12 United States Patent

US009735965B1

(10) Patent No.: US 9,735,965 B1

Shavell 45) Date of Patent: Aug. 15, 2017
(54) SYSTEMS AND METHODS FOR %882; 83%; %g? i 12%88(53 %gﬁs?wal‘liij et al.
ISNICWS
PROTECTING NOTIFICATION MESSAGES 2007/0160030 Al 77007 Crer
2008/0127339 Al* 5/2008 Swain HO4L 12/585
(71) Applicant: Symantec Corporation, Mountain T 796/77
View, CA (US) 2008/0225862 Al 9/2008 Wartenberg
2009/0006641 Al 1/2009 Yaqoob et al.
(72) Inventor: Michael Shavell, Merrimack, NH (US) 2009/0031128 Al* 172009 French GOOF %i;ﬁéﬁ
: : : 2010/0161714 Al 6/2010 Dongre
(73) Assignee: Symantec Corporation, Mountain 2010/0274972 A1 10/2010 Reafely
View, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 OLTHER PUBLICATIONS
U.S.C. 154(b) by 0 days. Michael Shavell, et al; Systems and Methods for Reducing Network
Traflic by Using Delta Transfers; U.S. Appl. No. 14/609,465, filed
(21) Appl. No.: 14/687,941 Jan. 30, 2015.
(22) Filed: Apr. 16, 2015 (Continued)
(51) Int. ClI Primary Examiner — Yogesh Paliwal
HOZH; 2'9 06 (2006.01) (74) Attorney, Agent, or Firm — FisherBroyles LLP
HO4L 9/32 2006.01
52 Us O () (57) ABSTRACT
CPC HO4L 9/3236 (2013.01); HO4L 9/3242 The: disc}osed computer-implemented H}ethOFl fpr protecting
(2013.01); HO4L 9/3263 (2013.01) notification messages may include (1) identitying at least a
(58) Field of Classification Search portion of a nofification message to be protected from
CPC HO4T, 9/32: HO41, 9/3236: H041, 9/3242: IIlOdiﬁ(h‘il’[i(?!llj (2) USiIlg a hash function to calculate a hash of
"""" ’ j 104 O /3263: the portion of the notification message, (3) encrypting the
USPC oo 713/170 ~ hash, (4) adding the encrypted hash to the notification
See application file for complete search history. message, and (5) transmitting the notification message to a
client that 1s configured to vernify that the portion of the
(56) References Cited message has not been modified by (a) decrypting the
encrypted hash, (b) using the hash function to recalculate the

U.S. PATENT DOCUMENTS

hash of the portion of the notification message, and (c)
verilying that the decrypted hash 1s the same as the recal-

7,188,214 Bl 372007 Kasriel et al. culated hash. Various other methods, systems, and com-
8,516,193 Bl 8/2013 Clinton et al. dabl 4 Iso disclosed. Var: h h
2005/0055437 Al* 3/2005 Burckart GOGF 17/30949 ~Puter-readable media are also disclosed. various other meth-
709/224 ods, systems, and computer-readable media are also
2005/0081039 ALl* 4/2005 Lee ..ccccoocvvvvveennnen, HO04L 63/045 disclosed.
713/176
2005/0114711 Al 5/2005 Hesselink et al. 18 Claims, 6 Drawing Sheets

™ =)

|dentify at |least a portian of & notification message to be protected
from medification

202

LIsing a hash function to calculate a hash of the portion of the
notification message

304

Adld the encryptad hash to the notification messagds

Encrypt the hash
306
308

Transmit the notification message to a cllent that 3 configured to
verify that the partion of the message has not been modified by:
decrypting the encrypled hash, using the hash function o
recalculate the hazh of the partion of the notification message, and
verifiying that the decrypted hash is the same as the recalculated
hazh

210

End

US 9,735,965 Bl
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0265159 Al1* 10/2011 Ronda HO41. 63/0853
726/6

2011/0311051 AL1™* 12/2011 Reschccoevvninnn... HO041. 63/06
380/270

2012/0054851 Al 3/2012 Piazza et al.

2012/0131083 Al 5/2012 Goddard et al.

2012/0289239 A1 11/2012 Luna et al.

2012/0323990 Al1* 12/2012 Hayworth HO041. 67/26
709/203

2013/0268673 Al 10/2013 Graham-Cumming

2014/0052772 Al 2/2014 Hourselt et al.

2014/0172961 Al 6/2014 Clemmer et al.

OTHER PUBLICATIONS

“How to disable all notifications and scan progress on Symantec
Endpoint Protection (SEP) 12.1 unmanaged client”, https://support.
symantec.com/en__ US/article. TECH172737 html, as accessed Dec.
9, 2014, Article: TECH172737, Symantec Corporation, (Jul. 28,

2012).

“List of HTTP header fields™, http://en. wikipedia.org/wiki/List__
of HTTP_ header fields, as accessed Dec. 9, 2014, Wikipedia,
(Jul. 24, 2010).

Guzel, Burak, “HTTP Headers for Dummies”, http://code.tutsplus.
comv/tutorials/http-headers-for-dummies--net-8039, as accessed
Dec. 9, 2014, (Dec. 9, 2009).

Rouse, Margaret, “payload”, http://searchsecurity.techtarget.com/

definition/payload, as accessed Dec. 9, 2014, (May 18, 2011).

“What’s the difference between a POST and a PUT HTTP
REQUEST?”, http://stackoverflow.com/questions/107390/whats-
the-difference-between-a-post-and-a-put-http-request, as accessed
Dec. 9, 2014, (Sep. 20, 2008).

“Hypertext Transfer Protocol”, http://en.wikipedia.org/wiki/ Hyper-
text_ Transfer Protocol, as accessed Dec. 9, 2014, Wikipedia, (Oct.
8, 2005).

“What information appears in event logs? (Event Viewer)”, http://
windows.microsoit.com/en-us/windows/what-information-event-
logs-event-viewer# 1 TC=windows-7, as accessed Dec. 9, 2014,
Microsoft, (Dec. 15, 2013).

Michael Shavell, et al.; Method or Mechanism for Long Lived
Connection Migration; U.S. Appl. No. 14/493,013, filed Sep. 22,
2014.

Michael Shavell, et al.; Method or mechanism for reduction in
throughput for HI'TP utilizing Long Polling with a distribution;
U.S. Appl. No. 14/571,257, filed Dec. 15, 2014.

Keith Newstadt, et al; Systems and Methods for Consolidating
Long-Polling Connections; U.S. Appl. No. 14/022,222, filed Sep.
10, 2013.

“XEP-0326: Internet of Things—Concentrators”, http://xmpp.org/
extensions/xep-0326.html, as accessed Jun. 29, 2013, (Jun. 14,
2013).

Michael Shavell, et al.; Systems and Methods for Sending Push
Notifications That Include Preferred Data Center Routing Informa-
tion; U.S. Appl. No. 14/868,324, filed Sep. 28, 2015.

Geract, Austin, “GTM vs LTM—Difference between F5 Global &
Local Traflic Manager™”, http://worldtechit.com/gtm-vs-ltm-differ-
ence-15-global-local-traffic-manager/, as accessed Sep. 2, 2015,
Worldtech IT, LLC, (Oct. 1, 2014).

* cited by examiner

U.S. Patent Aug. 15, 2017 Sheet 1 of 6 US 9,735,965 B1

System
100

Modules
102

|dentification Module
104

Hashing Module

106

Database

Encryption Module 120
108

Messaging Module
110

Communication Module
112

FIG. 1

U.S. Patent Aug. 15, 2017 Sheet 2 of 6 US 9,735,965 B1

200

Server

Notification Message 206
208

Database
120

ldentification Module
104

Critical Portion
210

Hash Function Hashing Module Hash
212 106 214

Encryption Module
108

Encrypted Hash
216

Messaging Module
110

Protected Message
218

Communication Module
112

Network
204

Computing Device

202

FIG. 2

U.S. Patent Aug. 15,2017 Sheet 3 of 6 US 9,735,965 B1

300

\‘

Ildentify at least a portion of a notification message to be protected
from modification
302

Using a hash function to calculate a hash of the portion of the
notification message
304

Encrypt the hash
306

Add the encrypted hash to the notification message
308

Transmit the notification message to a client that is configured to
verity that the portion of the message has not been modified by:
decrypting the encrypted hash, using the hash function to
recalculate the hash of the portion of the notification message, and

verifying that the decrypted hash is the same as the recalculated
hash

310

End

FIG. 3

U.S. Patent Aug. 15, 2017 Sheet 4 of 6 US 9,735,965 B1

400

™\

Notification Message
402

HTTP/1.1 200 OK

Date: Man, 23 Feb 2015 12:28:53 GMT

oerver: Apache/2.2.14 (Win32)

Last-Maodified: Mon, 23 Feb 2015 12:28:45 GMT
Content-Length: 231

Content-Type: text/html

Protected-block: 3GF1155
SighedHash-3GF1155:

IQECBAABCAAGBQJVGYIEAAOJECJIQCzpNhfZ2adfEH/jon3JVMoAITePt4iTj//aR6

Header MrdowaKZh6WSk66a+85zS9MDkogWQDKj9rF CvDoyuLfHqQuUImMmgkm9KRgjf7If9Wu
Field fyN4ddOB68ToXOMohDQIGSF52vPzHBNRktXTR19ny7 1rDudswTUZ2uD8i9FrYIKweOS
404(1) n13aRunHbRaWzQO8DHASCWvbPdsg10INFWORsSEC62WZ06H4Nn+/\W3NOAKI845SLgMp

S1b4bGxJqWFg/wnvDkuBjfQTIMIW8BloGM7kjRZXDgMcN2wY Sadn2Lb9ck4fC1RT

LTINYMP5pG3Zpazb XodKwsGwMsUXC+xQL3cuM+kv1TNWOTyIwMZhdB8bIMWCWgUA=
=ESuZz

Protected-block: 575A13C
SignedHash-575A13C:
IQECBAABCAAGBQJVGYI+AACJECJIQCzpNhf2alo4H/132Zb+EIBOJNgb6Nnpmo7 1Uf

Header FBPNVCOZ2ZFyCWoE Y TQpxQqgKbagU1JTHUTE|S|TZzyEAgESGDWXN9flpQWIIZhilcQ
Field OhWulimwM1+VVWdMI8ecnb2fY6M|59A09RI/AFovUq84BVI+LC1v+d0/8ghiDpyO
404(2) 2e58qGroftbKO9WByX+XBvofQVMbjpemVILJGzLIULUHCIsBEHOfcaudnpplSATE

f2enbMY9ERt/sv/MXuHu12JIb2+S2c8gNQSUNGIF mOfIFHfih5rQuBOTvJTkrVh

edXG72pSVLOOJUrrDSJMISFSOUOIIJIIQ4CTMEJryGyISONHCZ2BmzItG3y61GZ4=
=707N

<html>
<body>
Protected <p><id="3GF1155™>
Block { Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec ac sagittis tellus.
406(1) </p>
<p> <|d="H575A13C">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur sit amet mauris pretium,

Protected = SR
Block tristique mauris quis, St_::e:Ierlqun_a purus. ouspendisse eu nisi et libero chtus malesuada.
Sed ac massa mollis, finibus enim sit amet, congue eros. Nunc augue justo, rutrum vel
406(2) magna at, mollis fermentum lacus. Donec id egestas ipsum, vitae.
</p>
</body>
</html>

FIG. 4

US 9,735,965 B1

Sheet 5 of 6

Aug. 15, 2017

U.S. Patent

£€es
921A9(] abelo1S

dmjoeqg

44
S0 lI9]u|
uoned uNWWon

0cl
aseqgeleq

43

92IA8(] 8brIOIQ
Alewlld

¥€S
aoeL19)U]
abel0)q

0cs
13]|0NU0Y O/

G Old

82S
821A8(]

1nduy

0gs
AN T]
nduy

8ls

18]|0U0D) AJOWBIN

201
SS|NPON]

916
Alows wolsAg

[Z4S
821A8(]

Aeidsiq

9¢s

19)depy
Aedsiq

LG
2INjonJIselju)
UCIJESIUNWIWON)

V1S
J0SS2001d

X _

0LG
Wwia)sAS bunndwon

(NJOZO
221A8(

US 9,735,965 B1

(1)0Z9
(NJO69 22IA8(]

B0IAS(]

&
= (17069
O 90IA3(]

~—

W

W

=
N

089
oUdE 4 NVS

™~
v
—
3

7ol
v

= G69
« Aelly abelo)q

Jusbifau

(NJ099
=hllX=Tqg

(17099

901A8(]

U.S. Patent

9 OId

G¥9
IEYNETS

0r9
19AI8Q

0G9
YJOMION

0€9

Jusi|o

001
WB)SAR

019
Jusi|o

AN

009

3IN103]IYIIY YJOMISN

US 9,735,965 Bl

1

SYSTEMS AND METHODS FOR
PROTECTING NOTIFICATION MESSAGES

BACKGROUND

Many orgamizations operate notification services that
update client devices with operating data, alerts, or other
time-sensitive information. Since a notification service of
this kind may service millions or tens of millions of clients,
there 1s an incentive to communicate information as efli-
ciently as possible to limit the bandwidth required. Another
concern may be the security and integrity of the notification
messages. Data transmitted over the Internet 1s inherently
insecure and subject to man-in-the-middle attacks where
messages are ntercepted, modified, and then forwarded on
to the intended recipient.

One approach to securing notification messages may be to
use Secure Socket Layer (SSL) or Transport Layer Security
(TLS), in which the client and server negotiate a secure
connection using a handshaking procedure to agree on
communication parameters and exchange encryption keys.
Notification messages are then encrypted on the server and
decrypted at each client. However, communicating over a
secure connection 1n this way may introduce unacceptable
increases in processing and bandwidth overhead. Accord-
ingly, the instant disclosure identifies and addresses a need
for additional and improved systems for protecting notifi-
cation messages.

SUMMARY

As will be described in greater detail below, the 1nstant
disclosure describes various systems and methods for pro-
tecting notification messages by hashing all or part of a
notification message, encrypting the hash, and adding the
encrypted hash to the message. A client may determine
whether the message has been modified during transmission
by reversing the process—decrypting the encrypted hash,
rehashing the hashed portion of the message, and comparing,
the two hash values. If the two values are equal, the client
may be certain that the message originated with the message
sender 1dentified 1n the message and that the message was
delivered unmodified.

In one example, a computer-implemented method for
protecting notification messages may include (1) identifying
at least a portion of a notification message to be protected
from modification, (2) using a hash function to calculate a
hash of the portion of the notification message, (3) encrypt-
ing the hash, (4) adding the encrypted hash to the notifica-
tion message, and (5) transmitting the notification message
to a client that 1s configured to verily that the portion of the
message has not been modified by (a) decrypting the
encrypted hash, (b) using the hash function to recalculate the
hash of the portion of the notification message, and (c)
veritying that the decrypted hash 1s the same as the recal-
culated hash.

In some examples, encrypting the hash may include
encrypting the hash using a private signing key such that the
encrypted hash 1s capable of being decrypted using a public
verification key. In one embodiment, the public verification
key may include a public key 1n a digital certificate. In some
examples, adding the encrypted hash to the notification
message may include adding the encrypted hash to a header
of the notification message. In one embodiment, the portion
of the notification message may include all of the notifica-
tion message, mncluding the header of the notification mes-
sage and the encrypted hash. In one embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

2

computer-implemented method may further include adding
an additional header to the notification message and 1ndi-
cating 1 the additional header that the portion of the
notification message protected from modification may
include all of the notification message.

In one embodiment, the computer-implemented method
may further include delimiting a beginning and end of the
portion of the message protected from modification using
sequences of at least one character. In one embodiment, the
notification message may include at least one message field
delimited by sequences of at least one character. In one
embodiment, the notification message may include one or
more message lfields delimited by sequences of one or more
characters. Identifying the portion of the notification mes-
sage to be protected from modification may include i1denti-
fying one or more message fields to be protected from
modification. Calculating the hash of the portion of the
notification message may include calculating the hash of the
message field. In one embodiment, the computer-imple-
mented method may further include identifying, in the
header of the notification message, the message field pro-
tected from modification. In one embodiment, transmitting
the notification message 1s performed by a server that
transmits the notification message via a connection that was
established 1n response to a long-polling request made by the
client.

In one embodiment, a system for implementing the
above-described method may include several modules
stored 1n memory, such as (1) an 1dentification module that
identifies at least a portion of a notification message to be
protected from modification, (2) a hashing module that uses
a hash function to calculate a hash of the portion of the
notification message, (3) an encryption module that encrypts
the hash, (4) a messaging module that adds the encrypted
hash to the notification message, and (5) a communication
module that transmits the notification message to a client
that 1s configured to verify that the portion of the message
has not been modified by (a) decrypting the encrypted hash,
(b) using the hash function to recalculate the hash of the
portion of the notification message, and (c) veritying that the
decrypted hash 1s the same as the recalculated hash. The
system may also include at least one physical processor
configured to execute the identification module, the hashing
module, the encryption module, the messaging module, and
the communication module.

In some examples, the above-described method may be
encoded as computer-readable 1nstructions on a non-transi-
tory computer-readable medium. For example, a computer-
readable medium may include one or more computer-ex-
ecutable instructions that, when executed by at least one
processor of a computing device, may cause the computing
device to (1) identify at least a portion of a notification
message to be protected from modification, (2) using a hash
function, calculate a hash of the portion of the notification
message, (3) encrypt the hash, (4) add the encrypted hash to
the notification message, and (5) transmit the notification
message to a client that 1s configured to verity that the
portion of the message has not been modified by (a) decrypt-
ing the encrypted hash, (b) using the hash function to
recalculate the hash of the portion of the notification mes-
sage, and (¢) verilying that the decrypted hash 1s the same
as the recalculated hash.

Features from any of the above-mentioned embodiments
may be used 1n combination with one another 1n accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully

US 9,735,965 Bl

3

understood upon reading the following detailed description
in conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings
demonstrate and explain various principles of the instant
disclosure.

FIG. 1 1s a block diagram of an exemplary system for
protecting notification messages.

FIG. 2 1s a block diagram of an additional exemplary
system for protecting notification messages.

FIG. 3 1s a flow diagram of an exemplary method for
protecting notification messages.

FIG. 4 1s a block diagram of an exemplary notification
message protected from modification.

FIG. 5 1s a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 6 1s a block diagram of an exemplary computing
network capable of implementing one or more of the
embodiments described and/or illustrated herein.

Throughout the drawings, i1dentical reference characters
and descriptions indicate similar, but not necessarily 1den-
tical, elements. While the exemplary embodiments
described herein are susceptible to various modifications and
alternative forms, specific embodiments have been shown
by way of example 1n the drawings and will be described in
detaill herein. However, the exemplary embodiments
described herein are not intended to be limited to the
particular forms disclosed. Rather, the instant disclosure
covers all modifications, equivalents, and alternatives falling
within the scope of the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure 1s generally directed to systems
and methods for protecting notification messages. As will be
explained 1n greater detail below, systems and methods
described herein may protect notification messages from
modification by including an encrypted hash of a protected
portion of the message within the message itself (for
example, 1n a message header). Message recipients can use
the encrypted hash to verity the identity of the sender and to
determine whether the message was modified during trans-
mission. Since only a small amount of data (a hash of one
or more protected portions of the message) 1s encrypted,
systems and methods described herein may involve less
computational overhead than encrypting the entire message
and/or performing the handshaking involved 1n establishing
an SSL connection.

The following will provide, with reference to FIGS. 1, 2,
and 4, detailed descriptions of exemplary systems for pro-
tecting notification messages. Detailed descriptions of cor-
responding computer-implemented methods will also be
provided in connection with FIG. 3. In addition, detailed
descriptions of an exemplary computing system and network
architecture capable of implementing one or more of the
embodiments described herein will be provided 1n connec-
tion with FIGS. 5 and 6, respectively.

FIG. 1 1s a block diagram of exemplary system 100 for
protecting notification messages. As illustrated 1n this figure,
exemplary system 100 may include one or more modules
102 for performing one or more tasks. For example, and as

10

15

20

25

30

35

40

45

50

55

60

65

4

will be explained 1n greater detail below, exemplary system
100 may also include an identification module 104 that may
identify at least a portion of a nofification message to be
protected from modification. Exemplary system 100 may
additionally include a hashing module 106 that may use a
hash function to calculate a hash of the portion of the
notification message. Exemplary system 100 may also
include an encryption module 108 that may encrypt the hash.
Exemplary system 100 may additionally include a messag-
ing module 110 that may add the encrypted hash to the
notification message. Exemplary system 100 may also
include a communication module 112 that may transmit the
notification message to a client that may be configured to
verily that the portion of the message has not been modified.
After receiving the notification message, the client may
verily that the message has not been modified by decrypting
the encrypted hash, using the hash function to recalculate the
hash of the portion of the notification message, and verifying
that the decrypted hash may be the same as the recalculated
hash. Although 1llustrated as separate elements, one or more
of modules 102 in FIG. 1 may represent portions of a single
module or application.

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks.
For example, and as will be described in greater detail
below, one or more of modules 102 may represent software
modules stored and configured to run on one or more
computing devices, such as the devices illustrated 1n FIG. 2
(e.g., computing device 202 and/or server 206), computing
system 310 in FIG. 5, and/or portions of exemplary network
architecture 600 1n FIG. 6. One or more of modules 102 1n
FIG. 1 may also represent all or portions of one or more
special-purpose computers configured to perform one or
more tasks.

As 1llustrated 1n FIG. 1, exemplary system 100 may also
include one or more databases, such as database 120. In one
example, database 120 may be configured to store client
data, such as system configuration information and/or client
soltware version information. Exemplary system 100 may
use such data to determine the content of information
messages to be sent to client devices. Database 120 may
represent portions of a single database or computing device
or a plurality of databases or computing devices. For
example, database 120 may represent a portion of server 206
in FIG. 2, computing system 510 1n FIG. 5, and/or portions
of exemplary network architecture 600 in FIG. 6. Alterna-
tively, database 120 1n FIG. 1 may represent one or more
physically separate devices capable of being accessed by a
computing device, such as server 206 in FIG. 2, computing
system 310 1in FIG. 5, and/or portions of exemplary network
architecture 600 in FIG. 6.

Exemplary system 100 1n FIG. 1 may be implemented 1n
a variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
in FIG. 2. As shown 1n FIG. 2, system 200 may include a
computing device 202 1n communication with a server 206
via a network 204. In one example, computing device 202
may be programmed with one or more of modules 102
and/or may store all or a portion of the data 1n database 120.
Additionally or alternatively, server 206 may be pro-
grammed with one or more of modules 102 and/or may store
all or a portion of the data in database 120.

In one embodiment, one or more of modules 102 from
FIG. 1 may, when executed by at least one processor of
computing device 202 and/or server 206, enable computing

US 9,735,965 Bl

S

device 202 and/or server 206 to protect notification mes-
sages. For example, and as will be described in greater detail
below, one or more of modules 102 may cause computing,
device 202 and/or server 206 to protect notification mes-
sages. In one example, computing device 202 may be a
client of an information service or other cloud service
provided by server 206. Computing device 202 may imitiate
a long-polling connection to server 206 by sending a request
to server 206, to which server 206 may not immediately
respond, mstead maintaining a connection with computing,
device 202 for the purpose of sending one or more notifi-
cation messages at a later time. For example, 1dentification
module 104 may identify at least a portion (e.g., a critical
portion, as discussed in greater detail below) of a notification
message 208 to be protected from modification.

Hashing module 106 may, using hash function 212,
calculate hash 214 of a critical portion 210 of notification
message 208. Encryption module 108 may encrypt hash 214
to produce encrypted hash 216. Messaging module 110 may
add encrypted hash 216 to notification message 208 to
produce protected message 218. Communication module
112 may transmit protected message 218 to computing
device 202, which may be configured to verity that critical
portion 210 of the message has not been modified by
decrypting encrypted hash 216, using hash function 212 to
recalculate hash 214 of critical portion 210 of protected
message 218, and vernifying that the decrypted hash 1s the
same as the recalculated hash.

Computing device 202 generally represents any type or
form of computing device capable of reading computer-
executable 1nstructions. Examples of computing device 202
include, without limitation, laptops, tablets, desktops, serv-
ers, cellular phones, Personal Digital Assistants (PDAs),
multimedia players, embedded systems, wearable devices
(c.g., smart watches, smart glasses, etc.), gaming consoles,
combinations of one or more of the same, exemplary com-
puting system 510 1n FIG. 5, or any other suitable computing,
device.

Server 206 generally represents any type or form of
computing device that 1s capable of storing, comparing, and
transmitting data. Examples of server 206 include, without
limitation, application servers and database servers config-
ured to provide various database services and/or run certain
soltware applications.

Network 204 generally represents any medium or archi-
tecture capable of facilitating communication or data trans-
ter. Examples of network 204 include, without limitation, an
intranet, a Wide Area Network (WAN), a Local Area Net-
work (LAN), a Personal Area Network (PAN), the Internet,
Power Line Communications (PLC), a cellular network
(e.g., a Global System for Mobile Communications (GSM)
network), exemplary network architecture 600 1n FIG. 6, or
the like. Network 204 may facilitate communication or data
transier using wireless or wired connections. In one embodi-
ment, network 204 may facilitate communication between
computing device 202 and server 206.

FIG. 3 1s a flow diagram of an exemplary computer-
implemented method 300 for protecting notification mes-
sages. The steps shown 1n FIG. 3 may be performed by any
suitable computer-executable code and/or computing sys-
tem. In some embodiments, the steps shown in FIG. 3 may
be performed by one or more of the components of system
100 1n FIG. 1, system 200 1n FIG. 2, computing system 310
in F1G. 5, and/or portions of exemplary network architecture
600 in FIG. 6.

As 1llustrated 1n FIG. 3, at step 302, one or more of the
systems described herein may identify at least a portion of

10

15

20

25

30

35

40

45

50

55

60

65

6

a notification message to be protected from modification.
For example, i1dentification module 104 may, as part of
server 206 1n FI1G. 2, identify at least a portion of notification
message 208 to be protected from modification. Identifica-
tion module 104 may, for example, 1dentity critical portion
210 as the portion of notification message 208 to be pro-
tected.

As used herein, the term “notification message” generally
refers to messages a notification service sends to one or more
clients that request information from the service. For
example, an organization that provides computer security
services may provide frequent and time-critical updates to
agent programs running on client devices describing security
threats, how to recognize the threats, how to protect the
client device from the threats, and/or how to repair a
compromised device. In another example, a server may
provide software updates to a group of client devices. A
notification service may distribute the same notification
message to all clients or different notification messages to
groups ol one or more clients, according to the needs of the
notification service. Notifications may include textual and/or
binary data and use any suitable communication protocols
and/or message formatting. For example, a server may
transmit notification messages as Hypertext Transier Proto-
col (HTTP) replies to HT'TP requests received from client
devices. Message data in the HTTP replies may, for
example, be formatted using Hypertext Markup Language
(HTML), Extensible Markup Language (XML), or
GOOGLE PROTOCOL BUFFERS.

Identification module 104 may i1dentity a portion of a
notification message to be protected from modification 1n a
variety ol ways. For example, and as will be described in
greater detail below, 1dentification module 104 may protect
an entire notification message from modification. In another
example, 1dentification module 104 may i1dentily one or
more blocks of data within a notification message to be
protected from modification.

Identification module 104 may use various criteria for
determining whether to protect the entire notification mes-
sage or just a portion of the message, and 1t just a portion,
which portions of the message to select for protection. For
example, 1f an information service 1s to provide the same
message to many clients, identification module 104 may
determine that the entire message should be protected, since
the message need only be hashed once for all recipients. In
another example, i each nofification message contains
information unique to each recipient, identification module
104 may determine that only a small, critical portion of the
message that contains the unique information should be
protected, since hashing the entire message for each of many
recipients may require an unacceptable amount of process-
ing time. In another example, 1f the information service 1s
providing a software update or software configuration infor-
mation to client devices, identification module 104 may
determine that the software update or soitware configuration
information are critical portions of the message that should
be protected from modification, since the data being trans-
mitted may aflect the operation or performance of recipient
client devices.

At step 304, one or more of the systems described herein
may use a hash function to calculate a hash of the portion of
the notification message that 1s to be protected from modi-
fication. For example, hashing module 106 may, as part of
server 206 1n F1G. 2, use hash function 212, to calculate hash
214 of critical portion 210 of notification message 208.

The term “hash function,” as used herein, generally refers
to a one-way cryptographic function that, given a message

US 9,735,965 Bl

7

of any length, produces a short, fixed-length value (typically
a string of characters) called a “hash™ or “hash value.” A
recipient of the message that includes the hash may use the
same hash function to recalculate the hash for the message
to verily that the provided hash correctly corresponds to the
message. As will be described 1in greater detail below,
knowing that the hash transmitted with the notification
message 1s the hash that corresponds to the message may
enable the recipient of the message verily that the message
was not modified during transmission. Hashing module 106
may calculate a hash of the portion of the notification
message 1n a variety of ways. For example, hashing module
106 may use cryptographic hash functions such as MD3,
SHAI, or SHA256.

At step 306, one or more of the systems described herein
may encrypt the hash. For example, encryption module 108
may, as part of server 206 in FIG. 2, encrypt hash 214 to
produce encrypted hash 216. As will be described 1n greater
detail below, encrypting the hash may enable the recipient of
the notification message to verily the identity of the sender
and that the hash was not modified during transmission. If
the hash was not modified and the included hash correctly
corresponds to the hashed portion of the message, then the
recipient may be assured that the message was not modified
during transmission.

Encryption module 108 may encrypt the hash value 1n a
variety of ways. For example, encryption module 108, using,
public-key (also known as asymmetric key) cryptography,
may encrypt the hash using a private signing key, so that the
encrypted hash may be decrypted using a public verification
key. The phrases “signing key” and “verification key,” as
used herein, generally refer to paired keys in a public key
encryption scheme i which the sender may use a private
signing key to encrypt data, and a recipient of the data may
then use a publicly available key to decrypt the data and
verily the i1dentity of the sender. If the sender has kept the
signing key private, the recipient may be assured that the
data was signed by the sender.

In one embodiment, the public verification key may
include a public key 1n a digital certificate. The term “digital
certificate,” as used herein, generally refers to an electronic
document that binds a public key to the i1dentity of a person
or organization. The recipient of a notification message may
obtain a digital certificate containing the public verification
key from the sender of the message or from a certificate
authority that issued the certificate.

In one embodiment, encryption module 108 may use
symmetric key cryptography to encrypt the hash using an
encryption/decryption key. In symmetric key cryptography,
the recipient decrypts the encrypted message (the encrypted
hash) using the same key used to encrypt the message (or
with a key that can be derived from the encryption key 1n an
casily computable way). The security of symmetric key
cryptography depends on both the sender and recipient of
the message protecting the encryption/decryption key from
disclosure.

At step 308, one or more of the systems described herein
may add the encrypted hash to the notification message. For
example, messaging module 110 may, as part of server 206
in FIG. 2, add encrypted hash 216 to notification message
208 to create protected message 218.

Messaging module 110 may add the encrypted hash to the
notification message 1 a variety of ways. For example,
messaging module 110 may add the encrypted hash to the
notification message by adding the encrypted hash to a
header of the notification message, as shown 1n FIG. 4. FIG.
4 1s a block diagram of an exemplary notification message

10

15

20

25

30

35

40

45

50

55

60

65

8

400 protected from modification. Notification message 402
1s formatted as an HTTP reply with the body of the message
formatted as an HTML document. Notification message 402
may include header field 404(1), which identifies protected
block 406(1) as a portion of the message that has been
protected from modification. Header field 404(1) identifies
the protected block as the portion of the message marked
with an ID value of “3GF1155,” and 1ncludes an encrypted
MD3 hash value (1dentified as “SignedHash-3GF1155”) for
the protected block.

In other examples, messaging module 110 may add the
encrypted hash as a metadata tag on an HI'ML message, as
an attribute of an XML element, as an attribute to an HTML
or XML tag at the beginning of a protected block of data, as
a comment 1n any structured data format, or in any other
suitable form.

In one embodiment, messaging module 110 may, using
sequences of at least one character, delimit the beginning
and end of the portion of the message protected from
modification. For example, as shown 1n FIG. 4, protected
block 406(1) 1s a paragraph 1n an HITML document, delim-
ited by HTML tags ‘“<p><ad="3GF1155”>" at the beginning
of the paragraph block and “</p>" at the end.

In some examples, systems and methods described herein
may protect one or more fields of a message from modifi-
cation. For example, identification module 104 may 1dentity
one or more blocks of data in messages formatted using
HTML, XML, or other structured document formats. After
identification module 104 1dentifies the blocks of data to be
protected from modification, hashing module 106 may cal-
culate the hashes of the message fields, and encryption
module 108 may encrypt the hashes. Messaging module 110
may then 1dentify, in the header of the notification message,
the message fields protected from modification. For
example, as shown 1n FIG. 4, messaging module 110 may
identify, 1n the message header, multiple fields of the noti-
fication message that have been protected from modifica-
tion. As shown, exemplary notification message 402
includes two protected blocks, protected block 406(1) and
protected block 406(2). Messaging module 110 indicates the
presence ol the two protected blocks using header field
404(1) and header field 404(2), which identify the protected
blocks by providing their IDs, “3GF11355” and “575A13C.”
Header fields 404(1) and 404(2) also include encrypted hash
values for the two protected blocks, so the recipient may
verily that the contents of the two protected blocks have not
been modified.

In one embodiment, the portion of the notification mes-
sage that 1s protected from modification may include the
entire message, including the header of the notification
message and the encrypted hash. To protect the entire
message, messaging module 110 may add an additional
header to the notification message and indicate 1n the added
header that the portion of the notification message protected
from modification includes the entire message. Messaging
module 110 may or may not delimit the portion of the
message that has been protected from modification, since the
recipient may recognize that the protected portion of the
message 1mcludes everything after the added header.

Returning to FIG. 3, at step 310, one or more of the
systems described herein may transmit the notification mes-
sage to a client that 1s configured to verily that the portion
of the message has not been modified by decrypting the
encrypted hash, using the hash function to recalculate the
hash of the portion of the notification message, and verifying
that the decrypted hash 1s the same as the recalculated hash.
For example, communication module 112 may, as part of

US 9,735,965 Bl

9

server 206 1n FIG. 2, transmit protected message 218 to
computing device 202, which may be configured to verily
that critical portion 210 of protected message 218 has not
been modified. Computing device 202 may veniy that the
protected portion of protected message 218 has not been
modified by decrypting the encrypted hash for the protected
portion, using the hash function to recalculate the hash of the
portion of the notification message, and veritying that the
decrypted hash 1s the same as the recalculated hash.

Returming to FIG. 4, upon receiving the protected mes-
sage, the client may identily the protected portions of the
notification message by obtaining the IDs of the protected
blocks from header fields 404(1) and 404(2). For each of the
protected blocks, the client may decrypt the corresponding,
encrypted hash value in the SignedHash field using the
sender’s public key. The message recipient may then recal-
culate the hash for protected blocks 406(1) and 406(2) using
the same hash function the sender used to calculate the hash
values sent 1 encrypted form 1n the message header. 11 the
recalculated hash values are the same as the decrypted
values, the message recipient may be assured that the
message was not modified during transmission. The match-
ing recalculated and decrypted hash values may also verily
the identity of the message sender, since the encrypted hash
included 1n the message may only be decrypted by the public
key corresponding to the private key the sender used to
encrypt the hash.

Communication module 112 may transmit the protected
notification message 1n a variety of ways. In one embodi-
ment, communication module 112 may transmit protected
message 218 via a connection that was established in
response to a long-polling request made by a client such as
computing device 202.

As used herein, the phrase “long-polling connection”
generally refers to a style of network communication 1n
which a client polls a network service for information. If no
information 1s available, rather than returming an empty
response, the network service may wait until information 1s
available to respond to the client, or until a timeout event
occurs. Long-polling connections may be used to emulate
push technology, where data 1s pushed to clients from a
network service, but where true push communication may
not be possible or practical. In one example, a long-polling
connection may include an HT'TP request that establishes a
connection when the server does not immediately reply to
the request and close the connection.

In another example, communication module 112 may
transmit the protected message i1n response to a polling
request from a client. For example, computing device 202
may poll server 206 periodically to determine whether a
notification message 1s available. In other examples, com-
munication module 112 may use HT'TP streaming, ADOBE
FLASH XML socket relays, or any other suitable protocol
for establishing connections for transmitting messages to
clients.

As explained 1n connection with exemplary method 300
above, systems and methods described herein may protect
noftification messages by adding to the message an encrypted
hash of a protected portion of the notification message.
Systems and methods described herein may protect all or a
portion of a notification message, and notification messages
may 1include text or binary data in a variety of formats.
Systems and methods described herein may protect the
integrity of notification messages without adding as much
computational or communication overhead as methods that
encrypt the entire message or require extensive handshaking
to establish a secure connection, as with SSL.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 5 1s a block diagram of an exemplary computing
system 510 capable of implementing one or more of the
embodiments described and/or 1illustrated herein. For
example, all or a portion of computing system 310 may
perform and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps 1llustrated
in FIG. 3). All or a portion of computing system 510 may
also perform and/or be a means for performing any other
steps, methods, or processes described and/or illustrated
herein.

Computing system 510 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of
computing system 510 include, without limitation, worksta-
tions, laptops, client-side terminals, servers, distributed
computing systems, handheld devices, or any other comput-
ing system or device. In 1ts most basic configuration, com-
puting system 510 may include at least one processor 514
and a system memory 516.

Processor 514 generally represents any type or form of
physical processing unit (e.g., a hardware-implemented cen-
tral processing unit) capable of processing data or interpret-
ing and executing instructions. In certain embodiments,
processor 514 may receive instructions from a software
application or module. These instructions may cause pro-
cessor 514 to perform the functions of one or more of the
exemplary embodiments described and/or 1llustrated herein.

System memory 516 generally represents any type or
form of volatile or non-volatile storage device or medium
capable of storing data and/or other computer-readable
istructions. Examples of system memory 516 include,
without limitation, Random Access Memory (RAM), Read
Only Memory (ROM), tlash memory, or any other suitable
memory device. Although not required, in certain embodi-
ments computing system 510 may include both a volatile
memory unit (such as, for example, system memory 516)
and a non-volatile storage device (such as, for example,
primary storage device 532, as described 1n detail below). In
one example, one or more of modules 102 from FIG. 1 may
be loaded into system memory 516.

In certain embodiments, exemplary computing system
510 may also include one or more components or elements
in addition to processor 514 and system memory 516. For
example, as illustrated 1n FIG. 5, computing system 510 may
include a memory controller 518, an Input/Output (I/0)
controller 520, and a communication interface 522, each of
which may be interconnected via a communication inira-
structure 512. Communication inirastructure 512 generally
represents any type or form ol infrastructure capable of
facilitating communication between one or more compo-
nents of a computing device. Examples of communication
infrastructure 512 include, without limitation, a communi-
cation bus (such as an Industry Standard Architecture (ISA),
Peripheral Component Interconnect (PCI), PCI Express
(PCle), or similar bus) and a network.

Memory controller 518 generally represents any type or
form of device capable of handling memory or data or
controlling communication between one or more compo-
nents ol computing system 510. For example, in certain
embodiments memory controller 518 may control commu-
nication between processor 514, system memory 316, and
I/O controller 520 via communication inirastructure 512.

I/0O controller 520 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, 1 certain embodiments I/O controller 520 may

US 9,735,965 Bl

11

control or facilitate transier of data between one or more
clements of computing system 510, such as processor 514,
system memory 316, communication interface 522, display
adapter 526, input interface 530, and storage interface 534.

Communication interface 522 broadly represents any type
or form of communication device or adapter capable of
facilitating communication between exemplary computing
system 510 and one or more additional devices. For
example, 1 certain embodiments communication interface
522 may facilitate communication between computing sys-
tem 510 and a private or public network including additional
computing systems. Examples of communication interface
522 include, without limitation, a wired network interface
(such as a network interface card), a wireless network
interface (such as a wireless network interface card), a
modem, and any other suitable interface. In at least one
embodiment, communication nterface 322 may provide a
direct connection to a remote server via a direct link to a
network, such as the Internet. Communication interface 522
may also indirectly provide such a connection through, for
example, a local area network (such as an Ethernet network),
a personal area network, a telephone or cable network, a
cellular telephone connection, a satellite data connection, or
any other suitable connection.

In certain embodiments, communication interface 522
may also represent a host adapter configured to facilitate
communication between computing system 510 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
tace (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Flectrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
tace adapters, Ethernet adapters, or the like. Communication
interface 522 may also allow computing system 510 to
engage 1n distributed or remote computing. For example,
communication interface 522 may recerve mstructions from
a remote device or send instructions to a remote device for
execution.

As 1llustrated 1n FIG. §, computing system 510 may also
include at least one display device 524 coupled to commu-
nication infrastructure 512 via a display adapter 526. Dis-
play device 524 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 526. Similarly, display adapter 526
generally represents any type or form of device configured
to forward graphics, text, and other data from communica-
tion infrastructure 512 (or from a frame bufler, as known in
the art) for display on display device 524.

As 1llustrated 1n FIG. 5, exemplary computing system 510
may also include at least one mput device 528 coupled to
communication infrastructure 512 via an input interface 530.
Input device 528 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 510.
Examples of imnput device 528 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other mput device.

As 1llustrated 1n FI1G. 5, exemplary computing system 510
may also iclude a primary storage device 532 and a backup
storage device 333 coupled to communication inirastructure
512 via a storage interface 534. Storage devices 5332 and 533
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-
readable mstructions. For example, storage devices 532 and

5

10

15

20

25

30

35

40

45

50

55

60

65

12

533 may be a magnetic disk drive (e.g., a so-called hard
drive), a solid state drive, a floppy disk drnive, a magnetic
tape drive, an optical disk drive, a flash drive, or the like.
Storage interface 534 generally represents any type or form
of mterface or device for transferring data between storage
devices 532 and 533 and other components of computing
system 510. In one example, database 120 from FIG. 1 may
be stored in primary storage device 332.

In certain embodiments, storage devices 532 and 533 may
be configured to read from and/or write to a removable
storage unmit configured to store computer software, data, or
other computer-readable information. Examples of suitable
removable storage units include, without limitation, a floppy
disk, a magnetic tape, an optical disk, a tlash memory
device, or the like. Storage devices 532 and 533 may also
include other similar structures or devices for allowing
computer soitware, data, or other computer-readable mstruc-
tions to be loaded into computing system 510. For example,
storage devices 532 and 533 may be configured to read and
write software, data, or other computer-readable informa-
tion. Storage devices 532 and 533 may also be a part of
computing system 510 or may be a separate device accessed
through other interface systems.

Many other devices or subsystems may be connected to
computing system 510. Conversely, all of the components
and devices illustrated 1n FIG. 5 need not be present to
practice the embodiments described and/or illustrated
herein. The devices and subsystems referenced above may
also be interconnected 1n different ways from that shown 1n
FIG. 5. Computing system 510 may also employ any num-
ber of software, firmware, and/or hardware configurations.
For example, one or more of the exemplary embodiments
disclosed herein may be encoded as a computer program
(also referred to as computer soltware, software applica-
tions, computer-readable instructions, or computer control
logic) on a computer-readable medium. The term “com-
puter-readable medium,” as used herein, generally refers to
any form of device, carrier, or medium capable of storing or
carrying computer-readable instructions. Examples of com-
puter-readable media include, without limitation, transmis-
sion-type media, such as carrier waves, and non-transitory-
type media, such as magnetic-storage media (e.g., hard disk
drives, tape drives, and floppy disks), optical-storage media
(e.g., Compact Disks (CDs), Digital Video Disks (DVDs),
and BLU-RAY disks), electronic-storage media (e.g., solid-
state drives and flash media), and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 310. All or
a portion of the computer program stored on the computer-
readable medium may then be stored 1n system memory 516
and/or various portions ol storage devices 532 and 533.
When executed by processor 514, a computer program
loaded 1nto computing system 510 may cause processor 514
to perform and/or be a means for performing the functions
of one or more of the exemplary embodiments described
and/or 1llustrated herein. Additionally or alternatively, one or
more of the exemplary embodiments described and/or 1llus-
trated herein may be implemented in firmware and/or hard-
ware. For example, computing system 510 may be config-
ured as an Application Specific Integrated Circuit (ASIC)
adapted to implement one or more of the exemplary embodi-
ments disclosed herein.

FIG. 6 1s a block diagram of an exemplary network
architecture 600 in which client systems 610, 620, and 630
and servers 640 and 645 may be coupled to a network 650.
As detailed above, all or a portion of network architecture
600 may perform and/or be a means for performing, either

US 9,735,965 Bl

13

alone or in combination with other elements, one or more of
the steps disclosed herein (such as one or more of the steps
illustrated 1n FI1G. 3). All or a portion of network architecture
600 may also be used to perform and/or be a means for
performing other steps and features set forth in the nstant
disclosure.

Client systems 610, 620, and 630 generally represent any
type or form ol computing device or system, such as
exemplary computing system 510 in FIG. 5. Similarly,
servers 640 and 643 generally represent computing devices
or systems, such as application servers or database servers,
configured to provide various database services and/or run
certain soitware applications. Network 6350 generally repre-
sents any telecommunication or computer network includ-
ing, for example, an intranet, a WAN, a LAN, a PAN, or the
Internet. In one example, client systems 610, 620, and/or
630 and/or servers 640 and/or 645 may include all or a
portion of system 100 from FIG. 1.

As 1llustrated 1 FIG. 6, one or more storage devices
660(1)-(IN) may be directly attached to server 640. Similarly,
one or more storage devices 670(1)-(N) may be directly
attached to server 645. Storage devices 660(1)-(N) and
storage devices 670(1)-(N) generally represent any type or
form of storage device or medium capable of storing data
and/or other computer-readable instructions. In certain
embodiments, storage devices 660(1)-(N) and storage
devices 670(1)-(IN) may represent Network-Attached Stor-
age (NAS) devices configured to communicate with servers
640 and 645 using various protocols, such as Network File
System (NFS), Server Message Block (SMB), or Common
Internet File System (CIFS).

Servers 640 and 645 may also be connected to a Storage
Area Network (SAN) fabric 680. SAN fabric 680 generally
represents any type or form of computer network or archi-
tecture capable of facilitating communication between a
plurality of storage devices. SAN fabric 680 may facilitate
communication between servers 640 and 645 and a plurality
of storage devices 690(1)-(N) and/or an intelligent storage
array 695. SAN fabric 680 may also facilitate, via network
650 and servers 640 and 645, communication between client
systems 610, 620, and 630 and storage devices 690(1)-(N)
and/or intelligent storage array 695 1n such a manner that
devices 690(1)-(N) and array 693 appear as locally attached
devices to client systems 610, 620, and 630. As with storage
devices 660(1)-(N) and storage devices 670(1)-(IN), storage
devices 690(1)-(N) and intelligent storage array 695 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions.

In certain embodiments, and with reference to exemplary
computing system 510 of FIG. 5, a communication inter-
tace, such as communication interface 522 1n FIG. 5, may be
used to provide connectivity between each client system
610, 620, and 630 and network 650. Client systems 610,
620, and 630 may be able to access information on server
640 or 645 using, for example, a web browser or other client
software. Such software may allow client systems 610, 620,
and 630 to access data hosted by server 640, server 645,
storage devices 660(1)-(IN), storage devices 670(1)-(N),
storage devices 690(1)-(IN), or intelligent storage array 695.
Although FIG. 6 depicts the use of a network (such as the
Internet) for exchanging data, the embodiments described
and/or 1llustrated herein are not limited to the Internet or any
particular network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed heremn may be
encoded as a computer program and loaded onto and

5

10

15

20

25

30

35

40

45

50

55

60

65

14

executed by server 640, server 645, storage devices 660(1)-
(N), storage devices 670(1)-(IN), storage devices 690(1)-(N),
intelligent storage array 695, or any combination thereof. All
or a portion of one or more of the exemplary embodiments
disclosed herein may also be encoded as a computer pro-
gram, stored in server 640, run by server 645, and distributed
to client systems 610, 620, and 630 over network 630.

As detailed above, computing system 510 and/or one or
more components of network architecture 600 may perform
and/or be a means for performing, either alone or 1n com-
bination with other elements, one or more steps of an
exemplary method for protecting notification messages.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collec-
tively, using a wide range of hardware, software, or firmware
(or any combination thereol) configurations. In addition, any
disclosure of components contained within other compo-
nents should be considered exemplary 1n nature since many
other architectures can be implemented to achieve the same
functionality.

In some examples, all or a portion of exemplary system
100 in FIG. 1 may represent portions of a cloud-computing
or network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a
service, platform as a service, infrastructure as a service,
etc.) may be accessible through a web browser or other
remote mterface. Various functions described herein may be
provided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 1n FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
soltware modules described herein may configure a com-
puting system (e.g., a server) to facilitate multi-tenancy for
one or more of the functions described herein. For example,
one or more of the software modules described herein may
program a server to enable two or more clients (e.g.,
customers) to share an application that 1s runmng on the
server. A server programmed 1n this manner may share an
application, operating system, processing system, and/or
storage system among multiple customers (i.e., tenants).
One or more of the modules described herein may also
partition data and/or configuration information of a multi-
tenant application for each customer such that one customer
cannot access data and/or configuration information of
another customer.

According to various embodiments, all or a portion of
exemplary system 100 in FIG. 1 may be implemented within
a virtual environment. For example, the modules and/or data
described herein may reside and/or execute within a virtual
machine. As used herein, the term *““virtual machine™ gen-
crally refers to any operating system environment that is
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the
term “virtualization layer” generally refers to any data layer
and/or application layer that overlays and/or 1s abstracted
from an operating system environment. A virtualization
layer may be managed by a software virtualization solution
(e.g., a file system filter) that presents the virtualization layer
as though it were part of an underlying base operating
system. For example, a software virtualization solution may

US 9,735,965 Bl

15

redirect calls that are mitially directed to locations within a
base file system and/or registry to locations within a virtu-
alization layer.

In some examples, all or a portion of exemplary system
100 1n FIG. 1 may represent portions ol a mobile computing
environment. Mobile computing environments may be
implemented by a wide range of mobile computing devices,
including mobile phones, tablet computers, e-book readers,
personal digital assistants, wearable computing devices
(e.g., computing devices with a head-mounted display,
smartwatches, etc.), and the like. In some examples, mobile
computing environments may have one or more distinct
teatures, including, for example, reliance on battery power,
presenting only one foreground application at any given
time, remote management features, touchscreen features,
location and movement data (e.g., provided by Global
Positioning Systems, gyroscopes, accelerometers, etc.),
restricted platforms that restrict modifications to system-
level configurations and/or that limit the ability of third-
party soltware to mspect the behavior of other applications,
controls to restrict the installation of applications (e.g., to
only originate from approved application stores), etc. Vari-
ous functions described herein may be provided for a mobile
computing environment and/or may interact with a mobile
computing environment.

In addition, all or a portion of exemplary system 100 in
FIG. 1 may represent portions of, interact with, consume
data produced by, and/or produce data consumed by one or
more systems for information management. As used herein,
the term “information management” may refer to the pro-
tection, organization, and/or storage of data. Examples of
systems for information management may include, without
limitation, storage systems, backup systems, archival sys-
tems, replication systems, high availability systems, data
search systems, virtualization systems, and the like.

In some embodiments, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, produce
data protected by, and/or communicate with one or more
systems for information security. As used herein, the term
“information security” may refer to the control of access to
protected data. Examples of systems for information secu-
rity may include, without limitation, systems providing
managed security services, data loss prevention systems,
identity authentication systems, access control systems,
encryption systems, policy compliance systems, intrusion
detection and prevention systems, electronic discovery sys-
tems, and the like.

According to some examples, all or a portion of exem-
plary system 100 in FIG. 1 may represent portions of,
communicate with, and/or receive protection from one or
more systems for endpoint security. As used herein, the term
“endpoint security” may refer to the protection of endpoint
systems from unauthorized and/or illegitimate use, access,
and/or control. Examples of systems for endpoint protection
may include, without limitation, anti-malware systems, user
authentication systems, encryption systems, privacy sys-
tems, spam-liltering services, and the like.

The process parameters and sequence of steps described
and/or 1llustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or dis-
cussed 1n a particular order, these steps do not necessarily
need to be performed in the order illustrated or discussed.
The various exemplary methods described and/or 1llustrated
herein may also omit one or more of the steps described or
illustrated herein or include additional steps in addition to
those disclosed.

10

15

20

25

30

35

40

45

50

55

60

65

16

While various embodiments have been described and/or
illustrated herein in the context of fully functional comput-
ing systems, one or more of these exemplary embodiments
may be distributed as a program product i a variety of
forms, regardless of the particular type of computer-readable
media used to actually carry out the distribution. The
embodiments disclosed herein may also be implemented
using soltware modules that perform certain tasks. These
software modules may 1nclude script, batch, or other execut-
able files that may be stored on a computer-readable storage
medium or 1 a computing system. In some embodiments,
these software modules may configure a computing system
to perform one or more ol the exemplary embodiments
disclosed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more ol the modules recited herein may receive
notification messages to be transformed, transform the noti-
fication messages to 1dentily at least a portion of the noti-
fication messages to be protected, output a result of the
transformation to calculate encrypted hashes of the portions
to be protected, use the result of the transformation to create
protected notification messages, and store the result of the
transformation to provide a mechanism to verily that the
protected messages have not been modified. Additionally or
alternatively, one or more of the modules recited herein may
transform a processor, volatile memory, non-volatile
memory, and/or any other portion of a physical computing
device from one form to another by executing on the
computing device, storing data on the computing device,
and/or otherwise interacting with the computing device.

The preceding description has been provided to enable
others skilled 1n the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description 1s not intended to be exhaustive or to be limited
to any precise form disclosed. Many modifications and
variations are possible without departing from the spirit and
scope of the mnstant disclosure. The embodiments disclosed
herein should be considered 1n all respects illustrative and
not restrictive. Reference should be made to the appended
claims and their equivalents 1n determining the scope of the
instant disclosure.

Unless otherwise noted, the terms “connected to” and
“coupled to” (and their dernivatives), as used 1n the specifi-
cation and claims, are to be construed as permitting both
direct and indirect (1.e., via other elements or components)
connection. In addition, the terms “a” or “an,” as used 1n the
specification and claims, are to be construed as meaning “‘at
least one of.” Finally, for ease of use, the terms “including”
and “having” (and their derivatives), as used in the specifi-
cation and claims, are interchangeable with and have the
same meaning as the word “comprising.”

What 1s claimed 1s:

1. A computer-implemented method for protecting noti-
fication messages, at least a portion of the method being
performed by a computing device comprising at least one
processor, the method comprising:

identifying at least a portion of a notification message that

1s to be:

protected from modification; and

transmitted to a client via an unsecured network con-
nection;

using a hash function to calculate a hash of the portion of

the notification message;

encrypting the hash;

US 9,735,965 Bl

17

adding the encrypted hash to a header of the notification

message;

delimiting the portion of the notification message by:

inserting, within a body of the notification message,
predetermined sequences of at least one character at
a beginning and an end of the portion of the notifi-
cation message; and

inserting, within the header of the notification message,
a protected block 1dentifier that identifies the prede-
termined sequences inserted into the body of the
notification message; and

transmitting the notification message to the client via the

unsecured network connection, where the client verifies

that the portion of the notification message has not been

modified by:

decrypting the encrypted hash;

identifying the portion of the notification message
based on the protected block i1dentifier and the pre-
determined sequences inserted into the notification
message;

using the hash function to recalculate the hash of the
portion of the notification message; and

veritying that the decrypted hash 1s the same as the
recalculated hash.

2. The computer-implemented method of claim 1,
wherein encrypting the hash comprises encrypting the hash
using a private signing key such that the encrypted hash 1s
capable of being decrypted using a public verification key.

3. The computer-implemented method of claim 2,
wherein the public verification key comprises a public key
in a digital certificate.

4. The computer-implemented method of claim 1,
wherein adding the encrypted hash to the header of the
notification message comprises adding the encrypted hash to
a predetermined field within the header of the notification
message.

5. The computer-implemented method of claim 4,
wherein:

the portion of the notification message comprises all of

the notification message, including the header of the
notification message; and

the computer-implemented method further comprises:

adding an additional header to the notification message;
and

indicating 1n the additional header that the portion of
the notification message protected from modification
comprises all of the notification message.

6. The computer-implemented method of claim 1,
wherein the predetermined sequences inserted at the begin-
ning and the end of the portion of the notification message
comprise HyperText Markup Language (HI'ML) tags.

7. The computer-implemented method of claim 1,
wherein transmitting the notification message 1s performed
by a server that transmits the notification message via the
unsecured network connection after establishing the unse-
cured network connection in response to a long-polling
request made by the client.

8. The method of claim 1, wherein identifying the portion
of the notification message that 1s to be protected from
modification comprises 1dentifying a critical portion of the
notification message that contains information relevant to
the performance of the client.

9. The method of claim 8, wherein the critical portion of
the notification message indicates at least one of:

an available software update for the client; and

configuration information about software running on the

client.

10

15

20

25

30

35

40

45

50

55

60

65

18

10. A system for protecting notification messages, the
system comprising;:

an 1dentification module, stored 1n memory, that identifies
at least a portion of a notification message that 1s to be:
protected from modification; and
transmitted to a client via an unsecured network con-

nection;

a hashing module, stored 1n memory, that uses a hash
function to calculate a hash of the portion of the
notification message;

an encryption module, stored 1n memory, that encrypts the
hash;

a messaging module, stored in memory, that:
adds the encrypted hash to a header of the notification

message; and

delimits the portion of the notification message by:
inserting, within a body of the notification message,
predetermined sequences of at least one character
at a beginning and an end of the portion of the
notification message; and
inserting, within the header of the notification mes-
sage, a protected block 1dentifier that identifies the
predetermined sequences nserted into the body of
the notification message;
a communication module, stored 1n memory, that trans-
mits the notification message to the client via the
unsecured network connection, where the client verifies
that the portion of the notification message has not been
modified by:
decrypting the encrypted hash;
identifying the portion of the notification message
based on the protected block 1dentifier and the pre-
determined sequences inserted into the notification
message;

using the hash function to recalculate the hash of the
portion of the notification message; and

verilying that the decrypted hash 1s the same as the
recalculated hash; and

at least one physical processor configured to execute the
identification module, the hashing module, the encryp-
tion module, the messaging module, and the commu-
nication module.

11. The system of claim 10, wherein the encryption
module encrypts the hash by encrypting the hash using a
private signing key such that the encrypted hash 1s capable
of being decrypted using a public verification key.

12. The system of claim 11, wherein the public verifica-
tion key comprises a public key 1n a digital certificate.

13. The system of claim 10, wheremn the messaging
module adds the encrypted hash to the header of the noti-
fication message by adding the encrypted hash to a prede-
termined field within the header of the notification message.

14. The system of claim 13, wherein:

the portion of the notification message comprises all of
the notification message, including the header of the
notification message;

the messaging module adds an additional header to the
notification message; and

the messaging module indicates 1n the additional header
that the portion of the notification message protected
from modification comprises all of the notification
message.

15. The system of claim 10, wherein the predetermined
sequences 1nserted at the beginming and the end of the
portion of the notification message comprise HITML tags.

16. The system of claim 10, wherein transmitting the
notification message 1s performed by a server that transmits

US 9,735,965 Bl

19

the notification message via the unsecured network connec-
tion after establishing the unsecured network connection in
response to a long-polling request made by the client.

17. A non-transitory computer-readable medium compris-
ing one or more computer-readable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to:

identify at least a portion of a notification message that 1s

to be:

protected from modification; and

transmitted to a client via an unsecured network con-
nection;

use a hash function to calculate a hash of the portion of the

notification message;

encrypt the hash;

add the encrypted hash to a header of the notification

message;

delimit the portion of the notification message by:

inserting, within a body of the notification message,
predetermined sequences of at least one character at
a beginning and an end of the portion of the notifi-
cation message; and

10

15

20

20

inserting, within the header of the notification message,
a protected block 1dentifier that identifies the prede-
termined sequences inserted into the body of the
noftification message; and

transmit the notification message to the client via the

unsecured network connection, where the client verifies
that the portion of the notification message has not been

modified by:

decrypting the encrypted hash;

identifying the portion of the notification message
based on the protected block 1dentifier and the pre-
determined sequences inserted into the notification
message;

using the hash function to recalculate the hash of the
portion of the notification message; and

verilying that the decrypted hash 1s the same as the
recalculated hash.

18. The non-transitory computer-readable medium of
claiaim 17, wherein the one or more computer-readable
instructions cause the computing device to encrypt the hash
using a private signing key such that the encrypted hash 1s
capable of being decrypted using a public venfication key.

x s * = e

	Front Page
	Drawings
	Specification
	Claims

