US009722900B2

a2 United States Patent (10) Patent No.: US 9,722,900 B2

Reynolds et al. 45) Date of Patent: *Aug. 1, 2017
(54) METHODS AND COMPUTER PROGRAM (52) U.S. CL
PRODUCTS FOR TRANSACTION ANALYSIS CPC HO4L 43/0876 (2013.01); HO4L 41/069
OF NETWORK TRAFFIC IN A NETWORK (2013.01); HO4L 43/028 (2013.01); HO4L
DEVICE 437062 (2013.01); HO4L 41/22 (2013.01);
Y0485 40/166 (2013.01); Y045 40/168
(71) Applicant: MICROSOFT TECHNOLOGY (2013.01)
LICENSING, LLC, Redmond, WA (58) Field of Classification Search
(US) CPC ... HO4L 43/0876; HO4L 43/028; HO4L 43/62;
HO4L 41/069; HO4L 41/22; Y04S 40/166;
(72) Inventors: Patrick Alexander Reynolds, Y048 40/168
Pensacola, I'L, (US); John Branson USPC e 709/224
Bley, Durham, NC (US); David See application file for complete search history.
William Irwin, Cary, NC (US); Aydan
R. Yumerefendi, Raleigh, NC (US); (56) References Cited
Glenn Thomas Nethercutt, Raleigh,
NC (US) U.S. PATENT DOCUMENTS
(73) Assignee: MICROSOFT TECHNOILOGY 8,799,225 B2* 82014 Vaitzblit GOo6F %(l);(jéi;
LICENSING, LLC, Redmond, WA 2002/0087769 Al* 7/2002 McKenney ... GOGF 9/52
(US) 710/200
| | o | 2005/0144330 A1* 6/2005 Richardson GOGF 9/526
(*) Notice: Subject to any disclaimer, the term of this 710/1
patent 1s extended or adjusted under 35 (Continued)

U.S.C. 154(b) by O days.

_ _ ‘ _ _ Primary Examiner — Arvin Eskandarnia
This patent 1s subject to a terminal dis- (74) Attorney, Agent, or Firm — Merchant & Gould;

claimer. Steven F. Owens
(21) Appl. No.: 14/949,367 (57) ABSTRACT
(22) Filed: Nov. 23, 2015 Provided are methods and computer program products for
analyzing and tracing the contents of network traflic 1n a
(65) Prior Publication Data network device and to help identily network performance

issues. Methods for analyzing tratlic include identifying
thread identifiers associated with transactions, determiming,
related events, and associating similar transactions and
events mto an aggregated list of transactions. Methods of
(63) Continuation of application No. 13/837,816, filed on tracing transactions include identifying thread identifiers

US 2016/0080233 Al Mar. 17, 2016

Related U.S. Application Data

Mar. 15, 2013, now Pat. No. 9,197,520. assoclated with transactions and related events and serial-
1izing events ito a serialized list of events to facilitate
(31) Int. CL tracing single transactions.
HO4L 1226 (2006.01)
HO4L 12/24 (2006.01) 20 Claims, 35 Drawing Sheets

Kernel Space 310

Kernel Events _
AFD Filter - Sender —— TDI Filter
312 316 314
I o Y
Kernel Events
Receiver
322
Machine Reverse Process Machine
Information DNS ;;ZET:; Metrics Metrics
Collector Resolver 306 —®™1 Collector Collector
324 325 328 330

o~

Event Dispatcher
332

Health Data
Processor

100

User Space 320

US 9,722,900 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2005/0223368 Al* 10/2005 Smuth GO6F 11/3644
717/128

2006/0288149 Al* 12/2006 LaVigne G06Q 10/10
710/306

2011/0055483 Al* 3/2011 Heller, Jr. GO6F 9/466
711/125

2012/0304172 Al1* 11/2012 Greifeneder GO6F 9/45504
718/1

2014/0032491 Al1* 1/2014 Neerincx GO6F 17/30345
707/610

* cited by examiner

US 9,722,900 B2

0¢ SuUlyoeip

Sheet 1 of 35

Aug. 1, 2017

002 10198]]0D
0¢Z euyoep

o_.l\\

U.S. Patent

0¢ SUIYdEN
002 10199100 |

001 uoneandae

Buisssoold rlep UijesH |

ﬁlwdmm i0}o8ljo) |
0Z suiyoe

00z 101028[j0D

| 32 suiyoen [enuIA |

g7 SUIUDJEIN |[ENHIA |

| 90Z 1010900 |

007 10109109

F2 sUIoeN 150K

US 9,722,900 B2

Sheet 2 of 35

Allg. 19 2017

U.S. Patent

91

aseqgele

sseqeleq

e f—

m_\.\

o_‘l\

IDAIBS

uoineoijddy m

vl

JBNIDG

o CO_”_.MU__QQJ‘

vl

JEYSETS
uoneonddy

JEVNEISNGET YN

=1D

22INS(]
buiuiod

US 9,722,900 B2

pleogia) “
S

aoeI8]u] 22IAS(] (s)eolnap 1410
MIOM]JSN uonie||eisu] Aejdsiq oJ]

m:‘_\\\ U-Bycl mN_‘\\

—
; .
abeloig fuowayy
uieip

usby m
WUSID oAl .\

2IEMULOS —

—

mﬁl__i S0 _ V/_\S

LCl

8Li

Sheet 3 of 35

om_‘uk

gci

Aug. 1, 2017

U.S. Patent

US 9,722,900 B2

Sheet 4 of 35

Aug. 1, 2017

U.S. Patent

qoel

aslna(]
O/l

ET\

ccl

o¥l

821na(]
O/l

EQC T...

AIOWIBIA]
UIen

N
|

ayoes

0L} 2bplg

€

0

.

10SS2001d Ulepy

US 9,722,900 B2

Sheet 5 of 35

Aug. 1, 2017

U.S. Patent

99¢
SHOd
NIOMISN

J

19¢
jaels
MJOMISN

OvZ aulbug 18)0ed pajeibsiul

C9C
10888201

J-Z lJafe- peadg-ybiH

SLZ S92IAISS uowae(] WalsAg

vLe
S92IAISS [IPYS

4%
1O

¢9¢

10SS820.1d

0ge
[oUIDY

ol¢
1N

90¢
s1empleH

¥0¢
aoedg

[OUIY

c0¢
aoedg J9s(

US 9,722,900 B2

028 ©oedg Jasn

| 001
| 10SS2201d

 ejeq ujesH |

\;

¢,

-~

&

\& _ _

- 0Ce 8C¢

> 0109|1100 | | Jopsjion

- SOUJSIN SOLRIN
auYoBN $5590.1d

-

v

—

g |

1-......

)

—

-«

71
#YI4 1dL

U.S. Patent

F4%3
layojedsi(] Jusn3

(42 _m JaAIOSSY | 10J09][0D |
OAPSOR SNQ uoewLIO| |
See00.d oSISNS Y SUIUDBIN |

A4S
JSAI808Y

SJUSAT [DUISH]

PpUSs 1914 g4V
SJUSAT [BUISY

OLE ooedS [sule)y

US 9,722,900 B2

Sheet 7 of 35

Aug. 1, 2017

U.S. Patent

Tererdwos
SR

Swi} jem

e

pPESY ™
S}
asuodsal A

JOAID
S SI|dwoy | N

pESY . | K
ANy \ Al peey -

—

(1aAIeg)

V oLl
asuodsal

_
|
|
|
_ (usii0)
|
|
|
|

|

_

_

" ” O _
o L1
e

. Sw\

[A0) % _

sasuodsay psalsidilion JIaquIinN
Swi esuodsay [ejo] |
POAIS09Y SalAg |

US 9,722,900 B2

Juag selAg |
SOMIN SIaN L
SAS'dIdOl _ speay paje)s JequnN
-— — — | speay buipusd JI8quUINN
TTE spesy pale|dwo)) IaquinnN
A M 814 1aL SwIL JeM peay [ejoL
o 1AL .
= _
o0
~N— .. ”
> _ m
- 1913N | a4y
6 _ -
ISl A4V
r~ | Y0C
= jouley
2 — S E—
— | 20T
al 19S5 _
=
< aoeliau]

uoleolddy uolealddy

N

uoijeoljddy uonesiddy

| uoljeoljddy

U.S. Patent

US 9,722,900 B2

Sheet 9 of 35

Aug. 1, 2017

U.S. Patent

puU-]

vig
(s)sweu SN(paullls1Sp 3y} pUE SOLsW |BA3] Jasn

| puUe [aA2| [2UL19)y ay] bunelodioou] JUSAS UE SleIsuaD) _

%)
SSaIppe d} |yl
UIA PSIBIDOSSE SUIeU SN 2U) SuUIwIalap 0] SoUjaW |
[9AS] J9SN pue [aA3] [pulay pajebaibbe ay) ul pspnjout !
ssalppe | Uoes jo dnyjoo| SN 8sioAal B ullopsd |

019 - _
B1Ep 1U9)SISUodU|

S|I9U0J3S PUB E)EP JUEPUNPS] SA0WSI 0} SoljaL

[OAS| JasN pue |ang] [auwdy palebalbbe ay) $s9001d

809

| jeAJSjUl DWIL PUODSS-G| JUadal jJsow 8y} Ul pajessush
| sOAW [BAS) 19SN pUB [SAd] [puUiay By} sjebaibby |

909
(] sso20.d

pue ‘uod |e20| ‘ssalppe d| [e20] Aq *6°9) uoneoldde
AQ SOLBW |9A3] J9SN pUE [8A8)] [BUlay ayl 9)ebalbby

r .I e
709

B1EP aduewIopad pa)os)|0d 2yl uo

PDOSE(SOLUJSW [AJ] JOSN PUB |SAS| [SUlSy slelsust) m

Z09
3IABP p3NIOMIBU BU] U0 Buluunl
uonesdde yiomiau suo 1Sesj 1e 0} buipuodsalloo
elep eouewlopsd sHooy 2y} BIA 103)|00

009
NOELS yJomiau pHodsues) e 0] adejlalul
B0 Wa)lsAs psusuo-uonedijdde ue 0] pue ‘aoeua]ul
|suisy [090]01d Yi0MIaU [BUlSiul SWLlsAs Dunelsdo
SU} 0] S2IASP PaNJOMISU B U0 SYO0Y YsSI|qels3

uibag

o i{'“\. ‘-_‘::_I

US 9,722,900 B2

\ .
; . =
B - L -
) i 1
- : =
- - M
i z N 2
it s "B -
>
= : g E:
H - <
..“. H L. . .|
...w =4 :
: =gt
...m“. .
i)
H:

P

rilp i

e e st a ok S e L T D et S e T T e

W. .

)

._.",......{.._. ..r_..-._..... B ols...“...n.....,..“.,.n....n....?_ - ...:n i

—

BRI X514 %&%ﬁ.

e i e s e T ek

R T

(N XA RN H AR EE

e

U.
L
e e ST A R T...n... DR LR D -
I Al . T T T .
o "
L, .- f
DR : -
.. .M EEr oy voiet T o A LR L EE LR L o RS ir
T T N P et . .1_
ER- " I iy
.m il E - .

[TEHT R RN NP

]
.|"|" L.

rl....H.i:in::.J.:..F:fS.;. P, NP RS- LR
SRR EE D) AT FH .“....:...,...- KA, LT WD A R D S e

R

PR e

e
B B

2 de gt

Aﬁ.,t,: '

l-"-

T R BT O

.:lvl.-: FLLL

%ﬁﬁ%ﬁ%ﬁqﬁ{?@r*f%&i#

e o e sk e W A 1 Bt e e Y

“%‘i
|

T L T e D e R P L DL R T T L

RIS .,..._.... .J_-.._r.r-.- ST L..n.nr.,. i Tl e T

”_WH.% e

%

ANTE R TP T TR L D TR (U
Tit

Sheet 10 of 35

'
LI

. AR

[T

SUBSISA() S804 §
oL FEAG B §
SRLLER] RTLIHA

.ﬁ?;\aﬁ#hﬂﬁ.ﬁﬁu&ﬁﬂnnﬁirﬁ%&ﬁ uﬁéit&:ﬁ%ﬁn‘wuvﬁﬁ

: 0 Eg

Tl e R e T e e e e e T e

Ceare ugps .,kk

b T L BRI q.':'\-\.'
At H

1

-!

I
-

I
.

L TR PRI L g e e T Tl

w.m... e |.. .._.._..._.” - wtrn .._.

Leela, RILLID, 00Y

B L WPEAE LR L A
" .

LML LT IR AT I i g I e e W g _"

ﬂﬁﬁmﬁw

f&.ﬁ"q..uul... . 5 = =l EOr
-;f%ﬁ.ﬁ.éﬁrrﬁﬁﬁif xo {4q.w:}wu.qa£ruanﬁn}—ﬁ¢ﬁ\

5
; O T e T TR e - it
“ [iu .I_'u_. » rﬁ% J . m._. P e T T IS Sty By B L B TR LR |.. sty m ”—.}i %
: - - o F gy FEFREAR m.___._ Hw._.. -
I T TR el e T ERE - . - mrmME
.J.

Aug. 1, 2017

'.--.u-.'-\.-.;._-\.:a.-.u._'.-w::--.r.-,-'.-.-.-:-.l.-.'m'-'.

ﬁﬁ_mﬁ

i .ﬁaﬁﬂsgﬂ._ﬂ _:_:..r__u.._". ||_.i-rulrt.:.|...!_..|h|h..-.f£|.i{1u_5__.\
i e T ' Y awn grrar -

SREISOH A B
SRSSRPPY il
SRR Fagdf T

m.s_:;:;-;,.;«;.
£
-

ket

ettt . EEEE I LI et . e Tmees e =T e J R R ke P L I PEEEE TN L

-—ar P ot e e Ty FEYPT Y TRVNREL SR T L] aTran -

et e m— e == mmm s mm s mm s n P A P |

LR e e O —— O
ST BARPMOUG. oo mwmwmm of S SRS o0 0

. P U, Y L O Y T R LR TR TRETIE T RN
A

. ...|.5..... hfu.,.uuj.fﬂ_.rf.f-.......,..uj..rcl .,.._Ju.nfu..[...c.rr.J..r. avem ...
. LiLL.eEEIAE sz raEEcamcem g mm e e ey e Lt e P = o
Lour..u.l.u...u...n.un..-_.-.....-.u..-_ N e TN e Ty or R e R P PP T TP P LT R LR bl - Lo 1=r ' " -
- : ’) ' - 1 ’ ’ - . .

.. B - . .,

_ : 2 ~ : LR
B T L I C LT e - - S -
AT T T e S R ﬁmﬂ.ﬂﬁ@ﬁmﬁmﬁ ﬁﬁﬁﬁu @%ﬁwmmﬁ
i

U.S. Patent

US 9,722,900 B2

Sheet 11 of 35

Aug. 1, 2017

U.S. Patent

pu-

Zie
1opoW awl)-jest sy} Aejdsig

oLg
ugamlagalay; sdiysuoljejol
Syl pue suciesijdde 3Jomiau payiusp sy} dulpnjou;
‘sniels yiesy Jomisu JO |2PpoW swljj-|esl sjelauss)

208
DaAI808] SEeM B)ep

Ananoe ysium 103 suonesljdde ylomiau Jo uoneouijuspl

2U] UC POsSE(q 'PaAIadal Sem eleP Alialjoe ou
Uoiym 10] suoneoijdde }Jom)su o SoU]SIXa ay] Jaju|

908
SplEpUR]S
ABSNpul 0] uoneiallod Aug pue elep AJIAIJoe PaAISIS.
AU Uo paseq ‘usamiagsaiay) sdiysuonejal eyl pue

| “seo1nsp paxomiau jo Ayjenid au} jo sauo SAoadsal

oy} uo Bunnosxa suonedidde siomjau ay} Ajuapj

Y03
elep JUS)SISUOOUI SIoU0J3]1 puR BlEp JUBpUNpS.

aAOWA) 0] BlER AJIAIDE PaAIadal 8y] suiquios)

z08
DSAIS3I 10/pUe Paloa|joo

sSem ejep Ajaoe syl usym buiesipur dweissun
E Yum Buoje ejep AJIAIIOE paAledsl ay] BAIyoly

008
SSJIASD payioMmIBU
10 Aeanid ay} jo seuo aalnadsal uo Bulnosxs
suoieadde ylomiau Jo Aljein|d e JO S8lliAjJoE 0}
Buipuodsallod pue ‘S3VIASP paddoMmlau jo Alljeinid e |
10 Sau0 aAiaadsal uo Buinosxa suoiesidde 10199)00 |
10 Ajeinid e Aq pa10d]joo Blep AJIAIJOE 9AIS09Y _

US 9,722,900 B2

Sheet 12 of 35

Aug. 1, 2017

U.S. Patent

ANAIDOE UDIYMm 10} Suoljesljdde 3J0Mm)su. jO uoljediijuapl

pu-

0L6 . ¥06
|apow |eouo)siy ay) Aeldsig splepuels AJjsnpul 0] Uoije|e1i09 Aue pue
| | elep Auanoe pensiial 9yl U0 paseq ‘usamlagalay]
sdiysuoie[@1 ay} pue ‘ejep AlAIJOB pansulel
SuUl yum pajeioosse suonedidde ylomisu ayl Alljusp)

806
uaamlagaiay] sdiysuoliejal
sy] pue suonesiidde ylomiau payiuapl ay} buipnjoul

‘Snjels Uj[esy YI0MIaU JO [9pOoW |EDLIOISIY S)elausn) 06

BIED JU]SISUOOUI 3[I0U0D8] PUB Blep Juepunpal
aAOWal 0] Blep AJIAIIOR pPaAaLlal ay] aulquiod)

906
DOASII]3) Sem Elep

006
IBAID1UI W] poalioads B UIYlim PaAISdal

10 paJo8)|[00 SeM JE) Blep ANAIDE PSAIUDIR SASLISYH

ay] uo paseq ‘peAsLi}al Sem elep Ajajoe ou
4oiym Joj suoijeondde ylomlau JO 80usisixs ay) Jaju|

US 9,722,900 B2

Sheet 13 of 35

Aug. 1, 2017

U.S. Patent

0901

NUIS 13s.ed

0L Oid

geol
Ja}aidia)u|
. | jduog Jesied A__“,_a_ >._.Vd_‘.
00T auIyoeN
Jasie |BNUIA
= 2 suojjoesuel |
G501
Jalaldisiu]
1dusg 1Ol | |eg—— SZ0L
N Josied
o G001 i€
D Jeld 010} - jeung «— 9NpoW
auibug 1asied AIowep\ paJeys aoedg oWy
Yol - 0201
d o}l q J8sied
[41}4 1[4
— aoedg Jas 2oedg |ouIo)
0v0l g GLOL
Y 18} Y Jasied

US 9,722,900 B2

Sheet 14 of 35

Aug. 1, 2017

U.S. Patent

ObiL
‘poplebalsip si elep

O] HI0OMISU Pa1os|ioD

Gl
Jayng Alowsw paleys ojul

DaIIBjSUBI] SI BIEp JIBI] YJom]au palosd||od

SOA

GOL1L
;a1edipaid eualld e Alsiies elep
OIjE1] YIOM]BU Pa]08]j0d s20(

0CL1
'Pa]O9Y|02 SI DIIASP MYIOMIaU B Je

| PeAIBoal 10/pue Aq JuSs Elep Jijel} YI0MISN

US 9,722,900 B2

Sheet 15 of 35

Aug. 1, 2017

U.S. Patent

G8CL
RlEp Passaiduwod

uo paseq
JUSAS S]B1aUsD)

08¢C1
e AI3JUI S
pauljapald buunp
pajoeiixa ejep |
uoljoesuel] paJsjy |
oy} ssaudwon |

ON

Gicl
;U0 apow

SOA Qoel |

0LCL
ejep pajebalbbe

| UO paseq JUaAS S]elauan) |

¢acl
[eAISIUl

aLu} paulspald Buunp

| pejoeIIXe BlEp UOROESUEl)|

paJja)u ay) e1ebaifby

D9ZL
B]ED UONOESURI] palal|y

ayl 10 2INQUNE UE 3101

Gl

| ‘PaWNSU0D SeMm ElEp
| OU Jeu} J0)eDIpUl 310)S |

A m
BJep UOIOESUBI} PSJOBIIXS |
UO paseq Blep uoljoesuel)|
IR [EETD m

|2]ep UOIJESUR.] PRJIEIIXD
2y} J0 aingqupe ue 210)s |

gvil
“PBALLINSUOD

| sem jeu erep 10 Auenb |
[ENIOE JO J0JBd|pul 810]S

1) 7A?
"100030.4d YI0Miau
AQ paulap uoloeSUBl]

”. jeo1bo| 0] buipuodsaLc)
ejep uoljoesued; Em.ﬁﬂlm

SOA

0Elt
Juonoesuey
JoelIXa O] Blep

0
N ybnoug

| OU Jey} Jojedlpul 81015

LSOA
gccl
‘PAWNSUOD __ Y AAD
alom elep Juenbsasqnsy o ; buisied
| pue elep pajo9||02 N aNuUiuon

JEY} J0JEOIpU] S101S

GLClL
Alessadau

| Sl BlEp Juanbasgns
| 10 Buisied JiI paujwie)ep
0} elep auiwexy

59k
0LZL
‘pesled 3q G0ClL
- [[IM MOJ IOMIBU BY} | ;pasied
- woy) elep Juanbasgns! ©N 8q glep uen

00cL
(Asing
Aowsuw palieys ul
S|Je|leAE

N

uibag

US 9,722,900 B2

Sheet 16 of 35

Aug. 1, 2017

U.S. Patent

L0EL
sdew jeay buleiouac)

Poch
195 sissyjodAy e bunelsuso

COCT |
SJUSI01S02 UoIlB[a1102 Bullelsuac)
s I— and

90¢L
128 sisayjodAy syl o} buippy

GOEL
uole24109 ybiy yum souaw buiAjuspi

L S

I

20¢l
195 3}epipued B BulAlluapj

LOC L
oulaw Alewnd e bulos|es

-

US 9,722,900 B2

Sheet 17 of 35

Aug. 1, 2017

U.S. Patent

GOvL
19S S1epIpuED SU) jO siIequisw bulAjijuspj

POVL

adA} oujaWl Miomiau
ay) ulim pajeinosse ndul ue BUuinieoay

coblL
uonoun} Buusyjl e dulAjddy

A 4"
sdA] oUW Hiomlau e bulosjes

I

LOVL
sjuswsie

US 9,722,900 B2

Sheet 18 of 35

Aug. 1, 2017

U.S. Patent

1419}
19s sisayjodAy e buijeisusc)

L

£0€lL
SJUBDIPS0D UOHRIS1I0D mc:Em:mO

LOCL
ousw Alewind e buljosieg
L —

I S

c051
INdul JUSWSII8p Jo/pUE JUSWSIdU| PaAIedal

ay} Uuo paseq {eAlajul awll syi Buisnipy

—— -

t05} 051

momtmE_a " 9oBLISJUI 18SN B BIA Indul
i8sn e wolj snjeA YIys [EJOAWS] B DUIASISY JUSWSIoDP JO/PUB JUSWaIoUl U Buinisoay

+

US 9,722,900 B2

\f,

ot

T

&

S y09L ¢09l1

— uoneInBiuos sy} uo indui ayy uo

5 paseq adA] oulaw yiomlau ay} bunelsuss paseq adA] oLjaWw MYJomlau syl buljeisusc)
7

™~

m i

) <091 LOSL

— Lo EewIoUl uoneinbiiuod soelisjul
m..w_ sepn|oul 1eyi 8|1} ejep e buipesy INdui Jesn e BIA J1asn & wol) Jndul Buinieoay
< _ |

vovL

U.S. Patent

US 9,722,900 B2

Sheet 20 of 35

Aug. 1, 2017

U.S. Patent

G0.LL
188 sisayjodAy e bunelausc)

vOLL
SJUSIDILS00 UOIjB[21102 Duljelsusc)

£0LL
| soepalul _
| Josn e wioly anjeA Hiys |eiodws) e Buinedsy |

uibag

¢04i w
Indul JUSWS103P J0/PUB JUSWSIOU] PaAISdel |

ayl uo paseq jeAalalul awiy sy} bunsnipy

B JOZ1
soelSlul J8sn e eI Indui

JUSWIBIo8p Jo/pue. JuswWaloul ue DUIAISISY

US 9,722,900 B2

Sheet 21 of 35

Aug. 1, 2017

U.S. Patent

8l Ol

1EIWOI-H9=55I] 10} L HY m:.nu_w_._.._n.__u |

- - e et e T]
M.H PlbsAw PUS-IUO. 1Y ES320.d mmﬂmaﬂm?wm.mmu_ .”_”.mw..a . 1r1m§53¢;mm_
E_EaEcm_ Ndd :S88304d ~ g-zzs! Tewo B
mm .Huwum._n-wm.mu_ni to _”#w.n.ﬁ ._m._...._ﬁm nnﬂ S{2e40) 8STT 93 Hm_umh?ww.mu_mi uo .Emmﬂim. JHL UFT, Hm_um.._u..vm.mu_wﬁ €6F0. , o -
m .nm_um._n-wm.mu_mi UG (¥pi T A0S ddy Eum.__ﬁ acTT o T3pIRI0- wm.m..._wa Uo WebYM3 | ._.m.q . :..._mw_u_m.__.m_.wm.m..._ws 1340) -) - . .
999THE [£629P-Z-2ZS1] (4]280 (W), Nd2 859042 z-zzsl L1570
$o5PQRIEP-TE-563] Ut (PIRSALL SOEE 03 JRIW0IFE-GS] UD JE30] L7 U JIWORPG-SEI TZST Aoy A |
a 1eIWO0Fp5-SEF) UO JRIWa] U A48 1d) od S804 ﬁuEaﬁe@,mmu_. zEgp %.{f {}m? |
a - - 125110 .r pua-pPeg. 19V wuwunun_“ JEIUI0) #9-55) ezeg _,...m_}.u..... ALY
IOWOFFO-GSI| PUIIIRE LYV BUYIRl JOWOFE-SEI STST =y A A
558THZ [£62ap-z-2251 (H}ZEa (HIHE! uj sabeg 6532044 w.mmm_ S25°0 Y ¥
| © pYsIpYy SPEsY 40 JaqUINN SIT z-zz8l 5€SD Vo W
__ ISPy "Of pedy NSIg z-zzsl S50 T a ¥ |
pidewsyu. Nd2 1$5930.4d o(aRJO-OPLONOTOS SEGD S
DISIPY SWLL BN pesY [e301 4SIC z-7zsl 265°0 ' L
a-pg-gATM UO [BUSNSM SKL 5320 TZST:0T 2 88T ZET 03 TRIRI0-pO-EYZM US ¢ T Jantag ddy apeip pue-3g 03 OA SHoMIaN U TRPRIC-HOEZTM LS50 A
JEIWOF£S-GG7| UD FEIWC] UD 0828 LY MR 30d $59301d PIUOFPG-GSI| +YO'0 S YN YT
_ IO HH-557| pU3-C [¥V 3ulyIen WOWOFEE-553] €650 A MV,
W PO PUSJUOI] [H XBW 5632044 WO EG-GGI] GZL Vi VY ,.:4_ SR
i JEIWOFEG-GG3] PUIIUOLS 1 XBW S2UIYILK W6 BZLD A YA YV
e 1oAY $G-GG3] UO B8T'0 9ALIWO] redy LY xel ddy 62L°0 S VVRATVEYTY
WINOF£9-G5I| US JBIWOL UD §8LG LYY MO $§330.4 1RIWO}-$5-G53)
M i 1e010 pua-JuCl] Ldy ‘5S83014 ITUO-FO-5 6]
et IEIWOF S-S5 US BT 0 SARIUCL sysedy 1My ddy
mE - B) TRIOT FR-GED] 1 ”w_,m._.._umz] JOIWOYH9-5GI 000°T AV ATy |
T T - T 7 7321N0§ JIIPK; TTTTRERL T uyae] W e3ed pejejauod;
- ¥081
- _ Z081
Yels Jaaag A
§sa304d M m. . 1081
. UM & | saujyoeLy Juaspuadap (e US S2La3W IV
_ (S Ut 3wi] esucdsad DAY) LAY ¢ | samnue Zevl)) p..ﬂﬁ uopaesuedl i m_:n._ mm_u:wvcun_m_u oeIq L:.m
. 2R3 paje[alad | | o T ﬁu.:muﬂ)l .mu..uu__.__ ..u_-__u_ T ..u_.nuu_m uu.ﬂ_um
€081 T 1EUNOI G- CGI| U §T'0° mbmuEn I m:umad. wasodng ddy e uc)

1e01I0}-9-G G| 4O} LUV Dupjea.uod

722,900 B2

Sheet 22 of 35 US 9,

Aug. 1, 2017

U.S. Patent

M.. mﬂ_ F m _mﬁ, mt:ﬁumrc
mﬁ. "039 173 = mafbmﬁ
Oz ﬂmm 12T135 PumTIR UL
7 @ma L0338 buiaieu

ﬁw_um._ﬂ-.vm-mxmﬁ ue Ecmymﬁ AR

TS|2EI0- 50~ TR M LD IBUQSIT ML =

TR|IEI0- G- D7 M UO 18UE3S5]

S =

SEAS UD ITST

Hm_uw.,__.mm vm,mxmﬁ za _..ww_,____m”_.m_ﬂ mz .r__m_._.u_m._.ﬁ Ui Hw_mﬂmm_ QB S

(rEiQ U0 TZGT AL ﬂ.u.ﬁnwﬁ

22 4O Hﬁ_m._” Eﬂ Paddas 5

ey

ukot=T [nae s M

s1sanbey 7

=

mezgm N

¥
L3

G e

i
{3

m1sanlizy 7

LY
£jI‘j':

s1Sanhay -

2215 L
peoy ¥ H
1w XL
11 %]

L& N O e O T4,
e
L

TRJIRIO-FG-EAT M

N0 - O A

IPAC-PE-GTM

Ta 380 Rl 0T M

0T GIo ,_.J,m.._mm @c_;uwuﬁ-ﬁm IBA0- Y- T U0 JBUSISIT SHL 2980 U2 ITST A pandes SIS AL SETQ 7 i |
07 OO _.Lmdm mc_:ume T umhm-wmrmxmﬁ L4 ._mﬁmwm_.. SHL S|I8S0 U0 TFST A paAdas Emm:mma IS e XL 1= um.._m-wﬁ-mxmﬁ_ ST 0
COF OH5 13371435 @c__._ﬁﬁE-Hm YRAC- G- 0T U0 I2UDIST SHL @0edD WO TZ5T Af pasdas ﬂuﬁuw_um 155 Ldw ¥l T|eI0-FG37M. BT .m___._.”,
ccﬁume ﬂ@ﬁﬁﬂﬁmmurm.mmu_ uo %Emhc.: SOSe 03 umuEE..wn mwuw 131 M@JEQF WD) JUas £1sanbay oS BIIC M JELD-HO-9R3] DLLTD ; Lo ;
~ BUIYIBW B2 EREIRR-7E-9 50 U %Emﬁ& OngE Gl uﬁm.u_wua%ﬁmimmu_ U JE3WUD | W0 JURS S1ERN0EY TS [1:3em B § JRIOHG-GE3 DALD
R -5 4 ._,ﬂ”_%_._”mc_zum_.z. #nu_,tﬂ FPG-G520 DO0T ﬂi&%ﬁ mi fiaﬁ_%,
.................... I A o ;s%%,%uwmm;m&gg T adAy SR & 0d eleqQ ﬁmuwmmmtﬁw
st oot ¥
| | R . B oGO8k _— e e
¥ M_H uﬁm L R d e . ;
L kR A IS Jenden
AR A
A LT ss2304d | 1081
i k . . T
M- ﬂ s U SAUROIEW Juapuadsp |8 UD S ||Y
[SLJ UE 2UL) s3uodsey OAgl L0y (sRLauR TRSE4R EF T IRwH ANCZ QA9 ~E) unnoesuedl A W _% mm_u%ncﬁ% fn,:a
..Ebmﬁ ﬂmwﬁmﬁau .ﬂ_mm@m hmﬂi .memE hﬁmi m@um ﬁﬂwm

€08l

1ENNOIEG-SGI] 104 LHY BUe]|RII0T

uﬁmuEE.f.,mmE Blege H 0 ﬂLmuEm._. msuﬁa{ ?._m._ﬁn_ m rdsy ”_Lﬁmp:@c_

JeOUI0I-F9-GED] I0) 1HY GuneR 0D

TETH e e e A
'
T L L L S P T el T LTI e T T B Ll BT LI o, P T i L U L i Sl e 1 L e e ke e e

[RENE Y I RS (PR S P R B LTI TR S S S ST PR S

o —— e R e R e

s

LT T

FELLE KR P

SRR AR A

e IS e e

US 9,722,900 B2

Sheet 23 of 35

Aug. 1, 2017

U.S. Patent

G00¢
adA1 uoipesUel] UC paseq suoljoesuel)

1810 Yim uoigoesuel} sy buljeioossy

700C
suonoesuel) Jo 1s1| pejebaibbe ue
ul sauua Yyum uoljoesuel) jo adAg mctmn_Eoo_

_t

£00¢C

uonoesuel] jo adAy ayj buluiwielag .._
002

1sijiju=p]
pesliyl oy} 01 palejsl sjusas bulAjijusp] _

i

L0DC
uopoesuel) e

UIM pajeioosse Jalijuapl pealy} e butAjjuspi

u1ba¢]

US 9,722,900 B2

Sheet 24 of 35

Aug. 1, 2017

U.S. Patent

1] X4
S|1090}0.d

P2]03|es 9] 0} paje|al sjusas BulAjjusp]

c0ic
s|oo0j0.4d aiow 10 auo bunosies

1] ¥
|000}01d uoIsSsIWSsuUel)

ayl Jo Juspuadepul sjusns BulAiusp)

US 9,722,900 B2

Sheet 25 of 35

Aug. 1, 2017

U.S. Patent

¥0c¢
uoloesuel; syl o1 bulpuodsallod

elep aoewliodad jeijodws) buljelsusg

€0¢c¢
| uoloesuel] syj 0] paleal SJUBAS .
| 10} S8Wl} 90USLIND0 JuSAS sy} Buiulwisiaq |

¢0¢c¢
awil} uoloesuel] dojs sy buluiwiseg

1022
awi} uooesuel) uels syl buiuiwisleg

US 9,722,900 B2

Sheet 26 of 35

Aug. 1, 2017

U.S. Patent

X 14
SIUaAs buizijeuss

c0tc _

SJalljuspl peaiy]
ayl 0} Buipuodsaniog sjusas PbulAijuspi

I — N :

T

| L0t
SuoloESsuURl) paAledal bulpuodsallod

UM PajeID0ossE Siaijijuapl pealyl bulAjjuspi

US 9,722,900 B2

Sheet 27 of 35

Aug. 1, 2017

U.S. Patent

e0¥c
s|0900]0.4d

pajos|as au] 0] pajejsl sjuans bulAlijus

d

c0¥c
s|000j0.4d 210w 10 |uo buos|eg

2174
j000}04d UOISSIWSUE]

aU3 10 Juspuadapul sjusAs bulAiluspi

US 9,722,900 B2

Sheet 28 of 35

Aug. 1, 2017

U.S. Patent

¢0S¢C
ananb jpuiay ajbuls 8y} Ul SJUBAS

JO J2pJ0 ue asoduli 0} yoojulds e buisn

10G¢
ananb

[suIay ojbuls e ybnouy) suans bulssed

US 9,722,900 B2

Sheet 29 of 35

Aug. 1, 2017

U.S. Patent

¥09¢
Januapl Bulyoslls sy} o) psubisse JusAs
yoes J0j Jajunoo Bulydslils sy3 bunuswaiou;

€09¢
Jayiuapl BuUIyois sy Ylim poajeldosse
SIUSA2 SIUNOD Jey] Jsliluapl pealy)
Ul Yum 1o1unod Buiyoliis e buijeloossy

c09¢
JaluSpl pealyl ayj o} Buipuodsallos

SJUSA® 0} Jaliuapl Buiyouls ay) bulubissy

08¢ |
uonoesue.l |

e 0] Bujpuodsallod Jaljuspl peaiyl
e Ylm Jsiuspl Buiyolis e buieroossy

US 9,722,900 B2

Sheet 30 of 35

Aug. 1, 2017

U.S. Patent

0.l
an|eA

IUNOD JUSA? |10} B |lelaueb o] Jaljijuspl
| Buiyoys soe13 84} 0} BUIpUOdSBLIOD JUSAS |
LoB?S 104 J2JUN02 JUSAS |Bjo} B bunuswaiou]

€02
1sluapt buiyos aoel
au3 03 Buipuodsallod slusaAs bujuiwisisg

| c0lc

Lojjoesuel) buloels) ayl Ylum paleroosse
1Liusp! Buiyolis sael) e buiAyuep

LOLC
uoijoesuel] Buoel) e buiAlijuap]

US 9,722,900 B2

Sheet 31 of 35

Aug. 1, 2017

U.S. Patent

launuap! Buiyoyys 9o.l) Ayl Yiim paleioosse
| 18juno9 Buiyoyis au} Usamiaq YdJewsiul e uo
paseq Jojedipul sjuaas Buissiw e Buneisuss)

|E10] 2yl YlIM i=jjUu=sPl Pbuiyolls aoel syl yum JUaAS |B]J0] 2yl U0 pase(10jedlpul JUSAS |B]0] 3] U0 PISE(10]EDIPUI
| P3le100sse Jalunod Buiyois ayj buliedwo) SJU2A8 [ESNED OU B buinelsuss) | 9|dejleAe ejep ou e puijelsusn)

03¢
181UN0J JUSAS [B)0) 8U] pue

£082 | 2082 M [08C
18]UN0o JUSAS m | | O] jenba anjeA 1ajunod O Ol jenba anjeA 18)unod

US 9,722,900 B2

8067¢ 506¢
puLys Aienb ayi Jo suoiuod lspesy ay) 10 suood
snonBijuos-uou Jo wns)osyo e Bujelsuscy SNONBIIUOI-UCU JO WNSYI|YD B Bunelauac)
£06¢ G06¢
pullls Alenb sy lapesay syl
JO WNSY23Y2 8|qISianal-uou e Buljelsuso) 1O WNSHo8Y2 algisiansl-uou e Bujelausn)

\f,
ot
S . — —_—
&
o 606¢
e MOPUIM BLUI} B Ui BUlLIN300 >067
D suojjoesuel} punogqul BulAjjuspi sigjeweled ejep uoljoesued; buljosieg
W
— _—
99
D o]
~ €06¢
m suoljoesuel] slepipued buiAjuapi
) -
- 4
m..w_ 206¢
< LOIIDESUEBI] pUNogqino
sy Jo adA] uonoesuel) sy} buiAiusp|

L06C
UOIOBSUEJ] punogino ue BUIALIIUSP)

uibeg

U.S. Patent

US 9,722,900 B2

Sheet 33 of 35

Aug. 1, 2017

U.S. Patent

£00t

Jeleweled elep uolloesuel) oyl se Jaguinu

souanbas Jo/pue Jaquinu Juod BuiAjjuep]

¢00¢
lo)jaweled ejep uoljoesuel] sy}l

SE 3P0 UIn}al/epoo ol PulAjuspi

LOOC
Jajauieled elep uoiloesuel]

Syl sSe Jaljljuspl uoisesuel) bulAiiusp|

US 9,722,900 B2

901LE
laguinu

vod Jjo/pue (0201043 Syl YlIM poleIDOSSE
suojjoesuUel} punoqul BulAJijuspi

1

_l
o GOLE

o suonedsesuel]

S pUNOgING 8y} YlIMm pajeroosse

M Jaquinu lod Jo/pue jooojold BulAjiuep)
!

W

L

=

s 9,

-

v

—

3

1-.;

X

—

N

U.S. Patent

| au1 yum pajeroosse uoneullojul Buneboibby

o]

yOLE
adA] uonoesuel; paiuspl
S} JO SUOi)oBSUEN] punoqul pue punogino

t0LE
adA] uoljpesuei] pauiuapl
o) Jo suonodesuel) punoqui dutAuspi

1

AV B
adA} uoiloesuel} paijijusp

ay] 10 suolnsesuei} punogino BuiAljuspi

1t

LOLE
adA) uoijoesuel} e DulAJuspi

US 9,722,900 B2

(st (R T00 5L TRREEINy O PatmaNT

A

ol

l-ll Ill Iﬁll ll‘. ll-l-‘- l“lll—lﬁ

ﬁ. . ..m..“h__"

or

By N I T ﬁﬂg%

- 1£$§§§§§ 1 el L m.

e koo gty gkl gy b Aoy el A s g Y fe A e Ry o < L A - T L s 1 2 o e B T o e A Clre s Fobiiey” 1t Be1mieh s s o=+ emnsemnmm omefommnm bhan Aok AR =3 ememm nimm sl i sty ittty bkt -1t -yl Bl e - eyl Sk sivimromeemmmepielvepral ' e’ & - s pr e i gt ey
m P
I TAEE MRE HAOHIRY s
¢ 4 3
TUOR AT oW ag ETTURINGRCY ,ﬂﬁ ﬁﬂm Eﬁﬂﬂ%ﬁ uﬁw% m.
P ﬁﬁ.ﬁﬂﬁ B a1 Eﬁﬁ m
. H 1
i IEROE] Lo 2L B4R, ﬁﬁi%ﬂ .wﬁ SR ENROT SO
[T
[:oe” AR IR RS T ;
T, N rareviemarvina. nanAadMLLUALIAL AL RSN aa A L LI U8 T Y T Yot AL LT T ATAMT A ATt T e A m— T e A —
m-“” L] P .gEsmE 5 _ _5 mEmsmm - - I...-H SRR AEE R R oW RLEpmmps, mn TN N JEEEE L E | FENNIIEES mEIEIEEEEE LEE W Ny N g B G M AR RA RAS RRAASS! REAREmIREIE R W TR TTUTTTALTTTTRTT T e O I REL. L L. T o » == N e e re—— g e - oy tm g emT gy nmmEmnge e g w mn aer waaa Ee D TAS u SfTETREIgES L mmEmmmLE = EmaE B omga g UEE IEE LG NIEEN P NS SRNINESEEmL) SNEEEE EELEE BE B T WO R b’ SR ELE R LD = B INAA M JEEIEEEE EpE g - » e mEm .,._.m
2: .”
i S %ﬁﬁﬁu Fuf o8 L Sy T A ¥ “
T , a2 T IR PR, & > Ry 2 |
e c o reeas W 3 = | M m
S : ﬂﬁaiﬁ%ﬁﬁ 1 B9 T] :
- i ; R T L¢56 ” | B o Sudaniic 2
S w-“.“ .“..-.._:.l.l.!__.. 1ul AR L e —p E LLLL — ey = ey el e L Bl eLLEL LT LR T LT Tl . ." - ml.-.l..l-_l: LT TE T L LT _1__.._.|..I1-___1_-|1 L] l : -In- LD Y eyt ek ank mars Lo T— "o - IT A AL -y : Il "E TR ol N A T R, = g el e e el el I.l....-.-_l.-..l-_l I
£ h) . awt -.____n- B o e 12 " PP A T EL . - - -
mm ' - annn S intda2 ..n T e e et e Gy fm .
er : ua&u % u«uﬂaﬂﬁ _ aﬂﬁﬁ_ﬁw T paa
i i T i
_ w ¥ R
e ._.m._.i...?__.l___..rr.. N e g e -.I.ul.l_.__._.....n T T N L TR L T T e T N P TR EE T Wb e et s ol sl o e il LIEL - “....!.__ " N-—ra |.|..__..-...,....L..__L.-I___.........“r|....r:.. e - mmwas .-I._“t..__.__l.-ll._..nul_n..l.__bl..-_... 1 Pampapr et ._r.ll.,..__l” Hﬁ._._..__..____._l.._.._.__“. . = _{. - __l.”.l..l.?_._...__...r__..r ._.|.__”..__”.._..l SN TN ”.“.... R -.“..._...”. o_..:.. .. :__ ;.__ S ...—.. L] -.lp....._......i.l-lrer_,..” .H........I.n......—.r.u.1.-. L - Fem " . ” .. ” I, "afun Puls Pt Full | ¥ Fannn !.I.,..-.r._..-..r 7wl o .?r.?...-.ﬁ.w
..1. - - LTI L Rl e e » = i »] - “u mam o m” w " wa - = D T om ' . - - il . - - - - .
b ;
i w
7 P, u |
m. L 1 e T SN YL T S e e ¥ e : : uﬁm m
— . T e P TR e e e R mﬁ
v 3 B Py
2 * ﬁ g : _... P e L AT Rt LT T o e oy S S T
. _, O e e : e i
vh [. : U : : 3
o i . B e, £ < e i I R L R
™ o . Hd
e il é%g \ .-. .-.!__@ Hﬁ“ E E ...W _.m.n... - ...m EE
® _ﬁ .w 3 “m " g I - 3
g A I _ n = . i . a
- 3 W swowm 31 | eseses o [] AR5 ARy Y T SHRTS
.m. - i ..r. A ._.- T PH..h... H.. |.1Iq| o) ._._n..._ ...” o £ - : " 2 ".u .. ."..“.“. "l -..“n. m_m..__."...-__.l- gl “.lh ._ i
e ...__..._.._.._“m.......... JrUSRUAE! Rodle, B 3 - i b Bt ; . ek T e]
L#..".w_,.r..._n_w_..ai..._kﬁ_:ﬁ. s s padeams s o ofTE R R AT T e A ;

ﬁwﬁﬁ?ﬁ m M

-
.M T - l-1-._-.1 -I.I.ll.li._-.._:_n.__..__-_. u u.._j..._r-

.-.-.-._.-1

L L s o T Rl o

[

U.S. Patent

c0cCe

e R i At T

Tk BT
TR o g
HE W 208 TR 8T

US 9,722,900 B2

1

METHODS AND COMPUTER PROGRAM
PRODUCTS FOR TRANSACTION ANALYSIS
OF NETWORK TRAFFIC IN A NETWORK
DEVICE

RELATED APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 13/837,816, filed Mar. 15, 2013, entitled Methods and
Computer Program Products for Transaction Analysis of
Network Traflic 1n a Network Device and assigned U.S. Pat.
No. 9,197,520, which 1s hereby incorporated by reference in
its entirety.

FIELD OF INVENTION

The present mvention relates to computer networks and,
more particularly, to network performance monmitoring meth-
ods, devices, and computer program products.

BACKGROUND

The growing presence ol computer networks such as
intranets and extranets has brought about the development of
applications in e-commerce, education, manufacturing, and
other areas. Organizations increasingly rely on such appli-
cations to carry out their business, production, or other
objectives, and devote considerable resources to ensuring
that the applications perform as expected. To this end,
various application management, momtoring, and analysis
techniques have been developed.

One approach for managing an application mnvolves moni-
toring the application, generating data regarding application
performance, and analyzing the data to determine applica-
tion health. Some system management products analyze a
large number of data streams to try to determine a normal
and abnormal application state. Large numbers of data
streams are often analyzed because the system management
products may not have a semantic understanding of the data
being analyzed. Accordingly, when an unhealthy application
state occurs, many data streams may have abnormal data
values because the data streams are causally related to one
another. Because the system management products may lack
a semantic understanding of the data, they may not be able
to assist the user 1n determiming either the ultimate source or
cause of a problem. Additionally, these application manage-
ment systems may not know whether a change 1in data
indicates an application 1s actually unhealthy or not.

Current application management approaches may include
monitoring techniques such as deep packet inspection (DPI),
which may be performed as a packet passes an inspection
point and may include collecting statistical information,
among others. Such monitoring techniques can be data-
intensive and may be ineffective 1n providing substantively
real-time health information regarding network applications.
Additionally, packet trace information may be lost and
application-specific code may be required.

Embodiments of the present invention are, therefore,
directed towards solving these and other related problems.

SUMMARY

It should be appreciated that this Summary is provided to
introduce a selection of concepts 1n a simplified form, the
concepts being further described below in the Detailed
Description. This Summary 1s not mtended to i1dentily key

10

15

20

25

30

35

40

45

50

55

60

65

2

features or essential features of this disclosure, nor i1s it
intended to limit the scope of the mnvention.

Some embodiments of the present invention are directed
to methods for analyzing network trathlic transactions. Meth-
ods may include identifying a thread identifier associated
with a transaction and 1dentifying one or more events related
to the thread identifier. The type of the transaction may be
determined to be a first type of transaction. Some embodi-
ments may 1nclude comparing the first type of transaction
with respective types of transactions among entries in an
aggregated list of transactions. The transaction and the one
or more events related to the thread 1dentifier associated with
the transaction may be associated with an entry in the
aggregated list of transactions based on a match between the
first type of transaction and a respective one of the types of
transactions associated with the entry 1n the aggregated list
of transactions. The aggregated list of transactions may
include one or more transactions received by an application
server 1 a time window.

In some embodiments, a start transaction time associated
with a start of the transaction and a stop transaction time
associated with completion of the transaction may be deter-
mined Some embodiments may include determining an
event time for respective ones ol the one or more events
related to the thread identifier associated with the transac-
tion. The start of the transaction may correspond to a receipt
of a request for the transaction. In some embodiments, a
difference between the stop transaction time and the start
transaction time may be compared to a threshold. Temporal
performance data corresponding to the transaction based on
the start transaction time, the stop transaction time, and/or
the event times may be generated. The temporal perfor-
mance data may include statistical data.

In some embodiments the methods described herein may
be applied to a web server 1dentified to use thread identifiers
as valid join 1dentifiers. The web server may include an
Apache server, a Sun ONE server and/or a Java-based
application server. The thread identifier may be unique
among threads across the web server.

Identifying one or more events, according to some
embodiments, may include i1dentifying one or more events
that use any of the one or more networking protocols used
by the respective transaction. Identifying one or more events
may 1nclude selecting one or more protocols and 1dentifying
one or more events using the selected protocols. The trans-
action may also use a selected network protocol.

Some embodiments of the present invention are directed
to a method of tracing transactions and related events of
network traflic sent to and/or received by a network device.
Methods may include 1dentifying a plurality of thread 1den-
tifiers, ones of which may be associated with corresponding
ones of a plurality of received transactions. Some embodi-
ments may include i1dentifying one or more events corre-
sponding to the respective ones of the plurality of thread
identifiers. The transaction and one or more events related to
the plurality of thread 1dentifiers may be serialized into a list
ol events and/or an ordered list.

According to some embodiments, a stitching identifier
may be associated with a transaction of the plurality of
received transactions. The stitching identifier may be
assigned to all events corresponding to any specific thread
identifier. A stitching counter counts events associated with
the stitching 1dentifier. The stitching counter may be incre-
mented for each of the events assigned to the stitching
identifier.

In some embodiments a tracing transaction and the trace
stitching 1dentifier associated with the tracing transaction

US 9,722,900 B2

3

may be identified. Embodiments of the method may include
determining, from the serialized list of events, one or more
events corresponding to the trace stitching identifier to
identily events that correspond to the tracing transaction. A
total event counter may be incremented for events corre-
sponding to the trace stitching i1dentifier 1n order to generate
a total event count value.

According to some embodiments, a no data available
indicator may be generated based on the total event counter
value equal to 0. A no causal events indicator may be
generated based on the total event counter value equal to 1.
In some embodiments, the stitching counter associated with
the trace stitching 1dentifier may be compared with the total
event counter and a missing events indicator may be gen-
crated based on a mismatch between the stitching counter
associated with the trace stitching identifier and the total
event counter.

In some embodiments, the respective thread 1dentifiers of
the plurality of threads may be unique 1n an application
server with respect to a kernel. Serializing the events may
include passing events through a single kernel queue and/or
using a spinlock that imposes an order of events 1n the single
kernel queue. The thread i1dentifiers may be represented by
an address location in the kernel of a control block of the
thread and/or the thread 1dentifiers may be represented by a
pointer to an address location 1n the kernel of a control block
of the thread.

In some embodiments, 1dentifying one or more events
may include identifying one or more events that include any
of the one or more networking protocols used by the
corresponding recerved transaction. Identifying one or more
events may include selecting one or more protocols and
identifying one or more events associated with the selected
protocols used by the corresponding receirved transaction.
The selected protocols may be associated with one of the
received transactions.

Some embodiments of the present invention may be
directed to methods of 1dentifying one or more events that
are associated with a transaction based on a thread 1dentifier
and associating the transaction and the one or more events
with at least one transaction of a plurality of transactions
based on a transaction type.

In some embodiments, a single transaction may be
recorded at two ends of a communication link. The same
transaction may be recorded as an outbound transaction at a
sender and as an inbound transaction at a receiver. Some
embodiments of the present invention may identity which
pairs of outbound and mmbound messages correspond to
single transactions. The transaction type of each outbound
transaction may be 1dentified. One or more inbound trans-
actions which have the same transaction type as the trans-
action type of an outbound transaction may be 1dentified as
candidate transactions. One or more transaction data param-
cters may be selected that correspond to the outbound and/or
inbound transactions. A candidate outbound transaction may
be determined to be related to a candidate inbound transac-
tion based on the transaction data parameters. The inbound
transactions may include transactions received in a time
window.

In some embodiments, a transaction identifier may be
identified as one of the transaction data parameters. An error
code and/or a return code may be identified as one of the
transaction data parameters. Selecting one or more transac-
tion data parameters may include identifying a port number
and/or a sequence number as one of the transaction data
parameters. The sequence number may be determined based
on a byte oflset of a TCP stream. The one or more transaction

10

15

20

25

30

35

40

45

50

55

60

65

4

data parameters may include a protocol specific 1dentifier.
The protocol specific 1dentifier may comprise a header and

the header may be a Hypertext Transfer Protocol (HTTP)
request header.

In some embodiments, a checksum of one or more con-
tiguous or non-contiguous portions of at least a portion of
the header may be generated. A non-reversible checksum of
one or more contiguous or non-contiguous portions of at
least a portion of the header may be generated.

In some embodiments, the protocol specific identifier may
include a query string. A non-reversible checksum of at least
a portion the query string may be generated. A checksum of
one or more non-contiguous portions of at least a portion of
the query string may be generated.

According to some embodiments, a transaction type for
analysis ol one or more application servers may be 1denti-
fied. A plurality of outbound transactions of the transaction
type 1dentified for analysis may be determined. A plurality of
inbound transactions of the transaction type identified for
analysis may be determined Information associated with the
plurality of outbound transactions and information associ-
ated with the plurality of inbound transactions of a same
transaction type may be aggregated.

In some embodiments, a protocol and/or a port number
associated with each of the plurality of outbound transac-
tions from an application server may be identified. A plu-
rality of related imbound transactions for one or more
different web servers that are based on the protocol and/or
the port number associated with the plurality of outbound
transactions may be i1dentified.

In some embodiments, a computer program product
including a non-transitory computer usable storage medium
having computer-readable program code embodied 1n the
medium 1s provided. The computer-readable program code
1s configured to perform operations corresponding to meth-
ods described herein.

It 1s noted that aspects of the inventive concepts described
with respect to one embodiment may be incorporated 1n a
different embodiment although not specifically described
relative thereto. That 1s, all embodiments and/or features of
any embodiments can be combined 1n any way and/or
combination. These and other objects and/or aspects of the
present mventive concepts are explamned in detail i the
specification set forth below.

Other methods, devices, and/or computer program prod-
ucts according to example embodiments will be or become
apparent to one with skill in the art upon review of the
tollowing drawings and detailed description. It 1s intended
that all such additional methods, devices, and/or computer
program products be included within this description, be
within the scope of the present invention, and be protected
by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention will now be described 1n more
detail in relation to the enclosed drawings, 1n which:

FIGS. 1a-1d are block diagrams illustrating example
networks 1n which operations for monitoring network appli-
cation performance may be performed according to some
embodiments of the present invention.

FIG. 2 1s a block diagram 1llustrating an architecture of a
computing device as discussed above regarding FIGS. 1c
and 1d.

FIG. 3 1s a block diagram illustrating operations and/or
functions of a collector application as described above
regarding FIG. 1a.

US 9,722,900 B2

S

FIG. 4 1s a diagram illustrating determining a read wait
time corresponding to a user transaction according to some
embodiments of the present invention.

FIG. 5 1s a block diagram illustrating a kernel level
architecture of a collector application to explain kernel level
metrics according to some embodiments of the present
invention.

FIG. 6 1s a flowchart illustrating example operations
carried out by a collector application in monitoring and
reporting network application performance according to
some embodiments of the present invention.

FIG. 7 1s a screen shot of a graphical user interface (GUI)
including a model generated by a health data processing
application according to some embodiments of the present
invention.

FIG. 8 1s a flowchart illustrating example operations
carried out by a health data processing application 1n gen-
crating and displaying a real-time model of network appli-
cation health according to some embodiments of the present
invention.

FIG. 9 1s a flowchart illustrating example operations
carried out by a health data processing application 1n gen-
erating and displaying an historical model of network appli-
cation health according to some embodiments of the present
invention.

FIG. 10 1s a block diagram illustrating the architecture of
a system providing network traflic data parsing and filtering
according to some embodiments of the present invention.

FIG. 11 1s a flowchart illustrating example operations
carried out by a collector application in collecting raw
network traflic data that 1s sent to and/or received by a
network device according to some embodiments of the
present mvention.

FIG. 12 1s a flowchart illustrating example operations
carried out by a collector application 1n parsing and filtering
collected network traflic data according to some embodi-
ments of the present invention.

FIG. 13 1s a flowchart illustrating example operations
carried out by a correlation analyzer for analyzing correla-
tion of collected network traflic data metrics according to
some embodiments of the present invention.

FIG. 14 1s a flowchart illustrating example settings that
may be applied to define the candidate set according to some
embodiments of the present invention.

FIG. 15 1s a flowchart illustrating example user input
operations to control temporal shifting during correlation
analysis according to some embodiments of the present
invention.

FIG. 16 1s a flowchart 1llustrating example operations in
methods/systems that generate the network metric type for
use 1n 1dentifying the candidate set for correlation analysis
according to some embodiments of the present invention.

FIG. 17 1s a flowchart illustrating example user input
operations to control temporal shifting during correlation
analysis according to some embodiments of the present
invention.

FIG. 18 1s a screen shot of a graphical user interface (GUI)
including selection options for scope and network metric
types for correlation analysis and display of results related to
a primary metric by a correlation analysis application
according to some embodiments of the present invention.

FI1G. 19 1s a screen shot of a graphical user interface (GUI)
including an example selection of transaction as the network
metric type for correlation analysis and display of results
related to a primary metric by a correlation analysis appli-
cation according to some embodiments of the present inven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 20 1s a tflowchart illustrating example operations
carried out by a health data processing application to gen-

crate an aggregated list of transactions based on the thread
identifier and transaction type according to some embodi-
ments of the present mvention.

FIG. 21 1s a flowchart illustrating example operations
carried out by a health data processing application to 1den-
tify transaction events based on networking protocols
according to some embodiments of the present invention.

FIG. 22 1s a tflowchart illustrating example operations
carried out by a health data processing application to gen-
crate temporal performance data based on transaction and
event times according to some embodiments of the present
invention.

FIG. 23 1s a flowchart illustrating example operations
carried out by a health data processing application to 1den-
tify and sernialize events based on the thread identifiers of
transactions according to some embodiments of the present
invention.

FIG. 24 1s a flowchart illustrating example operations
carried out by a health data processing application to 1den-
tify transaction events based on networking protocols
according to some embodiments of the present invention.

FIG. 25 1s a tlowchart illustrating example operations
carried out by a health data processing application to seri-
alize events by passing events through a single kernel queue
and/or using a spinlock according to some embodiments of
the present invention.

FIG. 26 1s a flowchart illustrating example operations
carried out by a health data processing application to assign
a stitching identifier and maintain a stitching counter for
cvents based on the thread idenftifier according to some
embodiments of the present invention.

FIG. 27 1s a flowchart illustrating example operations
carried out by a health data processing application to deter-
mine and count events for a transaction to be traced accord-
ing to some embodiments of the present mnvention.

FIG. 28 1s a tlowchart illustrating example operations
carried out by a health data processing application to gen-
erate indicators based on front-to-back stitching according to
some embodiments of the present invention.

FIG. 29 1s a flowchart illustrating example operations
carried out by a health data processing application 1n trace
mode based on back-to-front stitching according to some
embodiments of the present invention.

FIG. 30 1s a flowchart illustrating example operations
carried out by a health data processing application for
selecting transaction data parameters in trace mode using
back-to-front stitching according to some embodiments of
the present mvention.

FIG. 31 1s a flowchart illustrating example operations
carried out by a health data processing application in an
aggregate mode using back-to-front stitching according to
some embodiments of the present invention.

FIG. 32 1s a screen shot of a graphical user interface (GUI)
including example tracing of transaction events according to
some embodiments of the present invention.

DETAILED DESCRIPTION

In the following description, for purposes of explanation
and not limitation, specific details are set forth such as
particular architectures, interfaces, techniques, etc. i order
to provide a thorough understanding of the present inven-
tion. However, 1t will be apparent to those skilled in the art
that the present invention may be practiced in other embodi-
ments that depart from these specific details. In other

US 9,722,900 B2

7

instances, detailed descriptions of well known devices,
circuits, and methods are omitted so as not to obscure the
description of the present invention with unnecessary detail.
While various modifications and alternative forms of the
embodiments described herein may be made, specific
embodiments are shown by way of example 1n the drawings
and will herein be described in detail. It should be under-
stood, however, that there 1s no intent to limit the invention
to the particular forms disclosed, but on the contrary, the
invention 1s to cover all modifications, equivalents, and
alternatives falling within the spirit and scope of the inven-
tion as defined by the claims. Like reference numbers signify
like elements throughout the description of the figures.

As used herein, the singular forms “a,” “an,” and “the” are
intended to include the plural forms as well, unless expressly
stated otherwise. It should be further understood that the
terms “‘comprises” and/or “comprising” when used 1n this
specification are taken to specily the presence of stated
features, steps, operations, elements, and/or components, but
do not preclude the presence or addition of one or more other
features, steps, operations, elements, components, and/or
groups thereof. It will be understood that when an element
1s referred to as being “connected” or “coupled” to another
clement, 1t can be directly connected or coupled to the other
clement or intervening elements may be present. Further-
more, “connected” or “coupled” as used herein may include
wirelessly connected or coupled. As used herein, the term
“and/or” includes any and all combinations of one or more
of the associated listed items, and may be abbreviated as */”.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill 1n the art. It
will be further understood that terms, such as those defined
in commonly used dictionaries, should be interpreted as
having a meaning that 1s consistent with their meaning in the
context of the relevant art, and will not be interpreted 1n an
idealized or overly formal sense unless expressly so defined
herein.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements, these
clements should not be limited by these terms. These terms
are only used to distinguish one element from another.

Example embodiments are described below with refer-
ence to block diagrams and/or flowchart illustrations of
methods, apparatus (systems and/or devices), and/or com-
puter program products. It 1s understood that a block of the
block diagrams and/or flowchart illustrations, and combina-
tions ol blocks in the block diagrams and/or flowchart
illustrations, can be implemented by computer program
instructions. These computer program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, and/or other programmable data
processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter and/or other programmable data processing apparatus,
create means (functionality) and/or structure for implement-
ing the functions/acts specified in the block diagrams and/or
flowchart block or blocks.

These computer program instructions may also be stored
in a computer-readable memory that can direct a computer
or other programmable data processing apparatus to function
in a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instructions which implement the functions/
acts specified 1n the block diagrams and/or flowchart block
or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

8

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer-implemented process, such that the
instructions, which execute on the computer or other pro-
grammable apparatus, provide steps for implementing the
functions/acts specified 1n the block diagrams and/or flow-
chart block or blocks.

Accordingly, example embodiments may be implemented
in hardware and/or 1n software (including firmware, resident
soltware, micro-code, etc.). Furthermore, example embodi-
ments may take the form of a computer program product on
a non-transitory computer-usable or computer-readable stor-
age medium having computer-usable or computer-readable
program code embodied 1 the medium for use by or in
connection with an instruction execution system. In the
context of this document, a non-transitory computer-usable
or computer-readable medium may be any medium that can
contain, store, or transport the program for use by or in

connection with the 1nstruction execution system, apparatus,
or device.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device. More specific examples (a non-exhaus-
tive list) of the computer-readable medium would include
the following: a portable computer diskette, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), and a portable compact disc read-only memory
(CD-ROM).

Computer program code for carrying out operations of
data processing systems discussed herein may be written 1n
a high-level programming language, such as C, C++, or
Java, for development convenience. In addition, computer
program code for carrying out operations ol example
embodiments may also be written 1n other programming
languages, such as, but not limited to, interpreted languages.
Some modules or routines may be written in assembly
language or even micro-code to enhance performance and/or
memory usage. However, embodiments are not limited to a
particular programming language. It will be further appre-
ciated that the functionality of any or all of the program
modules may also be implemented using discrete hardware
components, one or more application specific integrated
circuits (ASICs), or a programmed digital signal processor
or microcontroller.

It should also be noted that 1n some alternate implemen-
tations, the functions/acts noted 1n the blocks may occur out
of the order noted 1n the flowcharts. For example, two blocks
shown 1n succession may in fact be executed substantially
concurrently or the blocks may sometimes be executed 1n
the reverse order, depending upon the functionality/acts
involved. Moreover, the functionality of a given block of the
flowcharts and/or block diagrams may be separated into
multiple blocks and/or the functionality of two or more
blocks of the flowcharts and/or block diagrams may be at
least partially integrated.

Reference 1s made to FIGS. 1la-1d4, which are block
diagrams 1illustrating example networks 1n which operations
for monitoring and reporting network application perfor-
mance may be performed according to some embodiments
of the present invention.

Computing Network

Referring to FIG. 1a, a network 10 according to some
embodiments herein may include a health data processing

US 9,722,900 B2

9

application 100 and a plurality of network devices 20, 24,
and 26 that may each include respective collector applica-
tions 200. It 1s to be understood that a “network device™ as
discussed herein may include physical (as opposed to vir-
tual) machines 20; host machines 24, each of which may be
a physical machine on which one or more virtual machines
may execute; and/or virtual machines 26 executing on host
machines 24. It 1s to be further understood that an “appli-
cation” as discussed herein refers to an instance of execut-
able soltware operable to execute on respective ones of the
network devices. The terms “application” and “network
application” may be used interchangeably herein, regardless
ol whether the referenced application 1s operable to access
network resources.

Collector applications 200 may collect data related to the
performance of network applications executing on respec-
tive network devices. For instance, a collector application
executing on a physical machine may collect performance
data related to network applications executing on that physi-
cal machine. A collector application executing on a host
machine and external to any virtual machines hosted by that
host machine may collect performance data related to net-
work applications executing on that host machine, while a
collector application executing on a virtual machine may
collect performance data related to network applications
executing within that virtual machine.

The health data processing application 100 may be on a
network device that exists within the network 10 or on an
external device that 1s coupled to the network 10. Accord-
ingly, i some embodiments, the network device on which
the health data processing application 100 may reside may
be one of the plurality of machines 20 or 24 or virtual
machines 26. Communications between various ones of the
network devices may be accomplished using one or more
communications and/or network protocols that may provide
a set of standard rules for data representation, signaling,
authentication and/or error detection that may be used to
send mformation over communications channels therebe-
tween. In some embodiments, example network protocols
may include Hypertext Transier Protocol (HT'TP), Tabular
Data Stream (TDS), and/or Lightweight Directory Access
Protocol (LDAP), among others.

Referring to FIG. 15, an example network 10 may include
a web server 12, one or more application servers 14 and one
or more database servers 16. Although not illustrated, a
network 10 as used herein may include directory servers,
security servers, and/or transaction monitors, among others.
The web server 12 may be a computer and/or a computer
program that 1s responsible for accepting HT'TP requests
from clients 18 (e.g., user agents such as web browsers) and
serving them HTTP responses along with optional data
content, which may be, for example, web pages such as
HTML documents and linked objects (images, etc.). An
application server 14 may include a service, hardware,
and/or soitware framework that may be operable to provide
one or more programming applications to clients 1n a
network. Application servers 14 may be coupled to one or
more web servers 12, database servers 16, and/or other
application servers 14, among others. Some embodiments
provide that a database server 16 may include a computer
and/or a computer program that provides database services
to other computer programs and/or computers as may be
defined, for example by a client-server model, among others.
In some embodiments, database management systems may
provide database server functionality.

Some embodiments provide that the collector applications
200 and the health data processing application 100 described

10

15

20

25

30

35

40

45

50

55

60

65

10

above with respect to FIG. 1a may reside on ones of the web
server(s) 12, application servers 14 and/or database servers

16, among others. In some embodiments, the health data
processing application 100 may reside in a dedicated com-
puting device that 1s coupled to the network 10. The col-
lector applications 200 may reside on one, some or all of the
above listed network devices and provide network applica-
tion performance data to the health data processing appli-
cation 100.

Computing Device

Web server(s) 12, application servers 14 and/or database
servers 16 may be deployed as and/or executed on any type
and form of computing device, such as a computer, network
device, or appliance capable of communicating on any type
and form of network and performing the operations
described herein. FIGS. 1¢ and 1d depict block diagrams of
a computing device 121 usetul for practicing some embodi-
ments described herein. Referring to FIGS. 1¢ and 1d, a
computing device 121 may include a central processing unit
101 and a main memory unit 122. A computing device 121
may include a visual display device 124, a keyboard 126,
and/or a pomting device 127, such as a mouse. Each
computing device 121 may also include additional optional
clements, such as one or more nput/output devices 130a-
1306 (generally referred to using reference numeral 130),
and a cache memory 140 in communication with the central
processing unit 101.

The central processing unit 101 1s any logic circuitry that
responds to and processes mstructions fetched from the main
memory unit 122. In many embodiments, the central pro-
cessing unit 101 1s provided by a microprocessor unit, such
as: those manufactured by Intel Corporation of Mountain
View, Calil.; those manufactured by Motorola Corporation
of Schaumburg, Ill.; the POWER processor, those manufac-
tured by International Business Machines of White Plains,
N.Y.; and/or those manufactured by Advanced Micro
Devices of Sunnyvale, Calif. The computing device 121
may be based on any of these processors, and/or any other
processor capable of operating as described herein.

Main memory unit 122 may be one or more memory chips
capable of storing data and allowing any storage location to
be directly accessed by the microprocessor 101, such as
Static random access memory (SRAM), Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access
memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM
(EDO RAM), Extended Data Output DRAM (EDO

DRAM), Burst Extended Data Output DRAM (BEDO
DRAM), Enhanced DRAM (EDRAM), synchronous
DRAM (SDRAM), JEDEC SRAM, PC100 SDRAM,

Double Data Rate SDRAM (DDR SDRAM), Enhanced
SDRAM (ESDRAM), SyncLink DRAM (SLDRAM),
Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM
(FRAM), among others. The main memory 122 may be
based on any of the above described memory chips, or any
other available memory chips capable of operating as
described herein. In some embodiments, the processor 101
communicates with main memory 122 via a system bus 150
(described 1n more detail below). In some embodiments of
a computing device 121, the processor 101 may communi-
cate directly with main memory 122 via a memory port 103.
Some embodiments provide that the main memory 122 may
be DRDRAM.

FIG. 1d depicts some embodiments in which the main
processor 101 communicates directly with cache memory

US 9,722,900 B2

11

140 via a secondary bus, sometimes referred to as a backside
bus. In some other embodiments, the main processor 101
may communicate with cache memory 140 using the system
bus 150. Cache memory 140 typically has a faster response
time than main memory 122 and may be typically provided
by SRAM, BSRAM, or EDRAM. In some embodiments, the
processor 101 communicates with various I/O devices 130
via a local system bus 150. Various busses may be used to
connect the central processing umt 101 to any of the I/O

devices 130, including a VESA VL bus, an ISA bus, an EISA
bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a
PCI-X bus, a PCI-Express bus, and/or a NuBus, among
others. For embodiments 1n which the I/O device 1s a video
display 124, the processor 101 may use an Advanced Graph-
ics Port (AGP) to communicate with the display 124. FIG.
1d depicts some embodiments of a computer 100 1n which
the main processor 101 communicates directly with 1/O
device 130 via Hyperlransport, Rapid 1/O, or InfiniBand.
FIG. 1d also depicts some embodiments in which local
busses and direct commumnication are mixed: the processor
101 communicates with I/O device 130a using a local
interconnect bus while communicating with IO device 13056
directly.

The computing device 121 may support any suitable
installation device 116, such as a floppy disk drive for
receiving floppy disks such as 3.5-inch, 5.25-inch disks, or
/1P disks, a CD-ROM drive, a CD-R/RW drive, a DVD-
ROM drive, tape drives of various formats, USB device,
hard disk drive (HDD), solid-state drive (SSD), or any other
device suitable for installing software and programs such as
any client agent 120, or portion thereof. The computing
device 121 may further comprise a storage device 128, such
as one or more hard disk drives or solid-state drives or
redundant arrays of independent disks, for storing an oper-
ating system and other related software, and for storing
application software programs such as any program related
to the client agent 120. Optionally, any of the installation
devices 116 could also be used as the storage device 128.
Additionally, the operating system and the software can be
run from a bootable medium, for example, a bootable CD,
such as KNOPPIX®, a bootable CD for GNU/Linux that 1s
available as a GNU/Linux distribution from knoppix.net.

Furthermore, the computing device 121 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through
a variety ol connections including, but not limited to,
standard telephone lines, LAN or WAN links (e.g., T1, T3,
56 kb, X.25), broadband connections (e.g., ISDN, Frame
Relay, ATM), wireless connections (e.g., IEEE 802.11), or
some combination of any or all of the above. The network
interface 118 may comprise a built-in network adapter,
network interface card, PCMCIA network card, card bus
network adapter, wireless network adapter, USB network
adapter, modem, or any other device suitable for interfacing
the computing device 121 to any type of network capable of
communication and performing the operations described
herein. A wide vaniety of I/0O devices 130a-1307z may be
present 1n the computing device 121. Input devices include
keyboards, mice, trackpads, trackballs, microphones, and
drawing tablets, among others. Output devices include video
displays, speakers, ikjet printers, laser printers, and dye-
sublimation printers, among others. The I/O devices 130
may be controlled by an I/O controller 123 as shown in FIG.
1c. The 1/0 controller may control one or more I/O devices
such as a keyboard 126 and a pointing device 127, e.g., a
mouse or optical pen. Furthermore, an I/O device may also
provide storage 128 and/or an installation medium 116 for

5

10

15

20

25

30

35

40

45

50

55

60

65

12

the computing device 121. In still other embodiments, the
computing device 121 may provide USB connections to
receive handheld USB storage devices such USB flash
drives.

In some embodiments, the computing device 121 may
comprise or be connected to multiple display devices 124a-
1247, which each may be of the same or diflerent type and/or
form. As such, any of the I/O devices 130a-1307 and/or the
I/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
soltware to support, enable, or provide for the connection
and use of multiple display devices 124aq-124n by the
computing device 121. For example, the computing device
121 may include any type and/or form of video adapter,
video card, driver, and/or library to interface, communicate,
connect or otherwise use the display devices 124a-1247. In
some embodiments, a video adapter may comprise multiple
connectors to interface to multiple display devices 124a-
124%. In some other embodiments, the computing device
121 may include multiple video adapters, with each video
adapter connected to one or more of the display devices
124a-124n. In some embodiments, any portion of the oper-
ating system of the computing device 121 may be configured
for using multiple displays 124a-124n. In some embodi-
ments, one or more of the display devices 124a-124» may be
provided by one or more other computing devices connected
to the computing device 121, for example, via a network.
Such embodiments may include any type of software
designed and constructed to use another computer’s display
device as a second display device 124a for the computing
device 121. One ordinarily skilled in the art will recognize
and appreciate the various ways and embodiments that a
computing device 121 may be configured to have multiple
display devices 124a-124n.

In further embodiments, an I/O device 130 may be a
bridge 170 between the system bus 150 and an external
communication bus, such as a USB bus, an Apple Desktop
Bus, an RS-232 serial connection, a SCSI bus, a FireWire
bus, a FireWire 800 bus, an Fthernet bus, an AppleTalk bus,
a Gigabit FEthernet bus, an Asynchronous Transfer Mode
bus, a HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a
SCI/LAMP bus, a FibreChannel bus, and/or a Serial
Attached small computer system interface bus, among oth-
ers.

A computing device 121 of the sort depicted 1n FIGS. 1c
and 14 may typically operate under the control of operating
systems, which control scheduling of tasks and access to
system resources. The computing device 121 can be running,
any operating system such as any of the versions of the
Microsolt® Windows operating systems, any ol the different
releases of the Unix and Linux operating systems, any
version of the Mac OS® for Macintosh computers, any
embedded operating system, any real-time operating system,
any open source operating system, any proprietary operating
system, any operating systems for mobile computing
devices, and/or any other operating system capable ol run-
ning on a computing device and performing the operations

described herein. Typical operating systems include: WIN-
DOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS

2000, WINDOWS NT 3.51, WINDOWS NT 4.0, WIN-
DOWS CE, WINDOWS XP, WINDOWS VISTA, WIN-
DOWS 7.0, WINDOWS SERVER 2003, and/or WIN-
DOWS SERVER 2008, all of which are manufactured by

Microsoit Corporation of Redmond, Wash.; MacOS, manu-

factured by Apple Computer of Cupertino, Calif.; OS/2,
manufactured by International Business Machines of

Armonk, N.Y.; and Linux, a freely-available operating sys-

US 9,722,900 B2

13

tem distributed by Red Hat of Raleigh, N.C., among others,
or any type and/or form of a Umix operating system, among
others.

In some embodiments, the computing device 121 may
have diflerent processors, operating systems, and input
devices consistent with the device. For example, 1n one
embodiment the computing device 121 1s a Treo 180, 270,
1060, 600 or 650 smart phone manufactured by Palm, Inc.
In this embodiment, the Treo smart phone 1s operated under
the control of the PalmOS operating system and includes a
stylus iput device as well as a five-way navigator device.
Moreover, the computing device 121 can be any worksta-
tion, desktop computer, laptop, or notebook computer,
server, handheld computer, mobile telephone, any other
computer, or other form of computing or telecommunica-
tions device that 1s capable of communication and that has
suflicient processor power and memory capacity to perform
the operations described herein.

Architecture

Reference 1s now made to FIG. 2, which 1s a block

diagram 1llustrating an architecture of a computing device
121 as discussed above regarding FIGS. 1¢ and 1d. The
architecture of the computing device 121 1s provided by way
of illustration only and 1s not intended to be limiting. The
architecture of computing device 121 may include a hard-
ware layer 206 and a software layer divided 1nto a user space
202 and a kernel space 204.

Hardware layer 206 may provide the hardware elements
upon which programs and services within kernel space 204
and user space 202 are executed. Hardware layer 206 also
provides the structures and elements that allow programs
and services within kernel space 204 and user space 202 to
communicate data both internally and externally with
respect to computing device 121. The hardware layer 206
may include a processing unit 262 for executing software
programs and services, a memory 264 for storing software
and data, and network ports 266 for transmitting and rece1v-
ing data over a network. Additionally, the hardware layer
206 may include multiple processors for the processing unit
262. For example, 1n some embodiments, the computing
device 121 may include a first processor 262 and a second
processor 262'. In some embodiments, the processor 262 or
262' includes a multi-core processor. The processor 262 may
include any of the processors 101 described above 1n con-
nection with FIGS. 1¢ and 1d.

Although the hardware layer 206 of computing device
121 1s 1llustrated with certain elements in FIG. 2, the
hardware portions or components of computing device 121
may 1nclude any type and form of elements, hardware or
software, of a computing device, such as the computing
device 121 illustrated and discussed herein 1in conjunction
with FIGS. 1¢ and 14. In some embodiments, the computing,
device 121 may comprise a server, gateway, router, switch,
bridge, or other type of computing or network device, and
have any hardware and/or soiftware elements associated
therewith.

The operating system of computing device 121 allocates,
manages, or otherwise segregates the available system
memory nto kernel space 204 and user space 202. As
discussed above, 1n the example software architecture, the
operating system may be any type and/or form of various
ones of diflerent operating systems capable of runming on the
computing device 121 and performing the operations
described herein.

10

15

20

25

30

35

40

45

50

55

60

65

14

The kernel space 204 may be reserved for running the
kernel 230, including any device drivers, kernel extensions,
and/or other kernel related software. As known to those
skilled 1n the art, the kernel 230 1s the core of the operating
system, and provides access, control, and management of
resources and hardware-related elements of the applications.
In accordance with some embodiments of the computing
device 121, the kernel space 204 also includes a number of
network services or processes working in conjunction with
a cache manager sometimes also referred to as the integrated
cache. Additionally, some embodiments of the kernel 230
will depend on embodiments of the operating system
installed, configured, or otherwise used by the device 121.

In some embodiments, the device 121 includes one net-
work stack 267, such as a TCP/IP based stack, for commu-
nicating with a client and/or a server. In other embodiments,
the device 121 may include multiple network stacks. In
some embodiments, the network stack 267 includes a bufler
243 for queuing one or more network packets for transmis-
sion by the computing device 121.

As shown in FIG. 2, the kernel space 204 includes a
high-speed layer 2-7 integrated packet engine 240 and a
policy engine 236. Running packet engine 240 and/or policy
engine 236 1n kernel space 204 or kernel mode instead of the
user space 202 improves the performance of each of these
components, alone and in combination. Kernel operation
means that packet engine 240 and/or policy engine 236 run
in the core address space of the operating system of the
device 121. For example, data obtained in kernel mode may
not need to be passed or copied to a process or thread
running in user mode, such as from a kernel level data
structure to a user level data structure. In this regard, such
data may be dithicult to determine for purposes of network
application performance monitoring. In another aspect, the
number of context switches between kernel mode and user
mode are also reduced. Additionally, synchronization of and
communications between packet engine 240 and/or policy
engine 236 can be performed more efliciently 1n the kernel
space 204.

In some embodiments, any portion of the packet engine
240 and/or policy engine 236 may run or operate in the
kernel space 204, while other portions of packet engine 240
and/or policy engine 236 may run or operate 1n user space
202. In some embodiments, the computing device 121 uses
a kernel-level data structure providing access to any portion
of one or more network packets, for example, a network
packet comprising a request from a client or a response from
a server. In some embodiments, the kernel-level data struc-
ture may be obtained by the packet engine 240 via a
transport layer driver interface (TDI) or filter to the network
stack 267. The kernel-level data structure may include any
interface and/or data accessible via the kernel space 204
related to the network stack 267, network trathic, or packets
received or transmitted by the network stack 267. In some
embodiments, the kernel-level data structure may be used by
packet engine 240 and/or policy engine 236 to perform the
desired operation of the component or process. Some
embodiments provide that packet engine 240 and/or policy
engine 236 1s running 1n kernel mode 204 when using the
kernel-level data structure, while 1n some other embodi-
ments, the packet engine 240 and/or policy engine 236 1s
running 1 user mode when using the kernel-level data
structure. In some embodiments, the kernel-level data struc-
ture may be copied or passed to a second kernel-level data
structure, or any desired user-level data structure.

A policy engine 236 may include, for example, an intel-
ligent statistical engine or other programmable application

US 9,722,900 B2

15

(s). In some embodiments, the policy engine 236 provides a
configuration mechanism to allow a user to 1dentily, specity,
define or configure a caching policy. Policy engine 236, 1n
some embodiments, also has access to memory to support
data structures such as lookup tables or hash tables to enable
user-selected caching policy decisions. In some embodi-
ments, the policy engine 236 may include any logic, rules,
functions or operations to determine and provide access,
control and management of objects, data or content being
cached by the computing device 121 1n addition to access,
control and management ol security, network traflic, net-
work access, compression, and/or any other function or
operation performed by the computing device 121.

High speed layer 2-7 integrated packet engine 240, also
generally referred to as a packet processing engine or packet
engine, 1s responsible for managing the kernel-level pro-
cessing ol packets recerved and transmitted by computing
device 121 via network ports 266. The high speed layer 2-7
integrated packet engine 240 may include a bufler for
queuing one or more network packets during processing,
such as for receipt of a network packet or transmission of a
network packer. Additionally, the high speed layer 2-7
integrated packet engine 240 1s in communication with one
or more network stacks 267 to send and receive network
packets via network ports 266. The high speed layer 2-7
integrated packet engine 240 may work 1n conjunction with
policy engine 236. In particular, policy engine 236 1s con-
figured to perform functions related to trailic management
such as request-level content switching and request-level
cache redirection.

The high speed layer 2-7 integrated packet engine 240
includes a packet processing timer 242. In some embodi-
ments, the packet processing timer 242 provides one or more
time intervals to trigger the processing of mcoming (1.€.,
received) or outgoing (1.e., transmitted) network packets. In
some embodiments, the high speed layer 2-7 integrated
packet engine 240 processes network packets responsive to
the timer 242. The packet processing timer 242 provides any
type and form of signal to the packet engine 240 to notity,
trigger, or communicate a time related event, interval or
occurrence. In many embodiments, the packet processing
timer 242 operates 1n the order of milliseconds, such as for
example 100 ms, 50 ms, or 25 ms. For example, 1n some
embodiments, the packet processing timer 242 provides time
intervals or otherwise causes a network packet to be pro-
cessed by the high speed layer 2-7 integrated packet engine
240 at a 10 ms time interval, while 1n other embodiments, at
a 5 ms time 1nterval, and still yet in further embodiments, as
short as a 3, 2, or 1 ms time 1nterval. The high speed layer
2-7 integrated packet engine 240 may be interfaced, inte-
grated and/or 1n communication with the policy engine 236
during operation. As such, any of the logic, functions, or
operations of the policy engine 236 may be performed
responsive to the packet processing timer 242 and/or the
packet engine 240. Therefore, any of the logic, functions,
and/or operations of the policy engine 236 may be per-
formed at the granularity of time intervals provided via the
packet processing timer 242, for example, at a time 1nterval
of less than or equal to 10 ms.

In contrast to kernel space 204, user space 202 1s the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. Generally, a user mode application may not access
kernel space 204 directly, and 1nstead must use service calls
in order to access kernel services. As shown 1n FIG. 2, user
space 202 of computing device 121 includes a graphical user

interface (GUI) 210, a command line interface (CLI) 212,

10

15

20

25

30

35

40

45

50

55

60

65

16

shell services 214, and daemon services 218. Using GUI 210
and/or CLI 212, a system administrator or other user may

interact with and control the operation of computing device
121. The GUI 210 may be any type and form of graphical
user 1terface and may be presented via text, graphical or
otherwise, by any type of program or application, such as a
browser. The CLI 212 may be any type and form of
command line or text-based interface, such as a command
line provided by the operating system. For example, the CLI
212 may comprise a shell, which 1s a tool to enable users to
interact with the operating system. In some embodiments,
the CLI 212 may be provided via a bash, csh, tcsh, and/or
ksh type shell. The shell services 214 may include the
programs, services, tasks, processes and/or executable
instructions to support interaction with the computing device
121 or operating system by a user via the GUI 210 and/or
CLI 212.

Daemon services 218 are programs that run continuously
or in the background and handle periodic service requests
received by computing device 121. In some embodiments, a
daemon service may forward the requests to other programs
or processes, such as another daemon service 218 as appro-
priate. As known to those skilled 1n the art, a daemon service
218 may run unattended to perform continuous and/or
periodic system wide functions, such as network control, or
to perform any desired task. In some embodiments, one or
more daemon services 218 run in the user space 202, while
in other embodiments, one or more daemon services 218 run
in the kernel space.

Collector Application

Reference 1s now made to FIG. 3, which 1s a block
diagram 1illustrating operations and/or functions of a collec-
tor application 200 as described above regarding FIG. 1a.
The collector application 200 includes a kernel space mod-
ule 310 and a user space module 320. The kernel space
module 310 may generally operate to intercept network
activities as they occur. Some embodiments provide that the
kernel space module 310 may use a kernel mode interface in
the operating system, such as, for example, Microsoit Win-
dows transport data interface (IDI). The kernel space mod-
ule 310 may include a TDI filter 314 that 1s configured to
monitor and/or intercept interactions between applications.
Additionally, some embodiments provide that the kernel
space module 310 may include an ancillary functions driver
(AFD) filter 312 that 1s configured to intercept read opera-
tions and the time of their duration. Some operating systems
may include a kernel mode driver other than the AFD. In this
regard, operations described herein may be used with other
such kernel mode drivers to intercept application operational
data.

The raw data related to the occurrence of and attributes of
transactions between network applications may be generally
referred to as “performance data.” The raw data may have
value for diagnosing network application performance
1ssues and/or for 1dentifying and understanding the structure
of the network applications. The measurements or aggrega-
tions of performance data may be generally referred to as
“metrics” or “performance metrics.” Performance data and
the metrics generated therefrom may be temporally relevant
(1n other words, the performance data and the metrics may
be directly related to and/or indicative of the health of the
network at the time the performance data 1s collected).
Performance data may be collected, and metrics based
thereon may be generated, on a client side and/or a server
side of an interaction. Some embodiments provide that

US 9,722,900 B2

17

performance data 1s collected 1n substantially real-time. In
this context, “substantially real-time” means that perfor-
mance data 1s collected immediately subsequent to the
occurrence of the related network activity, subject to the
delays inherent 1in the operation of the computing device
and/or the network and m the method of collection. The
performance data collected and/or the metrics generated
may correspond to a predefined time 1nterval. For example,
a time 1nterval may be defined according to the dynamics of
the network and may include example period lengths of less
than 1, 1, 5, 10, 15, 20, 30, and/or 60, seconds, among others.

Example client side metrics may be aggregated according,
to one or more applications or processes. For example, the
client side metrics may be aggregated according to destina-
tion address, port number, and a local process identifier
(PID). A PID may be a number used by some operating
system kernels to uniquely identify a process. This number
may be used as a parameter 1 various function calls
allowing processes to be manipulated, such as adjusting the
process’s priority and/or terminating the process. In this
manner, multiple connections from the same application or
process to the same remote service may be aggregated.

Similarly, server side metrics may be aggregated accord-
ing to the same application or service regardless of the
client. For example, some embodiments provide that server
side metrics may be aggregated according to local address,
port number, and PID. Respective ones of the client side and
server side metrics may be collected from the kernel space
and/or user space.

The kernel space module 310 may include a kernel events
sender 316 that 1s configured to receive performance data
from the AFD filter 312 and/or the TDI filter 314, and
generate metrics based on the performance data for receipt
by a kemel events receiver 322 1n the user space module
320. In the user space module 320, metrics data recerved by
the kernel event receiver 322 may be processed by a reverse
domain name system (DNS) resolver 325 to map an
observed network address to a more user-friendly DNS
name. Additionally, metrics data received by the kernel
events recerver 322 may be used by a process resolver 326
to determine the processes and/or applications correspond-
ing to the collected kernel metrics data.

The user space module 320 may include a machine
information collector 324 that 1s operable to determine static
machine 1nformation, such as, for example, CPU speed,
memory capacity, and/or operating system version, among,
others. As the performance data 1s collected corresponding
to applications and/or processes, the machine information
may be non-correlative relative to the applications and/or
processes. The user space module 320 may include a process
data collector 328 that collects data corresponding to the
processes and/or applications determined 1n the process
resolver 326. A machine performance data collector 330
may collect machine specific performance data. Examples of
machine data may include information about resource uti-
lization such as the amount of memory in use and/or the
percentage of available CPU time consumed. The user space
module 320 may include an event dispatcher 332 that 1s
configured to receive the machine information, resolved
DNS information, process identification, process data, and/
or machine data, and to generate events incorporating the
aggregated metrics data for dispatch to a health data pro-
cessor application 100 that 1s operable to receive aggregated
metrics data from multiple collectors 200.

Some embodiments provide that the performance data
collected and/or metrics generated may be diagnostically
equivalent and, thus, may be aggregated into a single event.

10

15

20

25

30

35

40

45

50

55

60

65

18

The 1dentification process may depend on which application
initiates a network connection and which end of the con-
nection 1s represented by a current collector application host.

Kermnel level metrics may generally include data corre-
sponding to read operations that are 1 progress. For
example, reference 1s now made to FIG. 4, which 1s a
diagram 1illustrating determiming a read wait time corre-
sponding to a user transaction according to some embodi-
ments of the present mvention. A user transaction between
a client 401 and a server 402 are initiated when the client 401
sends a write request at time 11 to the server 402. The server
402 completes reading the request at time T2 and responds
to the request at time T3 and the client 401 receives the
response from the server 402 at time T4. A kernel metric that
may be determined 1s the amount of time spent between
beginning a read operation and completing the read opera-
tion. In this regard, client measured server response time 410
1s the elapsed time between when the request 1s sent (11) and
when a response to the request 1s read (14) by the client.
Accordingly, the client measured server response time 410
may be determined as T4-11. The server 402 may determine
a server measured server response time 412 that 1s the
clapsed time between when the request 1s read (12) by the
server 402 and when the response to the request 1s sent (13)
by the server 402 to the client 401. Accordingly, the server
measured server response time 412 may be determined as
13-T2.

As the application response 1s measured in terms of
inbound and outbound packets, the application response
time may be determined 1n an application agnostic manner.

Additionally, another metric that may be determined 1s the
read wait time 414, which 1s the elapsed time between when
the client 401 1s ready to read a response to the request T3
and when the response to the request 1s actually read T4. In
some embodiments, the read wait time may represent a
portion of the client measured server response time 410 that
may be improved upon by improving performance of the
server 402. Further, the difference between the client mea-
sured server response time 410 and the server measured
server response time 412 may be used to determine the total
transmission time of the data between the client 401 and the
server 402. Some embodiments provide that the values may
not be determined until a read completes. In this regard,
pending reads may not be included in this metric. Further, as
a practical matter, higher and/or increasing read time metrics
discussed above may be indicative of a slow and/or poor
performing server 402 and/or protocol where at least some
messages originate unsolicited at the server 402.

Other read metrics that may be determined include the
number of pending reads. For example, the number of read
operations that have begun but are not yet completed may be
used to detect high concurrency. In this regard, high and/or
increasing numbers of pending read operations may indicate
that a server 402 1s not keeping up with the workload. Some
embodiments provide that the total number of reads may
include reads that began at a time before the most recent
aggregated time period.

Additionally, some embodiments provide that the number
of reads that were completed during the last time period may
be determined. An average of read wait time per read may
be generated by dividing the total read wait time, corre-
sponding to a sum of all of the T4-T5 values during the time
period, by the number of completed reads 1n that period.

In some embodiments, the number of stalled reads may be
determined as the number of pending reads that began
carlier than a predefined threshold. For example, a pre-
defined threshold of 60 seconds may provide that the num-

US 9,722,900 B2

19

ber of pending read operations that began more than 60
seconds ago are i1dentified as stalled read operations. Typi-
cally, any value greater than zero may be undesirable and/or
may be indicative of a server-inmitiated protocol. Some
embodiments may also determine the number of bytes
sent/recerved on a connection.

The number of completed responses may be estimated as
the number of times a client-to-server message (commonly
interpreted as a request) was followed by a server-to-client
message (commonly interpreted as a response). Some
embodiments provide that this may be measured by both the
server and the client connections. In some embodiments, this
may be the same as the number of completed reads for a
given connection. Additionally, a total response time may be
estimated as the total time spent 1n request-to-response pairs.

Reference 1s now made to FIG. 5, which 1s a block
diagram 1illustrating a kernel level architecture of a collector
application 200 to explain kernel level metrics according to
some embodiments of the present invention. As discussed
above, regarding FI1G. 3, the collector may use a TDI filter
314 and an AFD filter 312. The AFD filter 312 may 1ntercept
network activity from user space processes that use a library
defined 1n a standard interface between a client application
and an underlying protocol stack 1n the kernel.

The TDI filter 314 may operate on a lower layer of the
kernel and can intercept all network activity. As the amount
ol information available at AFD filter 312 and TDI filter 314
1s different, the performance data that may be collected and
the metrics that may be generated using each may also be
different. For example, the AFD filter 312 may collect AFD
performance data and generate AFD metrics that include
total read wait time, number of completed reads, number of
pending reads and number of stalled reads, among others.
The TDI filter may collect TDI performance data and
generate TDI metrics including total bytes sent, total bytes
received, total response time and the number of responses
from the server. Depending on the architecture of a target
application, the AFD metrics for client-side connections
may or may not be available. In this regard, 11 the application
uses the standard interface, the collector may report non-
zero AFD metrics. Otherwise, all AFD metrics may not be
reported or may be reported as zero.

Some embodiments provide that kernel level metrics may
be generated corresponding to specific events. Events may
include read wait metrics that may include client side
metrics such as total read wait time, number of completed
reads, number of pending reads, number of stalled reads,
bytes sent, bytes received, total response time, and/or num-
ber of responses, among others. Events may further include
server response metrics such as bytes sent, bytes received,
total response time and/or number of responses, among,
others.

In addition to the kernel metrics discussed above, the
collector 200 may also generate user level metrics. Such user
level metrics may include, but are not limited to aggregate
CPU percentage (representing the percentage of CPU time
across all cores), aggregate memory percentage (1.e., the
percentage of physical memory 1n use by a process and/or all
processes), and/or total network bytes sent/received on all
network interfaces, among others. User level metrics may
include, but are not limited to, the number of page faults (the
number of times any process tries to read from or write to a
page that was not 1n 1ts resident 1n memory), the number of
pages mput (1.e., the number of times any process tried to
read a page that had to be read from disk), and/or the number
of pages output (representing the number of pages that were
evicted by the operating system memory manager because 1t

10

15

20

25

30

35

40

45

50

55

60

65

20

was low on physical memory), among others. User level
metrics may 1nclude, but are not limited to, a queue length
(the number of outstanding read or write requests at the time
the metric was requested), the number of bytes read from
and/or written to a logical disk in the last time period, the
number of completed read/write requests on a logical disk in
the last time period, and/or total read/write wait times
(corresponding to the number of milliseconds spent waiting
for read/write requests on a logical disk in the last time
interval), among others.

Further, some additional metrics may be generated using,
data from external application programming interfaces.
Such metrics may include, for example: the amount of
memory currently in use by a machine memory control
driver; CPU usage expressed as a percentage; memory
currently used as a percentage of total memory; and/or total
network bytes sent/received, among others.

In some embodiments, events may be generated respon-
sive to certain occurrences 1n the network. For example
cvents may be generated: when a connection, such as a TCP
connection, 1s established from or to a machine; when a
connection was established 1n the past and the collector
application 200 first connects to the health data processing
application 100; and/or when a connection originating from
the current machine was attempted but failed due to timeout,
refusal, or because the network was unreachable. Events
may be generated when a connection 1s terminated; when a
local server process i1s listening on a port; when a local
server process began listening on a port 1n the past and the
collector application 200 first connects to the health data
processing application 100; and/or when a local server
process ceases to listen on a port. Events may be generated
i local network interfaces have changed and/or 1f a known
type of event occurs but some fields are unknown. Events
may 1nclude a description of the static properties of a
machine when a collector application 200 first connects to a
health data processing application 100; process information
data when a process generates its first network-related event;
and/or information about physical disks and logical disks
when a collector application 200 first connects to a health
data processing application 100.

Some embodiments provide that the different link events
may include different data types corresponding to the type of
information related thereto. For example, data strings may
be used for a type description of an event. Other types of
data may include integer, bytes and/or Boolean, among
others.

In some embodiments, the events generated by collector
application 200 for dispatch to heath data processing appli-
cation 100 may incorporate metrics related to network
structure, network health, computational resource health,
virtual machine structure, virtual machine health, and/or
process 1dentification, among others. Metrics related to
network structure may include data identifying the network
device on which collector application 200 1s executing, or
data related to the existence, establishment, or termination of
network links, or the existence of bound ports or the binding
or unbinding of ports. Metrics pertinent to network health
may include data related to pending, completed, and stalled
reads, bytes transferred, and response times, from the per-
spective of the client and/or the server side. Metrics related
to computational resource health may include data regarding
the performance of the network device on which collector
application 200 1s executing, such as processing and
memory usage. Metrics related to virtual machine structure
may include data 1dentifying the physical host machine on
which collector application 200 1s executing, and/or data

US 9,722,900 B2

21

identifyving the virtual machines executing on the physical
host machine. Metrics pertinent to virtual machine health

may include regarding the performance of the host machine
and/or the virtual machines executing on the host machine,
such as processing and memory usage as determined from
the perspective of the host machine and/or the wvirtual
machines. Finally, metrics related to process i1dentification
may include data identitying individual processes executing,
on a network device.

Reference 1s made to FIG. 6, which illustrates example
operations that may be carried out by collector application
200 1 momitoring and reporting network application per-
formance according to some embodiments of the present
invention. At block 600, collector application 200 estab-
lishes hooks on a networked device to an internal network
protocol kernel interface utilized by the operating system of
the networked device. In some embodiments, these hooks
may include, for mstance, a TDI filter. Collector application
200 also establishes hooks to an application oriented system
call interface to a transport network stack. The hooks may
include, 1n some embodiments, an AFD filter. Collector
application 200 collects, via the established hooks, pertor-
mance data corresponding to at least one network applica-
tion running on the networked device (block 602). At block
604, kernel level and user level metrics are generated based
on the collected performance data. The generated metrics
may provide an indication of the occurrence of an interac-
tion (e.g., establishment of a network link), or may provide
measurements of, for instance, a count of some attribute of
the collected performance data (e.g., number of completed
reads) or a summation of some attribute of the collected
performance data (e.g., total read attempts). The kernel level
and user level metrics are aggregated by application—e.g.,
by aggregating metrics associated with the same IP address,
local port, and process ID (block 606). At block 608, the
kernel level and user level metrics generated within a
specified time interval are aggregated. For instance, 1n some
embodiments, metrics generated within the most recent
15-second time interval are aggregated.

At block 610, redundant data 1s removed from the aggre-
gated metrics, and inconsistent data therein i1s reconciled.
Redundant data may include, for instance, functionally
equivalent data received from both the TDI and AFD filters.
Collector application 200 performs a reverse DNS lookup to
determine the DNS name associated with IP addresses
referenced in the generated kernel level and user level
metrics (block 612). Finally, at block 614, an event 1s
generated, incorporating the kernel level and user level
metrics and the determined DNS name(s). The generated
event may be subsequently transmitted to health data pro-

cessing application 100 for incorporation into a model of
network health status.

Installation Without Interruption

In some embodiments, the collector application 200 may
be 1nstalled into a machine of interest without requiring a
reboot of the machine. This may be particularly usetul 1n the
context of a continuously operable system, process and/or
operation as may be frequently found in manufacturing
environments, among others. As the collector operations
interface with the kernel, and more specifically, the protocol
stack, mstallation without rebooting may include intercept-
ing requests coming 1n and out of the kernel using the TDI
filter. Some embodiments include determining dynamically
critical offsets in potentially undocumented data structures.
Such oflsets may be used 1n intercepting network activity for

10

15

20

25

30

35

40

45

50

55

60

65

22

ports and connections that exist prior to an installation of the
collector application 200. For example, such previously
existing ports and connections may be referred to as the
extant state of the machine.

Some embodiments provide that intercepting the stack
data may include overwriting the existing stack function
tables with pointers and/or memory addresses that redirect
the request through the collector filter and then to the
intended function. In some embodiments, the existing stack
function tables may be overwritten atomically in that the
overwriting may occur at the smallest indivisible data level.
Each entry imn a function table may generally include a
function pointer and a corresponding argument. However,
only one of these entries (either the function or the argu-
ment) can be overwritten at one time. Thus, 1ntercepting
function calls may rely on two consecutive overwrites of the
stack data corresponding to the function and corresponding
argument. In some embodiments, there 1s no means for
protecting from an intervening operation between overwrit-
ing one of the function and argument and overwriting the
other one of them. In this regard, system stability may be at
risk from two attempted consecutive overwrites.

As the consecutive overwrites of intercepting function
calls may place the machine at risk of 1nstability, a dynamic
overwriting operation may be used. Specifically, a separate
data structure 1s provided that includes a pointer to the
original function, 1ts original argument and dynamically
generated code to call a filter in the collector application
200. The address of this data structure may be used to
atomically overwrite the original function pointer 1n a single
operation. The collector collects the data and then calls the
original function corresponding to the overwritten stack data
to perform 1ts intended purpose. In this manner, the original
behavior of the machine i1s preserved and the collector
application collects the relevant data without rebooting the
machine and/or placing the machine at risk of instability.

Some embodiments may include i1dentifying the poten-
tially undocumented data structures representing bound
ports and network connections. For example, TDI objects
(connections and bound ports) created prior to the installa-
tion of the collector application 200 may be determined by
first enumerating all objects identified 1n a system. Each of
the enumerated objects may be tagged with an i1dentifier
corresponding to 1ts sub-system. A request corresponding to
a known TDI object 1s created and sent for processing. The
type codes of the enumerated objects are compared to those
of the known TDI object to determine which of the objects
are ports and which of the objects are connections. The
enumerated objects may then be filtered as either connec-
tions or ports.

In some embodiments, this may be accomplished using an
in-kernel thread. The thread may monitor network connec-
tions having restricted visibility and may detect when a
monitored connection no longer exists. Connections may be
added dynamically to the monitored list as needed.

Some embodiments provide that events may be generated
to indicate that visibility mto network events may be incom-
plete. For example, information may be missing correspond-
ing to an active process, the state of a known connection,
and/or missing information regarding network activity. In
this manner, depending on conditions, a custom event can be
transmitted to indicate what type of information 1s missing,
and what process may be responsible for that information.

Health Data Processing Application

In some embodiments, the health data processing appli-
cation 100 may be operable to receive, from at least one

US 9,722,900 B2

23

collector application 200, network activity data correspond-
ing to network activity of the applications on the network
device on which the collector application 200 1s installed.
The health data processing application 100 may combine the
network activity data received from the collector application
200 to remove redundant portions thereof. In some embodi-
ments, the health data processing application 100 may
archive the received activity data in a persistent data store
along with a timestamp indicating when the activity data
was collected and/or received. The health data processing
application 100 may generate a model that includes 1dent-
fied network application components and their relatedness
and/or links therebetween. The generated model may be
displayed via one or more display devices such as, e.g.,
display devices 124a-124» discussed 1n greater detail above.

In some embodiments, the health data processing appli-
cation 100 may be operable to combine network activity
data reported from multiple collector applications 200 to
climinate redundancy and to address inconsistencies among
data reported by diflerent collector applications 200. For
example, network data from multiple collector applications
200 may be stitched together to create a consistent view of
the health of the network applications.

Some embodiments provide that the model may be a
graphical display of the network including application com-
ponents (machines, clients, processes, etc.) and the relation-
ships therebetween. In some embodiments, the model may
be generated as to reflect the real-time or near-real-time
activity of the network. It 1s to be understood that, in this
context, “near-real-time” may refer to activity occurring in
the most recent of a specified time interval for which activity
data was received. For instance, health data processing
application 100 may receive from collector applications 200
aggregated activity data corresponding to the most recent
15-second 1nterval of network operation, and, accordingly,
the model of near-real-time activity may retlect the activity
of the network as it existed during that most recent 15-sec-
ond interval.

Some embodiments provide that the model may be gen-
erated to reflect an historical view of network activity data
corresponding to a specified time interval. The historical
view may be generated based on archived activity data
retrieved from a persistent data store and having a timestamp
indicating that the activity data was collected or received
during the specified time interval. In other embodiments, the
model may be dynamically updated to reflect new and/or
lost network collectors and/or network components. Further,
graphs may be provided at each and/or selected network
resource indicators to show activity data over part of and/or
all of the time interval.

In some embodiments, a model may include sparklines to
provide quick access to trends of important metrics, process
and application views to provide different levels of system
detail, and/or model overlays to provide additional applica-
tion analysis. For example, visual feedback regarding the
contribution of a network link relative to a given criterion
may be provided. In this manner, hop by hop transaction
data about the health of applications can be provided.
Additionally, visual ranking of connections based on that
criteria may be provided. Bottleneck analysis based on
estimated response times may be provided to identily slow
machines, applications, and/or processes, among others.

Some embodiments provide that health data processing
application 100 may be operable to infer the existence of
network devices and/or network applications for which no
activity data was received or on which no collector appli-
cation 200 1s running, based on the identification of other

5

10

15

20

25

30

35

40

45

50

55

60

65

24

network devices and/or other network applications for which
activity data was received. For instance, activity data
received by health data processing application 100 may
indicate that a network link has been established between a
local network device running collector application 200 and
a remote network device that 1s not runmng collector appli-
cation 200. Because the activity data may include 1dentify-
ing i1nformation for both the local and remote network
devices, health data processing application 100 may infer
that the remote network device exists, and incorporate the
remote network device into the generated model of network
activity.

In other embodiments, health data processing application
100 may be operable to 1dentity a network application based
on predefined telecommunications standards, such as, e.g.,
the port numbers list maintained by the Internet Assigned
Numbers Authority (IANA). Health data processing appli-
cation 100 may, for example, receive activity data indicating
that a process on a network device 1s bound to port 21. By
cross-referencing the indicated port number with the LANA
port numbers list, health data processing application 100
may 1dentily the process as an File Transier Protocol (FTP)
server, and may include the identification 1n the generated
model.

Reference 1s made to FIG. 7, which 1s a screen shot of a
graphical user mterface (GUI) including a model generated
by a health data processing application according to some
embodiments of the present invention. The GUI 700
includes a model portion 701 that illustrates representations
of various network applications and/or application compo-
nents 702. Such representations may include 1dentifier fields
704 that are operable to 1dentify application and/or applica-
tion component addresses, ports, machines and/or networks.
Connections 706 between network applications and/or
application components may be operable to convey addi-
tional information via color, size and/or other graphical
and/or text-based information. A summary field 708 may be
provided to 1llustrate summary information corresponding to
one or more applications and/or application components,
among others. A port identification portion 712 may be
operable to show the connections corresponding to and/or
through a particular port. The GUI 700 may include a system
and/or network navigation field 710, overlay selection field
714, and one or more time interval and/or snapshot field(s)
716.

FIG. 8 1s a flowchart illustrating example operations that
may be carried out by health data processing application 100
in generating and displaying a real-time model of network
application health according to some embodiments of the
present invention. At block 800, health data processing
application 100 may receive activity data from a plurality of
collector applications 200 executing on respective ones of a
plurality of network devices. The received activity data
corresponds to activities of a plurality of network applica-
tions executing on respective ones of the plurality of net-
worked devices. At block 802, the received activity data 1s
archived along with a timestamp indicating when the activ-
ity data was collected and/or received. As discussed 1n
greater detail with respect to FIG. 9, this archived data may
allow health data processing application 100 to generate and
display an historical model of network application health
during a specified time interval. At block 804, the received
activity data 1s combined to remove redundant data and to
reconcile inconsistent data. At block 806, health data pro-
cessing application 100 identifies the network applications
executing on the respective ones of the plurality of net-
worked devices, and ascertains the relationships therebe-

US 9,722,900 B2

25

tween. The identification of the network applications and the
relationships therebetween may be based on the recerved
activity data, and may further be determined based on a
correlation between the received activity data and predefined
industry standards, as discussed above. At block 808, health
data processing application 100 may infer the existence of
network applications for which no activity data was
received, based on the 1dentification of network applications
for which activity data was recerved. At block 810, a
real-ttime model of network health status, including the
identified network applications and the relationships ther-
cbetween, 1s generated, and the model 1s displayed at block
812.

FIG. 9 1s a flowchart illustrating example operations
carried out by a health data processing application 100 1n
generating and displaying an historical model of network
application health according to some embodiments of the
present invention. At block 900, the activity data previously
archived at block 802 and corresponding to a specified time
interval 1s retrieved. The retrieved activity data 1s combined
to remove redundant data and reconcile imnconsistent data at
block 902. At block 904, health data processing application
100 1dentifies the network applications associated with the
retrieved activity data, and ascertains the relationships ther-
cbetween. The identification of the network applications and
the relationships therebetween may be based on the retrieved
activity data, and may further be determined based on
correlation between the retrieved activity data and industry
standards. At block 906, health data processing application
100 may infer the existence of network applications for
which no activity data was retrieved, based on the identifi-
cation of network applications for which activity data was
retrieved. At block 908, an historical model of network
health status i the specified time interval, including the
identified network applications and the relationships ther-

cbetween, 1s generated, and the historical model 1s displayed
at block 910.

Custom Protocol

Some embodiments provide that transferring the activity
data between the collector applications 200 and the health
data processing application 100 may be performed using a
compact, self-describing, linear builer communications pro-
tocol. In some embodiments, the custom protocol uses a
common representation for monitoring information, coms-
mands and configuration data. As the methods and systems
described herein are intended to monitor network perfor-
mance, the protocol may be operable to minimize the
volume of information exchanged between the collector
applications 200 and the health data processing application
100.

In some embodiments, the collector applications 200 are
operable to generate events 1n a streaming data format.
Events may be generated corresponding to the predefined
monitoring time period. Information provided correspond-
ing to an event may include an event type, network resource
identification data including PID, remote 1dentifiers, quan-
tities and/or types of data sent/received, and/or response
time mnformation, among others. The protocol may include
a banner portion that may be established through a hand-
shaking process that may occur when a collector application
200 mitially communicates with the health data processing
application 100. The banner portion may define the data
types and formats to be transierred. In this manner, the

5

10

15

20

25

30

35

40

45

50

55

60

65

26

protocol may be flexible by virtue of the self-descriptive
banner portion and may avoid sending unused, unwanted or

blank data fields.

Monitoring the Contents of Network Traflic in a
Network Device

As discussed above, collector application 200 may collect
raw data related to the occurrence and attributes of transac-
tions between network applications (1.e., “performance
data”), which may have value for diagnosing network appli-
cation performance 1ssues and/or for identifying and under-
standing the structure of the network applications. Collector
application 200 may also generate events that provide mea-
surements or aggregations of performance data (1.e., “met-
rics” or “performance metrics”). However, some perior-
mance 1ssues, particularly those that occur sporadically, or
those for which i1dentifying and/or recreating the circum-
stances leading to the performance 1ssues 1s dithicult, may be
challenging to diagnose using performance data and metrics.
In such scenarios, 1dentification and analysis of transaction
data that 1s communicated between network applications and
that 1s contained within the raw network traflic data may
provide diagnostic value.

In some embodiments, therefore, collector application
200 may provide a method for parsing and optionally
filtering network traflic data to identity and extract transac-
tion data contained therein. FIG. 10 illustrates the architec-
ture of an example system providing network traflic data
parsing and filtering according to some embodiments of the
present invention. As detailed above with respect to FIG. 3,
kernel space module 310 1n kernel space 204 1s operative to
intercept packets of network traflic data, in substantially
real-time, as the data 1s sent by a network device and/or
received by a network device. In this context, “substantially
real-time” means that network traflic data 1s collected i1mme-
diately subsequent to the sending and/or receiving of the
network traflic data, subject to the delays inherent in the
operation of the computing device and/or the network and 1n
the method of collection.

Kermel space module 310 1s communicatively coupled to
transactions virtual machine (TVM) 1000, which may be
consulted by kernel space module 310 with respect to each
packet of network traflic data to determine whether the
packet should be collected and sent for parsing. In some
embodiments, TVM 1000 may provide a compact and
cllicient bytecode representation of a criteria predicate
expression (for example, a Boolean combination of 1ndi-
vidual predicates) that defines the characteristics of network
traflic data to be collected. For instance, a criteria predicate
may dictate that only network trathc data arriving on a
particular network port, network traflic data sent from a
particular remote IP address, and/or network traflic data sent
or recerved by a particular application 1s to be collected. In
this way, TVM 1000 may efiectively describe “interesting’”
network trathic data that 1s to be collected.

Network traflic data deemed “interesting” by TVM 1000
1s collected by kernel space module 310 and sent to shared
memory bufler 1005. Shared memory builer 1005 1s an area
of memory that accessible by both kernel space module 310
executing in kernel space 204 and other modules of collector
application 200 executing in user space 202. By using shared
memory buller 1005, kernel space module 310 1n some
embodiments may incur few or no context switches 1n
transierring the collected network tratlic data, thus allowing,
large amounts of data to be transferred to collector applica-
tion 200 efliciently and asynchronously. Some embodiments

US 9,722,900 B2

27

may provide that the size of shared memory bufier 1005 may
be configurable by, for instance, a configuration file. In some
embodiments, the size of shared memory buller 1005 may
be adaptive based on available memory. For example, 1 a
surplus of memory becomes available, the size of shared
memory builer 1005 may be automatically increased,
whereas 11 the amount of available memory 1s reduced, the
s1ize of shared memory bufler 1005 may be automatically
decreased.

Parser engine 1010 of collector application 200 executing,
in user space 202 retrieves collected network traflic data
from shared memory bufler 1005 and determines how the
collected network traflic data will be further processed. In
some embodiments, parser engine 1010 may pass the col-
lected network tratlic data into one or more protocol-specific
parsers for processing, depending on the network protocol of
the collected network trafhic data. For example, protocol-
specific parsers 1015, 1020, 1025, and 1030 may be asso-
ciated with the Oracle Structured Query Language (SQL),
Microsolt SQL (MS-SQL), Message Queue (MQ), and
LDAP network protocols, respectively. Thus, 11 the collected
network traflic data 1s associated with the Oracle SQL query
protocol, then the collected network traflic data may be
passed to Parser A 1015 for processing. Likewise, collected
network trathc data associated with a MS-SQL query may be
passed to Parser B 1020, collected network tratlic data
associated with a M(Q query may be forwarded to Parser C
1025, and collected network traflic data associated with an
LDAP query may be sent to Parser D 1030. The protocol-
specific parsers 1015, 1020, 1025, and 1030 may extract
transaction data related to logical transactions defined by the
respective network protocols. It 1s to be understood that the
network protocol processed by an example protocol-specific
parser may be any network protocol for which network
traflic data may be collected, and i1s not limited to the
network protocols enumerated above. It 1s to be further
understood that parser engine 1010 may forward the same
collected network traflic data to multiple protocol-specific
parsers, or to no parser.

The transaction data related to logical transactions and
extracted by a protocol-specific parser may include diag-
nostically useful associated metadata. In some embodi-
ments, the associated metadata may include, for example,
server response time, the size 1n bytes of the request and/or
the response, an error code (1 a transaction was unsuccess-
tul), a timestamp associated with the request, the IP address
of the client and/or the server, the server port, and/or the
server process 1D, among others. The associated metadata
may also 1include protocol-specific metadata extensions,
including user name, database name, and/or session ID,
among others.

In some embodiments, protocol-specific parsers include
shared libraries, each implementing a well-defined parser
Application Programming Interface (API), and each loaded
at run time by collector application 200 according to the
contents of a configuration file. Each protocol-specific
parser, 1n some embodiments, may have access to the
configuration and logging facilities of collector application
200.

Some embodiments may provide a protocol-specific
parser that implements the parser API, and that further
incorporates an embedded script interpreter that 1s operable
to execute a script that defines parsing operations. For
example, Parser D 1030 may include a module implement-
ing the parser API, and may have embedded within it parser
script interpreter 1033, which interprets a script to determine
how collected network traflic data passed to Parser D 1030

10

15

20

25

30

35

40

45

50

55

60

65

28

will be parsed. Parser script interpreter 1035 may be oper-
able to interpret scripting languages such as Perl, PHP,
JavaScript, Ruby, Python, and/or Tcl, among others. The use
of an interpreted script to define parsing operations may
allow for the quick prototyping of protocol-specific parsers,
as well as providing a simplified means for support person-
nel and users to implement protocol-specific parsers. Pro-
tocol-specific parsers using embedded script interpreters
may also provide platform independence, and may permit
parser developers to take advantage of the inherent capa-
bilities of the particular scripting language used.

Each protocol-specific parser 1015, 1020, 1025, and 1030
may “consume” more or less data than 1s made available to
it by parser engine 1010. In this context, “consume”™ means
to indicate that a specified quantity of data has been pro-
cessed. For example, a protocol-specific parser may examine
the collected network trathic data, and may be able to
determine based on the collected network traflic data that a
subsequent portion of network traflic data 1s likely to be
unmimportant or wrrelevant. The collected network traflic data,
for instance, may contain a transaction identifier, from which
the protocol-specific parser may determine that the subse-
quent portion of network traflic data contains only padding
or other data of no interest. Accordingly, the protocol-
specific parser may indicate that the collected network traflic
data and the subsequent portion of network traflic data has
been consumed (i.e., that the protocol-specific parser has
consumed more data than was actually made available to 1t
by parser engine 1010). Conversely, the protocol-specific
parser may determine that part of the available collected
network traflic data 1s not suflicient to extract a complete
transaction, or that the available collected network trafhic
data 1s msuilicient to extract even a single logical transac-
tion. In this case, the protocol-specific parser may indicate
that only some, or none, of the collected network tratlic data
was consumed (1.e., that the protocol-specific parser has
consumed less data than 1s available). In some embodiments,
this may allow the collected network traflic data to be
buffered until suflicient data has accumulated to permait the
extraction of one or more complete logical transactions by
the protocol-specific parser. A protocol-specific parser, in
some embodiments, may determine that the network tratlic
data collected from a particular network flow cannot be
parsed at all, and, 1n response, will indicate that subsequent
network traflic data corresponding to the same network flow
1s not to be parsed.

After a protocol-specific parser has extracted transaction
data corresponding to at least one logical transaction from
the collected network traflic data, 1t may pass the extracted
transaction data directly to parser sink 1060, as, for example,
with Parser D 1030 in FIG. 10. In some embodiments, a
protocol-specific parser may forward the extracted transac-
tion data to a filter for further processing. For example,
parsers 1015, 1020, and 1025 may pass extracted transaction
data to filters 1040, 10435, and 1050, respectively. It 1s to be
understood that there may be any number of filter stages
following a protocol-specific parser—i.e., the output gener-
ated by one filter may be passed to another filter in a linear
fashion, thus creating a “pipeline” sequence of parsing and
filtering modules. It 1s to be further understood that a filter
may receive input from more than one protocol-specific
parset.

Each filter may alter the transaction data passed into 1t by
moditying and/or deleting parts of the data, or by supple-
menting the transaction data with additional data. For
instance, filters 1040 and 1045, which may receive SQL

transaction data extracted by parsers 1015 and 1020, respec-

US 9,722,900 B2

29

tively, may be operable to normalize SQL transaction data
by removing string and numeric literals and extraneous
whitespace, and by capitalizing keywords within the SQL
transaction data passed into the filters. In some embodi-
ments, a filter may identily and aggregate related logical
transactions, and may represent the aggregated logical trans-
actions as a single filtered transaction. For example, a filter
may create and output a logical transaction representing the
combination of all Uniform Resource Locator (URL) trans-
actions from a single client corresponding to retrieval of one
complete web page.

As with protocol-specific parsers, filters, 1n some embodi-
ments, may incorporate an embedded script interpreter that
1s operable to execute a script that defines filtering opera-
tions. For example, Filter C 1050 has embedded within 1t
filter script interpreter 1055, which interprets a script to
determine how extracted transaction data passed to Filter C
1050 will be filtered. Filter script interpreter 1055 may be
operable to interpret scripting languages such as Perl, PHP,
JavaScript, Ruby, Python, and/or Tcl, among others.

Filters 1040, 1045, and 1050 and protocol-specific parser
1030 pass their respective outputs to parser sink 1060 of
collector application 200. Parser sink 1060 may aggregate
the transaction data that was extracted and/or filtered within
a predefined time interval, and may then generate an event
based on the aggregated transaction data. In some embodi-
ments, health data processing application 100 may receive
events from collector application 200, and may request that
collector application 200 data send transaction data in “trace
mode.” In trace mode, parser sink 1060 may aggregate the
transaction data, as above, and also may compress the
entirety of the transaction data and generate an event based
on the compressed transaction data. This may provide health
data processing application 100 with more detailed transac-
tion data for use 1n diagnosing network and/or application
performance 1ssues.

Reference 1s now made to FIG. 11, which illustrates
example operations carried out by a kernel space module of
collector application 200 in collecting raw network traflic
data to be parsed and/or filtered. At block 1100, kernel space
module 310, using a kernel space driver interface, collects
network traflic data sent by and/or received at a network
device. Kernel space module 310 determines whether the
collected network traflic satisfies a criteria predicate, which
may specily the characteristics of the network tratlic data for
which parsing and/or filtering 1s to be carried out (block
1105). In some embodiments, for example, the criteria
predicate may specily that only network trathic data that
arrives on a particular port, network traflic data that was sent
from a particular remote 1P address, and/or network traflic
data that was sent or received by a particular program 1s to
be parsed and/or filtered. I1 the collected network traflic data
does not satisiy the criteria predicate, the collected network
traflic data 1s disregarded (block 1110), and kernel space
module 310 resumes operation again at block 1100. If the
collected network traflic data does satisiy the criteria predi-
cate, then kernel space module 310 transfers the collected
network trathic data into a shared memory bufler 1005 (block
1115). As detailed above with respect to FIG. 10, shared
memory bufler 1005 1s an area of memory that 1s shared
between and accessible by both kernel space module 310
executing in kernel space 1000 and other modules of col-
lector application 200 executing in user space 1005. After
the collected network tratlic data 1s transferred to shared
memory builer 1005, the kernel space module 310 resumes
operation at block 1100.

10

15

20

25

30

35

40

45

50

55

60

65

30

FIG. 12 illustrates example operations carried out by
collector application 200 i1n parsing and/or filtering the
collected network trathic data. At block 1200, collector
application 200 determines whether any collected network
traflic data 1s available to be processed 1n shared memory
buffer 1005. I there 1s no collected network traflic data to be
processed, then operation resumes at block 1200. If shared
memory buller 1005 contains collected network traflic data,
collector application 200 uses an appropriate protocol-spe-
cific parser to examine the collected network tratlic data and
determine whether the data can be parsed (block 1205). If
the data cannot be parsed—such as, for example, the col-
lected network traflic data 1s 1n a format not recognized by
the protocol-specific parser, or 1s otherwise incomprehen-
sible—then collector application 200 stores an indicator
signifying that no subsequent network traflic data from the
corresponding network source will be parsed (block 1210),
and operation resumes at block 1200.

If the data can be parsed, the protocol-specific parser
examines the collected network traflic data to determine
whether parsing of subsequent network traflic data 1s nec-
essary (blocks 1215 and 1220). For example, the collected
network traflic data may contain a transaction identity
indicating that a subsequent portion of network traflic data
contains only padding or other data of no interest. If further
parsing 1s unnecessary, the protocol-specific parser stores an
indicator indicating that both the collected network traflic
data and the subsequent portion of network trathic data were
consumed, and operation resumes at block 1200.

If further parsing 1s necessary, then the protocol-specific
parser examines whether the collected network traflic data 1s
suflicient to allow the extraction of at least one logical
transaction (block 1230). If there 1s not enough collected
network traflic data to extract at least one logical transaction
(as may be the case, for instance, where the collected
network traflic data comprises a single IP packet, but a
logical transaction spans multiple IP packets), then the
protocol-specific parser stores an indicator indicating that
none of the collected network traflic data was consumed
(block 1233). In some embodiments, this permits the col-
lected network traflic data to be bullered until suflicient data
has been collected to enable the extraction of at least one
logical transaction. Operation then resumes at block 1200.

IT suthicient network trathc data has been collected, then
the protocol-specific parser extracts transaction data corre-
sponding to at least one logical transaction that 1s defined by
a network protocol from the collected network traflic data
(block 1240). For example, depending on the network
protocol associated with the collected network traflic data,
transaction data may include URL of a requested web page
or the contents of a SQL, LDAP, and/or MQ query, among
others. At block 12435, the protocol-specific parser stores an
indicator indicating the actual quantity of data that was
consumed. An attribute of the extracted transaction data 1s
stored 1n memory and/or 1n a persistent data store (block
1250). In some embodiments, this may allow the protocol-
specific parser to maintain state information regarding the
logical transactions for which data 1s extracted from the
collected network traflic data.

At block 1255, a filter generates filtered transaction data
based on the extracted transaction data passed to 1t from the
protocol-specific parser. As detailed above with respect to
FIG. 10, a filter may modily and/or delete data in the
extracted transaction data, and/or may supplement the
extracted transaction data with additional data. An attribute
of the filtered transaction data 1s stored in memory and/or 1n
a persistent data store (block 1260). In some embodiments,

US 9,722,900 B2

31

this may allow the filter to maintain state information
regarding the logical transactions represented by the filtered

transaction data.

Collector application 200 aggregates the filtered transac-
tion data that was extracted during a predefined time 1nterval
(block 1265) and generates an event based on the aggregated
data (block 1270). Collector application 200 then determines
whether a trace mode has been requested by health data
processing application 100 (block 1275). If so, then the
entire contents of the filtered transaction data that was
extracted during a predefined time interval 1s compressed
(block 1280), and an additional event i1s generated by

collector application 200 based on the compressed data
(block 128S5). Operation then resumes at block 1200.

Correlation Analysis of Collected Metrics

As described above, the Collector application 200 gener-
ates performance data or metrics related to and/or indicative
of the health of the network. Large numbers of metrics about
a distributed application may be collected, including user-
visible performance metrics such as transactions per second
and latency of transactions as well as iirastructure metrics
relating to CPU, memory, and disk load. Users that are
presented with these numerous metrics may desire to 1den-
tify applications and/or transactions that are being processed
slowly 1n this network, which machine-to-machine contexts
are slowing trailic in the system, or which infrastructure
resources are limiting performance. In other words, users
would like to discover relationships among the various
metrics that have been collected that indicate reasons for
performance degradation.

Reference 1s made to FIG. 13, which illustrates example
operations carried out by a correlation analyzer that is
operable to analyze correlations of collected network traflic
data metrics, according to some embodiments of the present
invention. A set of collected metrics are available that
include network element metrics and/or node-to-node con-
texts, among others. At block 1301, the correlation analyzer
selects a primary metric from the set of collected metrics.
The primary metric, which may also be referred to as the
correlated metric, 1s the metric to which other data 1s
correlated. This primary metric may be selected by the user
using a user interface and/or may be automatically selected
by the application based on configured criterion or through
analysis regarding the health of the network by 1dentifying
points of interest within the network.

As shown 1n block 1303, correlation coeflicients between
the primary metric and ones of at least a portion of the
plurality of the collected metrics are generated. The corre-
lation coeflicient, according to some embodiments, may be
calculated using Pearson’s correlation coeflicient. Other
types of correlation coeflicients well known 1n the art, such
as Spearman’s rank correlation may also be used. Correla-
tion coeflicients typically are 1n the range —1.0 to 1.0. For
example, a correlation coellicient of 1.0 signifies that a data
pair 1s 1dentical, or that one 1s a positive number multiple of
the other. Usually, a correlation coeflicient near 1.0 signifies
strong correlation between the data pair. A correlation coel-
ficient of —1.0 signifies inverse correlation between the data
pair, or that one 1s a negative number multiple of the other.
Correlation coeflicients between 0 and 1.0 signify varying
degrees of correlation. Similarly, correlation coetlicients
between -1.0 and O signily varying degrees of inverse
correlation. Correlation coeflicients near 1.0 indicate strong
correlation while correlation coeflicients near —1.0 indicate
strong 1nverse correlation.

10

15

20

25

30

35

40

45

50

55

60

65

32

A hypothesis set may be generated based on the correla-
tion coellicients, as shown in block 1304. A hypothesis set
may include metrics likely to be causally related to the
primary metric. A hypothesis may include metrics whose
behavior influences/causes or whose behavior 1s influenced/
caused by the primary metric. Determiming the hypothesis
set may 1nclude identifying the primary metric and one or
more of respective collected metrics for which the respective
correlation coeflicients are greater than a first threshold or
less than a second threshold (block 1305). The correlation
coellicient being greater than the first threshold may corre-
spond to a positive correlation coeflicient. Similarly, the
correlation coellicient being less than the second threshold
may correspond to a negative correlation coellicient. These
identified metrics, qualified by the aforementioned thresh-
olds may be used to determine the primary metric and the
respective collected metrics that may be added to the
hypothesis set, as shown 1n block 1306. For example, a first
threshold value of 0.7 and a second threshold value of -0.7
may be selected. The hypothesis set for these example
thresholds would include metric pairs which have a positive
correlation greater than 0.7 or an inverse correlation less
than -0.7. A positive correlation, for example, may suggest
that higher load on one network element or context may be
causally linked to increased utilization of another network
clement or resource. Similarly, a negative correlation may
suggest, for example, that one process or transaction may be
causally linked to inhibiting another process or transaction
from obtaining adequate resources.

Additionally, as illustrated by block 1307, heat maps
based on the correlation coeflicients may be generated. Heat
maps may use color-coded variations to distinguish varying
levels of correlation between the between the primary metric
and the collected metrics. The heat maps may be useful to
the user to 1dentify hot spots 1n the network that show high
correlation among certain metric pairs. A heat map may be
generated for correlation coetlicients including all pairs of
the collected metrics and/or for one or more subsets of all of
the pairs of collected metrics.

As shown 1n block 1302, defined settings may be used to
determine a candidate set which corresponds to a portion of
the plurality of collected metrics to which the primary metric
may be correlated. Reference 1s now made to FIG. 14 which
1s a tlowchart illustrating example settings that may be
operations that may be included 1n i1dentifying a candidate
set (block 1302), according to some embodiments of the
present invention. As illustrated 1n block 1401, a scope of
network elements to include in the candidate set may be
defined. The scope may be defined by a number of network
clement hops from the selected primary metric’s network
clement. For example, the candidate set may include all
collected metrics associated with network elements that are
N hops from the network element associated with the
primary metric, where N>=1. In some embodiments, the
scope may be defined to include all network elements that
are associated with the network element of the primary
metric. For example, the associated network elements may
include all other network elements that have common data
paths, share memory, and/or share processes with the net-
work element of the primary metric, among others.

The candidate set may also be defined by selecting a
network metric type that identifies the types ol network
metrics to include 1n the candidate set, as illustrated 1n block
1402 of FIG. 14. Example network metric types that may be
used to determine the candidate set include transactions,
virtual machines, infrastructure metrics, links between
nodes 1n the network, processes runmng on nodes in the

US 9,722,900 B2

33

network, server stacks, threads, applications, and memory
usage such as cache, stack, virtual memory, and storage,
among others.

Once the network metric types are selected, as shown 1n
block 1403, a filtering function may be applied to the
collected metrics. As further illustrated in block 1404,
applying the filter function may include receiving an 1nput
associated with the network metric type. Reference 1s now
made to FIG. 16, which 1s a flowchart 1llustrating example
operations that generate the network metric type for use 1n
identifying the candidate set. The received input may be
from a user via a user mnput as 1n 1601, where the network
metric type 1s generated based on the input from the user, as
shown 1 1602. In some embodiments, the input associated
with the network metric type may be obtained by reading a
data file that includes configuration information (block
1603). The configuration information may be used to gen-
crate the network metric type (block 1604). The received
input may also be from other applications, modules, threads,
or processes that may determine the mnformation that may be
relevant to the operator utilizing the network health moni-
toring functionality. Referring once again to FIG. 14, block
1405 1llustrates that the members of the candidate set are
identified out of the collected metrics based on the received
input.

In some embodiments, transformations may be applied to
the data belore calculating correlation values. Example
transformations may include smoothing the data, curve
fitting, and/or time-shiiting, among others. Smoothing a data
set may include creating an approximating function that
attempts to capture important patterns in the data, while
leaving out noise or other fine-scale structures. Outlier data
points may be removed or modified 1n order to provide a
smoother data set. In smoothing, the data points may be
modified so that individual high points (presumably because
of noise) are reduced, and points that are lower than the
adjacent points are increased leading to a smoother data set.
Many different algorithms may be used for smoothing, one
example being the histogram.

Reference 1s now made to FIG. 15 which illustrates
another example of a transformation that may be applied to
the data by applying temporal shifting of relative metrics
during correlation analysis. In general, primary metric and
collected metric data pairs are selected for analysis from the
same time interval. When applying temporal shifting, the
primary metric and the respective collected metric to be
correlated are time shifted with respect to one another such
that they are from different time intervals. As used herein,
temporal shifting and time shifting refer to any selection of
members of a data pair from different time 1ntervals with
respect to one another. In some embodiments, the user may
control the temporal shift as described 1n blocks 1501, 1502,
and 1503. The user interface may provide a mechanism by
which the user may select to increment and/or decrement the
input (block 1501), and correspondingly adjust the time
interval based on this received increment/decrement (block
1502). In some embodiments shown in block 1503, the
correlation analyzer may receive a temporal shift value from
the user interface and adjust the time interval based on this
received temporal shift value. The time interval used for
temporal shifting may be normalized to the time granularity
of the network monitoring application. In other words, the
time interval may be a multiple of the data collection interval
corresponding to the collected metrics. Based on the user
specified time interval, the data corresponding to the pri-
mary metric corresponds to a first time while the data
corresponding to the portion of the collected metrics corre-

10

15

20

25

30

35

40

45

50

55

60

65

34

sponds to a second time that 1s different from the first time
by the user specified time interval. As further 1llustrated in
FIG. 15 blocks 1301, 1303, and 1304, correlation analysis 1s
performed on this time-shifted data such that a temporally
shifted hypothesis set 1s obtained.

The concept of generating correlation coeflicients
between the primary metric and a plurality of collected
metrics may be further expanded, as 1n FIG. 17, to generate
correlation coellicients between several of the collected
metrics and some or all other ones of the collected metrics,
as 1 block 1704. A hypothesis set may be generated based
on these correlation coeflicients, as 1n block 1705. Addition-
ally, correlation coeflicients may be generated between the
primary metric and all other collected metrics. Moreover,
although requiring a substantial number of calculations, an
all-pairs comparison for all the collected metrics 1n the
application may be generated in order to discover relation-
ships that may not have been evident when limiting the
number of metrics that are correlated. An all-pairs compari-
son may include correlating all of the collected metrics with
all others of the collected metrics.

Similar to the temporal shifting in the embodiment
described 1n FIG. 15, FIG. 17 illustrates embodiments 1n
different user mput types may be used to control temporal
shifting during correlation analysis (blocks 1704 and 1705).
Similar to a previously described embodiment, a user inter-
face may be used to receive an increment and/or decrement
input (block 1701), and adjust the time interval based on the
received increment and/or decrement (block 1702). In some
embodiments, a temporal shift value may be received from
the user interface, as 1n block 1703, which may be used to
adjust the time interval. Based on the time interval, the data
corresponding to the collected metric corresponds to a {first
time while the data corresponding to the ones of the col-
lected metrics being correlated corresponds to a second time
that 1s different from the first time by the user specified time
interval.

The correlation analyzer may be launched from the model
generated by a health data processing application, as shown
in FIG. 7. A user may select a collected metric of interest on
which to perform correlation analysis. For example, a user
may click on an abnormal application response time metric
to launch correlation analysis to determine causes for the
poor performance. As another example, the user may click
on an abnormal infrastructure metric to find out which
higher-level function may aflect 1t or be aflected by 1it.

The information relating to the correlation analyzer may
be presented to the user on a display, using graphical,
textual, and/or tabular representations, as appropriate. Ref-
erence 1s made to FIG. 18 which illustrates a screen shot of
a graphical user iterface (GUI) including selection options
for scope 1801 and network metric types 1802 for correla-
tion analysis and display of results 1804 related to a primary
metric by a correlation analysis application, according to
some embodiments of the present mnvention. Information
regarding the primary metric (also referenced as the corre-
lated metric) 1803 may be displayed graphically, textually,
and/or 1n tabular representation, among others. As shown by
1804, for members of the candidate set that were correlated
with the primary metric, the data may be displayed 1n tabular
form. Information regarding the metric source, network
clement 1denftification, context type, collected data, and
correlation coellicient may be displayed. The displayed
information may be sorted based on any of these types.
Additionally, the candidate set and/or the hypothesis set may
include visually distinctive display of members of the set by
use of shading, boldface type, italicizing, fonts, colors,

US 9,722,900 B2

35

background colors, or other such ways to emphasize or
highlight certain metrics. Additionally, distinctive highlight-

ing may be used to distinguish the previously described
thresholds relating to positive or negative correlations. Spe-
cific machines, processes, and/or links may be highlighted.
Data graphs and/or sparklines may also be displayed to
represent the primary metric and/or collected metrics. These
sparklines and/or related information can be selected by the
user to see larger displays with options to choose new
correlation analysis parameters. The data may be presented
statically or updated dynamically. Dynamically updated
correlation data may be based on time 1ntervals related to the
sampling granularity of the data collection of the system, or
based on update intervals selected by the user.

Reference 1s made to FIG. 19, which illustrates a screen
shot of a graphical user interface (GUI) including an
example selection of transaction as the network metric type
for correlation analysis and display of results related to a
primary metric by a correlation analysis application, accord-
ing to some embodiments of the present invention. The filter
block 1802 provides an option to further limit the metrics in
the candidate set for which correlations will be calculated
against the primary metric. The filter block 1802 can filter 1n
multiple ways, including, but not limited to, exact match,
substring, prefix, suihx, and/or regular expression, among
others.

Tracing and Aggregating Transaction Data

As described above, the collector application 200 gener-
ates performance data related to and/or indicative of the
health of the network. Each collector application 200 may be
collecting one machine’s view of the application server. A
large amount of data may be collected, including transaction
specific mnformation. Users that are presented with this
voluminous data may desire to 1dentily transactions that are
being processed 1n this network, and/or events related to the
transactions. In some embodiments, it may be assumed that
all of the activity within an apphcatlon happening at roughly
the same time as a transaction 1s executing may be related to
the transaction. However, a less inclusive approach may be
desired.

Analysis showing individual transaction dependencies
based on 1ndividual event dependencies may be referred to
as front-to-back stitching. One goal of front-to-back stitch-
ing 1s to 1dentily transaction dependencies by joining related
events end-to-end. Front-to-back stitching may be used
cllectively 1n systems with thread exclusive behavior. In
non-thread exclusive systems, time-based correlation, as
described previously, may be an option. In some embodi-
ments, techniques referred to as back-to-front stitching may
be used to join multiple transaction instances together that
include events that match time stamps and/or protocols.

Reference 1s made to FIG. 20, which 1llustrates example
operations carried out by a health data processing applica-
tion to generate an aggregated list of transactions based on
the thread 1dentifier and transaction type, according to some
embodiments of the present mvention. Such transactions
may occur between network applications and/or as a result
of user mput. Transactions may result 1n communication
with one or more processes, which 1n turn may include one
or more threads. Threads may be 1dentified based on a thread
identifier.

Some embodiments of the present invention apply to
servers exhibiting thread exclusive behavior. Many systems
provide thread exclusive behavior such that once a process
starts working on a request using a thread, the thread works

10

15

20

25

30

35

40

45

50

55

60

65

36

on nothing else until completion of the request. Thread
exclusivity may occur on many servers that are extensible,
where the server may hand off the thread to third party code.
Examples of servers that exhibit thread exclusive behavior
may include the Apache web server, IBM WebSphere,
Oracle WebLogic Server, Sun ONE server, JBoss Applica-
tion Server, Apache Tomcat, Caucho Resin, and/or other
Java servers, among others. Other platforms for which some
embodiments of the present application may be applied
include .NET application servers, PHP, and/or Ruby on
Rails, among others. Some embodiments of the present
invention may apply to application servers for which thread
identifiers are valid join identifiers. In some embodiments
where the thread identifier 1s not a valid join 1dentifier,
events may be recorded when a transaction’s tlow of control
switches from one thread identifier to another.

Referring to FIG. 20 at block 2001, a thread 1dentifier that
1s associated with a received transaction may be identified.
The thread identifier used by a transaction for joining a
thread may be unique system-wide and/or with respect to the
application server on which 1t operates. Many operating
systems provide thread identifiers that may be umique within
a process, but not unique system-wide. For example, a first
thread 1n each process may be labeled as “1” and may be
unique when taken in conjunction with the process identifier.
However, each thread may be associated with a control
block 1n the kernel which may be related to a fixed location
1n memory for the life of the thread. The memory location
and/or oflset in memory of the control block may be used as
a thread identifier.

As 1llustrated 1n block 2002, once the thread identifier
assoclated with the transaction 1s i1dentified, events that are
related to the thread identifier may be 1dentified. Identified
events may include calls associated with or resulting from
the transaction. Identified events may also include transac-
tion calls necessary to obtain data affiliated with the trans-
action.

In some embodiments, the type of the transaction may be
determined, as illustrated in block 2003. The type of the
transaction may be a classification that could be used to
group similar transactions for purposes of data aggregation.
For example, types of transactions may include login,
authenticate, read, write, connect, failure to connect, and/or
logout, among others. Determining types of transactions
resulting from certain operations may be usetful to an opera-
tor 1n determining which types of transactions require more
resources, cause more network problems, or result 1n error
conditions.

As 1llustrated 1n block 2004, the type of the transaction
may be compared with the respective types of transactions
among entries 1n the aggregated list of transactions. In some
embodiments, an aggregated list of transactions may be
maintained. The entries 1n the aggregated list may be stored
in a variety of forms including hash tables, trees, linked lists,
dynamic linked lists, pointer lists, and/or queues. The entries
in the aggregated list of transactions may be organized 1n a
variety of ways, and the aggregated l1st may be sorted 1n a
number of convenient ways to improve computational efli-
ciency. Examples of aggregated list sorting may include
bubble sort, insertion sort, merge sort, quick sort, and/or
comparison sort, among others.

As 1llustrated 1n block 2005, the type of the transaction
may be matched with the types of the entries in the aggre-
gated list of transactions. In some embodiments, 1f the type
of the transaction matches an entry in the aggregated list, the
transaction and the one or more events related to the thread
identifier related with the transaction are associated with the

US 9,722,900 B2

37

matching entry in the aggregated list of transactions based
on. In some embodiments, the aggregated list of transactions
may include one or more transactions received by a web or
an application server 1n a time window.

Reference 1s now made to FIG. 21, which 1illustrates
example operations to 1dentily transaction events based on
networking protocols according to some embodiments of the
present invention. As illustrated i block 2101, events
related to the thread identifier may be 1dentified independent
of the transmission protocol. In other words, events related
to protocols such as HT'TP, SQL, LDAP, TCP and/or others
used by the transaction may be 1dentified based on the thread
identifier without consideration of their respective protocols.

According to some embodiments, block 2102 of illus-
trates selecting one or more protocols for use 1n 1dentifying
events related to the thread identifier. Protocols such as
HTTP, SQL, LDAP, TCP and/or others that may be used by
the transaction and/or related events may be selected. Selec-
tion may be based on user iput, profiles, transaction type,
and/or one or more of the related events.

As 1llustrated 1 block 2103, events using the selected
protocols may be 1dentified as related to the thread identifier,
whereas other events using non-selected protocols may not
be 1dentified as related to the thread identifier, even 1f they
share a common thread 1dentifier. In some embodiments, the
protocols may be selected based on the received transaction.
For example, 1 a login transaction 1s received, the HTTP
protocol may be selected. Events of a given protocol may be
associated with sequence numbers that may be used to
determine event relationships based on the protocol. In some
embodiments, a protocol specific identifier may be utilized
to determine event relationships. For example, when using
the HTTP protocol, HI'TP protocol request headers may be
used.

Reference 1s now made to FIG. 22, which illustrates
example operations to generate temporal performance data
based on transaction and event times according to some
embodiments of the present invention. According to block
2201, a start time associated with a start of the transaction
may be determined. This start time may be an absolute
system time or relative measurements based on other events
or on a present time window. The start time may correspond
to a receipt of a request for the transaction. The start time
may be obtained from time stamps in the header, trailer
and/or other portions of data packets. The start time may be
read from a system clock upon receipt of a request or event.

As 1llustrated 1n block 2202, the stop time associated with
the ending of a transaction may be determined. Similarly, the
stop time may be an absolute system time or relative
measurements based on other events or on a present time
window. The stop time may correspond to completion of a
request for a transaction, a return of operational functionality
to a calling function associated with the transaction or
cleanup of a process and/or thread associated with the
transaction. The stop time may be obtained from time
stamps 1n packets 1n the system. The stop time may be read
from a system clock upon completion of a request or event.

According to some embodiments, as 1llustrated in block
2203, an event time for respective ones of the one or more
events related to the thread identifier associated with the
transaction may be determined. The event time may be
related to the start of an event, a completion of an event, or
some time during the occurrence and/or execution of the
related event. The event time may be obtained from time
stamps 1n packets in the system. The event time may be read
from a system clock at the start, completion, and/or some
other time related to an event. The granularity of the

10

15

20

25

30

35

40

45

50

55

60

65

38

determination of the event time may be less relevant since
the event may be related by thread identifier to a transaction.
Some embodiments provide that the relation to the start time
and stop time of the transaction may be a more relevant
parameter.

In some embodiments, it may be desired to 1dentify events
that take too long to complete, thereby slowing the related
transaction. A difference between the stop transaction time
and the start transaction time may be compared to a thresh-
old to yield a determination that a transaction takes too long
to complete. The threshold may be pre-defined and/or may
be dynamically defined based on other available data and/or
inputs. For example, transactions whose length of operation
are greater than a threshold may be i1dentified as taking too
long and may be highlighted to the user. Additionally, this
concept may be analogously extended to include determin-
ing start and stop times for events and highlighting events
that may be taking too long to operate or complete.

As 1llustrated 1n block 2204, temporal performance data
corresponding to the transaction may be generated based on
the start transaction time, the stop transaction time, and/or
the event time. The temporal performance data may include
statistical data. Statistical data may highlight types of trans-
actions and their respective behavior by using statistical
functions such as means, variance, distributions, co-vari-
ance, and/or probability functions, among others.

Reference 1s now made to FIG. 23, which illustrates
example operations carried out to i1dentify and senalize
events based on the thread 1dentifiers of transactions accord-
ing to some embodiments of the present invention. This
trace mode of operation may facilitate tracing of specific
transactions. At block 2301, thread identifiers associated
with corresponding received transactions may be 1dentified.
For received transactions, the respective thread identifiers of
the plurality of threads may be unique im a web or an
application server with respect to a kemnel. The thread
identifiers may be represented by an address location in the
kernel of a control block of the thread. The thread identifiers
may be represented by a pointer to an address location 1n the
kernel of a control block of the thread.

At block 2302, one or more events may be identified
which correspond to the respective thread 1dentifiers. Iden-
tified events may include calls associated with or resulting
from the transaction. Identified events may also include
transaction calls necessary to obtain data afhiliated with the
transaction.

Determining that some events or some back-end behavior
1s related to a given user request may be sensitive to
ordering. For example, a back-end event or activity starts at
time T, and a user request arrives at time T,, which 1s after
time T, . In this example, the back-end event or activity may
not be caused by the later arriving user request since causal
events may be linked forward 1n time. According to block
2303, the events related to the plurality of thread identifiers
may be serialized into a serialized list of events. In some
embodiments the list of events may be an order list.

Preserving the order of events running in different con-
texts may be ditlicult. Reference 1s now made to FIG. 25,
which 1llustrates example operations to serialize events as in
block 2303, by passing events through a single kernel queue
and/or using a spinlock according to some embodiments of
the present invention. As 1llustrated in block 2501, serializ-
ing the events may include passing the events though a
single kernel queue. In some embodiments, serializing the
events may include using a spinlock that imposes an order
of events 1n the single kernel queue, as illustrated in block
2502. In this case, an event that happened at time T, may be

US 9,722,900 B2

39

placed 1n the kernel queue before an event at that happened
at a later ttime T,. This technique may include some pro-
cessor performance penalty. In some embodiments, to
reduce the performance penalty in systems with an available
monotonic (always increasing) clock, events could be
recorded with timestamps without using a spinlock. These
events, based on the timestamps could be reordered outside
of the dniver.

Reference 1s made to FIG. 24, which illustrates example
operations to 1dentily transaction events based on network-
ing protocols according to some embodiments of the present
invention. As shown 1n block 2302, events may be identified
that correspond to thread identifiers. According to block
2401, events related to the thread identifier may be 1dentified

independent of the transmission protocol. In other words,
events related to protocols such as HT'TP, SQL, LDAP, TCP
and/or others used by the transaction may be 1dentified based
on the thread 1dentifier without consideration of their respec-

tive protocols.

According to some embodiments, block 2402 illustrates
selecting one or more protocols for use 1n 1dentifying events
related to the thread identifier. Protocols such as HTTP,
SQL, LDAP, TCP and/or others used by the transaction may
be selected. Selection may be based on user mput, profiles,
transaction type, and/or one or more of the related events.

As 1llustrated 1n block 2403, events using the selected
protocols may be 1dentified as related to the thread 1dentifier,
whereas other events using non-selected protocols may not
be 1dentified as related to the thread identifier, even 1f they
share a common thread 1dentifier. In some embodiments, the
protocols may be selected based on the received transaction.
For example, 11 a login transaction is received, the HT'TP
protocol may be selected. In some embodiments, a protocol
specific 1dentifier may be utilized to determine event rela-
tionships. For example, when using the HI'TP protocol, the
HTTP protocol client header may be used.

Reference 1s now made to FIG. 26, which illustrates
tracing mode behavior by assigning a stitching identifier and
maintaining a stitching counter for events based on the
thread identifier according to some embodiments of the
present invention. One server and/or collector’s view of a
transaction may be referred to as a shard. A transaction may
touch several servers, but a shard 1s one server and/or
collector’s view of the transaction. A shard instance may
include a piece of a transaction. A shard pattern may be a
union of events that look the same in a time window. For
example, 1t may be desired to analyze multiple users loading
their respective shopping carts. Whenever users load a
shopping cart, several back-end events may occur. Loading
one user’s shopping cart may result 1n accessing a database
while loading a different user’s shopping cart may result in
accessing an authentication server. The shard pattern for this
example 1s the union of events including events such as
accessing the database and accessing the authentication
server. This shard pattern 1s a summarization of events that
may be valuable for an overall view of the collector’s
behavior. Additionally, an increased granularity of informa-
tion may be achieved by viewing these shard instances 1n a
tracing mode to view behavior of individual transactions.
Shard mstances and patterns may be presented to the user 1n
a variety of ways including tables and heat maps. Tracing
mode behavior that analyzes individual transaction depen-
dencies based on individual event dependencies may be
referred to as front-to-back stitching. Front-to-back stitching,
may 1dentily transaction dependencies by joining related
events end-to-end.

10

15

20

25

30

35

40

45

50

55

60

65

40

As 1illustrated 1 block 2601 of FIG. 26, a stitching
identifier may be associated with a received transaction
and/or events. The stitching 1dentifier may be assigned by
the collector application and may be unrelated to the thread
identifier. The stitching 1dentifier may be used to track input
and output events related to the transaction.

As 1llustrated 1n block 2602, the stitching 1dentifier may
be assigned to events corresponding to a thread identifier.
For example, an iput account login transaction may be
assigned a stitching identifier “5”. A login event may be
triggered by the received login transaction. Events related to
this login ftransaction such as the login event, the
retrieveUserName event and the authenticate event may also
be assigned a stitching identifier “5”.

As 1llustrated 1n block 2603, a stitching counter may be
associated with the stitching 1dentifier. The stitching counter
may count events associated with the stitching 1dentifier. The
stitching counter may be incremented for each of the one or
more events assigned to the stitching 1dentifier. In the above
example, the login event may increment the stitching count
to a value of “1”. The retrieveUserName event may incre-
ment the stitching count to “2” and the authenticate event
may increment the stitching count to a value of *“3”.

Reference 1s now made to FIG. 27, which illustrates
determining and counting events for a transaction to be
traced according to some embodiments of the present inven-
tion. The above example may be continued for illustrative
purposes. As 1llustrated in block 2701, a tracing transaction
(1.. a transaction to be traced) may be identified. In this
example the login transaction may be identified as the
tracing transaction.

As shown in block 2702, a trace stitching identifier
associated with the tracing transaction may be identified. In
this foregoing example, the trace stitching identifier 1s “5”.
As 1llustrated 1n block 2703, one or more events correspond-
ing to the trace stitching identifier may be determined from
the serialized list of events. In the foregoing example, events
corresponding to a stitching identifier of “5” may be deter-
mined. The events 1 this example may include the
retrieveUserName event and the authenticate event, since
these events have been assigned a stitching value of “5”.
These events may correspond to the tracing transaction.

According to block 2704, a total event counter may be
incremented for ones of the one or more events correspond-
ing to the trace stitching identifier 1n order to generate a total
event count value. In the foregoing example, the total event
counter may be incremented for each of the login,
retrieveUserName, and authenticate events, such that the
total event counter may have a value of “3”.

Reference 1s now made to FIG. 28, which illustrates
generating 1indicators based on {front-to-back stitching
according to some embodiments of the present invention. As
shown 1n block 2801, 11 no accurate count can be calculated,
a counter value of “0” can be used to indicate “no data
available.”. The total event counter may be equal to O 1f there
are null and/or “0” stitching identifiers and null and/or “0”
stitching counts.

According to some embodiments as shown 1n block 2802,
i a transaction event 1s not associated with any other events,
a counter value of “1” can be used to indicate that there are
“no causal events.” It the total event counter value 1s equal
to 1, no other events may be related to the single event
triggered by the transaction request. In the previously dis-
cussed example, 1f the login transaction triggered only the
login event and no other subsequent events, the total event
counter may be equal to 1.

US 9,722,900 B2

41

As 1llustrated 1n block 2803, the stitching counter may be
compared to the total event counter value. A “missing

events” indicator may be generated 1 there 1s a mismatch
between the stitching counter value and total event counter
value. These values may not match 11 there 1s a restriction on
the rate, number, or kind of trace events that may be
recorded or reported by a collector application 200. Knowl-
edge of missing events may help indicate reasons transac-
tions are not completing, timing out, event deadlocks, and/or
other undesired behavior in the system.

Transaction Relationships Between Application
Servers

Analysis showing transaction dependencies between web
or application servers may be referred to as back-to-front
stitching. One goal of back-to-front stitching 1s to i1dentily
end-to-end transaction dependencies spanning multiple
application servers 1n a system. Back-to-front stitching may
be used eflectively 1n systems where relationships between
outbound transactions and inbound transactions across web
or application servers may be discovered.

Reference 1s now made to FIG. 29, which illustrates a
trace mode based on back-to-front stitching, according to
some embodiments of the present invention. As illustrated 1n
block 2901, an outbound transaction may be i1dentified. The
outbound transaction may be a transaction from one web or
application server to another web or application server. The
outbound transaction may trigger other web or application
servers to create other transactions. For example, an Apache
server may send an authenticate transaction to a WebLogic
server. This transaction 1s recorded as an outbound transac-
tion by the Apache server and also as an inbound transaction
by the WebLogic server.

Block 2902 illustrates that a transaction type may be
identified for an outbound transaction. The type of the
transaction may be a classification that could be used to
relate mbound and outbound transactions for purposes of
trace mode data collection. For example, types of transac-
tions may include login, authenticate, read, write, connect,
tailure to connect, and/or logout, among others. Determining
types of transactions resulting from certain operations may
be useful to an operator in determining which types of
transactions cause dependencies between certain application
servers. These dependencies may require more communica-
tion bandwidth between application servers, processor
resources, and/or memory resources, among others. They
may also cause undesired behavior, including timeouts,
deadlocks, or errors, among others.

According to some embodiments, candidate transactions
may be 1dentified (block 2903). The candidate transactions
may be mbound transactions that have the same transaction
type as the transaction type of the outbound transaction. In
some embodiments, an assumption may be made that related
inbound and outbound transactions may have the same
transaction type. In other embodiments, transaction types
suspected of having causal relationships may be grouped
together. These groups of transactions may be included in
the basis for determining candidate transactions.

As 1illustrated 1n block 2909, the inbound transactions
identified as candidate transactions may occur in a given
time window. The inbound transactions identified as candi-
date transactions may have latency approximately equal to
the latency of related outbound transactions.

According to some embodiments, one or more transaction
data parameters that correspond to the outbound and/or
inbound transactions block may be selected (2904). A can-

10

15

20

25

30

35

40

45

50

55

60

65

42

didate transaction may be determined to be related to the
outbound transaction based on the one or more transaction
data parameters. Transaction data parameters may be pro-
tocol independent and/or protocol dependent. According to
some embodiments, the one or more transaction data param-
cters may include a protocol specific identifier. The protocol
specific 1dentifier may include a header. For example,
Hypertext Transter Protocol (HTTP) request headers may be
included as a transaction data parameter.

As 1llustrated 1n block 2905, a non-reversible checksum
may be generated based on at least a portion of the header.
For security purposes, privacy preserving techniques to
generate a non-reversible checksum may be employed. To
generate a non-reversible checksum, some embodiments
provide that only a portion of the header may be used in
calculating the checksum. In some embodiments, the check-
sum may be implemented using a hash function, checksum,
or cyclic redundancy check, among others.

Additionally, as 1llustrated in block 2906, non-reversible
checksums may be obtained by generating the checksum on
non-contiguous portions of the header. In a non-limiting
example, every other bit of the header may be used for
generation of the checksum. The checksum size may be
adjusted to be shorter or longer, depending on the granularity
needed to determine a somewhat unique transaction data
parameter.

According to some embodiments, transaction data param-
cters may include a query string. As illustrated i block
2907, a non-reversible checksum may be generated based on
at least a portion of the query string. For security purposes,
privacy preserving techniques to generate a non-reversible
checksum may be employed. To generate a non-reversible
checksum, some embodiments provide that only a portion of
the query string may be used. For example, the first 2048
bytes of the query string may be used to generate the
checksum. A portion of the query string may be used to
reduce the computational eflort necessary to generate the
checksum. A portion of the query string may be used 1n cases
where less than the enfire query string 1s available for
computing a checksum.

Additionally, as 1llustrated in block 2908, non-reversible
checksums may be obtained by generating the checksum on
non-contiguous portions of the query string. In a non-
limiting example, every other bit and/or byte of the query
string may be used for generation of the checksum. The
checksum size may be adjusted to be shorter or longer,
depending on the granularity needed to determine a some-
what unique transaction data parameter.

Reference 1s now made to FIG. 30, which illustrates
selecting transaction data parameters in trace mode using
back-to-front stitching, according to some embodiments of
the present invention. As illustrated 1n block 2904, transac-
tion data parameters may be selected. According to block
3001, some protocols include a transaction identifier, which
may be 1dentified to be one of the transaction data param-
cters. In these cases, the protocols tag each transaction with
a unique 1dentifier which may be used to determine rela-
tionships between inbound and outbound transactions on
different applications servers.

As 1llustrated 1n block 3002, some protocols mnclude an
error code and/or a return code, which may be identified to
be one of the transaction data parameters. The error code
and/or return code generated as a transaction 1s processed by
an application server may be useful to 1dentity relationships
between inbound and outbound transactions. Specifically,
the error and/or return code recorded on an outbound view

US 9,722,900 B2

43

of a transaction may match the error and/or return code
recorded on an inbound view of the same transaction.

According to some embodiments, block 3003 1llustrates
that a port number and/or a sequence number may be
identified as one of the transaction data parameters. For
example, the sequence number may be related to a TCP data
stream. The sequence number may be determined based on
a byte oflset of the TCP data stream.

Reference 1s now made to FIG. 31, which illustrates an
aggregate mode using back-to-front stitching according to
some embodiments of the present invention. At block 3101,
a transaction type may be identified for analysis of one or
more application servers. Network operators may desire to
understand the aggregate behavior of many instances of a
certain transaction type. For example, the operator may
select the login transaction type to determine system behav-
ior for multiple login transactions occurring 1 a time
window.

According to some embodiments, block 3102 illustrates
identifying outbound transactions of the i1dentified transac-
tion type. For example, all outbound transactions from
application servers of transaction type login may be deter-
mined.

In some embodiments, as illustrated at block 3103, a
plurality of inbound transactions of the identified transaction
type may be determined In the foregoing example, the
inbound login transactions may occur on many different
application servers. The inbound login transactions may be
related to one or more the outbound login transactions of
some of the application servers.

In some embodiments, as 1llustrated 1n block 3104, infor-
mation associated with the plurality of outbound transac-
tions and information associated with the plurality of
inbound transactions ol a same transaction type may be
aggregated. These relationships may be highlighted to the
network operation i1n order to establish overall system
dependencies between various application servers in the
network.

In some embodiments, as illustrated at block 3105, the
protocol and/or port number associated with the outbound
transactions may be 1dentified. For example, outbound login
transactions may be associated with HI'TP protocol login
requests. Outbound port numbers for login transactions may
be 1dentified.

As shown 1 block 3106, a plurality of related mmbound
transactions for one or more different application servers
may be 1dentified that are based on the protocol and/or the
port number associated with the plurality of outbound trans-
actions. In some embodiments, these identified inbound
transactions may be of the same transaction type as the
related outbound transactions. In other words, any combi-
nation of transaction type, protocol, and/or port number may
be used to determine inbound transactions related to out-
bound transactions.

Reference 1s made to FIG. 32, which 1llustrates a screen
shot of a graphical user interface (GUI) including example
tracing ol transaction events according to some embodi-
ments of the present invention. Block 3201 illustrates the
starting of a time window in which tratlic data associated
with an orderQuery transaction may be analyzed. In this
example, the start time, response time, client IP address, and
a node determined to be a bottleneck are identified.

Block 3202 may represent a snapshot of the transactions
and events occurring in the system. An orderQuery trans-
action 1s traced in this example. Various servers such as an
Apache HTTP Server, a Sun ONE Web Server, and a

WebSphere server, each with delays, are illustrated in this

5

10

15

20

25

30

35

40

45

50

55

60

65

44

example. The WebSphere server i1s further illustrated to
include Port 9000, which has a delay of 327 ms and

IBM®DB2®, which has a delay of 828 ms.
Block 3203 may represent traces that illustrate events
related to a specific transaction and associated response

times. In this example, an orderQuery transaction may result
in events such as a “SELECT*FROM ORDERS” event and

a “SET CLIENT WRKSTNNAME” event. The response
times of these events (828 ms each) are shown 1n the table
along with a transaction response time of 6,245 ms.

Many vanations and modifications can be made to the
embodiments without substantially departing {from the prin-
ciples of the present mvention. The following claims are
provided to ensure that the present application meets all
statutory requirements as a priority application in all juris-
dictions and shall not be construed as setting forth the scope
of the present invention.

That which 1s claimed:

1. A method of analyzing network tratlic comprising:

identifying a thread identifier associated with a transac-

tion;
identifying one or more events related to the thread
identifier, the one or more events being independent of
any ol one or more protocols used by the transaction;

determining a type of the transaction to be a first type of
transaction;

comparing the first type of transaction with respective

types of transactions among entries 1n an aggregated
l1st of transactions; and

associating the transaction and the one or more events

related to the thread identifier associated with the
transaction with an entry in the aggregated list of
transactions based on a match between the first type of
transaction and a respective one of the types of trans-
actions associated with the entry in the aggregated list
of transactions.

2. The method of analyzing network tratlic of claim 1,
wherein the aggregated list of transactions comprises one or
more transactions received by an application server in a time
window.

3. The method of analyzing network traflic of claim 1,
further comprising:

determiming a start transaction time associated with a start

of the transaction;

determining a stop transaction time associated with

completion of the transaction; and

determining an event time for respective ones of the one

or more events related to the thread 1dentifier associated
with the transaction.

4. The method of analyzing network tratlic of claim 3,
wherein the start of the transaction corresponds to a receipt
of a request for the transaction.

5. The method of analyzing network tratlic of claim 3,
wherein a difference between the stop transaction time and
the start transaction time 1s greater than a threshold.

6. The method of analyzing network trailic of claim 3,
further comprising:

generating temporal performance data corresponding to

the transaction based on the start transaction time, the
stop transaction time, and/or the event time.

7. The method of analyzing network tratlic of claim 6,
wherein the temporal performance data comprises statistical
data.

8. A computing device for providing multiple content
components and associated application functionality in an
clectronic document; comprising;:

a processor; and

US 9,722,900 B2

45

a memory, including computer executable instructions
which when executed by a processor, cause the com-
puting device to:
identify a thread identifier associated with a transac-
tion; d

identily one or more events related to the thread
identifier, the one or more events being independent
of any of one or more protocols used by the trans-
action;

determine a type of the transaction to be a first type of 10

transaction;
compare the first type of transaction with respective

types of transactions among entries in an aggregated
list of transactions; and

associate the transaction and the one or more events
related to the thread identifier associated with the
transaction with an entry in the aggregated list of
transactions based on a match between the first type
of transaction and a respective one of the types of 20
transactions associated with the entry in the aggre-
gated list of transactions.

9. The computing device of analyzing network traflic of
claim 8, wherein the aggregated list of transactions com-

prises one or more transactions received by an application 25
server 1n a time window.

10. The computing device of analyzing network trathic of
claim 8, further comprising to:

determine a start transaction time associated with a start

of the transaction;

determine a stop transaction time associated with comple-

tion of the transaction; and

determine an event time for respective ones of the one or

more events related to the thread identifier associated
with the transaction.

11. The computing device of analyzing network traflic of
claim 10, wherein the start of the transaction corresponds to
a receipt of a request for the transaction.

12. The computing device of analyzing network trathic of
claim 10, wherein a difference between the stop transaction 4Y
time and the start transaction time 1s greater than a threshold.

13. The computing device of analyzing network trathic of
claim 10, further comprising to:

generate temporal performance data corresponding to the

transaction based on the start transaction time, the stop 4>
transaction time, and/or the event time.

15

30

35

46

14. The computing device of analyzing network tratlic of
claim 13, wherein the temporal performance data comprises
statistical data.

15. A method of analyzing network traflic comprising;:

identitying a thread identifier associated with a transac-

tion;

recerving a selection of one or more protocols;

identifying one or more events associated with the one or

more selected protocols that are related to the thread
identifier:

determining a type of the transaction to be a first type of

transaction;

comparing the first type of transaction with respective

types ol transactions among entries 1 an aggregated
list of transactions; and

associating the transaction and the one or more events

related to the thread identifier associated with the
transaction with an entry in the aggregated list of
transactions based on a match between the first type of
transaction and a respective one of the types of trans-

actions associated with the entry in the aggregated list
of transactions.

16. The method of analyzing network tratlic of claim 15,
wherein the aggregated list of transactions comprises one or
more transactions received by an application server 1in a time
window.

17. The method of analyzing network tra
further comprising:

determining a start transaction time associated with a start

of the transaction;

determining a stop transaction time associated with

completion of the transaction; and

determining an event time for respective ones of the one

or more events related to the thread 1dentifier associated
with the transaction.

18. The method of analyzing network tratlic of claim 17,
wherein the start of the transaction corresponds to a receipt
ol a request for the transaction.

19. The method of analyzing network tratlic of claim 17,
wherein a difference between the stop transaction time and
the start transaction time 1s greater than a threshold.

20. The method of analyzing network traflic of claim 17,
further comprising:

generating temporal performance data corresponding to

the transaction based on the start transaction time, the
stop transaction time, and/or the event time.

.

"y

.

1c of claim 15,

"y

"y

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

