US009720800B2

a2y United States Patent (10) Patent No.: US 9,720,800 B2

Li et al. 45) Date of Patent: Aug. 1, 2017
(54) AUTO-GENERATING REPRESENTATIONAL 2009/0006897 Al 1/2009 Sarsfield
STATE TRANSFER (REST) SERVICES FOR 2012/0174075 Al 7/2012 Carteri et al.
QUALITY ASSURANCE 2013/0055028 Al 2/2013 Patil et al.
2013/0185056 Al* 7/2013 Ingram GO6F 11/3684
— . . . 704/9
(71) Applicant: Internatu‘mal Busmnelzs Machines 5014/0033170 Al 17014 Nimashakavi of al
Corporation, Armonk, NY (US) 2014/0075242 Al 3/2014 Dolinina et al.
(72) Inventors: Jeft J. Lij P:‘ill'kl:‘fllldj FLL (-UvS)j Wendi FORFEIGN PATENT DOCUMENTS
L. Nusbickel, Boca Raton, FLL (US); | |
Suraj R. Patel, Sambalpur (IN); Deepa EP 1674991 6/2006
R. Yarangatta, Bangalore (IN) WO 03005221 1/2003
WO 2004021220 3/2004
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OTHER PUBIICATIONS
(*) Notice: Subject to any disclaimer, the term of this Mell, P. and T. Grance, “Effectively and Securely Using the Cloud
patent i1s extended or adjusted under 35 Computing Paradigm”, [online], Oct. 7, 2009, retrieved from the
U.5.C. 154(b) by 0 days. Internet at <URL: http://csre.nist.gov/groups/SNS/cloud-comput-
‘ ing/cloud-computing-v26.ppt>, Total 80 pp.
(21) Appl. No.: 14/838,674 Mell, P. and T. Grance, “The NIST Definition of Cloud Computing
_ (Draft)”, Jan. 2011, Computer Security Division Information Tech-
(22) Filed: Aug. 28, 2015 nology Laboratory National Institute of Standards and Technology,
Total 7 pp.
(65) Prior Publication Data PP
US 2017/0060730 A1~ Mar. 2, 2017 * cited by examiner
(51) Int. CL _ _
GO6F 9/44 (200601) Prsmary Examiner — Anna Deng |
GO6F 11/36 2006 01 74) Attorney, Agent, or Firm — Janaki K. Davda;
() v, Ag
(52) U.S. CL Konrad, Raynes, Davda & Victor LLP
CPC GO6F 11/3616 (2013.01); GO6F 11/3672
(2013.01)
S7 ABSTRACT
(58) Field of Classification Search (57)
CPC i, GOGE 11/3616; GO6F 11/3672; GOOF Provided are techniques for auto-generating Representa-
11/3688; GOOF 11/3684; GOOL' 9/44589 tional State Transter (REST) services for quality assurance.
USPC ..‘ Sreereeseeeseestesssni st 7 17/124‘5J 125:J 126 One Or more test cases and artifacts are recelved for q
See application file for complete search history. project. A test Representational State Transfer (REST) ser-
_ vice 1s generated for the project using the one or more test
(56) References Cited cases and the artifacts. The test REST service 1s deployed on

8,145,726 Bl
8,739,126 B2 *

U.S. PATENT DOCUMENTS

3/2012 Roche et al.
5/2014 Glaserooov..... GO6F 11/3664

709/219

an application server for use 1n testing features of a REST
service client application.

12 Claims, 10 Drawing Sheets

Receive one or more test cases and 700
artifacts for a project.

Deploy the test REST service on a selected application
server for use in testing features of a REST service
client application.

Generate a test REST service for the project using the 702
one or more test cases and the artifacts.

704

U.S. Patent Aug. 1, 2017 Sheet 1 of 10 US 9,720,800 B2

Tool Server 100

Test Creation Tool 11

, REST Service Client Application 170
Tool Graphical User Interface (GUI) (REST Service Client)

120

Application Server 160 Database 140

Test RESﬁewice(s) Project(s) 142

FIG. 1

[TJ wsweyoey uoneonuayyny [a] 139]: Pouisiy

asMo.g|: ejep ndul asmoig

US 9,720,800 B2

0F¢ 0t¢
[{ cy S(1 L
—
= g JaAIag uonedlddy «¢
- \ 1aA8S uoijedddy «¢
.m A JISvE] : WSIUELIaly UocHedlusLny S10AI8S Uonedlddy <«
i I BUIpoIu3-)uajuo)
I | dA-Juauo)
= I | I Sa1400) PaZIWO}SN]
Q . SI19pBAH paziwoisn 1L 4
= 077 I | PeaH paziwoisn) 7159159, ¢
o Al 139 POUlaIN 4001044153y ¢
< 1000] < -
I ™' 1a41S5] ¢

193[04d 1 STY ¢

o |ese)isel podw) [onsgajeieu | I | All

00¢ 9G¢ U214 A TAR 1T/

U.S. Patent

U.S. Patent Aug. 1, 2017 Sheet 3 of 10 US 9,720,800 B2

370
320
Rest Service Client % .
anplication for test test —— A ——Define test cases
QA Engineer
340
305
(> /
Tool Service
Database

360 300
Application Deploy test service web app Tool Server

Server

FIG. 3

US 9,720,800 B2

Sheet 4 of 10

Aug. 1, 2017

U.S. Patent

uoneanuayiny

3UMagANIagTSS B

00V

U.S. Patent Aug. 1, 2017 Sheet 5 of 10 US 9,720,800 B2

200

@Path("XML")
public class TestRest {

@GET

@Produces(Medialype.APPLICATION XML)

@Path("/test/{testld}")

public String getTCO01(@PathParam(value = "testld") int testld) {
// get the expected results from database based on the testld
// return the result

}
@POST
@Consumes(MediaType. APPLICATION XML)
@Produces(MediaType. APPLICATION XML)
@Path("/test/{testld}")
public String postTCO01(@PathParam(value = "testld") int testld,
String payload) {
// verify based on the expected input for the testld that
// the payload is valid
// get the expected results from database based on the testld
// return the expected result

FIG. 5

U.S. Patent Aug. 1, 2017 Sheet 6 of 10 US 9,720,800 B2

600

web.xml:
< security-constraint >

< web-resource-collection >
<web-resource-name> ... </web-resource-name>
< description> ... </description >
< url-pattern > /rest/XML/Test/TC001 < /url-pattern>
< http-method > GET < /http-method >
< http-method > POST < /http-method >

< /web-resource-collection>

< auth-constraint >
<description> . .. </description>
< role-name>admin</role-name >
< fauth-constraint>
< /security-constraint>

< login-config >
< auth-method > BASIC < /auth-method >
<realm-name>test </realm-name>

< /login-config >

server.xmi:
< featureManager>
<feature> ... </feature>
< ffeatureManager>

< basicRegistry id="basic" realm="WebRealm">
<user name="userl" password="userlpwd" />
<user name="userZ" password="userZpwd" />
< /basicRegistry >

< application type="war" 1d="RESTProject" name="RESTProject"
location="${server.config.dir}/apps/RESTProject.war" >
< application-bnd >
< security-role name="admin">
<user name="userl" />
<user name="user2" />
< /security-role >
< fapplication-bnd >
< /application>

FIG. 6

U.S. Patent Aug. 1, 2017 Sheet 7 of 10 US 9,720,800 B2

Receive one or more test cases and 700
artifacts for a project.

Generate a test REST service for the project using the 707
one or more test cases and the artifacts.

Deploy the test REST service on a selected application

server for use in testing features of a REST service /04
client application.

FIG. /

US 9,720,800 B2

| (S)321A9(]
QDI [eu18)x3
718
19]depy YIOMIoN (S)33eL3U|
= 0/l
> 028
Jiuf)
- 8UISS$920.
~ WIJSAS
o 95210]S 978
g o
0c8
Q7% apop Jandwo)

¢18

U.S. Patent
~—

Aejdsig

FAS

US 9,720,800 B2

Sheet 9 of 10

Aug. 1, 2017

U.S. Patent

drao

| |
o0

Jr5b

US 9,720,800 B2

Sheet 10 of 10

Aug. 1, 2017

U.S. Patent

WERVET
U0NBaI) 159] 5UISS330.4 Sm_m_ﬂmw_woen_ LONEINp7 m__w%&: =o_u~_mmm_>mz
| TN S.mﬁ_ v/ wooisse|) ™ am_msmm_ m__a%ms_
[eNUIA .

01 9l 090T
31EM0S 3leMaS pue alempley
JBNAS SWASAS swayshs s1amag
alemyog uonealddy @18)9PE|g @Seuss aimoanyly

aseqejeq yJomjaN Sunpomjay agein}s @4l adl ISy SSleIUIR

0 Bxs@mez I ll/ .

SJudlly suonegddy SYIOMIaN 93el01S IENVELS UoLeZlfenpip
[ENUIA [ENLIA [ENUIA [ENUIA [ENUIA
OO [E 8 s Jd /.
JUBWIASBUB

Justljjijjng

pue Em_w__mm._m%s_ BMOd mccm_u__n_ BUIL0ISIAOIY
Suluueld QOIS 19s) m__:%um_z 371N0SAY

VIS 9901

SPEOYIOM

Jualuageue|\

21EM)J0S

Us 9,720,800 B2

1

AUTO-GENERATING REPRESENTATIONAL
STATE TRANSFER (REST) SERVICES FOR

QUALITY ASSURANCE

FIELD

Embodiments of the mvention relate to auto-generating,
Representational State Transfer (REST) services for quality
assurance.

BACKGROUND

Representational State Transier (REST) may be described
as guidelines for creating web services. The REST service
client application may be used to invoke Hypertext Transfer
Protocol (HT'TP)-based REST web services. To test REST
service client applications, Quality Assurance (QA) engi-
neers (or administrators) often need to rely on the real REST
services provided by third party vendors. As an example, 11
a QA engineer needs to test a marketing application that
invokes a particular vendor’s marketing cloud services, the
QA engineer needs to configure the application to be tested
with the connections and services provided by the particular
vendor. An Application Programming Interface (API) pro-
vides access to a software component by defining 1ts opera-
tions, inputs, outputs, and underlying types. In the case of
the REST step 1n the Extensible Markup Language (XML)
stage, the QA engineer also needs to create and implement
web services using Java® API for RESTTul Web Services
(JAX-RS) and then deploy those services on the application
servers to perform the basic feature validations. (Java 1s a
registered trademark of Oracle Corporation 1mn the United
States and/or other countries.)

It 1s often not suitable to create a large number of test
cases. The QA engineer has to implement many web ser-
vices on the application server, which 1s not an easy task and
which 1s also very time-consuming.

There are many HTTP, HI'TP Secure (HTTPS), Secure
Sockets Layer (SSL), and authentication mechanisms that
need to be tested. Often, average users do not have the skill
sets to set up those security mechanisms without going
through a long learning curve.

Relying on the third party services to test REST service
client applications 1s not suitable for regression and perfor-
mance tests. Typically, the regression tests are run several
times per week to check code quality. The cost of invoking,
those third party services 1s based on the number of mes-
sages and sometime payload size. Relying on the third party
services to test REST service client applications 1s also not
suitable for the performance tests because the performance
of the REST service client applications 1n those cases 1s
largely dependent upon the internet connection, network
trailic, and also how fast the third party services respond.

SUMMARY

Provided 1s a method for auto-generating Representa-
tional State Transier (REST) services for quality assurance.
The method comprises receiving one or more test cases and
artifacts for a project; generating a test Representational
State Transfer (REST) service for the project using the one
or more test cases and the artifacts; and deploying the test
REST service on an application server for use in testing
teatures of a REST service client application.

Provided 1s a computer program product for auto-gener-
ating Representational State Transier (REST) services for
quality assurance. The computer program product compris-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing a computer readable storage medium having program
code embodied therewith, the program code executable by at
least one processor to perform recerving one or more test
cases and artifacts for a project; generating a test Represen-
tational State Transfer (REST) service for the project using
the one or more test cases and the artifacts; and deploying
the test REST service on an application server for use in
testing features of a REST service client application.

Provided 1s a computer system for auto-generating Rep-
resentational State Transfer (REST) services for quality
assurance. The computer system comprises: one or more
processors, one or more computer-readable memories and
one or more computer-readable, tangible storage devices;
and program 1nstructions, stored on at least one of the one
or more computer-readable, tangible storage devices for
execution by at least one of the one or more processors via
at least one of the one or more memories, to perform:
receiving one or more test cases and artifacts for a project;
generating a test Representational State Transfer (REST)
service for the project using the one or more test cases and
the artifacts; and deploying the test REST service on an
application server for use 1n testing features of a REST
service client application.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates, 1n a block diagram, a computing envi-
ronment 1n accordance with certain embodiments.

FIG. 2 1llustrates a Graphical User Interface (GUI) screen
design to generate test REST services 1n accordance with
certain embodiments.

FIG. 3 illustrates an example of creating a test REST
service to test a REST service client application 1n accor-
dance with certain embodiments.

FIG. 4 illustrates elements for building a physical model
ol a database used by a test creation tool 1n accordance with
certain embodiments.

FIG. 5 illustrates example pseuodocode for GET and PUT
methods 1n accordance with certain embodiments.

FIG. 6 1illustrates pseudocode adding users, roles, and
modilying a server configuration {ile to support basic
authentication at the service generation phase 1n accordance
with certain embodiments.

FIG. 7 illustrates, 1n a flow chart, operations for testing a
REST service client application in accordance with certain
embodiments.

FIG. 8 illustrates a cloud computing node 1n accordance
with certain embodiments.

FIG. 9 illustrates a cloud computing environment in
accordance with certain embodiments.

FIG. 10 illustrates abstraction model layers 1n accordance
with certain embodiments.

DETAILED DESCRIPTION

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-

Us 9,720,800 B2

3

nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

FIG. 1 illustrates, in a block diagram, a computing envi-
ronment 1in accordance with certain embodiments. A tool
server 100 and an application server 160 are coupled to each
other and to a database 140. The database 140 stores one or
more test projects 142. The application server 160 includes
one or more test REST services 164. The tool server 100
includes a test creation tool 110, which provides a tool
Graphical User Interface (GUI) 120 to create test projects
and input test cases. The tool server 100 also includes a
REST service client application 170 (REST service client),
which 1s the application which needs to be verified. The test
creation tool 110 and the REST service client application
170 can be hosted on different machines (e.g., the REST
service client application 170 may be hosted on a REST
client machine).

In certain embodiments, when QA engineers want to test
a REST service client application on a REST client machine,
they start the test creation tool 110 to specity the test cases.
The test cases may include testing mput data, expected
output data, and security settings. The test creation tool 110
converts the test cases into deployable services, which may
be 1nstalled on the application server 160 (or any application
server specified by the QA engineers).

In other embodiments, when QA engineers want to test a
REST service client application using a service provided by
a third party, they start the test creation tool 110 to capture
the request and response from HTTP wire protocols for the
service provided by the third party, and then the test creation
tool 110 generates a test REST service to simulate the real
SErvice prowded by the third party. After the test REST
service 1s created, the QA engineers may test the REST
service client application using the test service web appli-
cation, rather than the real service.

The test creation tool 110 automatically generates test
REST services (also referred to as “test service web appli-
cations) to test REST service client applications, such as an
enterprise application, a cloud application or an Extract,
Transform and Load (ETL) application that invokes REST
services. In particular, the test creation tool 110 creates a test
REST service, which 1s used to test a REST service client
application, that 1s simple and self-contained. The test cre-
ation tool 110 may provide test REST services that are
different from the normal services deployed on an applica-
tion server as the test REST services are intended to test the
basic features of REST service client applications, without
implementing the complicated business logic in the appli-
cation server 160. The test creation tool 110 provides and
deploys bare-bone services for testing REST service client
applications. Such characteristics are suitable for code gen-
eration and auto deployment.

The test creation tool 110 does not rely on regression and
performance tests based on the services provided by the
third party vendors. If such services are needed for the tests,
the test creation tool 110 creates services to simulate what
are provided by the third party vendors.

The test creation tool 110 automatically generates test
REST services from the QA perspective of specitying the
input data and the expected testing results.

The test creation tool 110 defines positive and negative
test cases, generates test REST services automatically from
the positive and negative test cases and from third party
REST services, and auto-deploys and auto-configures the
test REST services on the application servers for testing any
REST service client application.

10

15

20

25

30

35

40

45

50

55

60

65

4

The test creation tool 110 1s capable of auto-generating a
large number of services and is suitable to create a large
number ol both positive and negative test cases. The test
creation tool 110 auto-generates test REST services to
simulate the services provided by the third party vendors.
The test REST services are suitable for daily regression
tests. The test REST services are also suitable for perfor-
mance tests since those auto generated services may be
deployed 1n a controlled environment.

With embodiments, the test REST services may be
deployed on various application servers so that the REST
service client application may be tested against various
application servers.

The test creation tool 110 allows for setup of security
mechanisms automatically for the generated test REST
services based on the user’s selections. With embodiments,
users do not need to know the details of how to configure the
application server.

FIG. 2 illustrates a GUI screen 200 to generate test REST
services 1n accordance with certain embodiments. The GUI
screen 200 includes panes 210, 220, 230, and 240. The GUI

screen 200 includes menus: File menu 250, Edit menu 252,
Generate Service menu 254, and Import Test Case menu
256.

Using the GUI screen 200, a user creates a project {from
a File—=New Project menu using the File menu 250. The
new project 1s created to capture the test cases that the user
wants to create for testing a REST service client application.
A test REST service (to test the REST service client appli-
cation) 1s generated from the project and deployed at a
selected application server when the artifacts for the project
and test cases are specified. In certain embodiments, the
artifacts include security authentication mechanisms (e.g.,
user passwords and user identifiers) and user roles. The user
may test the various features of the REST service client
application by configuring the REST service client applica-
tion to mvoke various test REST services deployed on the
selected application server. In screen 200, the user specifies
the following at the project level:

Does the project require SSL? Where are the SSL trust

store and key store for one way or two way SSL
security validations?

Which authentication mechamisms does the project use for
test REST services (e.g., HI'TP basic authentication
protocol, digest authentication protocol, NT LAN Man-
ager (NTLM) authentication protocol, Simple and Pro-
tected GSSAPI Negotiation Mechanism (SPNEGO)
authentication protocol, and Kerberos authentication
protocol)? (Note, Generic Security Service Application
Program Interface 1s GSSAPI).

Who are the users and what are the roles that the project
uses for test REST services? A user may be assigned
with multiple roles.

When the user selects the project, the properties of the

project are shown 1n pane 230.

The user may categorize the test cases 1f needed (e.g., all
XML related test REST services are grouped in one cat-
cgory, JavaScript® Object Notation (JSON) related test
REST services are grouped in another category efc.).
(JavaScript 1s a registered trademark of Oracle Corporation
in the United States and/or other countries.)

The user may create and modily test cases. A test case
may be created in with three approaches:

1. In pane 220, the user specifies: the Uniform Resource
Locator (URL) of the test REST service, a method, custom-

Us 9,720,800 B2

S

1zed headers, customized cookies, a content type, a content
encoding, and an authentication mechanism for the test
REST service.

The text box 1 pane 220 allows user to enter any URL
based on which the service will be generated, such as
http: and continuing with //hostname:9080/rest/ XML/
test/TCOO1.

Also, the user may select the authentication mechanism
that 1s to be applied to the service. In certain embodi-
ments, when the user selects an authentication mecha-
nism, a role field i1s enabled, 1n which the role may be
chosen from a drop down list, and the users having that
role are able to access the test REST service generated
from the test case.

2. In pane 240, the user may capture the details of an
existing REST service from a third party service provider,
and the test creation system 110 automatically creates a test
case to simulate the existing REST service. The user speci-
fies the URL, a method, and an authentication mechanism
for the existing REST service. When the existing REST
service 1s invoked, the test creation system 110 captures the
request and response for the existing REST service. By
analyzing the request and response, the test creation system
110 automatically creates a test case to simulate the invoked
existing REST service.

3. The user may also define the test cases using a
spreadsheet and then import the spreadsheet to create the test
cases. A spreadsheet template may be downloaded from the
test creation system 110. The user may fill the template with
the test cases. Using the Import Test case menu 256, the user
may browse and select a spreadsheet. The test cases defined
in the spreadsheet are imported, and the project 1s refreshed
with new test cases.

Once the test cases are created, the user may click on the
Generate Service menu 234 to select an application server,
generate the test REST service for the project, and deploy
the web application on the selected application server. The
user may add and configure several application servers in the
project so that the test REST services may be deployed and
duplicated on various application servers for quality assur-
ance.

FIG. 3 illustrates an example of creating a test REST
service to test a REST service client application 1n accor-
dance with certain embodiments. In FIG. 3, also illustrates
how users can use the test REST services generated from the
test cases to test the REST service client application.

In FIG. 3, QA engineers create test cases using a tool GUI
320, which may be a web GUI. The tool GUI 320 collects
project information, including the test cases and commands
from users, and sends the project information to a tool server
300 through a tool service intertace 305. The tool server 300
saves the project information and the related artifacts to a
database 340. The tool server 300 also generates (e.g., using
a test creation tool) the test REST service based on the
project information stored in the database 340. The tool
server 300 deploys the test REST service to the application
server 360. The QA engineers tests the various features of a
REST service client application 370 using the test REST
services deployed on the application server 360.

FIG. 4 illustrates elements 400 for building a physical

model of a database used by the test creation tool in
accordance with certain embodiments. The database 1s used
to store, for example, project information, test cases, and the
artifacts related to security and authentications.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

The following illustrates a technique for generating JAX-
RS server Java® code based on a test case with the URL

starting with http:// and continuing with //hostname:9080/
rest/XML/test/TCOO01:
The test creation tool 110 first checks 1f the URL 1s http

or https. Based on the http/https information, the test
creation tool 110 updates the security info of the server
configuration file when the project 1s binding to a
selected application server.

The test creation tool 110 checks the first word of the URL
after host:port (e.g., “hostname:90807") and treats this
first word of the URL (e.g., “rest”) as a root context.
The test creation tool 110 modifies the web.xml. The
web.xml may be described as a file that contains
configurable parameters used by the application server
at startup. This web.xml file 1s created for the web
project when a user defines the context, authentication
related tags, etc. In certain embodiments, the test cre-
ation tool 110 assumes that the test cases within a
project have the same first word.

The second word of the URL corresponds to (@Path(*/
XML) at the class level.

In the URL, the third word through the last word corre-
spond to (@Path at the method level. Some words may
be treated as a (@PathParam variable 1n the method,
such as test 1d. The http method chosen and the last
word are used to generate the method name.

The test creation tool 110 uses the category name for the
test case as the Java class name.

FIG. 5 illustrates example pseuodocode 500 for GET and
PUT methods 1n accordance with certain embodiments. In
particular, FIG. 5 illustrates example pseuodocode 500 for
GET and PUT methods of the resource identified by the
URL starting with http: and continuing with //hostname:
9080/rest/ XML/test/ TCOO1.

FIG. 6 1llustrates pseudocode 600 adding users, roles, and
modifying a server configuration file to support basic
authentication at the service generation phase 1n accordance
with certain embodiments.

FIG. 7 illustrates, 1n a flow chart, operations for testing a
REST service client application in accordance with certain
embodiments. Control begins at block 700 with the test
creation tool 110 recerving one or more test cases and
artifacts for a project. In block 702, the test creation tool 110
generates a test REST service for the project using the one
or more test cases and the artifacts. In block 704, the test
creation tool 110 deploys the test REST service on a selected
application server for use in testing features of a Represen-
tational State Transfer (REST) service client application.

Cloud Embodiments

It 1s understood 1n advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present 1nvention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
ellort or interaction with a provider of the service. This cloud

Us 9,720,800 B2

7

model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand seli-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based email). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even idividual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud mfrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud inirastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or ofl-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that

10

15

20

25

30

35

40

45

50

55

60

65

8

has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oil-premises.

Public cloud: the cloud mfrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrnd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modulanty, and
semantic interoperability. At the heart of cloud computing 1s
an inirastructure comprising a network of interconnected
nodes.

Referring now to FIG. 8, a schematic of an example of a
cloud computing node 1s shown. Cloud computing node 810
1s only one example of a suitable cloud computing node and
1s not mtended to suggest any limitation as to the scope of
use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 810 1s
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

In cloud computing node 810 there 1s a computer system/
server 812, which 1s operational with numerous other gen-
eral purpose or special purpose computing system environ-
ments or configurations. Examples of well-known
computing systems, environments, and/or configurations
that may be suitable for use with computer system/server
812 include, but are not limited to, personal computer
systems, server computer systems, thin clients, thick clients,
handheld or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer e¢lectronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud com-
puting environments that include any of the above systems
or devices, and the like.

Computer system/server 812 may be described in the
general context of computer system executable 1nstructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 812 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located 1n both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 8, computer system/server 812 1n cloud
computing node 810 1s shown in the form of a general-
purpose computing device. The components of computer
system/server 812 may include, but are not limited to, one or
more processors or processing units 816, a system memory
828, and a bus 818 that couples various system components
including system memory 828 to processor 816.

Bus 818 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-

tectures. By way ol example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (IMCA) bus, Enhanced ISA

Us 9,720,800 B2

9

(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

Computer system/server 812 typically includes a variety
of computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
812, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 828 can include computer system read-
able media 1n the form of volatile memory, such as random
access memory (RAM) 830 and/or cache memory 832.
Computer system/server 812 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 834 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 818 by one
or more data media interfaces. As will be further depicted
and described below, memory 828 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the mnvention.

Program/utility 840, having a set (at least one) of program
modules 842, may be stored in memory 828 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an 1mple-
mentation of a networking environment. Program modules
842 generally carry out the functions and/or methodologies
of embodiments of the imnvention as described herein.

Computer system/server 812 may also communicate with
one or more external devices 814 such as a keyboard, a
pointing device, a display 824, etc.; one or more devices that
enable a user to interact with computer system/server 812;
and/or any devices (e.g., network card, modem, etc.) that
ecnable computer system/server 812 to commumnicate with
one or more other computing devices. Such communication
can occur via Input/Output (I/O) interfaces 822. Still yet,
computer system/server 812 can communicate with one or
more networks such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(c.g., the Internet) via network adapter 820. As depicted,
network adapter 820 communicates with the other compo-
nents of computer system/server 812 via bus 818. It should
be understood that although not shown, other hardware
and/or software components could be used 1n conjunction
with computer system/server 812. Examples, include, but
are not limited to: microcode, device drivers, redundant
processing units, external disk drive arrays, RAID systems,
tape drives, and data archival storage systems, etc.

Referring now to FIG. 9, illustrative cloud computing
environment 950 1s depicted. As shown, cloud computing
environment 950 comprises one or more cloud computing
nodes 810 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 954 A, desktop com-
puter 9548, laptop computer 954C, and/or automobile com-
puter system 954N may communicate. Nodes 810 may
communicate with one another. They may be grouped (not

5

10

15

20

25

30

35

40

45

50

55

60

65

10

shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 950 to offer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It 1s understood that the types of com-
puting devices 954 A-N shown 1n FIG. 9 are mtended to be
illustrative only and that computing nodes 810 and cloud
computing environment 950 can communicate with any type
of computerized device over any type ol network and/or
network addressable connection (e.g., using a web browser).

Referring now to FIG. 10, a set of functional abstraction
layers provided by cloud computing environment 950 (FIG.
9) 1s shown. It should be understood 1n advance that the
components, layers, and functions shown 1 FIG. 10 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 1060 includes hardware and
soltware components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architec-
ture based servers, in one example IBM pSeries® systems;
IBM xSeries® systems; IBM BladeCenter® systems; stor-
age devices; networks and networking components.
Examples of software components include network appli-
cation server software, in one example IBM WebSphere®
application server software; and database software, in one
example IBM DB2® database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered 1n many jurisdictions worldwide).

Virtualization layer 1062 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, including virtual private networks; virtual applica-
tions and operating systems; and virtual clients.

In one example, management layer 1064 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or ivoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides 1den-
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provide pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement 1s anticipated in
accordance with an SLA.

Workloads layer 1066 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-

vided from this layer include: mapping and navigation;
solftware development and lifecycle management; virtual
classroom education delivery; data analytics processing;
transaction processing; and test creation.

Us 9,720,800 B2

11

Thus, 1n certain embodiments, software or a program,
implementing test creation 1n accordance with embodiments

described herein, 1s provided as a service 1n a cloud envi-
ronment.

In certain embodiments, the tool server 100 and/or the
application server 160 each has the architecture of comput-
ing node 810. In certain embodiments, the tool server 100
and/or the application server 160 may be part of a cloud
environment. In certain alternative embodiments, the tool
server 100 and/or the application server 160 may not be part
ol a cloud environment.

Additional Embodiment Details

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or

10

15

20

25

30

35

40

45

50

55

60

65

12

the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present 1nvention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,

Us 9,720,800 B2

13

depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What 1s claimed 1s:

1. A method, comprising:

receiving, by a processor, a test case for a project, via a

test creation tool of a tool server, that specifies a
Uniform Resource Locator and an authentication
mechanism for an existing Representational State
Transier (REST) service, wherein the existing REST
service 1s provided by a third party vendor;

in response to the existing REST service being invoked,

by the processor, capturing a request and response for
the existing REST service;

converting, by the processor, the test case into a test

Representational State Transfer (REST) service for the
project using the request and response and using the
authentication mechanism, wherein the test REST ser-
vice simulates the existing REST service, and wherein
the test REST service 1s used for at least one of
regression testing and performance testing;

deployving and configuring, by the processor, the test
REST service on different application servers; and

testing, by the processor, features of a REST service client

application on the tool server with the test REST
service deployed and configured on the different appli-
cation servers.

2. The method of claim 1, further comprising;:

creating multiple test cases, wherein the multiple test

cases include positive test cases and negative test cases.

3. The method of claim 1, wherein the test case includes
testing 1nput data, expected output data, and security set-
tings.

4. The method of claim 1, wherein a Software as a Service
(SaaS) 1s configured to perform method operations.

5. A computer program product, the computer program
product comprising a computer readable storage medium
having program code embodied therewith, the program code
executable by at least one processor to perform:

receiving a test case for a project, via a test creation tool

of a tool server, that specifies a Uniform Resource
Locator and an authentication mechanism for an exist-
ing Representational State Transier (REST) service,
wherein the existing REST service i1s provided by a
third party vendor;

in response to the existing REST service being invoked,

capturing a request and response for the existing REST
service;

converting the test case into a test Representational State

Transter (REST) service for the project using the
request and response and using the authentication
mechanism, wherein the test REST service simulates
the existing REST service, and wherein the test REST
service 1s used for at least one of regression testing and
performance testing;

5

10

15

20

25

30

35

40

45

50

55

14

deploying and configuring the test REST service on
different application servers; and

testing features of a REST service client application on
the tool server with the test REST service deployed and
configured on the different application servers.

6. The computer program product of claim 5, wherein the
program code 1s executable by the at least one processor to
perform:

creating multiple test cases, wheremn the multiple test
cases include positive test cases and negative test cases.

7. The computer program product of claim 5, wherein the
test case includes testing mput data, expected output data,
and security settings.

8. The computer program product of claim 5, wherein a
Software as a Service (SaaS) 1s configured to perform
computer program product operations.

9. A computer system, comprising:

One Or more processors, one or more computer-readable
memories and one or more computer-readable, tangible
storage devices; and

program 1nstructions, stored on at least one of the one or
more computer-readable, tangible storage devices for
execution by at least one of the one or more processors
via at least one of the one or more memories, to
perform:

recerving a test case for a project, via a test creation tool
of a tool server, that specifies a Uniform Resource
Locator and an authentication mechanism for an exist-
ing Representational State Transier (REST) service,
wherein the existing REST service 1s provided by a
third party vendor;

in response to the existing REST service being mvoked,
capturing a request and response for the existing REST
service;

converting the test case 1nto a test Representational State
Transter (REST) service for the project using the
request and response and using the authentication
mechanism, wherein the test REST service simulates
the existing REST service, an wherein the test REST
service 1s used for at least one of regression testing and
performance testing;

deploying and configuring the test REST service on
different application servers; and

testing features of a REST service client application on
the tool server with the test REST service deployed and
configured on the different application servers.

10. The computer system of claim 9, wherein the opera-

tions further comprise:

creating multiple test cases, wherein the multiple test
cases include positive test cases and negative test cases.

11. The computer system of claim 9, wherein the test case
includes testing 1nput data, expected output data, and secu-
rity settings.

12. The computer system of claim 9, wherein a Software
as a Service (SaaS) 1s configured to perform system opera-
tions.

	Front Page
	Drawings
	Specification
	Claims

