12 United States Patent
McGrath

US009720668B2

US 9,720,668 B2
Aug. 1,2017

(10) Patent No.:
45) Date of Patent:

(54) CREATING AND MAINTAINING
MULTI-TENANT APPLICATIONS IN A
PLATFORM-AS-A-SERVICE (PAAS)
ENVIRONMENT OF A CLOUD COMPUTING
SYSTEM

(75) Inventor: Michael P. McGrath, Schaumburg, IL

(US)
(73) Assignee: Red Hat, Inc., Raleigh, NC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 449 days.

(21) Appl. No.: 13/408,754

(22) Filed: Feb. 29, 2012
(65) Prior Publication Data
US 2013/0227563 Al Aug. 29, 2013
(51) Inmt. CL
GO6F 9/455 (2006.01)
GO6F 9/445 (2006.01)
(52) U.S. CL
CPC ... GO6F 8/60 (2013.01); GO6F 9/45533

(2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,009452 A 12/1999 Horvitz

7,774,761 B2 8/2010 Vohra

7,853,708 B2 12/2010 Townsley et al.

8,352,941 Bl 1/2013 Protopopov et al.

8,356,274 B2 1/2013 Kwok et al.

8,505,006 B1* 8/2013 Larkinetal. 718/1

190
v, [V
A1 oo | 112
HOST 1

8,635,351 B2 1/2014 Astete et al.
2002/0087958 A 7/2002 Krause
2002/0091753 A 7/2002 Reddy et al.
2005/0160428 A 7/2005 Ayachitula et al.
2006/0277305 A1 12/2006 Bernardin et al.
2007/0128899 Al 6/2007 Mayer
2007/0147347 A 6/2007 Ristock
2007/0203999 A 8/2007 Townsley et al.
2008/0028071 A 1/2008 Miyajima

(Continued)

OTHER PUBLICATIONS

Unix man unshare clone, Janak Desai, Jan. 11, 2006; p. 1-5.%
(Continued)

Primary Examiner — Dong Kim
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A mechanism for creating and maintaining multi-tenant
applications in a Platform-as-a-Service (PaaS) environment
of a cloud computing system 1s disclosed. A method includes
receiving, by a virtual machine (VM), a request to start an
application on the VM, wherein the VM hosts multi-tenant
applications associated with owners different than an owner
of the requested application, creating unique kemnel
namespace directories for the application, wherein each
umque kernel namespace directory corresponds to one of a
plurality of standard directories on an OS of the VM,
providing idenftification of the created umique namespace
directories to the application, wherein the application does
not update code of the application to access the unique
kernel namespace directories, recerving an access request to
one ol the standard directories, mapping the requested
standard directory to a corresponding unique kernel
namespace directory of the application, and directing the
application to the corresponding umique kernel namespace
directory.

20 Claims, 5 Drawing Sheets

o~ CLOVD 130

US 9,720,668 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0036488 Al 2/2008 Kelem et al.

2008/0163004 Al 7/2008 Yu

2008/0313639 A1 12/2008 Kumar et al.

2008/0320474 Al1* 12/2008 Jelineketal. 718/1

2009/0024609 Al 1/2009 Barker et al.

2009/0313374 A1 12/2009 Murphy et al.

2009/0313620 A1 12/2009 Sedukhin et al.

2010/0122343 Al 5/2010 Ghosh et al.

2010/0153951 Al 6/2010 Jones

2010/0262467 Al 10/2010 Barnhill, Jr. et al.

2010/0275241 A1 10/2010 Srinivasan

2011/0055310 Al 3/2011 Shavlik et al.

2011/0083131 Al 4/2011 Pirzada et al.

2011/0231899 A1* 9/2011 Pulier GO6F 9/45558
726/1

2011/0246617 Al1* 10/2011 Sheehan et al. 709/219

2011/0252320 A1 10/2011 Arrasvuouri et al.

2011/0276584 Al1* 11/2011 Cotner et al. 707/769

2011/0277027 Al 11/2011 Hayton et al.

2011/0302415 A1 12/2011 Ahmad et al.

2012/0004041 Al 1/2012 Pereira et al.

2012/0011077 Al 1/2012 Bhagat

2012/0096165 Al 4/2012 Maddun et al.

2012/0173581 Al1* 7/2012 Hartig et al. 707/781

2012/0174099 Al 7/2012 Ashok et al.

2012/0185913 Al 7/2012 Martinez et al.

2012/0215919 Al 8/2012 Labat et al.

2012/0246740 Al 9/2012 Brooker et al.

2013/0005487 Al 1/2013 Frazzini et al.

2013/0007239 Al 1/2013 Agarwal et al.

2013/0019243 Al 1/2013 Schmidt et al.

2013/0036208 Al 2/2013 Dochez

2013/0055243 Al 2/2013 Dandekar et al.

2013/0227560 Al 8/2013 McGrath et al.

2013/0227561 Al 8/2013 Walsh et al.

2013/0227563 Al 8/2013 McGrath et al.

2013/0227635 Al 8/2013 Walsh et al.

2013/0297672 Al 11/2013 McGrath et al.

2013/0297673 Al 11/2013 McGrath et al.

2013/0297685 A1 11/2013 McGrath et al.

2013/0297795 A1 11/2013 McGrath et al.

2013/0298183 A1 11/2013 McGrath et al.

2013/0305243 A1 11/2013 Hiki

2014/0040883 Al 2/2014 Tompkins

OTHER PUBLICATIONS

Linux man page pam_namespace; http://web.archive.org/web/
20081014010639/http://linux.die.net/man/8/pam__namespace; Oct.

14, 2008.*

Wikt LXC; http://web.archive.org/web/20120130164103/http://en.
wikipedia.org/wiki/LXC; Jan. 30, 2012.*

Filesystem_Labeling SELmux_ 2004; James Morris; Nov. 2004.*
Wikipedia http://web.archive.org/web/20111228040353/http://en.
wikipedia.org/wiki/Special_folder; special folder; Dec. 28, 2011.*
USPTO, Oflice Action for U.S. Appl. No. 13/461,705 mailed Jan.
30, 2014.

USPTO, Oflice Action for U.S. Appl. No. 13/461,712 mailed Feb.
27, 2014.

USPTO, Notice of Allowance for U.S. Appl. No. 13/461,584 mailed
Jan. 29, 2014.

USPTO, Office Action for U.S. Appl. No. 13/408,729 mailed Mar.
12, 2014.

USPTO, Oflice Action for U.S. Appl. No. 13/408,676 mailed Feb.
27, 2014.

USPTO, Office Action for U.S. Appl. No. 13/461,722 mailed Sep.
20, 2013.
The Authoritative Dictionary of IEEE Standards Terms. 2000,

Standards Information Network IEEE Press. seventh edition. p. 131
and 530.

Corcoran et al. Cross-Tier, Label-based Secuirty Enforcement for
Web Applications. 2009. ACM. pp. 269-281.

Red Hat Inc., Red Hat Enterpise Linux 5 Deployment guide,

“Deployment, configuration and administration of Red Hat Enter-
prise Linux 5, Chapter 46—Security and SELinux, pp. 823-848, 26
pages, Jul. 21, 2011.

Smalley, Stephen D. SELinux. 2001 NSA. pp. 1-23.

Loscocco et al. Meeting Critical Security Objectives with Security-
Enhanced Linux. 2001. NSA. pp. 1-11.

USPTO, Final Oflice Action for U.S. Appl. No. 13/461,705 mailed
Aug. 7, 2014.

USPTO, Ofhice Action for U.S. Appl. No. 13/408,001 mailed Jul.
16, 2014.

USPTO, Notice of Allowance for U.S. Appl. No. 13/461,584 mailed
May 22, 2014.

USPTO, Office Action for U.S. Appl. No. 13/461,715 mailed Jul.
23, 2014.

Maoke Chen and Akihiro Nakao, “Feather-Weight Network
Namespace Isolation Baased on User-Specific Addressing and
Routing 1mm Commodity OS,” T. Magedanz et al. (EDS.):
TridentCom 2010, LNICST 46, pp. 53-68, 2011.

An Quin et al., “Xconveryer: Guarantee Hadoop Throughput via
Lightweight OS-level Virtualization,” 2009 Eighth International
Conference on Grid and Cooperative Computing, IEEE 2009, pp.
299-304.

Anup K. Ghosh and Angelos Stavrou, “Darpa Mobivisor: An
Architecture for High Assurance for Untrusted Applications on
Wireless Handheld Devices Via Lightweight Virtualization,” Nov.
2010, 28 pages.

Authors et al., “Apparatus and Method of Tenant Context Genera-
tion and Propagation in SaaS Environment,” Aug. 19, 2010, 1p.com.
pp. 1-4.

USPTO, Notice of Allowance for U.S. Appl. No. 13/461,705 mailed
Nov. 7, 2014.

USPTO, Notice of Allowance for U.S. Appl. No. 13/461,705 mailed
Sep. 22, 2015.

USPTO, Notice of Allowance for U.S. Appl. No. 13/408,001 mailed
Feb. 18, 2015.

USPTO, Notice of Allowance for U.S. Appl. No. 13/408,729 mailed
Sep. 29, 2014.

USPTO, Notice of Allowance for U.S. Appl. No. 13/408,729 mailed
Jan. 22, 2015.

USPTO, Final Oflice Action for U.S. Appl. No. 13/461,715 mailed
Feb. 10, 2015.

USPTO, Advisory Action for U.S. Appl. No. 13/461,715 mailed
Apr. 30, 2015.

USPTO, Oflice Action for U.S. Appl. No. 13/461,715 mailed Sep.
24, 2015.

USPTO, Notice of Allowance for U.S. Appl. No. 13/408,676 mailed
Oct. 7, 2014.

USPTO, Notice of Allowance for U.S. Appl. No. 13/408,676 mailed
Jan. 23, 2015.

USPTO, Office Action for U.S. Appl. No. 14/474,694 mailed Aug.
26, 2015.

USPTO, Notice of Allowance for U.S. Appl. No. 14/474,694,
mailed Jan. 4, 2016.

USPTO, Office Action for U.S. Appl. No. 13/461,715, mailed Apr.
19, 2016.

USPTO, Notice of Allowance for U.S. Appl. No. 13/461,715,
mailed Dec. 29, 2016.

* cited by examiner

U.S. Patent Aug. 1, 2017 Sheet 1 of 5 US 9,720,668 B2

e o N - CLOUD 130

_;‘ﬁ - \kw

PaaS Provider

3
% Controller
-

 AEPOSTORY
106 '
o .

i .
i “.-‘-'ﬁ\—i\':':'_i.m

| ewoun
| CONTROLLER

& R

CAIENT N
dal

CLIENT 4
160

Fig. 1

U.S. Patent Aug. 1, 2017 Sheet 2 of 5 US 9,720,668 B2

B!

Client Layer 210

Broker Layer 220 Node Layer 230

Naode 232a

App App
235 235
Node 232b

App App
235 235

Server Orchestration
System
226

Command Tools
214

Data Store/Database Authentication

228 Service
224

Source Code
Management System

212

Node 232¢

App App
235 235

Node 232d

App App
235 235

Fig. 2

U.S. Patent Aug. 1, 2017 Sheet 3 of 5 US 9,720,668 B2

300
A

Server Orchestration System
226

Server Orchestration

System Agent
310

Repositorics
318

Kernel Kernel

Namespace Namespace
Module Libraries
320 322

| 1 |

i Userspace i Userspace i Userspace i Userspace I

: Container | Container | Container | Container i

i 325a i 325b i 325¢ i 325d l

i App i App i App i App i

: 305 | 305 | 305 | 305 |
Node 232

Fig. 3

U.S. Patent Aug. 1, 2017 Sheet 4 of 5 US 9,720,668 B2

Receive request to start a multi-tenant application on a node of a Paa$S system in

a cloud computing environment
41

Apply kernel namespace feature to the multi-tenant application
42

\ 4

Create separate namespace directories for the multi-tenant application process
as part of applying the kernel namespace feature to the multi-tenant application

430
 J
Expose the underlying created namespace directories to the multi-tenant
application for use by the multi-tenant application
440

Fig. 4

U.S. Patent

PROCESSOR

PROCESSING LOGIC

Kemel Namespace
Module
550

MAIN MEMORY

INSTRUCTIONS

Kernel Namespace
Module

230

STATIC MEMORY

NETWORK
INTERFACE

DEVICE

Aug. 1, 2017

502

526

504

526

506

522

574

BUS

Sheet 5 of 5

~— 908

US 9,720,668 B2

/ 500

510
VIDEOQO DISPLAY
512
ALPHA-NUMERIC
INPUT DEVICE
514
CURSOR
CONTROL
DEVICE
518
DATA STORAGE DEVICE
MACHINE-READABLE 24
MEDIUM
SOFTWARE 526

Kernel Namespace
Module

220

520

SIGNAL
GENERATION

DEVICE

FIGURE

US 9,720,668 B2

1

CREATING AND MAINTAINING
MULTI-TENANT APPLICATIONS IN A
PLATFORM-AS-A-SERVICE (PAAS)
ENVIRONMENT OF A CLOUD COMPUTING
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s related to co-filed U.S. patent
application Ser. No. 13/408,001 enftitled “Mechanism for
System Resource Sharing in a Multi-Tenant Platform-as-a-
Service (PaaS) Environment 1n a Cloud Computing Sys-
tem™; co-filed U.S. patent application Ser. No. 13/408,729
entitled “Mechanism for Applying Security Category Labels
to Multi-Tenant Applications of a Node 1n a Platform-as-a-
Service (PaaS) Environment”; and co-filed U.S. patent
application Ser. No. 13/408,676 entitled “Mechanism for
Applying a Custom Security Type Label to Multi-Tenant
Applications of a Node 1n a Platform-as-a-Service (PaaS)
Environment”; which are all assigned to the assignee of the
present application.

TECHNICAL FIELD

The embodiments of the invention relate generally to
platform-as-a-service (PaaS) environments and, more spe-
cifically, relate to a mechanism for creating and maintaining
multi-tenant applications 1n a PaaS environment of a cloud
computing system.

BACKGROUND

Cloud computing 1s a computing paradigm in which a
customer pays a “cloud provider” to execute a program on
computer hardware owned and/or controlled by the cloud
provider. It 1s common for cloud providers to make virtual
machines hosted on 1ts computer hardware available to
customers for this purpose. The cloud provider typically
provides an interface that a customer can use to requisition
virtual machines and associated resources such as proces-
sors, storage, and network services, etc., as well as an
interface a customer can use to install and execute the
customer’s program on the virtual machines that the cus-
tomer requisitions, together with additional software on
which the customer’s program depends. For some such
programs, this additional software can include such software
components as a kernel and an operating system. Customers,
that have installed and are executing their programs “in the
cloud”, typically communicate with the executing program
from remote geographic locations using Internet protocols.

For programs that are web applications, the additional
software can further include such software components as
middleware and a framework. Web applications are pro-
grams that receive and act on requests in web or other
Internet protocols, such as HI'TP. It 1s common for a user to
use a web application by using a browser executing on the
user’s client computer system to send requests in a web
protocol via the Internet to a server computer system on
which the web application 1s executing. It 1s also common
for automatic user agents to interact with web applications
in web protocols 1n the same fashion.

While many web applications are suitable for execution in
the cloud, it often requires significant expertise and effort in
order to 1nstall, execute, and manage a web application in the
cloud. For example, an admimstrator typically should 1den-
tify all of the software components that a web application

10

15

20

25

30

35

40

45

50

55

60

65

2

needs 1n order to execute, and what versions of those
soltware components are acceptable. In addition, the admin-
istrator typically should obtain, install, and appropnately
configure each such software component, as well as the
application itself. Where this high level of expertise and
cllort has been invested 1n order to get a web application
running on a particular hypervisor and 1n a particular pro-
vider’s cloud, a similarly high level of expertise and eflort
usually should be subsequently invested to execute the web
application istead or 1n addition on a different hypervisor
and/or 1n a different particular provider’s cloud. Also, 1t can
be difficult to obtain useful information about how the
application 1s performing and otherwise behaving when
executing 1n the cloud.

Accordingly, software and/or hardware {facilities {for
facilitating the execution of web applications in the cloud
have been introduced, and are known as Platform-as-a-
Service (PaaS) oflerings. PaaS offerings typically facilitate
deployment of applications without the cost and complexity
of buying and managing the underlying hardware and soft-
ware and provisiomng hosting capabilities, providing all of
the facilities required to support the complete life cycle of
building and delivering web application and service entirely
available from the Internet. Typically, these facilities operate
as one or more virtual machines (VMs) running on top of a
hypervisor 1n a host server.

In present PaaS offerings, a first customer’s deployed
applications do not co-exist with any other customer’s
deployed applications on the VMs that are hosting the first
customer’s deployed applications. However, such an
arrangement can be ineflicient to the PaaS provider offering
the platform services. This 1s because the applications being
deployed 1n the PaaS are generally quite small packages, and
the size of the VM does not correspond to the size of the
application. It can be costly to initialize a new VM for each
application deployment, and 1t may also be a waste of
resources that are not being utilized. In a public cloud
environment, a PaaS provider pays for deploying a VM
whether the VM lies 1dle or not. In a private cloud environ-
ment, there 1s still a strain on resources for running VMs that
are not completely utilized.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be understood more fully from the
detailed description given below and from the accompany-
ing drawings of various embodiments of the invention. The
drawings, however, should not be taken to limit the inven-
tion to the specific embodiments, but are for explanation and
understanding only.

FIG. 1 1s a block diagram of a network architecture in
which embodiments of the mmvention may operate;

FIG. 2 1s a block diagram of a PaaS system architecture
according to an embodiment of the invention;

FIG. 3 15 a block diagram of a communication infrastruc-
ture between a server orchestration system and a node
according to embodiments of the invention;

FIG. 4 1s a tlow diagram 1llustrating a method for using
kernel namespaces to create and maintain multi-tenant appli-
cations 1n a PaaS environment of a cloud computing system
according to an embodiment of the invention; and

FIG. 5 illustrates a block diagram of one embodiment of
a computer system.

DETAILED DESCRIPTION

Embodiments of the invention provide a mechanism for
creating and maintaining multi-tenant applications 1n a Plat-

US 9,720,668 B2

3

form-as-a-Service (PaaS) environment of a cloud computing
system. A method of embodiments of the mnvention includes
receiving, by a virtual machine (VM), a request to start an
application on the VM, wherein the VM hosts multi-tenant
applications associated with owners diflerent than an owner
of the requested application, creating unique kernel
namespace directories for the application, wherein each
unique kernel namespace directory corresponds to one of a
plurality of standard directories on an OS of the VM,
providing identification of the created umique namespace
directories to the application, wherein the application does
not update code of the application to access the unique
kernel namespace directories, recerving an access request to
one ol the standard directories, mapping the requested
standard directory to a corresponding unique kernel
namespace directory of the application, and directing the

application to the corresponding unmique kernel namespace
directory.

In the following description, numerous details are set
forth. It will be apparent, however, to one skilled 1n the art,
that the present invention may be practiced without these
specific details. In some 1nstances, well-known structures
and devices are shown 1n block diagram form, rather than 1n
detail, in order to avoid obscuring the present imnvention.

Some portions of the detailed descriptions which follow
are presented 1n terms of algorithms and symbolic repre-
sentations ol operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled i1n the data processing
arts to most eflectively convey the substance of their work
to others skilled in the art. An algornthm 1s here, and
generally, concerved to be a self-consistent sequence of steps
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of being stored, trans-
terred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
clements, symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “sending’”’, “receiving”’, “attaching”, “forwarding”, “cach-
g, “executing”, “applying”, “identifying”, “configuring”,
“establishing™, or the like, refer to the action and processes
of a computer system, or similar electromic computing
device, that manipulates and transforms data represented as
physical (electronic) quantities within the computer sys-
tem’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1n a machine
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories

(ROMs), random access memories (RAMs), EPROMs,

bR B 4 4

10

15

20

25

30

35

40

45

50

55

60

65

4

EEPROMSs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, each coupled to
a computer system bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs 1n accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear as set forth in the
description below. In addition, the present invention is not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein.

The present invention may be provided as a computer
program product, or soitware, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other
clectronic devices) to perform a process according to the
present invention. A machine-readable medium includes any
mechanism for storing or transmitting mformation in a form
readable by a machine (e.g., a computer). For example, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM”), random access
memory (“RAM”), magnetic disk storage media, optical
storage media, tlash memory devices, etc.), efc.

Embodiments of the invention provide a mechanism for
creating and maintaining multi-tenant applications 1n a PaaS
environment of a cloud computing system. In the multi-
tenant PaaS environment, each node (i.e., virtual machine
(VM)) runs multiple applications, and, as such, should
provide security and separation to protect each of the
multi-tenant applications from each other and to protect the
underlying node (VM) from the multi-tenant applications. In
one embodiment, a kernel namespaces feature of the Oper-
ating System (OS) kernel 1s utilized to secure individual
applications within a node (e.g., VM) running on the cloud.
Kemnel namespaces allows different processes to have dii-
ferent views of the file system.

In embodiments of the invention, when an application 1s
spun up (created) on a node, kernel namespaces 1s applied to
cach application on the node. When an application 1s run,
kernel namespaces creates a dedicated and unique configu-
ration directory for the application. As a result, the applica-
tion 1s not visible to other applications running on the node
and vice versa.

FIG. 1 1s a block diagram of a network architecture 100
in which embodiments of the mvention may operate. The
network architecture 100 includes a cloud 130 managed by
a cloud provider system 104. The cloud 130 provides VMs,
such as VMs 111, 112, 121, and 122. Each VM 1s hosted on
a physical machine, such as host 1 110 through host N 120,
configured as part of the cloud 130. In some embodiments,
the host machines 110, 120 are often located 1n a data center.
For example, virtual machines 111 and 112 are hosted on
physical machine 110 in cloud 130 provided by cloud
provider 104. Users can iteract with applications executing
on the cloud-based VMs 112, 112, 121, 122 using client
computer systems, such as clients 160, 170 and 180, via
corresponding web browser applications 161, 171 and 181.

Clients 160, 170 and 190 are connected to hosts 110, 120
and the cloud provider system 104 via a network 102, which
may be may be a private network (e.g., a local area network
(LAN), a wide area network (WAN), intranet, or other
similar private networks) or a public network (e.g., the

US 9,720,668 B2

S

Internet). Each client 160, 170, 190 may be a mobile device,
a PDA, a laptop, a desktop computer, or any other comput-
ing device. Fach host 110, 120 may be a server computer
system, a desktop computer or any other computing device.
The cloud provider system 104 may include one or more
machines such as server computers, desktop computers, etc.

In one embodiment, the cloud provider system 104 1s
coupled to a cloud controller 108 via the network 102. The
cloud controller 108 may reside on one or more machines
(e.g., server computers, desktop computers, etc.) and may
manage the execution of applications 1n the cloud 130. In
some embodiments, cloud controller 108 receives com-
mands from PaaS provider controller 130. Based on these
commands, the cloud controller 108 provides data (e.g., such
as pre-generated 1mages) associated with different applica-
tions to the cloud provider system 104. In some embodi-
ments, the data may be provided to the cloud provider 104
and stored 1n an 1mage repository 106, in an 1mage reposi-
tory (not shown) located on each host 110, 120, or 1n an
image repository (not shown) located on each VM 111, 112,
121, 122.

Upon recerving a command identifying specific data (e.g.,
application data and files used to mnitialize an application on
the cloud), the cloud provider 104 retrieves the correspond-
ing data from the image repository 106, creates an instance
of 1t, and loads 1t to the host 110, 120 to run on top of a
hypervisor (not shown)asa VM 111, 112, 121, 122 or within
a VM 111, 112, 121, 122. In addition, a command may
identily specific data to be executed on one or more of the
VMs 111, 112, 121, 122. The command may be recerved
from the cloud controller 108, from a PaaS provider con-
troller 130, or a user (e.g., a system admimstrator) via a
console computer or a client machine. The 1image repository
106 may be local or remote and may represent a single data
structure or multiple data structures (databases, repositories,
files, etc.) residing on one or more mass storage devices,
such as magnetic or optical storage based disks, solid-state
drives (SSDs) or hard drives.

In one embodiment, the PaaS provider controller 130 1s
operated by a PaaS provider that enables customers to create
and run applications on nodes, e.g., VMs 111, 112, 121, 122,
managed by the PaaS provider. In one embodiment, the
nodes/VMs 111, 112, 121, 122 are hosted on computer
hardware managed by the cloud provider system 104. In
some embodiments, the VMs 111, 112, 121, 122 of the PaaS
provider support multi-tenancy of applications running on
the VMs 111, 112, 121, 122. This means that each VM 111,
112, 121, 122 can run multiple applications that may be
owned or managed by different customers. Embodiments of
the mvention provide for security between these multi-
tenant applications hosted on a VM 111, 112, 121, 122, as
well as between the applications and the VM, by setting up
cach VM 111, 112, 121, 122 to utilize a kernel namespace
feature of an operating system (OS) of the VM 111, 112, 121,
122. The kernel namespace feature creates and maintains a
separation between the applications on the VM 111, 112,
121, 122, and between the application and the underlying
system of the VM, for security purposes.

While various embodiments are described in terms of the
environment described above, those skilled in the art will
appreciate that the facility may be implemented 1n a variety
of other environments including a single, monolithic com-
puter system, as well as various other combinations of
computer systems or similar devices connected 1n various
ways.

FIG. 2 1s a block diagram of a PaaS system architecture
200 1n accordance with some embodiments of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

The PaaS architecture 200 allows users to launch software
applications 1n a cloud computing environment, such as
cloud computing environment provided in network archi-
tecture 100 described with respect to FIG. 1. The PaaS
system architecture 200, in one embodiment, includes a
client layer 210, a broker layer 220, and a node layer 230.

In one embodiment, the client layer 210 resides on a client
machine, such as a workstation of a software developer, and
provides an interface, to a user of the client machine, to the
broker layer 220 of the PaaS system. For example, the
broker layer 220 may facilitate the creation and deployment
on the cloud (via node layer 230) of software applications
being developed by an end user at client layer 210.

The client layer 210 1ncludes a source code management
system 212, sometimes referred to as “SCM™ or revision
control system. One example of such an SCM or revision
control system 1s Git, available as open source software. Git,
and other such distributed SCM systems, usually include a
working directory for making changes, and a local software
repository for storing the changes. The packaged software
application can then be “pushed” from the local Git reposi-
tory to a remote Git repository. From the remote repository,
the code may be edited by others with access, or the
application may be executed by a machine. Other SCM
systems work in a similar manner.

The client layer 210, 1n one embodiment, also includes a
set of command tools 214 that a user can utilize to create,
launch, and manage applications. In one embodiment, the
command tools 214 can be downloaded and installed on the
user’s client machine, and can be accessed via a command
line interface or a graphical user interface, or some other
type of interface. In one embodiment, the command tools
214 expose an application programming interface (“API”) of
the broker layer 220 and perform other applications man-
agement tasks i an automated fashion using other inter-
faces, as will be described 1n more detail further below 1n
accordance with some embodiments.

In one embodiment, the broker layer 220 acts as middle-
ware between the client layer 210 and the node layer 230.
The node layer 230 includes the nodes 232 on which
soltware applications 235 are provisioned and executed. In
one embodiment, each node 232 1s a VM provisioned by an
Infrastructure as a Service (IaaS) provider, such as Ama-
zon™ Web Services. In other embodiments, the nodes 232
may be physical machines or VMs residing on a single
physical machine. In one embodiment, the broker layer 220
1s 1implemented on one or more machines, such as server
computers, desktop computers, etc. In some embodiments,
the broker layer 220 may be implemented on one or more
machines separate from machines implementing each of the
client layer 210 and the node layer 230, or may implemented
together with the client layer 210 and/or the node layer 230
on one or more machines, or some combination of the above.

In one embodiment, the broker layer 220 includes a
broker 222 that coordinates requests from the client layer
210 with actions to be performed at the node layer 230. One
such request 1s new application creation. In one embodi-
ment, when a user, using the command tools 214 at client
layer 210, requests the creation of a new application 235, or

some other action to manage the application 235, the broker
222 first authenticates the user using an authentication

service 224. In one embodiment, the authentication service

may comprise Streamline™, or may comprise some other
authentication tool. Once the user has been authenticated

and allowed access to the system by authentication service

US 9,720,668 B2

7

224, the broker 222 uses a server orchestration system 226
to collect information and configuration information about
the nodes 232.

In one embodiment, the broker 222 uses the Marionette
Collective™ (“MCollective™”) framework available from
Puppet Labs™ as the server orchestration system 226, but
other server orchestration systems may also be used. The
server orchestration system 226, 1n one embodiment, func-
tions to coordinate server-client interaction between mul-
tiple (sometimes a large number of) servers. In one embodi-
ment, the servers being orchestrated are nodes 232, which
are acting as application servers and web servers.

For example, if the broker 222 wanted to shut down all
applications 235 on all even numbered nodes out of 100,000
nodes, the broker 222 would only need to provide one
command to the server orchestration system 226. Then, the
server orchestration system 226 would generate a separate
message to all nodes 232 to shut down all applications 235
if the node 232 1s even, and distribute the messages to the
nodes 232 using a messaging and queuing system. Thus, in
one embodiment, the broker 222 manages the business logic
and model representing the nodes 232 and the applications
235 residing on the nodes, and acts as a controller that
generates the actions requested by users via an API of the
client tools 214. The server orchestration system 226 then
takes those actions generated by the broker 222 and orches-
trates their execution on the many nodes 232 managed by the
system.

In one embodiment, the information collected about the
nodes 232 can be stored in a data store 228. In one
embodiment, the data store 228 can be a locally-hosted
database or file store, or 1t can be a cloud based storage
service provided by a Software-as-a-Service (SaaS) storage
provider, such as Amazon™ S3™ (Simple Storage Service).
The broker 222 uses the information about the nodes 232
and the applications 2335 of the nodes 222 to model the
application hosting service and to maintain records about the
nodes. In one embodiment, node 232 data 1s stored in the
form of a JavaScript Object Notation (JSON) blob or string
that maintains key-value pairs to associate a unique identi-
fier, a hostname, a list of applications, and other such
attributes with the node.

In embodiments of the invention, the PaaS system archi-
tecture 200 of FIG. 2 1s a multi-tenant PaaS environment. In
a multi-tenant PaaS environment, each node 232 runs mul-
tiple applications 235 that may be owned or managed by
different users and/or organizations. As such, a first custom-
er’s deployed applications 235 may co-exist with any other
customer’s deployed applications on the same node 232
(VM) that 1s hosting the first customer’s deployed applica-
tions 235. This deployment of multiple applications 2335 of
multiple customers on a single node 232 (VM) 1s a cost-
ellicient solution for PaaS providers. However, deploying a
multi-tenant PaaS solution raises a variety of concerns,
including, for example, security. Specifically, security con-
cerns exist 1n terms of separating multi-tenant applications
235 from each other, as well as separating multi-tenant
applications 235 from the node 232 itself.

Embodiments of the invention provide for security
between multi-tenant applications 235 hosted on node 232,
and between the node 232 and the applications 235 as well,
by setting up each node 232 to utilize a kernel namespace
feature of an operating system (OS) of the node 232. The
kernel namespace feature creates and maintains a separation
between the applications 235, and between the applications
235 and the node 232. One embodiment of the interaction
between the server orchestration system 226 and a node 232

10

15

20

25

30

35

40

45

50

55

60

65

8

to implement secure and separate creation and maintenance
of multi-tenant applications on a single node 1 a PaaS
environment 1s now described 1n more detail with reference
to FIG. 3.

FIG. 3 1s a block diagram depicting a communication
infrastructure 300 between a server orchestration system 225
and a node 232 according to embodiments of the invention.
In one embodiment, server orchestration system 226 and
node 232 are the same as their counterparts described with
respect to FIG. 2. In one embodiment, node 232, which 1s
implemented as a VM, has an operating system 315 that can
execute applications 305 using the various software reposi-
tories 318 resident on the node 232. In one embodiment,
applications 303 are the same as applications 235 described
with respect to FIG. 2.

The node 232 may also include a server orchestration
system agent 310 configured to track and collect information
about the node 232 and to perform actions on the node 232.
Thus, 1n one embodiment, using MCollective™ as the server
orchestration system 226, the server orchestration system
agent 310 can be implemented as a MCollective™ server.
The server orchestration system 226 would then be the
MCollective™ client that can send requests, queries, and
commands to the MCollective™ server on node 232.

In one embodiment, server orchestration system agent
310 interacts with OS 315 to create and maintain several
multi-tenant applications 305 that run on node 232. Specifi-
cally, a kernel namespace feature of the OS 315 1s utilized
to provide security and separation for each multi-tenant
application 305 running on the node 232 and to protect the
underlying node (VM) 232 and OS 315 from the multi-
tenant applications 305. In an OS, such as OS 315, an
example ol a namespace 1s a dlrectory Kernel namespaces
1s a feature of a kernel of the OS 315 that allows diflerent
processes (1.e., applications 305) to have different views of
a file system of the node 232. For example, if two applica-
tions 3035 are configured utilizing a kernel namespace fea-
ture, then each application 305 would “see” different files
when 1t viewed the /temp directory, even though the appli-
cations 305 searched exactly the same directory. This 1s
because the kernel namespace feature provides each appli-
cation 305 its own unique and dedicated directories and
systems to work under.

In one embodiment, a kernel namespace module 320 of
the OS 315 1s configured to implement and provide the
kernel namespace functionality to each multi-tenant appli-
cation 3035 executing on the node 232. When an application
305 1s spun-up (i.e., created) on the node 232, the kemnel
namespace module 320 applies the kernel namespace feature
to the application 305. More specifically, the kernel
namespace module 320 separates processes (e.g., applica-
tions 305) such that they cannot “see” resources in other
groups. In one embodiment, kernel namespace module 320
references kernel namespace libraries 322 to identify con-
figuration data that 1s used to create the unique namespaces
325a-d for the applications 305. In some embodiments, the
resources ol an application that are “isolated” by the kernel
namespace feature include identitying information of the
application, files of the application, and commands of the
application.

In some embodiments, the kernel namespace module 320
provides this separation ol applications 305 by creating a
dedicated and unique configuration directory for each appli-
cation 305 when it 1s created on the node 232. Each
application 305 gets their own namespace, or userspace
container 325a-d, which addresses the above-described
security concerns present in multi-tenant application nodes

US 9,720,668 B2

9

of a PaaS system. Using interfaces from the kernel of the OS
315, the OS 315 associates and/or tracks each application’s
305 directories to the application’s 305 dedicated and unique
namespace directory created by the kernel namespace mod-
ule 320.

For example, assume the temp directory for application 1
1s located at /appl/tmp and the temp directory for applica-
tion 2 1s located at /app2/tmp. The kernel namespace module
320 configures the node 232 so that each application (1 and
2) can continue to reference the standard /tmp directory
(without having to change code within the application),
while only seeing the resources associated with the respec-
tive application and located at the application’s specific
temp directory (e.g., when application 1 references /tmp 1t
sees resources located at /appl/tmp and when application 2
references /tmp 1t sees resources lcoated at /app2/tmp).

Because all operations on the OS 315 go through the OS
kernel, the kernel operates can operate behind the scenes to
make the node 232 environment appear normal to the
application 305 (e.g., appears to application 305 that no data
1s being withheld from the application and that the applica-
tion 1s the only one running on the node 232). The only way
an application 3035 would know that kernel namespaces are
being invoked by the OS 3135 1s to log 1n as a different user
(UID) and view the same directory from both accounts, thus
seeing diflerent resources. As a result, when an application
305 1s run on the node 232, the application 305 1s not visible
to other applications 305 running on the node 232 and vice
versa.

In some embodiments, 1n addition to using the namespace
feature to hide /tmp/ directory files of applications from one
another, the kernel namespace module 320 also replaces
/bin/ directories (executables/binaries) and /etc/ directories
(configuration files) of each application 305 with corre-
sponding /bin/ and /etc/ directories in the dedicated and
unique namespace ol each application 305. In this way, the
OS kernel maps any reference to the standard /bin or /etc
directories by an application 305 to the corresponding
dedicated directories in that application’s namespace. Some
exemplary results of this namespace configuration include
that an application’s UID cannot be seen by other applica-
tions 305 (except for 1n the /etc/psswd directory), and that
system executables (not associated with a particular appli-
cation 305) are hidden from applications 305 even though
they are on the system.

In one embodiment, the kernel namespace feature applied
by kernel namespace module 320 1s pam_namespace, which
1s a feature of the Linux™ OS kernel. Pam_namespace 1s a
Pluggable Authentication Module (PAM) module 1n the
Linux™ OS that sets up a private namespace for a session
with polyinstantiated directories. A polyinstantiated direc-
tory provides a different instance of itself based on user
name (or when using SEL1inux™, user name, security con-
text, or both). The pam_namespace module disassociates the
session namespace from the parent namespace. Any mounts/
unmounts performed i1n the parent namespace, such as
mounting of devices, are not retlected in the session
namespace.

In other embodiments, different kernel namespace fea-
tures of other OS vendors may be utilized, such as Linux™
Containers (LCX) and other OS kernel namespace tools. In
some embodiments, system calls of the OS 315 may be
utilized to setup a new namespace. For example, 1 the
Linux™ OS, the system calls ‘clone’ and ‘unshare’ can be
used to set up a namespace.

FIG. 4 1s a flow diagram 1illustrating a method 400 for
using kernel namespaces to create and maintain multi-tenant

.

10

15

20

25

30

35

40

45

50

55

60

65

10

applications 1n a PaaS environment of a cloud computing
system according to an embodiment of the invention.
Method 400 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as instructions
run on a processing device), firmware, or a combination
thereof. In one embodiment, method 400 1s performed by a
node/VM executing on a computing device, such as node
232 described with respect to FIGS. 2 and 3.

Method 400 begins at block 410 where a request 1s
received to start a multi-tenant application on a node of a
PaaS system 1n a cloud computing environment. In one
embodiment, the request 1s received at a server orchestration
system agent of the node that interacts with a server orches-
tration system executing on a broker layer of the PaaS
system. The request may i1dentily an application, in the
various soltware repositories resident on the node, to be
initialized and started on the node.

At block 420, a kernel namespace feature 1s applied to the
multi-tenant application as part of the imitialization and
start-up procedure of the application. The kernel namespace
teature 1s implemented by a kernel of an OS of the node 1n
order to provide a separate and unique namespace for the
process of the application on the node, so that resources of
the applications cannot be viewed by other processes (e.g.,
other multi-tenant applications) running on the node. At
block 430, the OS kernel of the node creates a dedicated and
umque configuration directory for the application. In one
embodiment, the OS kernel utilizes a pam_namespace mod-
ule to create the unique namespace directory for the appli-
cation. In other embodiments, different kernel namespace
features of other OS vendors may be utilized, such as
Linux™ Containers (LCX) and other OS kernel namespace
tools. In some embodiments, system calls of the OS 315 may
be utilized to setup a new namespace. For example, 1n the
Linux™ OS, the system calls ‘clone’ and ‘unshare’ can be
used to set up a namespace.

At block 440, the underlying created namespace directo-
ries are exposed to the application for 1ts subsequent use. As
such, when the multi-tenant application 1s subsequently run,
the OS kemel of the node applies the kernel namespace
configurations (e.g., maps application directory calls to the
corresponding directory in the application’s dedicated
namespace container) so that the application’s resources
(and thereby the application itself) 1s not visible to other
multi-tenant applications running on the node and vice
versa. This occurs without the application having to make
any code changes on the application side (e.g., changes to 1ts
directory references, etc.). This 1s because each multi-tenant
application on the node 1s set up with 1ts own namespace,
providing a secure environment for the multi-tenant appli-
cations on the node of the PaaS system.

FIG. § illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 500
within which a set of mstructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines 1n a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a
client machine 1n client-server network environment, or as a
peer machine 1n a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Dagital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or

US 9,720,668 B2

11

otherwise) that specily actions to be taken by that machine.
Further, while only a single machine 1s illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

The exemplary computer system 500 1includes a process-
ing device (processor) 502, a main memory 304 (e.g.,
read-only memory (ROM), flash memory, dynamic random
access memory (DRAM) such as synchronous DRAM
(SDRAM) or Rambus DRAM (RDRAM), etc.), a static
memory 506 (e.g., tlash memory, static random access
memory (SRAM), etc.), and a data storage device 518,
which communicate with each other via a bus 508.

Processor 502 represents one or more general-purpose
processing devices such as a microprocessor, central pro-
cessing unit, or the like. More particularly, the processor 502
may be a complex instruction set computing (CISC) micro-
processor, reduced 1nstruction set computing (RISC) micro-
processor, very long mstruction word (VLIW) microproces-
sor, or a processor implementing other instruction sets or
processors implementing a combination of instruction sets.
The processor 502 may also be one or more special-purpose
processing devices such as an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), network processor, or the
like. The processor 502 1s configured to execute instructions
526 for performing the operations and steps discussed
herein, illustrated 1 FIG. 5 by depicting instructions 526
within processor 502.

The computer system 500 may further include a network
interface device 522. The computer system 500 also may
include a video display unit 510 (e.g., a liguid crystal display
(LCD), a cathode ray tube (CRT), or a touchscreen), an
alphanumeric input device 512 (e.g., a keyboard), a cursor
control device 514 (e.g., a mouse), and a signal generation
device 520 (e.g., a speaker).

The data storage device 518 may include a machine-
readable storage medium 3524 (also known as a computer-
readable storage medium) on which 1s stored soitware 526
(c.g., one or more sets ol instructions, software, etc.)
embodying any one or more of the methodologies or tunc-
tions described herein. The software 526 may also reside,
completely or at least partially, within the main memory 504
(e.g., mstructions 526) and/or within the processor 502 (e.g.,
processing logic 526) during execution thereof by the com-
puter system 500, the main memory 504 and the processor
502 also constituting machine-readable storage media. The
soltware 326 may further be transmitted or recerved over a
network 374 via the network interface device 522.

In one embodiment, the software 526 include 1nstructions
for a kernel namespace module 550, which may correspond
to kernel namespace module 320 of FIG. 3, and/or a soft-
ware library containing methods that call the kernel
namespace module for creating and maintaining applica-
tions on a node 1 a multi-tenant PaaS environment in a
cloud computing system. While the machine-readable stor-
age medium 3524 1s shown 1n an exemplary embodiment to
be a single medium, the term “machine-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of 1nstructions. The term “machine-readable stor-
age medium™ shall also be taken to include any medium that
1s capable of storing, encoding or carrying a set of struc-
tions for execution by the machine and that cause the
machine to perform any one or more of the methodologies

5

10

15

20

25

30

35

40

45

50

55

60

65

12

of the present invention. The term “machine-readable stor-
age medium” shall accordingly be taken to include, but not
be limited to, solid-state memories, optical media, and
magnetic media.

In the foregoing description, numerous details are set
forth. It will be apparent, however, to one of ordinary skill
in the art having the benefit of this disclosure, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.

Some portions ol the detailed description have been
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally,
concelved to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
mampulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent Irom the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “segmenting”’, “analyzing”, “determining”, “enabling”,
“identitying,” “moditying” or the like, refer to the actions
and processes ol a computer system, or similar electronic
computing device, that mampulates and transforms data
represented as physical (e.g., electronic) quantities within
the computer system’s registers and memories into other
data similarly represented as physical quantities within the
computer system memories or registers or other such infor-
mation storage, transmission or display devices.

The present mvention also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or i1t may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1n a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions.

Retference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment 1s included 1n at least one embodiment. Thus,
the appearances of the phrase “in one embodiment™ or “in an
embodiment” in various places throughout this specification
are not necessarily all referring to the same embodiment. In
addition, the term “or” 1s intended to mean an inclusive “or”
rather than an exclusive “or.”

It 1s to be understood that the above description 1s
intended to be illustrative, and not restrictive. Many other
embodiments will be apparent to those of skill in the art
upon reading and understanding the above description. The

US 9,720,668 B2

13

scope of the mnvention should, therefore, be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

What 1s claimed 1s:
1. A method, comprising:
receiving, by a processing device of a virtual machine
(VM) executing on a computing device 1n a Platform as
a Service (PaaS) environment of a cloud computing
system, a request to start an application on the VM,
wherein the VM executes a plurality of multi-tenant
applications that are each diflerent software applica-
tions and each correspond to application owners that
are different than an application owner of the requested
application;
in response to receiving the request to start the applica-
tion, creating, by the VM, a plurality of unique kernel
namespace directories for a respective plurality of
owners of the application, wherein each unique kernel
namespace directory of the plurality of the unique
kernel namespace directories corresponds to a separate
owner of the plurality of owners of the application,
wherein the plurality of unique kernel namespace direc-
tories for the plurality of owners of the application
correspond to directories of an OS of the VM, and
wherein each of the unique kernel namespace directo-
ries 1s different than other unique namespace directories
corresponding to the plurality of owners of the appli-
cation;
1solating resources of the application to the corresponding
umque kernel namespace directories of the application;

providing, by the processing device of the VM, 1dentidi-
cation of the created unique namespace directories to
the application, wherein the application does not update
code of the application to access the umique kernel
namespace directories of the application;

receiving, by the VM from the application, an access

request to one of the directories on the OS;

mapping, by the VM, the requested directory to a corre-

sponding unique kernel namespace directory of the
application;

directing, by the VM 1n response to the access request, the

application to the corresponding unique kernel
namespace directory; and

wherein when the application 1s executed on the VM, the

plurality of umique namespace directories correspond-
ing to the plurality of owners of the application cause
resources of the application to be 1solated from other
owners ol the plurality of multi-tenant applications
executing on the VM.

2. The method of claim 1, wherein a pam_namespace
module creates the plurality of unique kernel namespace
directories.

3. The method of claim 1, wherein a kernel namespace
feature creates the plurality of unique kernel namespace
directories.

4. The method of claim 1, wherein one or more commands
of a kernel of the OS of the VM comprising clone and
unshare create the plurality of unique kernel namespace
directories.

5. The method of claim 1, wherein the plurality of unique
kernel namespace directories 1s created as part of initializing,
the application on the VM.

6. The method of claim 1, wherein the resources comprise
configuration settings of the application, identifying infor-
mation of the application, files of the application, and
commands of the application.

10

15

20

25

30

35

40

45

50

55

60

65

14

7. The method of claim 1, wherein the plurality of unique
namespace directories for the application comprises a
unique namespace directory for a configuration directory of
the application, a unique namespace directory for identify-
ing nformation of the application, a unique namespace
directory for files of the application, and a unique namespace
directory for commands of the application.

8. An apparatus, comprising:

a memory;

a processing device communicably coupled to the

memory; and

a virtual machine (VM), 1n a Platform as a Service (PaaS)

environment of a cloud computing system, to virtualize

resources of the memory and the processing device, the

VM to:

receive a request to start an application on the VM,
wherein the VM executes a plurality of multi-tenant
applications that are each different software applica-
tions and each correspond to application owners that
are diflerent than an application owner of the
requested application;

in response to receiving the request to start the appli-
cation, create a plurality of unique kernel namespace
directories for a respective plurality of owners of the
application, wherein each unique kernel namespace
directory of the plurality of the unique kernel
namespace directories corresponds to a separate
owner of the plurality of owners of the application,
wherein the plurality of unique kernel namespace
directories for the plurality of owners of the appli-
cation correspond to directories of an operating
system (OS) of the VM, and wherein each of the
unique kernel namespace directories 1s different than
other unique namespace directories corresponding to
the plurality of owners of the application;

1solate resources of the application to the corresponding
unique kernel namespace directories of the applica-
tion;

provide 1dentification of the created unique namespace
directories to the application, wherein the application
does not update code of the application to access the
unique kernel namespace directories of the applica-
tion;

receive, from the application, an access request to one
of the directories on the OS:;

map the requested directory to a corresponding unique
kernel namespace directory of the application;

direct, 1n response to the access request, the application
to the corresponding unique kernel namespace direc-
tory; and

wherein when the application 1s executed on the VM,
the plurality of unique namespace directories corre-
sponding to the plurality of owners of the application
cause resources of the application to be 1solated from
other owners of the plurality of multi-tenant appli-
cations executing on the VM.

9. The apparatus of claim 8, wherein a pam_namespace
module creates the plurality of unique kernel namespace
directories.

10. The apparatus of claim 8, wherein a kernel namespace
feature creates the plurality of unique kernel namespace
directories.

11. The apparatus of claam 8, wherein one or more
commands of the kernel comprising clone and unshare
create the plurality of unique kernel namespace directories.

12. The apparatus of claim 8, wherein the resources
comprise configuration settings of the application, 1dentify-

US 9,720,668 B2

15

ing information of the application, files of the application,
and commands of the application.

13. The apparatus of claim 8, wherein the plurality of
unique namespace directories for the application comprises
a unique namespace directory for a configuration directory
of the application, a unique namespace directory for 1den-
tifying information of the application, a unique namespace
directory for files of the application, and a unique namespace
directory for commands of the application.

14. The apparatus of claim 8, wherein the plurality of
unique kernel namespace directories 1s created as part of
initializing the application on the VM.

15. A non-transitory machine-readable storage medium
including instructions that, when accessed by a processing

device, cause the processing device to:

receive, by a virtual machine (VM) executing by the
processing device on a computing device 1n a Platform
as a Service (PaaS) environment of a cloud computing
system, a request to start an application on the VM,
wherein the VM executes a plurality of multi-tenant
applications that are each different software applica-
tions and each correspond to application owners that
are different than an application owner of the requested
application;

in response to receiving the request to start the applica-
tion, create a plurality of umique kernel namespace
directories for a respective plurality of owners of the
application, wherein each unique kernel namespace
directory of the plurality of the unmique kernel
namespace directories corresponds to a separate owner
of the plurality of owners of the application, wherein
the plurality of unique kernel namespace directories for
the plurality of owners of the application correspond to
directories of an operating system (OS) of the VM, and
wherein each of the unique kernel namespace directo-
ries 1s different than other unique namespace directories
corresponding to the plurality of owners of the appli-
cation;

1solate resources of the application to the corresponding
umque kernel namespace directories of the application;

provide, by the VM, 1dentification of the created unique
namespace directories to the application, wherein the

5

10

15

20

25

30

35

40

16

application does not update code of the application to
access the unique kernel namespace directories of the
application;

recerve, by the VM from the application, an access request

to one of the directories on the OS:;

map, by the VM, the requested directory to a correspond-

ing unique kernel namespace directory of the applica-
tion;

direct, by the VM 1n response to the access request, the

application to the corresponding unique kernel
namespace directory; and

wherein when the application i1s executed on the VM, the

plurality of unique namespace directories correspond-
ing to the plurality of owners of the application cause
resources of the application to be i1solated from other
owners of the plurality of multi-tenant applications
executing on the VM.

16. The non-transitory machine-readable storage medium
of claim 15, wheremn at least one of a pam namespace
module or a kernel namespace feature create the plurality of
unique kernel namespace directories.

17. The non-transitory machine-readable storage medium
of claim 15, wherein the resources comprise configuration
settings of the application, 1dentitying information of the
application, files of the application, and commands of the
application.

18. The non-transitory machine-readable storage medium
of claam 15, wherein the plurality of unique namespace
directories for the application comprises a unique
namespace directory for a configuration directory of the
application, a unique namespace directory for identifying
information of the application, a unique namespace direc-
tory for files of the application, and a unique namespace
directory for commands of the application.

19. The non-transitory machine-readable storage medium
of claim 15, wheremn the plurality of unique kemel
namespace directories 1s created as part of mitializing the
application on the VM.

20. The non-transitory machine-readable storage medium
of claim 15, wherein one or more commands of the kernel
comprising clone and unshare create the plurality of unique
kernel namespace directories.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

