12 United States Patent

Shetty et al.

US009727481B2

US 9,727,481 B2
Aug. 8, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

CACHE EVICTION OF INACTIVE BLOCKS
USING HEAT SIGNATURE

Applicant: Nimble Storage, Inc., San Jose, CA
(US)

Inventors: Pradeep Shetty, San Jose, CA (US);
Senthil Kumar Ramamoorthy, San
Jose, CA (US); Umesh Maheshwari,
San Jose, CA (US); Vanco Buca, San
Jose, CA (US)

Assignee: Hewlett Packard Enterprise
Development LP, Houston, TX (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 15/019,909

Filed: Feb. 9, 2016

Prior Publication Data

US 2017/0060764 Al Mar. 2, 2017

Related U.S. Application Data
Provisional application No. 62/209,807, filed on Aug.

25, 2015.

Int. CI.

GO6F 12/12 (2016.01)

GO6F 12/0891 (2016.01)

GO6F 12/0893 (2016.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC GO6I' 12/0891 (2013.01); GO6F 3/061

(2013.01); GO6F 3/064 (2013.01); GO6F
3/0653 (2013.01); GOGF 3/0685 (2013.01):

104 Host
write| iread 3%
* »

108 NVRAM E

write segment to !

HDD Ea O :

110 HDD

GOGF 12/0893 (2013.01); GOGF 2212/1021
(2013.01); GOGF 2212/222 (2013.01); GO6F
2212/60 (2013.01)

(38) Field of Classification Search
CpPC ... GO6F 12/0891; GO6F 3/0653; GO6F 3/061
USPC e 711/118

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0204765 Al* 82009 Guptacccevvnn. GOo6F 12/121

711/133

* cited by examiner

Primary Examiner — Jae Yu

(74) Attorney, Agent, or Firm — Martine Penilla Group,
LLP

(57) ABSTRACT

Methods and systems are presented for evicting or copying-
forward blocks 1n a storage system during garbage collec-
tion. In one method, a block status 1s maintained 1n a first
memory to 1dentity if the block 1s active or inactive, blocks
being stored 1n segments that are configured to be cacheable
in a second memory, a read-cache memory. Whenever an
operation on a block 1s detected making the block inactive
in one volume, the system determines 1f the block 1s still
active 1 any volume, the block being cached in a first
segment 1n the second memory. When the system detects
that the first segment 1s being evicted from the second
memory, the system re-caches the block into a second
segment 1n the second memory 1f the block status of the
block 1s active and the frequency of access to the block 1s
above a predetermined value.

20 Claims, 12 Drawing Sheets

@ Read from NVRAM If data in NVRAM

@ if not in NVRAM, read from SSD if data in S§D
@ if not in 8§SD, read from HDD.

@ If cache worthy, cache in SSD

@ @ Storage Array 102

SSD 112

If cache worthy,
cache in SSD

U.S. Patent Aug. 8, 2017 Sheet 1 of 12 US 9,727,481 B2

104 @ Read from NVRAM if data in NVRAM

@ If not in NVRAM . read from SSD if data in SSD

@ If not in SSD, read from HDD.

I T, . ™.

write 'read RN @ If cache worthy, cache in SSD

@ @ Storage Array 102
108 NVRAM ; 1

write segment to / \

HDD A,

SSD 112
110 HDD
If cache worthy,
cache in SSD
Fig. 1

Flash Cache (SSD)

112

S\ P OIS S C Y

Flash includes segments and segments include
blocks that may be of different size

Fig. 2

U.S. Patent Aug. 8, 2017 Sheet 2 of 12 US 9,727,481 B2

104 Host
- ISCSI write | B (V;, Ay 314 Storage Array
102

Controller

DRAM
306 Segment S,

Fig. 3A 310
110
S, compressed
104

ISCSI read 316
~ Storage Array

Controller

Fig. 3B

Cache

2
B

Segment S, 1z S, compressed

DOAIOSON

00| SAI0BU|

US 9,727,481 B2

4

payoeo mau dws} jeniu
pJemio)] AdoD 1 U0

.v
-
e S
&
ik 9
o>
=
= /
3
— (uoneziiin NdY ‘% uonezijin ayoed “H'9)
= S82JN0sal 9|ge|ieAR U0 paseq pJemio) Ado) 6
g
g Ol
o
= L}
>
Zl
plemio) Adoo sAem)y o)

pauuld-un dwa) Xen

AR0[] paulld

U.S. Patent

Ol

Ll

Cl

el

7l

Gl

Ajleosipotiad
gSoseslosp |

SSOO0B U0 Paseq
S8sealoul |

-«¢— T emperature range un-pinned active block———1p»-

U.S. Patent Aug. 8, 2017 Sheet 4 of 12 US 9,727,481 B2

Event Block A temp === Block A In volume V,
INitialize 3
read 4
read 5
read 6
cooling 5
cooling 4 ,
ond 5 Event Block A’ temp
overwrite 1 — Initialize 3
read 4)
aad 5 Event Block A” temp
read 1 overwrite 1 — Initialize 3
read 4
_____ » Clone V 4
Block A" in volumes V; and Vo, =~ read 5
__________ » delete (V4) | 5
— e read (V) 6
A" Is still active In V> ° ool 5
read (V2) | © Event Block A” temp
A’ is inactive in all volumes ---===---...__ read (V2) | /
A overw(V,) | 1

—pNitialize 3
read 4

U.S. Patent Aug. 8, 2017 Sheet 5 of 12 US 9,727,481 B2

IDENTIFICATION OF INACTIVE BLOCKS

temperzlncl)ﬁl; L reference count
|) 504 502
\ A
ol I K
read
506
clone
508
/ reads
522 510
i Garbage collection - copy forward
S1258 512 (12, 2)
coaoling
514 (11, 2)
overwrite
516 (11, 1)
read
518 (12, 1)
snapshot
519 (12, 1)
erase
520 (1, 0)

garbage collection

ak
-
-
-.-
- -
-l

[
--
o
-
o R
-
- i

block evicted from cache

t Fig. 5B

U.S. Patent Aug. 8, 2017 Sheet 6 of 12 US 9,727,481 B2

Segment Activity Table in DRAM

Segments with temperature per block 02 10

O
15
755

1800

Segments with temperature per segment

Sy | Segment Temp # bytes in segment
blocks Metadata

FIFO Segments

S109 Metadata

Saso Metadata
S, Metadata

Fig. 6

U.S. Patent Aug. 8, 2017 Sheet 7 of 12 US 9,727,481 B2

602

S, | Block# Block temp
6
14
4|
5
1

i Counter of space used by inactive blocks

Segment Temp

blocks
bytes In segment

Metadata

Segment inactive storage

i Increase counter when block becomes inactive | &

i Decrease counter when block is “re-activated” |

Py —— .1...:'

Select segment for eviction based
on segment temperature and/or %

, based on segment inactive bytes
s 704
\ Inactive
storage
706
Inactive
% 5 storage
Sz | K !Etﬁlll 1S15,=48000
% <
pinned <= RN 1 "
nactive ~.... T

U.S. Patent Aug. 8, 2017 Sheet 8 of 12 US 9,727,481 B2

Garbage Collection selects Se

(

Blocks B and C selected for copy forward (Temp>threshold)

(

Sg evicted

B and C added to new segment

Fig. 8

U.S. Patent Aug. 8, 2017 Sheet 9 of 12 US 9,727,481 B2

Recelve read request 902

ldentify location of block (RAM, Cache, 904

or Disk) and corresponding address

906

Is block In
cache?

Cache N Increase temperature
of block

Cache block and
INitialize block

912

908

temperature in heat
map

914

Serve block from RAM. Cache, or Disk

Fig. 9A

U.S. Patent Aug. 8, 2017 Sheet 10 of 12 US 9,727,481 B2

920 Recelve write request to overwrite
block B;with block B;
922 Write B to NVRAM

ldentify location of B; (RAM, Cache, or
924 Disk) and corresponding address

926

. Y
Is B; In cache?
928
N
Y

Set B; temperature to
low value

932

Cache B;'? 934

Y

936 Write B; to cache and Initialize By
temperature

Fig. 9B

U.S. Patent Aug. 8, 2017 Sheet 11 of 12 US 9,727.481 B2

maintain, in a first memory of a storage system, a block
status for each of a plurality of blocks, the block status
iIdentifying If the corresponding block Is active In any
volume of the storage system, each block being

assoclated with one or more volumes and each block
being stored within one segment of a plurality of 1002
segments, where the plurality of segments are
configured to be cacheable in a second memory that Is
a read cache memory

detect operation on a block that makes the block 004

Inactive in at least one volume, the block being cached
within a first segment Iin the second memory

Fig. 10
g determine If the block Is active in any volume 1006

1008

1S the block

active in any
volume?

set the block set the block
status as active status as inactive
detect that the first segment i1s being evicted from the
second memory 1014

1016

1010 Y N 1012

1S the block
active and frequency of
access to the block Is above a
predetermined
value?

re-cache the block into a
evict block from cache second segment In the
second memory

1020
1018

US 9,727,481 B2

Sheet 12 of 12

Aug. 8, 2017

U.S. Patent

0¢l

¢0l

vell

L1 ‘b4

7Sl E
-
ZeL—N =
—

JJ]9ys uoisuedxy

O/l NdO

J8||0JjU0d AQPUBIS g JOII0JIUOD BAIDY gol |
Aelly abelolg

1400

,_m@m,cm_z oLl
Aellyy abelols

9G1

B¢ L1

US 9,727,481 B2

1

CACHE EVICTION OF INACTIVE BLOCKS
USING HEAT SIGNATURE

CLAIM OF PRIORITY

This application claims priority from U.S. Provisional

Patent Application No. 62/209,807, filed Aug. 25, 2015, and
entitled “Cache Eviction of Inactive Blocks Using Heat

Signature,” which 1s herein incorporated by reference.

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s related to U.S. patent application Ser.
No. 14/623,731, filed Feb. 17, 2013, and entitled “Access-
Based Eviction of Blocks from Solid State Drive Cache
Memory,” which 1s incorporated herein by reference.

BACKGROUND

1. Field of the Invention

The present embodiments relate to methods, systems, and
programs for managing resources in a networked storage
system, and more particularly, methods, systems, and com-
puter programs for managing a cache memory.

2. Description of the Related Art

Network storage, also referred to as network storage
systems or storage systems, 1s computer data storage con-
nected to a computer network providing data access to
heterogeneous clients. Typically network storage systems
process a large amount of Input/Output (10) requests, and
high availability, speed, and reliability are desirable charac-
teristics ol network storage.

One way to provide quick access to data 1s by utilizing
fast cache memory to store data. Since the difference in
access times between a cache memory and a hard drive are
significant, the overall performance of the system 1s highly
impacted by the cache hit ratio. Therefore, 1t 1s important to
provide optimal utilization of the cache memory 1n order to
have 1n cache the data that 1s accessed most often.

What 1s needed 1s a network storage device, software, and
systems that provide for optimal utilization of cache
memory 1n order to provide a high cache hit ratio by keeping,
in cache the data that 1s accessed the most.

It 1s 1n this context that embodiments arise.

SUMMARY

The present embodiments relate to managing cache
memory. Blocks of data are kept 1n cache memory based on
the frequency of access and based on whether the blocks of
data are still active. Active blocks are those blocks that
contain data accessible by a host and that are not exclusively
part of a snapshot. In one embodiment, the unit for storing
data in the cache memory 1s a segment, which holds a
plurality of blocks.

A system of one or more computers can be configured to
perform particular operations or actions by virtue of having
software, firmware, hardware, or a combination of them
installed on the system that 1n operation cause the system to
perform the actions. One method 1includes maintaining, in a
first memory of a storage system, a block status for each of
a plurality of blocks, the block status identifying 1f the
corresponding block is active in any volume of the storage
system, each block being associated with one or more
volumes and each block being stored within one segment of
a plurality of segments, where the plurality of segments 1s

10

15

20

25

30

35

40

45

50

55

60

65

2

configured to be cacheable 1n a second memory that 1s a read
cache memory. The method also includes, whenever an
operation on a block 1s detected that makes the block
inactive in at least one volume, determining 1if the block 1s
active 1n any volume, the block being cached within a first
segment 1 the second memory. The method also includes,
when the block 1s not active 1n any volume, setting the block
status of the block as inactive. The method also includes
detecting that the first segment i1s being evicted from the
second memory, and re-caching, 1n response to the eviction
of the first segment, the block 1into a second segment 1n the
second memory when the block status of the block 1s active
and a frequency of access to the block 1s above a predeter-
mined value.

One storage device includes a first memory, a second
memory, a third memory, and a processor. The first memory
1s configured to store a block status for each of a plurality of
blocks, the block status identifying if the corresponding
block 1s active in any volume of the storage system. The
second memory 1s for caching segments from a plurality of
segments, the second memory being a read cache memory,
where each block 1s associated with one or more volumes
and each block i1s stored within one segment from the
plurality of segments. The third memory 1s for storing the
plurality of segments. The processor 1s configured to detect
when an operation on a block makes the block inactive 1n at
least one volume, and determine 1f the block 1s active 1n any
volume, the block being cached within a first segment 1n the
second memory, where whenever an operation on a block 1s
detected that makes the block inactive in at least one
volume, the processor determines 1f the block 1s active 1n
any volume, the block being cached within a first segment
in the second memory. When the block 1s not active in any
volume, the processor sets the block status of the block as
inactive, and whenever the processor detects that the first
segment 1s being evicted from the second memory, the
processor re-caches the block into a second segment 1n the
second memory 1f the block status of the block 1s active and
a frequency of access to the block 1s above a predetermined
value.

A non-transitory computer-readable storage medium stor-
ing a computer program includes program instructions for
maintaining, in a first memory of a storage system, a block
status for each of a plurality of blocks, the block status
identifying if the corresponding block 1s active in any
volume of the storage system, each block being associated
with one or more volumes and each block being stored
within one segment of a plurality of segments, where the
plurality of segments i1s configured to be cacheable 1n a
second memory that 1s a read cache memory. The storage
medium also includes program instructions for, whenever an
operation on a block 1s detected that makes the block
inactive 1n at least one volume, determining 11 the block 1s
active 1 any volume, the block being cached within a first
segment 1n the second memory. The storage medium also
includes program instructions for, when the block 1s not
active 1n any volume, setting the block status of the block as
inactive, and program instructions for detecting that the first
segment 15 being evicted from the second memory. The
storage medium also includes program instructions for re-
caching, 1n response to the eviction of the first segment, the
block 1nto a second segment 1n the second memory when the
block status of the block 1s active and a frequency of access
to the block 1s above a predetermined value.

Other aspects will become apparent from the following
detailed description, taken 1n conjunction with the accom-
panying drawings.

US 9,727,481 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments may best be understood by reference to
the following description taken in conjunction with the
accompanying drawings.

FIG. 1 1llustrates the read and write paths within the
storage array, according to one embodiment.

FIG. 2 1llustrates the structure of a flash cache using a
solid state drive (SSD), according to one embodiment.

FIG. 3A 1illustrates the processing of a write request,
according to one embodiment.

FIG. 3B illustrates the processing of a read request,
according to one embodiment.

FIG. 4 illustrates a temperature map for managing block
operations, according to one embodiment.

FIG. SA illustrates the evolution of the temperature of a
block over time based on events, according to one embodi-
ment.

FIG. 3B illustrates the identification of inactive blocks
during garbage collection, according to one embodiment.

FIG. 6 illustrates the structure of a heat map stored in
RAM for tracking the temperature of blocks and segments
within a cache memory, according to one embodiment.

FIG. 7 illustrates the identification of inactive blocks
within a segment, according to one embodiment.

FIG. 8 illustrates the copy forward of blocks 1n a flash
cache during garbage collection, according to one embodi-
ment.

FIG. 9A 1s a flowchart for processing a read request, in
accordance with one embodiment.

FIG. 9B 1s a flowchart for processing a write request,
according to one embodiment.

FIG. 10 1s a flowchart for processing active blocks,
according to one embodiment.

FIG. 11 1illustrates an example architecture of a storage
array 102, according to one embodiment.

DETAILED DESCRIPTION

The following embodiments describe methods, devices,
systems, and computer programs for evicting or copying-
torward blocks 1n a network storage device during garbage
collection, depending on whether the blocks are active or
inactive. During operation of the system, the heat tempera-
ture of memory blocks increases or decreases based on their
use over time. When a block 1n cache 1s rewritten or deleted,
the heat temperature for the block 1s lowered below a
threshold temperature. This ensures that the block 1s evicted
and garbage-collected from the cache faster. Active blocks
are copied forward during garbage collection if their tem-
perature 1s above the threshold temperature. Copying for-
ward the active blocks, while discarding the 1nactive blocks,
improves cache utilization and performance.

In one method, a block status 1s maintained in a first
memory to identify 1f the block 1s active or 1nactive, blocks
being stored in segments that are configured to be cacheable
in a second memory, a read-cache memory. Whenever an
operation on a block 1s detected making the block mactive
in one volume, the system determines 11 the block 1s still
active 1 any volume, the block being cached in a first
segment 1 the second memory. When the system detects
that the first segment 1s being evicted from the second
memory, the system re-caches the block mto a second
segment 1n the second memory 11 the block status of the
block 1s active and the frequency of access to the block 1s
above a predetermined value.

10

15

20

25

30

35

40

45

50

55

60

65

4

In some embodiments, a heat map 1s maintained for
blocks of data stored in the cache memory. The heat memory
keeps track of the “temperature” of each of the blocks,
where the temperature measures how frequently the block 1s
being accessed. Based on the temperature, a group of blocks,
referred to herein as a segment, 1s evicted from the flash
cache, but some of the blocks of the segment may be kept
in the flash cache by being rewritten into the cache memory
in anew segment. This eviction method 1s referred to herein
as Access-Based Eviction (ABE), and rewriting blocks into
cache 1s referred to herein as copying forward these blocks.

In some implementations, a first-in first-out (FIFO)
scheme 1s used for evicting segments from cache memory,
but 1n the FIFO scheme, good blocks are “thrown away”
together with blocks that are not being accessed.

Cache pinning of volumes 1s the ability to always keep the
active blocks of a volume in the cache. The heat map
together with the copying forward of blocks provides the
ability to pin blocks to the cache, by copying forward these
blocks when the segment they reside 1n 1s evicted from cache
memory.

It will be apparent, that the present embodiments may be
practiced without some or all of these specific details. In
other instances, well-known process operations have not
been described i1n detaill 1n order not to unnecessarily
obscure the present embodiments.

FIG. 1 illustrates the read and write paths within the
storage array 102, according to one embodiment. The stor-
age array 102 1s also referred to herein as a networked
storage device or a storage system. In the example archi-
tecture of FIG. 1, a storage array 102 provides storage
services to one or more servers 104 (which are referred to

herein as hosts) and to one or more clients (not shown).
Storage array 102 includes non-volatile RAM (NVRAM)

108, one or more hard disk drives (HDD) 110, and one or
more solid state drives (SSD) 112, also referred to herein as
tflash cache.

NVRAM 108 stores the incoming data as the data arrives
to the storage array. After the data 1s processed (e.g.,

compressed and organized in segments (e.g., coalesced)),
the data 1s transferred from the NVRAM 108 to HDD 110,

or to SSD 112, or to both.

The host 104 includes one or more applications and a
computer program named initiator 106 that provides an
interface for accessing storage array 102 to the applications
running in host 104. When an 10 operation 1s requested by
one of the applications, mnitiator 106 establishes a connec-
tion with storage array 102 1n one of the supported formats
(e.g., 1SCSI, Fibre Channel, or any other protocol).

Regarding the write path, the initiator 106 1n the host 104
sends the write request to the storage array 102. As the write
data comes 1n, the write data 1s written into NVRAM 108,
and an acknowledgment 1s sent back to the mitiator 106
(c.g., the host or application making the request). In one
embodiment, storage array 102 supports variable block
s1zes. Data blocks 1n the NVRAM 108 are grouped together
to form a segment. In one embodiment, the segment 1s
compressed and then written to HDD 110. In another
embodiment, the blocks are compressed individually and the
segment 15 not compressed before being sent to HDD 110.

In addition, 11 the block 1s considered to be cache-worthy
(e.g., important enough be cached or likely to be accessed
again) the block 1s also written to the SSD 112. In one
embodiment, the segment stored 1n disk has the same size as
the segment stored in cache, but 1n other embodiments, the
segments have different sizes.

US 9,727,481 B2

S

With regards to the read path, the mitiator 106 sends a
read request to storage array 102. The requested data may be
found 1n any of the different levels of storage mediums of the

storage array 102. First, a check 1s made to see if the data 1s
found 1in the NVRAM 108, and 1if the data 1s found 1n the

NVRAM 108 then the data 1s read from the NVRAM 108
and sent back to the imitiator 106. In one embodiment, a
shadow RAM memory (not shown) (e.g., DRAM) keeps a

copy of the data in the NVRAM and the read operations are

served from the shadow RAM memory. When data 1s written
to the NVRAM, the data 1s also written to the shadow RAM

so the read operations can be served from the shadow RAM

leaving the NVRAM {ree for processing write operations.
If the data 1s not found in the NVRAM 108 (or the shadow

RAM) then a check 1s made to determine if the data 1s 1n

SSD 112, and 1f so (1.e., a cache hit), the data 1s read from
the SSD 112 and sent to the initiator 106. If the data 1s not

found 1n the NVRAM 108 or 1in the SSD 112, then the data

1s read from the hard drives 110 and sent to imitiator 106. In
addition, 1 the data being served from hard disk 110 1s cache
worthy, then the data 1s also cached 1n the SSD 112.

FIG. 2 illustrates the structure of a flash cache using a
solid state drive (SSD), according to one embodiment. In
one embodiment, segments 202 are stored in the flash cache
112, where the segments have equal size. In other embodi-
ments, the segments may have different sizes. In some
embodiments, the segments may be 32 MB or 64 MB,
although other values are also possible, such as 60 MB, 128
MB, 256 MB, etc. In one embodiment, the size of the flash
cache may be 1 TB, although other values are also possible
(e.g., 1n the range of 250 GB to 10 TB or more).

The segments (e.g., segment 202) include a plurality of
blocks B, that may be of equal or different size. That 1s, a
segment may have blocks of diflerent sizes, although 1n
some cases a segment may have blocks that all have the
same size. Because of this, not all segments have necessarily
the same amount of blocks. In some embodiments, the
blocks may be within the range of 256 bytes to 32 kB,
although other values are also possible.

In one embodiment, when writing to the flash cache 112,
one segment 1s written at a time. An individual block may
not be written 1n a single write operation. For example, 1t 1s
not possible to overwrite 1n a write operation a block already
stored within the flash cache. In order to overwrite a block,
a whole new segment has to be written, the new segment
having the new block.

Further, in one embodiment, the flash cache i1s a read-
cache memory but the flash cache i1s not a write-cache
memory. As described above with reference to FIG. 1, the
flash cache 1s not a write cache because when data 1s stored
in the storage array 102, the incoming data 1s not cached 1n
the flash cache 112 without the data being written to disk
110. This means that all the data in the flash cache 1s stored
in hard drives 110, so when a segment 1s evicted from the
flash cache, 1t 1s not necessary to worry about preserving the
data stored 1n the flash cache, because the data 1s guaranteed
to be stored on disk.

FIG. 3A 1illustrates the processing of a write request,
according to one embodiment. In one embodiment, the host
sends a write command 314 (e.g., an 1SCSI write command)
to write a block B, imto the storage array 102. In one
embodiment, the data within the storage array 102 is orga-
nized in volumes e.g., a drive), where each volume 1s a
single accessible storage area. The write request for block B,
includes a volume identifier V; and an offset A; within the
volume.

10

15

20

25

30

35

40

45

50

55

60

65

6

As discussed above, volume B, 1s initially stored 1in
NVRAM 108. The block 1s then added to a segment S in

DRAM 306, and the segment S, 1s transferred to disk 110
and optionally to flash cache 112. In one embodiment, the
segment 15 compressed before being sent to disk 110. In one
embodiment, a shadow DRAM 312 keeps the same data as
NVRAM 108, and shadow DRAM 312 1s used to serve read
requests.

DRAM memory 306 keeps data used for management of
the storage array 102. In one embodiment, an address

management area 308 1s used for keeping track of the
addresses of a block that may be stored in NVRAM 108, 1n

flash cache 112, and in disk 110. Additionally, in one
embodiment, a heat map 310 1s kept in DRAM 306 to store
data for keeping track of the frequency of access to blocks
in the flash cache 112. In one embodiment, the frequency of
access for each block i1s tracked 1n the heat map by a value
named the block temperature. The block temperature i1s a
number that increases each time the respective block 1s
accessed. Additionally, the block temperature 1s lowered
periodically, such as for example by a garbage collection
program or an eviction program that periodically lowers the
temperature for all blocks.

If block B, 1s cached in flash cache 112, the block
temperature for B, 1s mitialized in heat map 310. Further, as
discussed 1n more detail below, a garbage collection (GC)
process for the cache memory uses the heat map data to
identify which segment will be evicted from cache and
which blocks from the segment being evicted will be kept in
cache memory. The temperature of the block 1s an indication
on how important the block 1s (e.g., how often the block 1s
accessed), and by using the temperature of the block 1t 1s
possible to remove Ifrom cache the blocks that are not
important, while keeping the important blocks in cache for
longer periods.

FIG. 3B illustrates the processing of a read request,
according to one embodiment. As discussed above with
reference to FIG. 1, when a read request for block B, 1s
received 316, the storage array checks to see whether the
data1s in NVRAM 108, DRAM 306, flash cache 112, or disk
110. Then the data 1s served from the faster media where the
data for block B, 1s available.

If the block B, 1s served from flash cache 112, then the
heat map 310 for block B, 1s updated to reflect the new
access to block. In one embodiment, the block temperature
for block B, 1s increased by 1. In other embodiments, other
changes to the block temperature may be utilized to reflect

the new access. In another embodiment, if the block B, 1s in
NVRAM 108, the heat map 310 for block B, 1s also updated

to reflect the new access to block.

In one embodiment, the block temperature 1s a four-bit
integer, but other embodiments may utilize more or less hits
to a store the block temperature. In this case, the block
temperature has a value between 0 and 15. When a block 1s
first written to cache, the block temperature 1s 1nitialized to
a predetermined value, such as O, or 1, or 3, etc. Then, as the
block 1s accessed, the block temperature 1s increased, up to
the maximum of 15. As discussed above, the temperature
may be lowered periodically to allow blocks not being
accessed any more to “cool” down and become candidates
for eviction.

FIG. 4 illustrates a temperature map for managing block
operations, according to one embodiment. The temperature
of the block 1s used to determine what actions the system
takes when doing garbage collection, 1n particularly when
the segment where a block resides 1s being evicted from the
cache memory.

US 9,727,481 B2

7

Over time, the temperature of the blocks may change
based on system and block-related activities. For example,
the temperature of the block increases based on the 1fre-
quency of access to the block over time. For example, the
block increases the temperature every time the block 1s
accessed, and the temperature of the block decreases when
the block 1s not being accessed. For example, the system
periodically lowers the temperature of all blocks 1n order to
“cool off” the blocks. Those blocks that are being accessed
will remain “hot” because the temperature increases with
access, although 1t may be periodically lowered. On the
other hand, those blocks that are not being accessed will
continue to have their temperature decreased, until the
temperature reaches a minimum temperature.

In the embodiment of FIG. 4, the minimum temperature
for active blocks 1s 2, because a temperature of 1 1s reserved
for mnactive blocks. For example, 1nactive blocks are given
a temperature of 1 (as shown in FIG. 4), while a temperature
of 0 1s reserved for other purposes. In another embodiment,
an 1nactive block may be given a temperature of 0, which
will guarantee that the block 1s not kept 1n cache when the
segment where the block resides 1s evicted.

In one embodiment, the temperature assigned to mactive
blocks may have another reserved value, as long as that
value 1s not used by active blocks. For example, the mactive
blocks may be given a temperature of 0, and their tempera-
ture 1s never changed after the block becomes 1nactive. This
way, the 1mactive blocks will be evicted from cache during
garbage collection.

in another embodiment, a predetermined value may be
assigned to blocks pinned to cache (e.g., 15). In some
embodiments, the storage array administrator has an option
to determine that the volume 1s to be pinned in cache, which
means that all the blocks from the volume will be kept in
cache. Further, the administrator may also reserve an amount
of cache space for a volume. When a block 1s pinned to
cache, the block 1s given a high temperature (e.g., 135) so the
block 1s always kept 1n cache. Additionally, a pinned block
may not be cooled off over time because there would be a
risk that the pinned block would be evicted. In other
embodiments, pinned blocks are tracked with a different
parameter (€.g., a bit on the heat map) so these pinned blocks
are not evicted during garbage collection.

In one embodiment, blocks with the temperature above a
predetermined threshold (e.g., 7), will always be copied
torward during garbage collection. In another embodiment,
“hot” blocks will always be copied forward 11 they are above
a first threshold temperature (e.g., 10). Further, blocks
whose temperature 1s below the first threshold and above a
second threshold (e.g., 7), will be copied forward based on
the resources available 1n the system. For example, 1f cache
utilization 1s very high and 1t 1s desired that garbage collec-
tion frees as much space as possible, then blocks with
temperatures between 8 and 10 will not be copied forward.
However, during other periods were cache utilization 1is
lower, blocks with temperatures between 8 and 10 will be
copied forward. Blocks below the second threshold (e.g., 7)
will not be copied forward.

In one embodiment, the block temperature has the fol-
lowing values:

15—+the block 1s pinned.

11-14—the block 1s “very hot,” which means that the
block 1s an active block of a non-pinned volume; the block
will always be copied forward during garbage collection.

10

15

20

25

30

35

40

45

50

55

60

65

8

8-10—the block 1s “hot,” which means that the block 1s an
active block of a non-pinned volume; the block will be
copied forward during garbage collection 1 resources are
available.

0-7—the block 1s “cold” and the block will be evicted
from cache during garbage collection.

It 1s noted that a predetermined value 1s reserved as the
initial temperature for new blocks 1n cache (e.g., 3, but other
initial values are also possible). It 1s noted that the embodi-
ment 1llustrated 1n FIG. 4 1s exemplary. Other embodiments
may utilize different temperature ranges (e.g., 0-10, 0-100,
—-10-10, etc.), define diflerent band-categories for actions to
be taken on the blocks during garbage collection, increase or
decrease the temperature according to other frequency of use
criteria, etc. The embodiments 1illustrated in Figure and 4
should therefore not be mterpreted to be exclusive or lim-
iting, but rather exemplary or 1illustrative.

In one embodiment, the storage device includes an index,
in the form of a tree map associated with a volume V, for
indexing the blocks within the volume. The storage array
keeps track of the locations of blocks for all volumes 1n the
storage array. Diflerent methods may be used to index the
different blocks, such as a heap, a tree, a vector, etc. In one
embodiment, the index 1s a tree structure for identifying the
location of the blocks. There 1s a root node at the top of the
volume, intermediate nodes with pointers to other interme-
diate nodes or to blocks, and blocks of the bottom of the tree
structure. As used herein, this structure 1s referred to as the
cache index, but the cache index may use any other type of
data organization.

A volume V, 1s an active volume when its blocks may be
read, may be rewritten, and may be erased, and new blocks
may be added. When a user requests data from the active
volume V,, the read request will serve one or more of the
active blocks from volume V,. Over time, the data admin-
istrator may configure the storage array to take snapshots of
volume V, (e.g., periodically or upon command). When a
snapshot S; of volume 1s created a new data structure 1s
created for the snapshot. In one embodiment, the blocks are
not copied and the index for the snapshot utilizes A or part
of the index for the volume V,. In general, snapshots are
read only, although 1n some cases small amounts of data may
be written 1n the snapshot for some embodiments.

As used herein, the index that contains the active blocks
of the volume 1s referred to as the tip of the volume, or tip
of the drive. Additionally, blocks that cannot be accessed
from a host are referred to as dead blocks. Further, the blocks
that are accessible from a host are live blocks. The live
blocks can be snapshot-only blocks or active blocks. The
snapshot-only blocks are blocks that can be accessed only 1n
a snapshot but not within an active volume. Active blocks
are those blocks that can be accessed in the active state of a
volume, 1.¢., the tip of the volume. As used herein an mactive
block 1s a block that 1s not an active block. It 1s noted that
an active block can belong to one or more volumes.

It 1s 1t 1s important to only keep the active data 1n order to
increase the effectiveness of the cache to keep important
data, as the cache 1s a limited resource. Embodiments
presented herein provide the ability to identity which are the
active blocks effectively across many volumes, and provide
the ability to evict the inactive blocks out of cache efli-
ciently.

Further yet, active blocks can be cold, hot, or pinned. Cold
blocks are those that are not accessed frequently, hot blocks
are those that are accessed frequently, and pinned blocks are
those blocks that belong to a volume designated by the user
as a pinned volume.

US 9,727,481 B2

9

In one embodiment,when a block from flash cache 1s
overwritten, the temperature of the block 1s 1mmediately
lowered so the block will be evicted when the segment 1s
evicted from memory. In other words, the block will not be
copied forward, 1.e., the block will not be added to another
segment for being rewritten to the cache. In one embodi-
ment, the temperature for the overwritten block 1s set to O,
but other values are also possible. A clone V, 1s a volume
created as a copy of an active volume. In one embodiment,
the clone shares historic snapshot data with the parent
volume.

In general, blocks may be 1mnactivated 1n three ways. First,
when new blocks overwrite all blocks, the overwritten
blocks become 1nactive. This 1s the most common cause of
block mactivations. Second, during block migrations 1n the
storage system, blocks, or groups of blocks, are sometimes
transierred from one storage array to another storage array.
After the blocks are migrated, the blocks at the source need
to be deleted. Third, during a volume restore or a snapshot
rollback. This operation changes the tip of the volume from
the current state to a snapshot. Since the tip changes, the list
of active blocks that represent the volume also changes and
the heat map needs to be updated.

In one embodiment, in order to have an efficient cache, the
blocks that are still active should remain in the cache, and
the 1nactive blocks should he discarded. When blocks are
marked dead or inactive, the blocks are not removed from
cache right away, because 1t 1s an expensive operation to
remove a block from cache. Instead, the dead or inactive
blocks are removed from the tlash cache when it 1s conve-
nient or necessary, such as when a segment 1s being evicted
from cache.

FIG. SA illustrates the evolution of the temperature of a
block over time based on events, according to one embodi-
ment. A block 1s evicted when the block is raised from cache
memory during garbage collection. The blocks are garbage-
collected faster once they become inactive, because the
segments that have active blocks are chosen {faster for
garbage collection.

As discussed earlier, 1n one embodiment, the temperature
of the block increases when a block 1s accessed and the
temperature decreases periodically. In one embodiment, a
process executes periodically that decreases the temperature
of all blocks whose temperature 1s greater than 1.

Additionally, the temperature of a block may be reset to
a predetermined value (e.g., 1 although other values are also
possible), associated with very low heat, when the block 1s
iactivated. By setting the temperature to 1, there 1s an
opportunity for backup soiftware to access this block before
it 1s completely eliminated from cache. Similarly, when
inactivating a block from a non-pinned volume, 1ts tempera-
ture 1s also set to 1 (very low heat), for the same reason.

In the exemplary 1illustration of FIG. 5A, the temperature
of a block A 1s tracked over time. When the block 1s first
written 1nto cache, the temperature 1s 1mitialized to a prede-
termined value e.g., 3, although other values are also pos-
sible). Afterwards, the block 1s read three times, and each
time the temperature of the block 1s increased. Afterwards,
there 1s a period of mactivity and the block 1s cooled off (1.¢.,
the temperature 1s decreased) two times. Then the block 1s
accessed once again and the temperature i1s 1icreased to a
value of 3.

Afterwards, block A 1s overwritten by block A'. The
temperature of block A 1s reset to 1 because the block 1s no
longer active. The temperature of block A' 1s imtialized and
then the temperature 1s increased two times after the block
A' 1s accessed twice. Afterwards, block A' 1s overwritten by

il

10

15

20

25

30

35

40

45

50

55

60

65

10

block A". The temperature of block A' 1s set to 1 and the
temperature of block A" 1s 1mitialized to 3.

The temperature of A" 1s increased when the block 1s
accessed and then a clone V, of volume V, 1s created.
Theretfore, block A" 1s now active 1n volumes V, and V,.
Later, when block A" 1s deleted in volume V,, the tempera-
ture 1s not reset because A" 1s still active in volume V.,

Then the temperature of A" continues to increase or
decrease based on access or cooling periods until A" 1s
overwritten 1n volume V, by A™. Since A" 1s now 1nactive
in all volumes, the temperature of A" 1s reset to 1.

FIG. 5B illustrates the identification of inactive blocks
during garbage collection, according to one embodiment.
FIG. 58 illustrates the changes 1n temperature of block 504
belonging to segment S, ., 502. Two values are associated
with block 404, enclosed within parentheses, (the tempera-
ture of the block, the reference count). The reference count,
also referred to herein as the &duplication counter, indicates
how many volumes have block 504 as an active block. For
example, 11 a block exists 1n three different volumes, and the
deduplication system 1n the storage device has identified the
multiple copies of the block, the block may be stored once
and the reference count indicates how many volumes are
referring to the block.

Initially, block 504 1s written. The mnitial temperature of
the block 1s set to a predetermined value (e.g., 3), and the
reference count 1s set to 1. After block 504 1s read one time,
the temperature 1s increased by 1, and the block 506 has
values (4, 1).

The volume where the block resides 1s then cloned, and
the reference count 1s increased by one, thus, block 510 has
values (4, 2), where the number 2 indicates that two diflerent
volumes have block 508 as active. The block 1s then read 7
times and the temperature 1s increased 7 times, therefore
block 510 has values (12, 2) after the 7 reads.

Later, garbage collection evicts segment S, from cache,
and during garbage collection, the system determines that
block 510 1s to be copied forward because the temperature
of the block 1s about the threshold temperature for copying
forward blocks. The block 1s then rewritten into segment
S, 322, with block 3512 still retaining the associated pair
of values (12, 2). Afterwards, the cooling process makes the
temperature of the block to decrease by 1, therefore block
514 has values (11, 2).

Block 514 i1s then overwritten in the original volume
where the block was created, theretfore, the reference count
1s decreased. In one embodiment, the temperature of the
block 1s also decreased when a block 1s overwritten, but 1n
other embodiments, the temperature of the block 1s not
changed when the block 1s overwritten. Block 516 has now
values (11, 1). Afterwards, block 516 1s read, which causes
an increase 1 temperature, thus, block 518 has now values
(12, 1).

A snapshot of the block 1s created, and the snapshot does
not change the block temperature or the reference count,
therefore block 519 has values (12, 1). Block 518 1s then
erased from the clone, which makes the block inactive,
because the block 1s no longer active 1n any of the volumes
associated with that block. Since the block 1s now 1nactive,
the temperature 1s immediately lowered to 1. Thus, block
520 has now values (1, 0), where the 1 indicates that the
block 1s 1nactive, and the number O also indicates that the
block 1s 1nactive because no volumes have the block as
current data.

It 1s noted that the pair of values (temperature, reference
count) may be kept in different memories and may be
accessed 1n different ways. For example, the reference count

US 9,727,481 B2

11

may be stored within a data structure used for deduplication,
while the temperature 1s kept 1n the data structure associated
with the segment. By having the temperature of the block
indicate that the block 1s 1n active, i1t simplifies the garbage
collection process because 1t 1s not necessary to access the
data associated with deduplication, only the data associated
with a segment that 1s being evicted from cache.

The temperature of block 520 will remain at 1, because no
active volume 1s accessing the block. In one embodiment, 1f
the block 1s accessed because the user is accessing a snap-
shot that includes that block, the temperature of the block
doesn’t change due to the snapshot access. In yet another
embodiment, access to any block having a temperature of 1
will not change the temperature of that block, unless, that
block becomes once again active (e.g., a clone 1s created
from a snapshot that includes the block).

When segment S, ... 1s evicted from cache because of a
second garbage collection process, block 520 will be evicted
from cache because the temperature of the block 1s below the
threshold temperature for copying forward the block. There
are several reasons why a block may become 1nactive, such
as by erasing the block, overwriting the block, or deleting
the volume that holds that block, etc.

By eliminating inactive blocks from cache faster, the
cache becomes more eflicient (e.g., the cache hit ratio goes
up) because there are more active blocks 1n cache, and active
blocks have a higher probability of being read than mactive
blocks.

FIG. 6 illustrates the structure of a heat map stored in
memory for tracking the temperature of blocks and segments
within a cache memory, according to one embodiment. The
heat map 1s also referred to herein as a segment activity
table. In one embodiment, the heat map 1s used to store
information about the frequency of access to blocks 1n the
cache.

The information 1n the heat map 1s used by the garbage
collection (GC) process to find segments for eviction from
cache, and to copy forward blocks to the cache. In one
embodiment, the heat map 1s stored in RAM memory for
quick access and 1s sporadically flushed to disk for persis-
tence.

In one embodiment, there are three ways of tracking
segments 1n cache. A first group of segments 602 are tracked
by keeping the temperature for each of the blocks in the
segment. A second group of segments 604 are tracked by
keeping a segment temperature value for each segment,
without keeping track of the block temperatures. Finally, a
third group of segments 606 do not use temperature nfor-
mation and use a FIFO method for evicting segments from
cache.

Regarding segments with temperature per block 602, a
table provides information about each block 1n the segment,
including the block ordinal number, the offset of the block
within the segment, and the block temperature. Additionally,
other data kept for each segment includes the segment
temperature, the number of blocks i1n the segment, the
number of bytes written 1n the segment, and segment meta-
data having additional segment-related information, such as
the segment 1dentifier, version identifier, etc. In one embodi-
ment, these parameters are kept 1n one data structure, but in
other embodiments, the parameters may be stored 1n sepa-
rate data structures (e.g., the segment temperature 1s kept in
a different table than the segment temperature).

In one embodiment, the block temperature 1s kept 1n a
four-bit variable, as discussed above, but more or less
storage may be used to track block temperature. In one
embodiment, the number of blocks 1n the segment 1s variable

10

15

20

25

30

35

40

45

50

55

60

65

12

because the blocks may have different sizes. In addition, the
number of blocks may also vary due to compression of the
blocks before being stored. In one embodiment, a variable-
s1ze record 1s kept per segment to accommodate the vari-
ability 1 the number of blocks.

The ordinal number, also referred to herein as the block
number, 1s a number assigned to each block that identifies
the position of the block within the segment. For example,
the block numbers may be 1 3, 4, etc.

In one embodiment, a block 1s 1dentified 1n memory by
pair of values: the segment ID, and the oflset of the block
within the segment. When a read request comes with this
pair of values, the system reads the corresponding segment,
starting at the provided oft

set. However, 1t 1s not possible
from the oflset to identity the ordinal number of the block
within the segment, because blocks have variable sizes.
Since the block number 1s not known, 1t would not be
possible to update the block temperature. In order to avoid
this problem, an oflset value 1s kept per block in the DRAM
memory, no when a request for a block comes 1n, 1t 1s
possible to quickly 1dentity the block number from the oflset
of the block, and operations on the block temperature are
possible and fast.

The segment temperature 1s also referred to as the seg-
ment utilization. In one embodiment, the temperature of the
segment 1s calculated according to the following equation:

segment temperature=(#blocks with T,>K)x#bytes
written to segment/#blocks 1 segment

(1)

Where #blocks 1s the number of blocks, #bytes 1s the

number of bytes, T, 1s the temperature of block 1, and K 1s
a threshold temperature value (e.g., 1n the range of 4-10,
although other values are also possible).

For example, 11 there 1s a segment with 10 blocks with an
equal size of 4 kB, one block has a temperature above the
threshold temperature K, and 9 blocks have a temperature
below K, then the segment temperature will be equal to (1
block with Ti>K)x(40K bytes written to segment/10 blocks
in segment)=4 KB.

Once a volume 1s marked as pinned by the storage
administrator, there are two possible approaches to populate
the data of the volume into the cache: proactive scan and
caching on-the-fly. In the proactive scan, the system scans
the volume for active blocks and the blocks that are not
already cached are then cached. In addition, 1n one embodi-
ment, these blocks are marked as pinned 1n the heat map.

In the caching on-the-fly method, the blocks are cached
when the volume receives new writes or when there 1s a
cache miss on a block read. Theretore, all writes to the
volume after the volume 1s marked as pinned will be cached
and pmned. Even though initially not all the blocks are
cached, eventually all the blocks of the volume will be
cached.

In some extreme cases, 1t 1s possible that there 1s not
enough space in DRAM to keep the block temperature for
cach block, which may be happen when a large number of
blocks are 1n cache due to compression or due to the
existence of many small blocks. In these cases, 1t 1s possible
to keep segments with a segment temperature value per
segment 604 1nstead, without keeping track of the individual
block temperatures.

In one embodiment, the segment temperature, for seg-
ments without a block temperature, 1s equal to the number
of active bytes 1n the segment. When garbage collection 1s
performed, the segment temperature will be used to deter-
mine 1f the segment 1s evicted or not, but copying forward
of blocks will not be available for these segments because

US 9,727,481 B2

13

there 1s no block temperature available. This segment tem-
perature 1s valuable because the segment that will be chosen
will have the least amount of active bytes. It 1s an objective
of garbage collection to evict segments with the least
amount of active bytes 1n order to “clean” as many 1nactive
bytes as possible from the cache 1n each eviction.

There can be times when temperature information 1s not
available. For example, 11 the system just rebooted. At that
point, it 1s possible to use a FIFO method for cache eviction,
which 1s based on the age of the segments in the cache. In
this case, the segment that has been the longest time 1n the
cache will be evicted first.

In addition, there could be situations where FIFO may be
more etlicient for certain volumes, and then 1t 1s possible to
utilize FIFO for those volumes while using heat for the other
volumes. This means that the system supports segments with
different types of heat maps.

For the purpose of garbage collection, the FIFO segments
are assigned a temperature of zero, so FIFO segments will
be evicted first, and as long as there are FIFO segments, the
segments with a temperature greater than zero will remain 1n
cache.

In one embodiment, the storage array provides an option
to system administrators for selecting which type of segment
eviction method to use for a given volume: using block
temperatures, using a segment temperature, or using FIFO.

It 1s noted that the embodiments illustrated in FIG. 6 are
exemplary. Other embodiments may utilize different data
values, orgamize the data 1n a different form, include addi-
tional values, or omit some of the values. The embodiments
illustrated 1n FIG. 6 should therefore not be interpreted to be
exclusive or limiting, but rather exemplary or illustrative.

FIG. 7 illustrates the identification of inactive blocks
within a segment, according to one embodiment. In one
embodiment, the data for segment S, ., 602 further includes
a segment 1nactive storage counter 702. This segment 1nac-
tive storage counter stores how many bytes of data 1s
occupied by inactive blocks within the segment. Therefore,
every time a block changes the status from active to 1nactive,
the segment 1nactive storage counter 702 will be increased
by the size of the block being nactivated. Also, when that
block status changes from inactive to active, then the seg-
ment 1nactive storage counter 702 will be decreased accord-
ing to the size of the block.

In one embodiment, the cache eviction criteria includes
determining which segment has the most amount of mactive
space, as indicated by the respective segment mactive stor-
age counter 702. In other embodiments, the eviction criteria
based on the segment 1nactive storage counter 1s combined
with other criteria, such as the segment temperature
described above.

In the exemplary embodiment of FIG. 7, segment S, .,
704 includes a plurality of blocks, and the temperature of
cach block 1s shown within segment 704. Initially, segment
S, <, has mactive storage of 48000, corresponding to the total
amount of space occupied by inactive blocks within the
segment.

The mactive blocks have a temperature of 1, and the
pinned blocks have a temperature of 15. Segment S, ., 706
represents the status of blocks by providing different types
of shading. Active blocks are represented without shading,
while mactive blocks have a first type of shading and pinned
blocks have a second type of shading.

FIG. 8 illustrates the copy forward of blocks 1n a flash
cache during garbage collection, according to one embodi-
ment. It 1s one goal of garbage collection to pick the

10

15

20

25

30

35

40

45

50

55

60

65

14

segments that have a small amount of data to be copied
torward, otherwise GC would have to be run very often.

In one embodiment, garbage collection selects the seg-
ment from cache having the lowest temperature. As dis-
cussed above, some segments have a temperature that i1s
based on the temperature of blocks within the segments, or
the segments have a temperature based on the number of
active bytes in the segment, and segments using FIFO for
eviction have a temperature of zero.

Once the segment 1s selected for eviction, 1f a block
temperature 1s available then the blocks with a temperature
above a threshold temperature will be copied forward to
cache. Copying forward a block means adding the block to
a new segment, together with other blocks that are waiting
to be cached, and then caching the new segment.

In the example of FIG. 8, three segments are in cache, S,
S ., and S,,,. S has a temperature of 1200, S, . has a
temperature of 4500, and S,,, has a temperature of 8144.
When garbage collection 1s looking for a segment to evict,
S« 15 chosen because S, has the lowest temperature.

S, has blocks A with a temperature of 0, C with a
temperature of 9, D with a temperature of 0, and B with a
temperature of 6. In this exemplary embodiment, the thresh-
old temperature 1s 5, therefore, blocks B and C are selected
for copy forward because the temperature 1s greater than 5.

B and C are added to a new segment S,-; being formed
in RAM and then segment S, 1s added to the cache. Since
blocks B and C are active, the heat temperature for these
blocks 1s maintained at 5 and 9, respectively. In addition,
segment S, 1s evicted from memory by the garbage collec-
tion.

FIG. 9A 1s a flowchart for processing a read request, in
accordance with one embodiment. While the various opera-
tions in the flowchart of FIGS. 9A-9C and 10 are presented
and described sequentially, one of ordinary skill will appre-
ciate that some or all of the operations may be executed 1n
a different order, be combined or omitted, or be executed 1n
parallel.

In operation 902, a read request 1s received by the storage
array. In one embodiment, the read request includes a
volume 1dentifier, an offset, and an amount of data. From
operation 102, the method flows to operation 904 where the
controller identifies the location of the block of data asso-
ciated with the read request. Of course, if more than one
block 1s required to satisty the read request, the operations
described herein will be repeated for all the blocks.

The controller 1dentifies 1t the block 1s stored 1n RAM,
cache, or disk. In addition, the controller i1dentifies the
address of the block 1n the corresponding storage media. For
example, 11 the block 1s in RAM, the controller identifies the
RAM address of the block. If the block 1s 1n cache, the block
identifies the segment and oflset of the block 1n cache, and
it the block 1s 1n disk, the block identifies the drive and
location within the drive.

From operation 904, the method tlows to operation 906
where a check 1s made to determine 11 the block 1s stored 1n
cache. If the block 1s stored in cache the method flows to
operation 912. I the block 1s not in cache the method tlows
to operation 908.

In operation 912, the temperature of the block 1s increased
(unless the block temperature 1s already at a maximum) to
reflect the new access performed to the block. From opera-
tion 912, the method flows to operation 914. In operation
908, a check 1s made to determine 1f the block should be
cached in flash memory. If the block i1s to be cached, the
method tlows to operation 910, and 11 the block 1s not to be
cached the method flows to operation 914.

US 9,727,481 B2

15

In operation 910 block 1s cached and the block tempera-
ture 1s 1mtialized 1n the heat map. In operation 914, the block
1s returned to the requester from RAM, or cache, or disk.

FIG. 9B 1s a tlowchart for processing a write request,
according to one embodiment. In operation 920, the storage
array receives a write request to write a block that overwrites
block B,. In operation 922, the new block B1' is first written
to INVRAM.

From operation 922, the method flows to operation 924
where the storage array 1dentifies the location of the block B,
being overwritten. The location may be in RAM, cache or
disk. From operation 924, the method flows to operation 926
where a check 1s made to determine 11 block B, 1s in cache.
[T B, 1s 1n cache the method flows to operation 128, but 1f B,
1s not in cache the method flows to operation 932.

In operation 928, a check 1s made to determine 11 block B,
1s now 1nactive. For example, 1f block B, 1s active only 1n the
volume from which B, 1s being overwritten, then B, waill
become 1nactive due to the overwrite operation. However, 1
block B, 1s still active (e.g., because the block 1s still active
in another clone), the overwrite operation will not change
the block temperature i operation 930. However, i the
block 1s not mactive (i.e., the block 1s active) then the
method flows to operation 932.

In operation 932, the controller determines 1f the new
block B,' 1s cache worthy, 1.e., 1f the block 1s going to be
cached. If the block B/ 1s cache worthy, B,' 1s written to
cache and the heat map for B 1s 1nitialized. If 1s not to be
cached, the write request ends 934. Of course, there may be
other additional operations taking place unrelated to the heat
map, such as sending the data back to the requester, which
are not shown 1n the tlowchart.

FIG. 10 1s a flowchart for processing active blocks,
according to one embodiment. While the various operations
in this tlowchart are presented and described sequentially,
one of ordinary skill will appreciate that some or all of the
operations may be executed 1n a different order, be combined
or omitted, or be executed in parallel.

In operation 1002, the method maintains, 1n a first
memory of a storage system, a block status for each of a
plurality of blocks. The block status identify if the corre-
sponding block 1s active in any volume of the storage
system, each block being associated with one or more
volumes and each block being stored within one segment of
a plurality of segments. Further, the plurality of segments 1s
configured to be cacheable 1n a second memory that 1s a read
cache memory.

From operation 1002, the method tlows to operation 1004
for detecting an operation on a block that makes the block
inactive 1 at least one volume, the block being cached
within a first segment 1n the second memory.

From operation 1004, the method flows to operation 1006
where the system determines 1f the block i1s active i any
volume. In operation 1008, a check 1s made to determine 11
the block 1s active 1n any volume. It the block 1s active 1n any
volume, the block status for the block 1s set to active 1010,
but 1f the block 1s not active 1n any volume, the block status
of the block 1s set to inactive 1012.

In operation 1014, the system detects that the first seg-
ment 1s bemng evicted from the second memory. From
operation 1014, the method tlows to operation 1016, where
re-caching check 1s made to determine if the block status of
the block 1s active and the frequency of access to the block
1s above a predetermined value. If the re-caching check 1is
positive, the system re-caches the block into a second

10

15

20

25

30

35

40

45

50

55

60

65

16

segment 1n the second memory 1020, but theil the re-
caching check 1s negative, the system evicts the block from
cache 1018.

FIG. 11 illustrates an example architecture of a storage
array 102, according to one embodiment. In one embodi-
ment, storage array 102 includes an active controller 1120,
a standby controller 1124, one or more HDDs 110, and one
or more SSDs 112. In one embodiment, the active controller
1120 may be positioned on a left side of an enclosure and the
standby controller 1124 may be positioned on a right side of
the enclosure for the storage array 102. In one embodiment,
the controller 1120 includes non-volatile RAM (NVRAM)
1118, which 1s for storing the incoming data as 1t arrives to
the storage array. After the data 1s processed (e.g., com-

pressed and organized in segments (e.g., coalesced)), the
data 1s transferred from the NVRAM 1118 to HDD 110, or

to SSD 112, or to both.

In addition, the active controller 1120 further includes
CPU 1108, general-purpose RAM 1112 (e.g., used by the
programs executing i CPU 1108), mput/output module
1110 for communicating with external devices (e.g., USB
port, terminal port, connectors, plugs, links, etc.), one or
more network interface cards (NICs) 1114 for exchanging
data packages through network 1156, one or more power
supplies 1116, a temperature sensor (not shown), and a
storage connect module 1122 for sending and receiving data
to and from the HDD 110 and SSD 112. In one embodiment,
the NICs 1114 may be configured for Ethernet communica-
tion or Fibre Channel communication, depending on the
hardware card used and the storage fabric. In other embodi-
ments, the storage array 102 may be configured to operate
using the 1SCSI transport or the Fibre Channel transport.

Active controller 1120 1s configured to execute one or
more computer programs stored in RAM 1112. One of the
computer programs 1s the storage operating system (OS)
used to perform operating system functions for the active
controller device. In some 1mplementations, one or more
expansion shelves 1130 may be coupled to storage array 102
to mcrease HDD 1132 capacity, or SSD 1134 capacity, or
both.

Active controller 1120 and standby controller 1124 have
their own NVRAMSs, but they share HDDs 110 and SSDs
112. The standby controller 1124 receives copies of what
gets stored in the NVRAM 1118 of the active controller 1120
and stores the copies 1 1ts own NVRAM. If the active
controller 1120 fails, standby controller 1124 takes over the
management of the storage array 102. When servers, also
referred to herein as hosts, connect to the storage array 102,
read/write requests (e.g., 10 requests) are sent over network
1156, and the storage array 102 stores the sent data or sends
back the requested data to host 104.

Host 104 1s a computing device including a CPU 1150,
memory (RAM) 1146, permanent storage (HDD) 1142, a
NIC card 1152, and an IO module 1154. The host 104
includes one or more applications 1136 executing on CPU
1150, a host operating system 1138, and a computer program
storage array manager 1140 that provides an interface for
accessing storage array 102 to applications 1136. Storage
array manager 1140 includes an mitiator 1144 and a storage
OS interface program 1148. When an IO operation 1is
requested by one of the applications 1136, the mitiator 1144
establishes a connection with storage array 102 1n one of the
supported formats (e.g., 1SCSI, Fibre Channel, or any other
protocol). The storage OS interface 1148 provides console
capabilities for managing the storage array 102 by commu-
nicating with the active controller 1120 and the storage OS
1106 executing therein. It should be understood, however,

US 9,727,481 B2

17

that specific implementations may utilize different modules,
different protocols, different number of controllers, etc.,
while still being configured to execute or process operations
taught and disclosed herein.

In one embodiment, as mentioned above, the storage OS
that executes a storage algorithm 1s capable of taking
thousands of point-in-time 1nstant snapshots of volumes by
creating a copy of the volumes’ indices. Any updates to
existing data or new data written to a volume are redirected
to free space. In one example implementation, no perfor-
mance i1mpact due to snapshot processing i1s taken, as
snapshots take little incremental space when only changes
are maintained. This also simplifies restoring snapshots, as
no data needs to be copied.

Other embodiments are also provided, wherein some or
all of the snapshots can be entirely and uniquely taken,
wherein no incremental type snapshot 1s processed. Thus, 1t
should be understood that a variety of implementations and
modifications can be made and still enable the snapshot
management to be processed by the storage OS of the
storage array 102, in accordance with one or more embodi-
ments. In another embodiment, processing by the storage OS
cnables eflicient replication of data to another array by
transferring compressed, block-level changes only. These
remote copies can be made active if the primary array
becomes unavailable. This makes deploying disaster data
recovery easy and aflordable especially over a WAN to a
remote array where bandwidth 1s limited.

One or more embodiments can also be fabricated as
computer readable code on a non-transitory computer read-
able storage medium. The non-transitory computer readable
storage medium 1s any non-transitory data storage device
that can store data, which can be thereaiter be read by a
computer system. Examples of the non-transitory computer
readable storage medium include hard drives, network
attached storage (NAS), read-only memory, random-access
memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes and
other optical and non-optical data storage devices. The
non-transitory computer readable storage medium can
include computer readable storage medium distributed over
a network-coupled computer system so that the computer
readable code 1s stored and executed 1n a distributed fashion.

Although the method operations were described i a
specific order, 1t should be understood that other housekeep-
ing operations may be performed 1n between operations, or
operations may be adjusted so that they occur at slightly
different times, or may be distributed 1n a system which
allows the occurrence of the processing operations at various
intervals associated with the processing, as long as the
processing ol the overlay operations are performed in the
desired way.

Although the {foregoing embodiments have been
described 1n some detail for purposes of clarity of under-
standing, it will be apparent that certain changes and modi-
fications can be practiced within the scope of the appended
claims. Accordingly, the present embodiments are to be
considered as 1illustrative and not restrictive, and the
embodiments are not to be limited to the details given
herein, but may be modified within the scope and equiva-
lents of the appended claims.

What 1s claimed 1s:

1. A method comprising:

maintaining, 1n a first memory of a storage system, a block

status for each of a plurality of blocks, the block status
identifying 1f the corresponding block 1s active 1n any
volume of the storage system, each block being asso-
ciated with one or more volumes and each block being

10

15

20

25

30

35

40

45

50

55

60

65

18

stored within one segment of a plurality of segments,
wherein the plurality of segments 1s configured to be
cacheable 1 a second memory that 1s a read cache
memory;

whenever an operation on a block 1s detected that makes
the block 1nactive 1n at least one volume, determining
if the block 1s active in any volume, the block being
cached within a first segment 1n the second memory;

when the block 1s not active in any volume, setting the
block status of the block as inactive;

detecting that the first segment 1s being evicted from the
second memory; and

re-caching, in response to the eviction of the first segment,
the block 1nto a second segment 1n the second memory
when the block status of the block 1s active and a
frequency of access to the block 1s above a predeter-
mined value.

2. The method as recited in claim 1, wherein re-caching

the block 1nto a second segment includes:

creating the second segment;

adding the block to the second segment;

completing the second segment with other blocks; and

caching the second segment in the second memory.

3. The method as recited in claim 1, wherein the fre-
quency of access to the block 1s measured via a temperature
associated with the block, wherein the temperature 1is
increased when the block 1s accessed, and the temperature 1s
decreased periodically.

4. The method as recited 1n claim 1, wherein the block 1s
active 1n a volume when the block holds current data for the
volume, wherein the block 1s 1nactive 1n the volume when
the blocks holds data for the volume that 1s no longer
current.

5. The method as recited in claim 1, wherein the operation
making the block inactive 1s any one of overwriting the
block, deleting the block, or deleting a volume holding the
block.

6. The method as recited in claim 1, wherein the block 1s
not re-cached when the block 1s not active in any volume.

7. The method as recited in claim 1, wherein the first
memory 1s a random access memory (RAM), the second
memory 1s a solid state drive (SSD) memory, and a third
memory for storing segments 1s one or more hard disk drives
(HDD).

8. The method as recited 1n claim 1, wherein a volume 1s
a linear accessible storage area, wherein a unit for reading or
writing to the volume 1s the block.

9. The method as recited 1n claim 1, wherein the block 1s
readable without having to read the complete segment where
the block resides.

10. The method as recited 1n claim 1, wherein at least one
segment from the plurality of segments 1s configured to hold
blocks from two or more different volumes.

11. A storage device comprising:

a first memory configured to store a block status for each
of a plurality of blocks, the block status identifying 1f
the corresponding block 1s active in any volume of the
storage system;

a second memory for caching segments from a plurality of
segments, the second memory being a read cache
memory, wherein each block 1s associated with one or
more volumes and each block 1s stored within one
segment from the plurality of segments;

a third memory for storing the plurality of segments; and

a processor configured to detect when an operation on a
block makes the block 1nactive 1n at least one volume,
and determine 11 the block 1s active 1n any volume, the

US 9,727,481 B2

19

block being cached within a first segment 1n the second
memory, wherein whenever an operation on a block 1s
detected that makes the block inactive 1n at least one
volume, the processor determines 11 the block 1s active
in any volume, the block being cached within a first
segment 1n the second memory;

wherein when the block 1s not active in any volume, the

processor sets the block status of the block as mactive;
and

whenever the processor detects that the first segment 1s

being evicted from the second memory, the processor
re-caches the block 1nto a second segment 1n the second
memory 1f the block status of the block 1s active and a
frequency of access to the block 1s above a predeter-
mined value.

12. The storage device as recited 1in claim 11, wherein
re-caching the block into a second segment includes:

creating the second segment;

adding the block to the second segment;

completing the second segment with other blocks; and

caching the second segment 1n the second memory.

13. The storage device as recited in claim 11, wherein the
first memory 1s a random access memory (RAM), the second
memory 1s a solid state drive (SSD) memory, and the third
memory 1s one or more hard disk drives (HDD).

14. The storage device as recited 1in claim 11, wherein data
1s stored 1n the second memory and in the third memory 1n
segments.

15. The storage device as recited in claim 11, wherein the
frequency of access to the block 1s measured via a tempera-
ture associated with the block, wherein the temperature 1s
increased when the block 1s accessed, and the temperature 1s
decreased periodically.

16. The storage device as recited in claim 11, wherein the
block 1s active 1n a volume when the block holds current data
for the volume, wherein the block 1s inactive 1n the volume
when the blocks holds data for the volume that 1s no longer
current.

17. A non-transitory computer-readable storage medium
storing a computer program, the computer-readable storage
medium comprising;:

program 1instructions for maintaining, in a first memory of

a storage system, a block status for each of a plurality
of blocks, the block status identifying 1f the corre-

10

15

20

25

30

35

40

20

sponding block 1s active 1n any volume of the storage
system, each block being associated with one or more
volumes and each block being stored within segment of
a plurality of segments, wherein the plurality of seg-
ments 1s configured to be cacheable mm a second
memory that 1s a read cache memory;

program 1nstructions for, whenever an operation on a
block 1s detected that makes the block inactive in at
least one volume, determining if the block 1s active 1n
any volume, the block being cached within a first
segment 1n the second memory;

program instructions for, when the block 1s not active 1n
any volume, setting the block status of the block as
1nactive;

program instructions for detecting that the first segment 1s
being evicted from the second memory; and

program 1instructions for re-caching, in response to the
eviction of the first segment, the block 1nto a second
segment 1n the second memory when the block status of
the block 1s active and a frequency access to the block
1s above a predetermined value.

18. The storage medium as recited in claam 17, wherein
re-caching the block into a second segment includes:

program instructions for creating the second segment;

program instructions for adding the block to the second
segment;

program instructions for completing the second segment
with other blocks; and

program 1nstructions for caching the second segment 1n
the second memory.

19. The storage medium as recited in claam 17, wherein
the frequency of access to the block 1s measured via a
temperature associated with the block, wherein the tempera-
ture 1s increased when the block i1s accessed, and the
temperature 1s decreased periodically.

20. The storage medium as recited in claim 17, wherein
the block 1s active 1n a volume when the block holds current
data for the volume, wherein the block 1s 1nactive in the
volume when the blocks holds data for the volume that 1s no
longer current.

	Front Page
	Drawings
	Specification
	Claims

