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PROCESSING AND RENDERING OF LARGE
IMAGE FILES

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 61/538,281, filed Sep. 23, 2011, which 1s
expressly incorporated herein by reference in 1ts entirety.

BACKGROUND

Three-dimensional objects may be represented as a stack
of two-dimensional 1mages. X-ray computed tomography
(CT) 1s one mmaging technology that uses multiple two-
dimensional 1images to represent three-dimensional objects.
CT scanning employs tomography to image two-dimen-
sional slices of an object and create a three-dimensional
image from the two-dimensional slices by computer pro-
cessing. Magnetic resonance imaging (MRI) 1s another
imaging technology that uses multiple two-dimensional
images to represent a three-dimensional object.

Images generated by CT scanning can provide high-
contrast resolution that shows physical density diflerences of
less than one percent. A large series of two-dimensional
X-ray 1mages taken around a single axis of rotation and
digital geometry processing may be used to generate a
three-dimensional image from the two-dimensional 1mages.
CT scanming 1s commonly used for medical applications, but
1s also used 1n engineering applications as a technique for
nondestructive materials testing and 1n archaeological appli-
cations for imaging the contents of artifacts. The two-
dimensional 1images generated by CT scanning (or another
imaging technique) may be formatted as DICOM, TIFF,
BMP, JPEG, or another file type.

Although computer systems exist for creating three-di-
mensional 1mages from a series of CT scans, these systems
are expensive, create large digital files that are dithicult to
transier or share, and thus, limit access to three-dimensional
representations of CT scans. Accordingly, many healthcare
proiessionals have relied on two-dimensional CT scan
images and generic models for both their own analysis and
for presentation to patients. Sharing CT scan data, to receive
a second opimon for example, 1s typically conducted by
printing out 1mages from a two-dimensional or three-dimen-
sional rendering or transporting a large volume of data (e.g.,
on an optical disk) that requires a specialized computer to
VIEW.

Thus, access and usability of CT scan data, as well as
other types of data (e.g., MRI 1mages) consisting of two-
dimensional 1mage “slices” of a three-dimensional object,
could be improved by techniques that make advanced ren-
derings of a stack of two-dimensional 1mages easily avail-

able.

BRIEF DESCRIPTION OF THE DRAWINGS

The Detailed Description 1s set forth with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number 1dentifies the figure 1n which the refer-
ence number {irst appears. The use of the same reference
numbers 1 different figures indicates similar or i1dentical
items.

FIG. 1 shows an illustrative architecture for rendering and
distributing CT scan images.

FIG. 2 shows the network-accessible resources of FIG. 1
in greater detail.
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FIG. 3 shows the computing device of FIG. 1 1n greater
detaul.

FIG. 4 shows an illustrative description of the structure of
the dataset as 1t 1s converted from 1nput data into a macro
block dataset.

FIG. 5 shows an illustrative procedure for converting
input data into a macro block dataset.

FIG. 6 shows an 1illustrative procedure for using a vis-
ibility and in-frame test to populate a rendering stack.

FIG. 7 shows an illustrative procedure for processing the
rendering stack to achieve a rendered projection of a three-
dimensional object.

DETAILED DESCRIPTION

Overview

This disclosure describes, 1n part, techniques for render-
ing an ordered series of two-dimensional 1mages, a “stack™
of 1mages, to create a three-dimensional solid model. Tech-
niques described heremn allow for eflicient generation of
three-dimensional models and provide a convenient user
interface for manipulating those models through an eco-
nomical web-browser interface.

The techmiques include ethlicient parallelized loading of
large data sets that comprise a series of two-dimensional
slices of an 1maged three-dimensional object, and eflicient
parallelized rendering of two-dimensional projections of the
three-dimensional object. The two-dimensional 1images may
be formatted as Digital Imaging and Communications in
Medicine (DICOM), Tagged Image File Format (TIFF),
bitmap (BMP), Joint Photographic Experts Group (JPEG),
Portable Network Graphics (PNG), or another type of image
file. In addition to processing 1mage stacks received from a
CT scan or an MRI scan, 1t 1s also within the scope of the
techniques covered 1n this disclosure to received data that 1s
already formatted as three-dimensional data such as a three-
dimensional volume of voxels (e.g., from a DICOM 3D file,
a virtual computer simulation, etc.). Furthermore, the mput
data for the systems and processes described herein may also
be four-dimensional volume data that can be treated as a set
of three-dimensional voxel volumes.

The mput data may be read into Volumetric Picture
Elements (voxels) and divided into a large number of macro
blocks, and the macro blocks may be saved to files on
separate hard drives. Each voxel 1s associated with a value
representing its level of opacity. The macro blocks include
attributes that summarize the maximum and mimmum opac-
ity values of constituent voxels. Voxels within certain range
of opacity values are potentially wvisible 1n a rendered
projection of the object. Note that macro blocks may include
numerous other types of attributes, such as, for example,
information about the color ranges of constituent voxels.
The macro blocks may be checked for visibility and whether
they are 1n a viewing frame by testing the attributes. Macro
blocks that are visible and in-frame are provided to the
graphics processor, to have their constituent voxels loaded
from the hard disks 1n parallel and rendered in parallel into
a projection of the object.

[llustrative Architecture

FIG. 1 shows an 1llustrative architecture 100 for imple-
ment techniques to provided physically remote and network-
accessible (1.e., “cloud-based”) rendering of tomographic
image data comprising slices of an 1maged three-dimen-
sional object. Network-accessible resources (e.g., network
server computers) 102 are connected to one to n computing,
devices 106(1)-106(2) accessed by users 108(1)-108(#)

respectively. One or more of the computing devices 106 may
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be communicatively coupled to a CT scanner 110. The users
108 may be physicians, patients, engineers, archeologists,
ctc. The users 108 may view data from the CT scanner 110
that 1s rendered into i1mages by the network-accessible
resources 102 on one of the computing devices 106. The
computing devices 106 may include any type of computing
device such as a desktop computer, a laptop computer, a
tablet computer, a mobile phone, a personal digital assistant,
a set top box, a game console, a thin client, etc. Although
described 1n this disclosure primarily as a distributed sys-
tem, the components and techniques described herein may
also be implemented 1n a single computing device poten-
tially without network connections or as a local system in
which case the network-accessible resources 102 would not
necessary be physically remote from other components of
this system.

FIG. 2 shows an illustrative block diagram 200 of com-
ponents 1 the network-accessible resources 102. The net-
work-accessible resources 102 may include one or more
central processing units (CPU) 202 and one or more graph-
ics processing units (GPU) 204.

The network-accessible resources 102 may also include
one or more types of memory such as volatile memory 206
and non-volatile memory 208. Volatile memory 206 may
include system memory 210 and GPU memory 212. Both
the CPU 202 and the GPU 204 may have associated memory
caches 1n the volatile memory 206. The system memory 210
may include a CPU memory cache 214 and the GPU
memory 212 may include a GPU cache 216.

The non-volatile memory 208 may include a splitting
module 218, an observability test module 220, a rendering
module 222, and a GPU data management module 224. Each
of these 1s discussed below in greater detail. A network
interface 226 may be configured to send and receive data,
such as a rendered 1mage, to other computing devices such
as the computing device 106 shown 1n FIG. 1.

In some implementations, the non-volatile memory 208
may be implemented 1n whole or in part as a hard-disk drive
(HDD) such as, for example, a 1 TB SATA II HDD, and the
system memory 210 may be implemented as random access
memory such as, for example, 12 GB DDR3. The GPU
memory 212 may be implemented as random access
memory such as for example 1 GB to 6 GB of DDRS. The
CPU(s) 202 may be implemented 1n whole or 1n part using
Intel Core 17, AMD Athlon 64x4, and/or AMD Phenom 11x4
CPUs. The GPU(s) 204 may be implemented 1n whole or 1n
part using nVidia GeForce GTX560T1, GTX480, GTX590,
and/or nVidia Tesla M2050 or M2090 GPUs.

The splitting module 218 may split a voxel dataset or
subset of a voxel dataset maintained 1n volatile memory 206
into a plurality of macro blocks and save the macro blocks
to a plurality of 1image data files stored 1n the non-volatile
memory 208. In some implementations, the image data files
may be stored in parallel on a plurality of non-volatile
memory 208 devices.

The observability test module 220 selects potentially
observable macro blocks by testing macro block 1n a list for
whether the block 1s visible and whether the block 1s
in-frame. Potentially observable macro blocks meet both of
these tests and are provided to the rendering module 222.

The rendering module 222 renders an 1image from the set
of macro blocks provided to the rendering module from a
plurality of data storage devices. In some implementations
this rendering may be performed in parallel on the macro
blocks.

The GPU data management module 224 may be config-
ured to determine 1f the GPU cache 216 1s full. When the
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GPU cache 216 1s full, the GPU data management module
224 may delete the contents of a random processor register
in the GPU cache 216 to create free space to render
additional voxel data.

FIG. 3 shows an 1illustrative block diagram 300 of one of
the computing devices 106 of FIG. 1. The computing device
106 may include one or more processors 302 and a memory
304. The memory 304 may contain an operating system 306,
a web browser 308, and one or more other applications 310.
The computing device 106 may also be equipped with one
or more display devices 312 that may be implemented as
stereoscopic display systems or autostercoscopic display
system for showing three-dimensional images. In some
implementations, the web browser 308 may provide an
interface for the user 108 to view and 1nteract with C'T scan
images, other two-dimensional, and/or three-dimensional
images. The computing device 106 may also include other
mput and output devices 314 such as a keyboard, mouse,
speakers, and the like.

Large Dataset Management

CT scanners 110 and other types of tomographic imaging,
approaches generate large i1mage datasets comprising a
series of two-dimensional image files that are *“slices™ of the
three-dimensional scanned object. Similar 1mage datasets
may be generated through other scanming techniques such as
MRI and may also be generated by virtual computer simu-
lations. These datasets may be difflicult to manage due to the
large quantity of data and size of the files.

Files from the CT scanner 110 may be formatted accord-
ing to the DICOM standard. The DICOM standard includes
a file format definition and a network communications
protocol and may also include mnformation specific to medi-
cal applications such as a patient’s name, referring physi-
cian’s name, etc. The communication protocol 1s an appli-
cation protocol that uses TCP/IP to communicate between
systems. Dataset sizes for CT scans may be several giga-
bytes and may grow 1in the future as CT scanner resolution
Increases.

FIG. 4 shows an 1illustrative description 400 of the dif-
ferent structures into which the graphical dataset 1s trans-
formed as 1t 1s converted from input data (such as, for
example, DICOM-format data generated by a CT scanner
110) into a macro block dataset saved to non-volatile
memory 208 1n the network-accessible resources 102. The
input dataset may be a series of two-dimensional 1images, or
image stack dataset 402 representing one or more scanned
objects. The image stack dataset 402 1s reconstructed as a
three-dimensional voxel dataset 404. Once partitioned, the
voxel dataset 404 may be partitioned into a collection of
macro blocks 406.

The collection of macro blocks 406 may be stored as a
macro block dataset 408 on hard disk or other storage device
or devices as a group of six files. In some implementations
there may be a greater or lesser number of files. The group
of files may include an mmformation (*.nfo) file 410 that may
include human readable information 1n as text such as ASCII
or extended ASCII text that contains information about the
other files in the group.

Additionally, the group of files may include a volume
(*.vol) file 412 that defines a system design layout and
selects appropriate translator modules. The volume file may
also iclude a header, cyclic redundancy check (CRC) data
value for each 1image data file, block i1dentifier (ID) and oflset
414, DIACOM data and/or other patient information, and
data histogram.

In this illustrative example, four image data files 416(1)-
416(4) are shown. The image files 416 may be indicated by
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the file extension (*.zzz). The image data files 416 contain
voxels which represent the image data produced by a
three-dimensional imaging unit such as the CT scanner 110.
Each macro block may be associated with 256x256x256
constituent voxels.

However, more or fewer than four image files 416 may be
used. The image files 416 may be stored in the volatile
memory 206 or the non-volatile memory 208 of the net-
work-accessible resources 102. The voxels are volume ele-

ments that represent a value on a regular grid in three-
dimensional space. The position of a voxel may be inferred
based upon a position relative to other voxels (1.e., a position
in the data structure that makes up a single volumetric
image). The image data files 416 may also be compressed to
reduce file size. The cyclic redundancy check (CRC) value
for each 1image data file 416 may be stored 1n the volume file
412, so that data integrity of the respective image data files
416 may be checked before loading the image data files 416.
The location of each macro block 1n the 1mage data files 416
1s recorded 1n the volume file 412 using a reference com-
prising the block i1dentifier and ofiset 414 within the image
data file 416. The data histogram in the volume file 412 may
be a cumulative histogram calculated from the voxels from
the dataset 406.

The voxels in the image data files 416 may be dynami-
cally loaded as needed. In some implementations, multiple
voxels are loaded at the same time. A list of the macro blocks
associated with the voxel dataset 406 may be loaded nto
system memory 210 without loading the constituent voxels
themselves mto memory. The macro block data structure
may also contain attributes that summarize the opacity range
of constituent voxels. To determine which voxels 1n the
image data files 416 should be loaded, a list of all of the
macro blocks may be tested to identily whether they are
visible and in-frame 1n the desired rendered projection of the
three-dimensional object.

[llustrative Processes

Processes 500, 600, and 700 are illustrated as a collection
of blocks 1n logical tlow graphs, which represent a sequence
ol operations that can be implemented 1n hardware, sofit-
ware, or a combination thereof. In the context of software,
the blocks represent computer-executable mstructions stored
on one or more computer-readable storage media that, when
executed by one or more processors, perform the recited
operations. Generally, computer-executable instructions
include routines, programs, objects, components, data struc-
tures, and the like that perform particular functions or
implement particular abstract data types. The order 1n which
the operations are described 1s not mtended to be construed
as a limitation, and any number of the described blocks can
be combined 1n any order and/or 1n parallel to implement the
process.

FIG. 5 shows an illustrative procedure 500 for converting,
input data into a macro block dataset saved to non-volatile
memory 208.

At 502, an 1mage stack dataset 402 representing one or
more scanned objects 1s recerved, and is reconstructed as a
three-dimensional voxel dataset 404.

At 504, the dataset received at 502 1s parsed into a
collection of macro blocks 406 and split into multiple image
data files 416, cach contaimng multiple macro blocks. In
some 1mplementations, the dataset may be split into four
image data files 416(1)-416(4) saved to disk 1n the network-
accessible resources 102.

At 506, the macro blocks are converted to an unsigned
short (e.g., unsigned 16-bit) format.

10

15

20

25

30

35

40

45

50

55

60

65

6

At 508, a cumulative histogram 1s calculated using the
data from the unsigned short format 506.

At 510, the location of each macro block 1n the image data
files 416 1s recorded 1n the volume file 412 using a reference
comprising a block ID and offset 414 within the respective
image data file 416(1)-414(4).

At 512, a cyclic redundancy check (CRC) value for each
image data file 416 may be stored in the volume file 412, so

that data integrity may be checked betfore loading the image
data files 416.

FIG. 6 shows an 1llustrative procedure 600 for using a
visibility text and an in-frame test to populate a rendering
stack that may be limited to macro blocks with constituent
voxels that will be visible 1n the desired projection.

At 602, a list of all macro blocks 1s received. The macro
block attributes including a summary of the constituent
voxels may be loaded into memory. In some implementa-
tions, the actual constituent voxels 1n the image data files are
not loaded 1into memory. Loading only the summaries and
the block attributes may reduce the demand on computing
resources. By loading only the constituent voxels that may
be observable in the rendered image (1.e., based on the
visibility test and the in-frame test), there may be an
improvement 1n loading speed and much larger input data-
sets can be processed.

Macro blocks 1n the list of macro blocks 602 are tested 1n
sequence to 1dentily those macro blocks that will ultimately
be 1ncluded 1n the final rendered image. This process could
be mmplemented as a while-loop, such that the current
position 1n the list changes as the test 1s applied to each
macro block in sequence. At 604, a macro block at the
current position in the list 1s received from the list of macro
blocks 602, and this block becomes the current macro block
for subsequent analysis.

At 606, the current macro block is tested to determine 1f
it will be wvisible or invisible (e.g., not rendered) in the
rendered 1mage. The macro block summary of constituent
voxels 1mcludes a mimnimum and maximum voxel value
within the current block. These values are compared to a
minimum and maximum thresholds defining the bounds for
visible voxels 1n the projection to be rendered. The macro
block 1s mnvisible 1f the minimum and maximum values for
the current macro block fall outside the bounds for the
rendered projection. Additionally, 1f the current values for
minimum and maximum are equal, the macro block 1s
“empty” because all of the constituent voxels have the same
value. Voxels associated with “empty” macro blocks do not
need to be loaded from the 1image data files 416, because no
additional information 1s provided by the voxels on disk. If
the current macro block 1s determined to be 1nvisible then
process 600 proceeds along the “no” path and returns to 604
where the next macro block 1s tested.

If a macro block 1s visible and passes the visibility test 1n
606, process 600 proceeds along the “yes” path to 608 and
the current macro block 1s tested for whether the constituent
voxels are in-frame or not. If the constituent voxels of the
current macro block are not visible then process 600 follows
the “no” path and returns to 604 where the next macro block
1s tested. The macro block 1s associated with attributes that
identily the maximum range of the locations of the constitu-
ent voxels 1 a three-dimensional regular grid. If the range
of the current macro block 1s completely outside of the part
of the grid that 1s within the viewing frame for the projection
to be rendered (1.e., 1t would be “off screen” when presented
on a display), the macro block fails the in-frame test and
process 600 proceeds along the “no” path from 608 and
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returns to 604 to test/check another macro block. If a macro
block passes the in-frame test 1n 608, process 600 proceeds
along the “yes” path to 610.

At 610 the macro block 1s added to the renderer stack 610.
Thus, the render stack may include macro blocks that are
identified as being visible at 606 and being in-frame at 608.
Excluding other macro blocks from the renderer stack
mimmizes the use ol computational resources by reducing,
the number of voxels that will need to be loaded from disk.

FI1G. 7 shows an 1llustrative procedure 700 for processing
the contents of the rendering stack, such as the rendering
stack generated at 610 in FIG. 6, to achieve a rendered
projection of a three-dimensional object.

Before mitiating the process 700 for processing the ren-
dering stack, the integrity of the data in the saved image files
416 may be verified by comparing the CRC values to the
previously saved CRC values 1n the volume file 412. All or
part of process 700 may be executed simultancously, in
parallel, using multiple CPUs and GPUs.

At 702, a stack of macro blocks 1s received.

At 704, 1t 1s determined 1t the stack of macro blocks
received at 702 1s empty or if the stack contains macro
blocks containing image data. If the stack 1s empty, there 1s
nothing left to render, so process 700 proceeds along the
“no” path to 706 and process 700 finishes. If the stack of
macro blocks 1s not empty and contains one or more macro
blocks with 1mage data then process 700 proceeds along the
“yes” path to 708.

At 708, the first macro block 1s removed from the stack of
macro blocks received at 702 for analysis.

At 710, the GPU memory cache 216 1s checked to see 1
the macro block 1s already present 1n the GPU memory
cache 216—i1 present, process 700 follows the “yes™ path to
726; 1 not present, process 700 follows the “no” path to 712.

At 712, the CPU memory cache 214 1s checked to see 1
the macro block 1s present in the CPU memory cache
214—1 present, process 700 follows the “yes™ path to 714;
if not present, process 700 follows the “no” path to 716.

At 714, since the macro block 1s not present 1n the GPU
memory cache 216, the constituent voxel data 1s copied from
the volatile memory 206 (e.g. RAM).

At 716, since the macro block 1s not present in the CPU
memory cache 214, the macro block constituent voxel data
1s loaded from the corresponding image data file 416 at 716.
In some 1mplementations, the macro blocks may be loaded
by reading from multiple (e.g, four) non-volatile memory
devices, for example non-volatile memory 208, at the same
time.

At 718 the voxel data read i 716 1s added to the CPU
memory cache 214.

At 720, the macro block voxel data 1s copied from the
CPU memory cache 214 to the GPU memory cache 216.

At 722, the GPU memory cache 216 1s checked to
determine 11 1t 1s full. If the GPU memory cache 216 1s tull,
process 700 follows the *“yes” path to 724. If the GPU
memory cache 216 1s not tull, process 700 follows the “no”
path to 726.

At 724, the contents of a random processor register of the
GPU memory cache 216 are deleted and the voxel data from
the current macro block are coped to the random process
register.

At 726, whether arrived at from 710, 722, or 724, the
voxel data that 1s in the GPU memory cache 216 is rendered.
Process 700 then returns to 704 and repeats until the stack
of macro blocks no longer contains additional macro blocks.

The 1image created by rendering individual macro blocks
at 726 from the entire stack of macro blocks received in 702
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may be viewed by a user 108 on the display device(s) 312
of the computing device 106.
Conclusion

Although the subject matter of this disclosure has been
described in language specific to structural features and/or
methodological steps, it 1s to be understood that the mven-
tion defined 1n the appended claims 1s not necessarily limited
to the specific features or steps described. Rather, the
specific features and steps are disclosed as preferred forms
of implementing the claimed invention.

What 1s claimed 1s:
1. A method for providing network-accessible processing
of complex 1mage data comprising:
splitting, by one or more processors of a network-acces-
sible resource including at least one graphics process-
ing unit (GPU), a data set of three-dimensional image
data generated from a series of two-dimensional 1mage
data files depicting slices of a three-dimensional object
into a plurality of macro blocks comprising Volumetric
Picture Elements (voxels) arranged in a three-dimen-
stional regular grid;
saving the plurality of macro blocks to a plurality of files
stored on a plurality of computer-readable data storage
devices accessible to the network-accessible resource;

determiming that a GPU cache of the corresponding at
least one GPU 1s full;

deleting contents of a random processor register of the

GPU cache 1n response to the determining that the GPU
cache 1s full;

identifying, by the network-accessible resource, from the

plurality of macro blocks a subset of observable macro
blocks that include one or more constituent voxels
having the characteristics of: (1) an opacity value
between a mimimum and maximum threshold defiming
bounds for visible voxels 1n a rendered projection of the
three-dimensional 1mage data and (11) a location within
a range ol locations in the three-dimensional regular
orid that 1s included within a viewing frame for the
rendered projection of the three-dimensional image
data, wherein a macro block that only contains voxels
located outside the range of locations in the three-
dimensional regular grid that 1s included within the
viewing frame 1s not included in the subset of the
observable macro blocks;

determining and recording, by the network-accessible

resource, a cyclic redundancy check (CRC) value for
one or more of the plurality of files, and comparing the
CRC value for the one or more of the plurality of files
to a previously recorded CRC value to check data
integrity before transferring the subset of observable
macro blocks to the rendering module;

subsequent to the i1dentifying, transferring the subset of

the observable macro blocks from the plurality of files
to a rendering module of the network-accessible
resource; and

sending, from the network-accessible resource, a rendered

image generated from the subset of observable macro
blocks to a web browser interface of a computing
device that i1s physically remote from the network-
accessible resource.

2. The method of claim 1, wherein the subset of observ-
able macro blocks 1s distributed within one or more visible
layers of the rendered projection.

3. The method of claim 1, wherein macro blocks of the
plurality of macro blocks further comprise at least one of
attributes that summarize the maximum and mimmum opac-
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ity values of the constituent voxels or information about the
color ranges of constituent voxels.

4. The method of claim 1, wherein each of the plurality of
files 1s stored 1n a separate one of the plurality of computer-
readable data storage devices.

5. The method of claim 1, further comprising rendering in
parallel, by the rendering module, the rendered 1image that 1s
a two-dimensional projection of the subset of the observable
macro blocks transferred to the rendering module.

6. The method of claim 1, wherein the three-dimensional
image data comprises slices of a three-dimensional object.

7. The method of claim 1, wherein the three-dimensional
image data comprises 1mage data generated at least 1 part
by a computed tomography (CT) scanner.

8. The method of claim 1, wherein the plurality of files are
compressed.

9. A computing device comprising:

one or more processors comprising at least one central
processing unit (CPU) and at least one graphics pro-
cessing unit (GPU);

a plurality of computer-readable data storage devices
coupled to the one or more processors storing an 1mput
data set comprised of a series of two-dimensional
image data files depicting slices of a three-dimensional
object;

a computer-readable memory coupled to the one or more
ProCessors;

a splitting module maintained in the memory and config-
ured to perform acts comprising:
splitting at least a portion of the mput data set into a

plurality of macro blocks; and

saving the plurality of macro blocks to a plurality of
files stored on the plurality of computer-readable
data storage devices;

a GPU data management module maintained in the
memory and configured to perform acts comprising:
determining whether a GPU cache 1s full; and
deleting the contents of a random processor register

of the GPU cache when the GPU cache 1s full; and
an observability test module maintained 1n the memory
and configured to perform acts comprising:
identifying from the plurality macro blocks a subset of
macro blocks that contain one or more constituent
voxels having the characteristics of: (1) an opacity
value between a minimum and maximum threshold
defining bounds for visible voxels in a rendered
projection of an 1maged object and (1) a location
within a range of locations 1n a three-dimensional
regular grid that 1s included within a viewing frame
for the rendered projection of the imaged object,
wherein a macro block that only contains voxels
located outside the range of locations 1n the three-
dimensional regular grid that 1s included within the
viewing frame 1s not included in the subset of the
observable macro blocks; and

subsequent to the identifying, providing the subset of
observable macro blocks to a rendering module.

10. The computing device according to claim 9, further
comprising one or more network interfaces coupled to the
one or more processors, and configured to send the rendered
projection of the imaged object to a remote computing
device.

11. The computing device according to claim 9, wherein
the rendering module 1s maintained 1 the memory and
configured to render an 1image from the subset of observable
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macro blocks, wherein the rendering module operates in
parallel on macro blocks provided to the rendering module
from the plurality of computer-readable data storage
devices.

12. The computing device according to claim 9, wherein
the macro blocks comprise attributes that summarize the
maximum and minimum opacity values of constituent vox-
els and information about the color ranges of constituent
voxels.

13. A non-transitory computer-readable storage media
containing instructions that, when executed by a processor,
instruct the processor to perform acts comprising:

recerving three-dimensional image data comprising a

series of two-dimensional 1mage slices of a three-
dimensional object;

splitting the three-dimensional 1mage data into a plurality

of macro blocks comprising Volumetric Picture FEle-
ments (voxels) arranged 1n a three-dimensional regular
orid and wherein the plurality of macro blocks 1is
distributed within one or more visible layers of a
rendered projection of the three-dimensional image
data;

saving the plurality of macro blocks to a plurality of files

stored on a plurality of computer-readable data storage
devices:
determining and recording cyclic redundancy check
(CRC) values for one or more of the plurality of files;

comparing the CRC values of the one or more of the
plurality of files to previously recorded CRC values of
the same one or more of the plurality of files, wherein
when the CRC values of the one or more of the plurality
of files differ from the previously recorded CRC values,
the one or more of the plurality of files are not rendered;

identifying from the plurality of macro blocks a subset of
observable macro blocks that include one or more
constituent voxels having the characteristics of: (1) an
opacity value between a minimum and maximum
threshold defining bounds for visible voxels 1n the
rendered projection of the three-dimensional image
data and (11) a location within a range of locations 1n the
three-dimensional regular grid that 1s included within a
viewing Irame for the rendered projection of the three-
dimensional 1mage data;

subsequent to the i1dentifying, transiferring the subset of

observable macro blocks from the plurality of files to a
rendering module;

rendering, by the rendering module, an 1mage that 1s a

two-dimensional projection of the set of macro blocks
transierred to the rendering module; and

sending a rendered 1mage generated from the two-dimen-

sional projection via one or more network interfaces to
a web browser of a remote computing device.

14. The non-transitory computer-readable storage media
of claim 13, wherein a macro block that only contains voxels
located outside the range of locations in the three-dimen-
sional regular grid that i1s included within the viewing frame
1s not 1ncluded 1n the subset of the observable macro blocks.

15. The non-transitory computer-readable storage media
of claim 13, wherein the macro blocks comprise attributes
that summarize the maximum and minimum opacity values
of constituent voxels and information about the color ranges
ol constituent voxels.

16. The non-transitory computer-readable storage media
of claim 13, wherein the plurality of files are compressed.
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