period;

updating the recovery content to include the results data;

and

transmitting the updated recovery content to the plurality

of registers.

4. The method of claim 1 wherein the mformation han-
dling system further comprises:

a plurality of slices, each one of the plurality of slices

comprising one of a plurality of history buflers, one of
a plurality of 1ssue queues, and one of a plurality of
execution units; and




US 9,747,217 B2

11

one or more super slices that each include the plurality of
slices and one of the plurality of registers.

5. The method of claim 4 further comprising;:

transmitting the recovery content from the execution unit
residing on a first one of the one or more super slices
to the one of the plurality of registers that reside on a
second one of the one or more super slices.

6. The method of claim 1 further comprising:

identifying a first thread, from a plurality of threads, that
corresponds to the flush I'TAG; and

setting a recovery mask bit that corresponds to the first
thread, wherein the recovery mask bit informs a dis-
patch unit included 1n the processor to discontinue
dispatching instructions targeted to the first thread.

7. The method of claim 6 further comprising:

dispatching an instruction corresponding to a second one
of the plurality of threads while the dispatcher 1is
discontinuing dispatching instructions targeted to the

first thread.

10

15

20

12



	Front Page
	Drawings
	Specification
	Claims

