12 United States Patent

Compagna et al.

US009715592B2

US 9,715,592 B2
Jul. 25, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

DYNAMIC ANALYSIS SECURITY TESTING
OF MULTI-PARTY WEB APPLICATIONS VIA
ATTACK PATTERNS

Applicant: SAP SE, Walldort (DE)

Inventors: Luca Compagna, La Roquette sur

Siagne (FR); Avinash Sudhodanan,
Trento (IT); Roberto Carbone, Trento
(IT); Alessandro Armando, Genoa (IT)

Assignee: SAP SE, Walldort (DE)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 59 days.

Notice:

Appl. No.: 14/885,001

Filed: Oct. 16, 2015

Prior Publication Data

US 2017/0109534 Al Apr. 20, 2017

Int. CL
GO6F 11/00 (2006.01)
GO6F 12/14 (2006.01)
(Continued)
U.S. CL
CPC ... GO6I' 21/577 (2013.01); HO4L 63/1408

(2013.01); GO6F 11/00 (2013.01);
(Continued)

Field of Classification Search
CPC .. GO6F 21/577; GO6F 2221/033; GO6F 11/00;
GO6F 12/04; GO6F 12/16;

(Continued)

1. Visit URI SP 2. GET URI_SP

(56) References Cited

U.S. PATENT DOCUMENTS

7,559,080 B2 7/2009 Bhargavan et al.
7,584,507 B1* 9/2009 Nucclcoovvvvn HO4L 63/1416
726/22
(Continued)

OTHER PUBLICATIONS

Account hyacking by leaking authorization code. Retrieved from
http://www.oauthsecurity.com/, printed Sep. 16, 2015.

(Continued)

Primary Examiner — Jayesh Jhaven

(74) Attorney, Agent, or Firm — Fountainhead Law
Group P.C.

(57) ABSTRACT

A security testing framework leverages attack patterns to
generate test cases for evaluating security of Multi-Party
Web Applications (MPWAs). Afttack patterns comprise
structured artifacts capturing key information to execute
general-purpose attacker strategies. The patterns recognize
commonalities between attacks, e.g., abuse of security-
critical parameter(s), and the attacker’s strategy relating to
protocol patterns associated with those parameters. A testing,
environment 1s configured to collect several varieties of
HTTP traflic. User interaction with the MPWA while run-
ning security protocols, 1s recorded. An inference module
executes the recorded symbolic sessions, tagging elements
in the HT'TP tratfic with labels. This labeled HTTP trailic 1s
referenced to determine particular attack patterns that are to
be applied, and corresponding specific attack test cases that
are 1o be executed against the MPWA. Attacks are reported
back to the tester for evaluation. Embodiments may be
implemented with penetration testing tools, 1n order to

automate execution ol complex attacker strategies.

19 Claims, 21 Drawing Sheets

TTP
[dP SP

>

3. 4?{{?@ Request, REI&}%SEE!ZE: FiR] P

’

5. Enter credﬂmiaﬁg U

4. Login Form

. 6. Login and consent
e T 2

7. Auth. Assert. RelayStaie=URI SP

>

8. RBR@LHC@(URI_SP)

US 9,715,592 B2
Page 2

(51) Int. CL

GOGF 12/16 (2006.01)
GOSB 23/00 (2006.01)
GOGF 21/57 (2013.01)
HO4L 29/06 (2006.01)
(52) U.S. CL
CPC ... GOGF 2221/033 (2013.01); HO4L 63/14

(2013.01); HO4L 63/145 (2013.01); HO4L
63/1416 (2013.01); HO4L 63/1425 (2013.01);
HO4L 63/1433 (2013.01); HO4L 63/1441
(2013.01)

(58) Field of Classification Search
CPC ..o HO4L 63/1408; HO4L 63/14; HO4L

63/1416; HO4L 63/1425; HO4L 63/1433;
HO4L 63/1441; HO4L 63/145

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,735,116 B1* 6/2010 Gauvin GO6F 21/552
713/153
8,302,852 B2 11/2012 Brown
8,930,772 B2 1/2015 Sgro et al.
9,052,941 Bl 6/2015 Bone
9,083,740 B1* 7/2015 Ma ..., HO4L 63/145
2006/0224750 Al* 10/2006 Daviescccceo.., HO4L 12/587

709/229
2007/0169199 Al 7/2007 Quunnell et al.
2009/0222924 Al* 9/2009 Droz HO4L 63/1425
726/24
2011/0283361 Al* 11/2011 Perdisct GOOF 21/56
726/24
2014/0082735 Al 3/2014 Beskrovny et al.
2014/0331274 Al* 11/2014 Bitton HO4L 63/0227
726/1
2015/0033346 Al 1/2015 Hebert et al.
2015/0244733 Al* 8/2015 Mohaisen HO4L 63/1425
726/23
2015/0264073 Al* 9/2015 Tavakoli HO4L 63/1425
726/23

2016/0078234 Al 3/2016 L1 et al.

OTHER PUBLICATIONS

How will you integrate Sign In with LinkedIn? Retrieved from
https://developer.linkedin.com/docs/signin-with-linkedin, printed

Sep. 16, 2015.

Instagram API Console. Retrieved from https://apigee.com/console/
instagram, printed Sep. 16, 2015.

Integrate LLog In with PayPal. Retrieved from https://developer.
paypal.com/docs/integration/direct/1dentity/log-in-with-paypal/,
printed Sep. 16, 2015.

Yuchen Zhou and David Evans. SSOScan: Automated testing of
web applications for single sign-on vulnerabilities. In Proceedings
of the 23rd USENIX Conference on Security Symposium, SEC’ 14,
pp. 495-510, CA, USA, 2014. USENIX Association. Retrieved from
https://www.usenix.org/conference/usenixsecurity14/technical -ses-
sions/presentation/zhou.

Internet article: Login to experience INstant. Retrieved from http://
instant.linkedinlabs.com/, printed Sep. 16, 2015.

Internet article OAuth 2.0 Playground. Retrieved from https://
developers.google.com/oauthplayground/, printed Sep. 16, 2015.
OAuth Security Advisory: 2009.1. Retrieved from http://oauth.net/
advisories/2009-1/, Apr. 23, 2009.

Internet article oscommerce oflicial website. Retrieved from http://
wWwWw.oscommerce.com/oscommerce.com/, printed Sep. 16, 2015.
Internet article PayPal Express Checkout. Retrieved from https://
www.paypal.com/webapps/mpp/referral/paypal -express-checkout,

printed Sep. 16, 2015.

Internet article: PayPal Payments Standard. Retrieved from https://

www.paypal.com/webapps/mpp/paypal-payments-standard, printed
Sep. 16, 2015.

Internet article: Selenium WebDriver. Retrieved from http://docs.
seleniumhq.org/projects/webdriver/, printed Sep. 16, 2015.
Internet article: Stripe Checkout. Retrieved from https://stripe.com/
docs/checkout, printed Sep. 16, 2015.

Internet article: The ZAP Zest Add-on. Retrieved from https://
github.com/zaproxy/zap-extensions. printed Sep. 16, 2015.
Internet article: Token Fixation in PayPal. Retrieved from http://
homakov.blogspot.it/2014/0 1/token-fixation-1n-paypal html,

printed Sep. 16, 2015.

Internet article: Top Sites 1n: All Categories > Business > E-Com-
merce. Retrieved from http://www.alexa.com/topsites/category/
Top/Business/E-Commerce, printed Sep. 16, 2015.

Internet article: Top Sites 1n United States. Retrieved from http://
www.alexa.com/topsites/countries/US, printed Sep. 16, 2015.
Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and
Dawn Song. Towards a formal foundation of web security. CSF ’ 10,
pp. 290-304, Washington, DC, USA, 2010. IEEE Computer Society.
Retrieved from http://www.adambarth.com/papers/2010/akhawe-
barth-lam-nnitchell-song.pdf, 2010.

A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra.
Formal Analysis of SAML 2.0Web Browser Single Sign-On: Break-
ing the SAML-based Single Sign-On for Google Apps. In V.
Shmatikov, editor, Proc. ACM FMSE, pp. 1-10. ACM Press, 2008.
Retrieved from http://www.ai-lab.it/armando/pub/fmse9-armando.
pdf, Oct. 17, 2008.

Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge
Cuellar, Giancarlo Pellegrino, and Alessandro Sorniotti. From mul-
tiple credentials to browser-based single sign-on: Are we more
secure? vol. 354 of IFIP Advances in Information and Communi-
cation Technology, pp. 68-79. Springer, 2011. Retrieved from
http://www.ai-lab.1it/armando/pub/sec2011 .pdf, 2011.

Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan
Venkatraman, Prateek Saxena, Jun Sun, Yang Liu, and Jin Song
Dong. Authscan: Automatic extraction of web authentication pro-
tocols from implementations. In Proceedings of the 20th Annual
Network and Distributed System Security Symposium (NDSS’13),
San Diego, CA, USA, 2013. Retrieved from http://www.
internetsociety.org/sites/default/files/04_ 4 0.pdf, 2013.

C. Bansal, K. Bhargavan, and S. Mafleis. Discovering concrete
attacks on website authorization by formal analysis. In Computer
Security Foundations Symposium (CSF), 2012 IEEE 25th, pp.
247-262, Jun. 2012. Retrieved from http://www.doc.1c.ac.uk/~maf-
fers/cstl2.pdf.

Internet article: OASIS Consortium. SAML V2.0 Technical Over-
view. Retrieved from http://wiki.oasis-open.org/security/
Saml2 TechOverview, Mar. 2008.

Christian Mainka, Vladislav Mladenov, and Jorg Schwenk. Do not
trust me: Using malicious 1dps for analyzing and attacking single
sign-on. CoRR, abs/1412.1623, 2014. Retrieved from http://arxiv.
org/pdi/1412.1623 pdf, Dec. 4, 2014.

Giancarlo Pellegrino and Davide Balzarotti. Toward black-box
detection of logic flaws 1n web applications. In NDSS Symposium
2014. Internet Society, 2014. Retrieved from http://www.syssec-
project.eu/m/page-media/3/ndss14_ pellegrino.pdf, Feb. 2014,
Cynthia Phillips and Laura Painton Swiler. A graph-based system
for network-vulnerability analysis. In Proceedings of the 1998
Workshop on New Security Paradigms, NSPW ’98, pp. 71-79, New
York, NY, USA, 1998. Retrieved from http://web2 . .utc.edu/~djy471/
CPSCA4660/graph-vulnerability.pdf.

Fangqi Sun, Liang Xu, and Zhendong Su. Detecting logic vulner-
abilities 1n e-commerce applications. In NDSS 2014, California,
USA, Feb. 23-26, 2013, 2014. Retrieved from http://web.cs.
ucdavis.edu/~su/publications/ndss14.pdf.

Rur Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your
accounts through facebook and google: A traflic-guided security
study of commercially deployed single-sign-on web services. In
Proceedings of the 2012 IEEE Symposium on Security and Privacy,
SP *12, pp. 365-379, Washington, DC, USA, 2012. IEEE Computer
Society. Retrieved from http://research.microsoft.com/apps/pubs/

default.aspx?1d=160659.

US 9,715,592 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Rur Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans,

and Yurt Gurevich. Explicating sdks: Uncovering assumptions
underlying secure authentication and authorization. In Proceedings

of the 22Nd USENIX Conference on Security, SEC’13, pp. 399-
414, Berkeley, CA, USA, 2013. USENIX Assoclation. Retrieved

from https://www.usenix.org/conference/usenixsecurityl3/techni-
cal-sessions/presentation/wang__ rul.

YuQing Zhang, QiXu Liu, QiHan Luo, and Xial.i Wang. Xas:
Cross-ap1 scripting attacks in social ecosystems. Science China
Information Sciences, 58(1):1-14, 2015. Retrieved from http://link.
springer.com/article/10.1007%2Fs11432-014-5145-1#page-1. Jan.
2015.

The most common oauth2 vulnerability. http://homakov.blogspot.
1t/2012/07/saterweb-most-common-oauth2 . html. Jul. 2012.

OAuth 2.0 Threat Model and Security Considerations. https://tools.
ietf.org/html/rfc6819#section-4.4.2.2, Jan. 2013.

OWASP Zed Attack Proxy Project. http://www.alexa.com/topsites/
countries/US. Last modified Oct. 7, 2015.

Akhawe, D., Barth, A., Lam, P. E., Mitchell, J., and Song, D.
“Towards a formal foundation of web security.” CSF ’10, IEEE
Computer Society, pp. 290-304. 2010.

Armando, A., Carbone, R., Compagna, L., Cu’E Llar, J., Pellegrino,
G., and Sorniottl, A. An authentication flaw in browser-based single

sign-on protocols: Impact and remediations. Computers & Security
33 (2013), 41-58. Mar. 2013.

Barth, A., Jackson, C., and Mitchell, J. C. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM Con-
ference on Computer and Communications Security (New York,
NY, USA, Oct. 2008), CCS 08, ACM, pp. 75-88.

Bozic, J., Simos, D. E., and Wotawa, F. Atftack pattern-based
combinatorial testing. In Proceedings of the 9th International Work-
shop on Automation of Software Test (New York, NY, USA, 2014),
AST 2014, ACM, pp. 1-7. 2014.

Chen, E., Chen, S., Qadeer, S., and Wang, R. Securing multiparty
online services via certification of symbolic transactions. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (Oak-

land) (May 2015), IEEE Institute of Electrical and Electronics
Engineers.

Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., and
Jensen, M. On breaking saml: Be whoever you want to be. In
Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12) (Bellevue, WA, 2012), USENIX, pp. 397-
412. 2012.

Wang, R., Chen, S., Wang, X., and Qadeer, S. How to shop for free

online—security analysis of cashier-as-a-service based web stores.
In Proceedings of the 2011 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 2011), SP ’11, IEEE Computer
Society, pp. 465-480.

Xing, L., Chen, Y., Wang, X., and Chen, S. Integuard: Toward
automatic protection of third-party web service integrations. In
Network & Distributed System Security Symposium (NDSS) (Feb.
2013).

Ravi Bhoraskar et al, “Brahmastra: Driving Apps to Test the
Security of Third-Party Components™”, USENIX Security Sympo-
sium, Aug. 1, 2014, 16 pages.

Michael Gegick, “On the design of more secure software-intensive
systems by use of attack patterns”, ScienceDirect, Aug. 4, 2006, 17
pages, Raleigh, NC.

Alessandro Armando et al, “From Model-checking to Automated
Testing of Security Protocols: Bridging the Gap”, Nov. 2011.
Giancarlo Pellegrino, “Toward Black-Box Detection of Logic Flaws
in Web Applications”, Internet Society, Feb. 23, 2014, 15 pages, San
Diego, CA.

Luca Compagna, “Automated Detection and Prevention of Security
Vulnerabilities on Multi-party Web Applications”, SASSI Work-
shop 2015, Sep. 15, 2015, 40 pages.

Andrey Petukhov, “Detecting Security Vulnerabilities 1n Web
Applications Using Dynamic Analysis with Penetration Testing”,
Application Security Conference, May 19, 2008, 16 pages.

* cited by examiner

US 9,715,592 B2

Sheet 1 of 21

Jul. 25, 2017

U.S. Patent

el "Old

,mm Ew %EE@@@N%WW _&ﬁ%w%w«q YIE |

P E—— ORI =
E%mﬁu wmm ﬁﬁwamd @

W0 Ulo0] §

7] VISIA

US 9,715,592 B2

Sheet 2 of 21

Jul. 25, 2017

U.S. Patent

W = 2 2 2 2 2 2 m & " 4 W A & - A ®Ea EE EEEEEEEEEETF EFEF EF EFFF P F F P F N W N B W N B W S N J NN NSNS S s s s S S S S A S 8 S S 8 S S E S N EEEEEFFFFEFEFPEL L o0 o2 @1 o1 . " . "
111 ﬂ11..1J.'J-'l.'l.'l-'l.'l..'l-.'l..fl..'"l..fl..'.T.T.T.T.T.T.r.r.r.r.r.r.rllllllll mor o ®oF ®EoF @I 000 . s s x = s .

i
g

:_gp

t
5
b

I

oy -_r'{"
Il.l'lri'-"
Il_*.:'g .
R : H -
:": L . - . .
l'-
m‘-i:#ii&ii&ii&ii&ii&

ﬁ s m.h PR

o
i
*
1
1
3
L]
*

3
]

L]
1
L

“ﬁg
¥
]

i
)

o
g.

L IR I IR NI N I R N I I A N K

* | e, o 2
....................... S s ; - T e . A Nl N FAE - SN A

Ot et Attt ottt ol ko R nvvwvvymmmmvyvvwvvyvvwk Rt Aottt
N il . L]
' L

o
R R R R R NN

LA R E K XN X R ELE R L RN R R L LR NN NN NN KN NNN,

*

A o
X & aomoaoa a a -

L4

’
.

IF-_J. 5.

- L

A
L 2

L] d L)

5

e

m
O N o ol O i ol R T A

A &k & & A & A A SESESESESESESESESESESESESEE S S S ESE SRS RSN E R A SR EE R AR R AR R R R RN
I R R R N R RN NN
E 30 0 0 N R R T et TN TN a0 e e R R et N e T e N N N R)

N Y R A e R Y e R RN

R I I N N N I I IR AN R I I I I N I I I IR N N N I I RN

I
-

-

I

-

-

I

-

-

I

-

-

I

-

-

-

-

-

I

-

-

I

-

v -
\ -
. -
S
-
om
-

I

-

-

I

-

-

I

-

-

-

-

-

I

-

-

I

-

-

I

-

-

I

-

-

-

o

ey g

" - . - =
o o e S S) Caiy ﬁﬂﬂllllllllllllllllllllllllllllllll Calnnl ol nl ol ol o e e e CaCatnl al nlntnl ol uial ol ol ol UaCnlal alulnt ul ol ulat ul ul nl al ul ol gl nf LaCnl al i ntnl ulal ul nlul ol ulnl ulonlnl al utal gl ul nt ul nlul b ulal nl ol al ol al alal e L al_p

E]

AR R R R Ak E N
LEE I BE IR BE IR E R BC IR B B B

LR L I IR K K K R R R R K

]
4
i |
4
F]
4
]
4
i |
4
n
[]
F]
4
]
4
i |
4
F]
4
]

FFFFFFFFFFFFFFFFFFFFFF

L I NI |

- -
.

Sl

x

L4

x

Y

k
- i - a
o it P P i et i B e Tt e e Pt P i e e P i
hhh
nn

FIG. 1b

US 9,715,592 B2

Sheet 3 of 21

Jul. 25, 2017

U.S. Patent

X

lll R R R T W W W W W W NN N N NN NN aow W oo W S U O A O O S S JT O O Sr T N Bp W N ER W W L

* &+ F F F F ¥ N RS A 4 4 g 4 4 4 4 = 4 4 4 4 4 4 4 4 4 § 4 & & 2 & i e L L L L L L -4 4 4 4/ 4 4 4/ 4 & & & & & & & & & & & 4 & & N & E S E A F FFFFFF FFF FFTrF A e A e e bk kR R e LA AR AR Al
drodlh ol o ol o o o o o o o o o o F i e i e i O .T*.T‘.T.T*********H.'.I.'.*"*'r*.T.T.T.T.T.T.r.T.r.'.r.T.r.rlIIIII-l-l-11.1-1.
.

2T

[

:,,r
1

e

L]
]

E X)

]

O

]

E 0]

!

E X)

L B I B B B B RE R I R RN R DY R RN R RE R R N R B R W R N I)

1T
!Il
'l. L} :
E X N

¥

4

i

[B B B B B BF B B)
) 1]
- - "

]

ARERER R R R R R R R R R R R R R YRR AR AR AR YRR AR

P
e i i i i N

L]

Ir
-

i
‘_-I

1:|:.
nr-

[
*
L |

4 F9 kN X A

3.

* ¥ FyFyFFyEyFEysyFEysysysyysyysysyysyysysyeysysysyysyeysyEysyEyyEysysysyeysysysyy .y

I NN NN NN
L[]
|]
L[]
L
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]
L[]
|]
L[]

-

-
R *E1 EY EFDH

i1 @i

F]
+
L |
L |

1

r

»x
.

&
”

o

N R R R R R X N W N I N R R g e E E N N NN YN

|

-

u

- >

-

- .r

! -

i

&

) []

_.r. * »

] - |

A = »

L]

. -

|

a

, i

-

-

' |

.

- n
r

TR R R R A RN R R

%
L

- L
| " ;
» = Wi -
F]
_ 2 L "
HHHHHH] il

£

L]
L]
+
1
T

- 1 PR
- - r -
-* -.
N - -]

"y

™
]

[]

u

¥

-4
A
.
ks |

a

lll

llllllllllllllllllllllllllllllllllllll ERE RN ENEERERE N
||||||||||||||||||| e e R e e ek kR kR Rkl kel dedededede o momomomomomom o momomomomomoEom o= = o=omo=omomomomomomomomoaommommmommomaoamaamaaaa ARy, e, e e e e R P R A S A e a2 a2 s s a2 A A a s Ay on Y
llllllllllllllllllllllllll b & kb ok S oS A oS S oo Sl o W

FIG. 1c

US 9,715,592 B2

Sheet 4 of 21

Jul. 25, 2017

U.S. Patent

BES

“ds
Ly opR{duuny

-FRSURE FUUGp LI B

e¢ Old

L0 38 &7 uo
Iy ouonoesunl Jo uaye p Avjdey

|
U L

FOWALT IR L7 HE oRRuLg
el Ao zqu?.mﬁ Sursn SJo W B
ﬁﬁﬁﬁﬁﬁﬂ: wnoyomyy seudyy mgied

Lt

38

1

p_-----q

S
7 eduwony

d8
I 3R

W f uaiovsunyy Fuunp W0 o pipunynan iy

L4€ w g uonmesuny Suunp WJQ jo pre

.wm <
Avjdang

HiwF ARjda)y

ﬂ; V1..,. 2 .w;? T .wi EEE mﬂﬁﬁwm

.____. - o
PUE O d CARJ-0UGIEY TIOadYT
3o mﬂﬁﬁﬁﬁm CEUY h._.u_,nwr__m_mﬁ.mwmm 3 a,%.m. mmm_

[T9ALS ‘1€] PO Teepemegy 1o
§47 SRR 0 Mﬁwmﬂ =S Ul LHE]

Y

-gauduil pUTpURIC SHIMLARG IRdAEd

45w AN

SIS Y

OYEDIMRY

Hm j§4 f.mw IO} VIYO FEEII0Y .,__,rﬁ

LEC W W3 30) 7

eI 8 Ay Anpdoyg

Anjday

[1T°¢% 8¢ O8RS L Sl mﬁ%ai WO
woipdwit (37 giny) Funususiun s3g

iFs ¢TSS
Qwﬂﬁm ﬁ“rmmﬁﬂﬂﬂ twﬁmﬁmm\:@mmﬁ: th

§ ANRNY

ORI

a1 30 uondunsag

VAAG N 2iMRUERA

US 9,715,592 B2

Sheet 5 of 21

4q¢ 9Ol

mm

Eﬁ?wﬁm

SRS ,..fwmm_ : .mﬁ uﬂ

. A.m. ﬁiww m,u. 8

Sl
r - 3

ﬁm mw

B2 a.w_.ﬂ .\M\wﬂ.ﬁw ﬁ

Jul. 25, 2017
;.-e;i

w _____ ﬁm ﬁ.@mﬁ

U.S. Patent

Tvmwmlw & %mm.fm H«ﬁﬂﬁw

42

13

' m

ny Ay go sondussag

Vadiy siqiiauing

U.S. Patent

Jul. 25, 2017

X
¥

Pl
Eals
Pl
Eals
ks
s
Eals
ks
s

i

N

i
¥ Jr:lr

R
AN
e
¥

i
Ea
P

I
s

i
i

i
i

TN N,
M)

Jr::r X Jr:’r:lr x Jr:Jr
g e
e e e e e
PN N
X

i
s
s

ar d d
a3
Iy

X
PN
¥
¥

oy
™

e e e e e e
i

X
X
¥

>

iy

Xy "

N xx

E
¥

X
I3
s
s
s

P
ey
P

N N N)
i

¥
i
x4

X
i

o
i

A
s
e
e a
i

Fhfinfiylt

)
)

Iy

N
X d o d
Iy
)
X

N N

Foay
Xy
i

ES
EaE
P
iy

P
i

-
N N N)

P

X
I3
s
s

e e

N A
A

i
ar
Ty

el
ol)
L N N
o

i
X
¥
i
X
I
F3
X
¥
i
X
I
F3
X
¥
i

X i
x
¥
¥
X
¥
¥
¥
F
¥
X
¥
¥
¥
¥
¥
w

oy
i
-'r:-'r
o
i
i
-'r-'!-'r-h-'r-'!-'r-h-'r-'!-'r-'!-'r#####:##k#k############k
i
i
i
i
¥
i
X
r

o
X
X
X
X
X
X
X
X
X
X
X
X
"

s
i
i
i
I3
s
X
X
s

¥
¥
X
x
¥
X
i
¥
¥
X
¥
¥
¥
F
¥
X
¥
¥

i
x Pty P NN N

X
X
X
¥
X
X
X
X
X

RN
-\-""a-:a-:-n-
RN
N
o
™
oy

RN
P
)
arar A
"'-a-*-t:a-
el

¥
oy
Plafiy

Attack
Patterns

i

X
)
i
)
X
X

i
Eals
¥k x
Py
s
PN

Xk N Ay
EE ek ko
Xk kK N X KKK

Ea)
™

i
X

PN
Ea

i
i

P A)
N N N N N N N N N N N M)

Xy

X
)

)

i
Eals

PN

e e el

X

I

I

I

i

i
a-ha-ha-h:a-:-ha-h-t-ha-n-a-h

X a

Ly

Foy

X a

s

Ly

X a

Eay

o

|

i

i
x
¥
x
X
X
x
x
¥
x
x
¥
*

X

X
X
X
##:############-\'##
X
X
X
X
X
X
"

dpdr e e d e A e e e i e
a e

N N N N S)

X
¥
X
X
¥
X
X
¥
¥
X
¥

"

iy
™
¥
¥
¥
X ar
r

i
P

o

¥
i
¥ ¥
i
Eals
i
X ¥
¥
a
i
e e e
o ¥
i
]

)
r

Ea
i
P
i
Ea
i
¥
i
x
]

FUa g
PN
FUat g
X

i
Foar)
Xy
-u-:-u-"'
)
[

e e e e T e e e e e e e e e

i
N N N]

e e Ty

ifins
i

i
i
gty
X
r

P)
i

i

r

i
N e e e
o a
i
o a
i
X
i
i
X
i
r

X
gy
X
oy
¥
¥
¥
¥
X
¥
w

Pl
arar A
Pl
arar g
Eas
Py
P
el
L a
X X
I

i
¥
e e e e e e e e

M N A A)
¥

i

i

r

e e e e e

i
i
gty
X
r

RN
NN
¥y
Py
Xy
E
arar
E
i

x
¥
x
x
¥
*

¥
¥
X
¥
i
o
¥
¥
X
¥
¥
o
*

X

X
i
o e
i
r

P
i)

X

i
v
o
- lh.l- | I

¥
s
i
i

™
3

Xy
:-u-"a-"'-u-

i
S
P

X

T e e e e e

F]
AN
*Jr"arﬂr:a-:ar:k:a-:ar:a
&

e Ty

-
¥ Jr*:*:*: *:*:*:*:*:*:*:*:ﬂ
PN X K kK

X ok N ok koA
)

X

Eal

i
P
|

Foay
i
r

i

Fo
i

Foay
[

i
gty

i
r

i
s
*

FUa)

Foay
[

i
Xy

Foar)
Faagr)
i

s
s
X &
s
X X
o
s
s
X &
s
X X
o
s
s
X &
s
X X
o
s
s
X &
s

F
X
¥
)
F
X
F
X
¥
)
F
X
F
X
¥
)
F
X
F
X
¥
)

¥
¥
s
Eals
ks
s
Eal s
ks
s
Eals
ks
s
Eal s
ks
s
Eals
ks
s
Eal s
ks
s
Eals

ot i

Ea
i
dr o

Foy
Foay
i

X
X
)
X
X
)
X
X
)
X
X
)
X
X
)
X
X
)

x

i
N N N

Foay
Foay

F3

i
s

i

Foaf el ity
Pl el gty

F3

i
s

i

Foaf el ity
Pl el gty

F3

i
s

i
i

i
i

.y
-rr-lr-lr-vr-lr-\-rr-lr-lr-vr-lr-\-rr-lr-\-:-vr-\-\-rr-\-\-vr-\-\-rr-\-\-vr-\-\-rr-\-\-vr-\-\-vr-t-t-vr
X
Jr-lrJrJr-IrJrJr-lrJr:Jr-\-JrJr-\-JrJr-\-JrJr-\-JrJr-\-JrJr-\-JrJr-\-JrJrJrJrJr-\-JrJr
™
i

s
s

o
s
s
X &
s
X X

X
F
X
¥
)
F

s
Eal s
ks
s
Eals
ks

X
)
X
X
)
X

F3

Foay
Foay

i
s

i
i

i
i

s
s

¥
-'r:-l'-'r-l'-l'-'r-l'-l'-'r-'r-i'-'r-'r-l'-'r-l'-l'-'r-l'-l'-'r-'r-i'-'r-i'-'r-'r-'r-l'-'r-\'-l'-h'-l'-l'-h'-i'

i
o T T T T T T e T T T e e e e e e e T

PN]
Tt
P
X

i

i iy

X
¥

e e e e e e e e e

X

N)

Jr d drod kb d ko dod ok dd ok ok

dr e ar e ke dr ek ko a

X

ER N e

FUal e gty

xx
L)

FUat g

L)
X ¥

Foay

xx
L)

FUat g

L)
X ¥

FUa g

ks
X X
Eals

roa

X ¥

Foay

xx
L)
B
L)

T

-'r:-'r
o

:#:Jr:lr:lr:lr:lr* f :Jr:lr:lr:lr:# o
) P 3N
NN N) LN ¥
a-:#"a-"a-*a-*a- PN S
X

i

EaE ot o

o N e e ¥

Jr:Jr:Jr Jr:lr:lr slr*#*#*lr:#:k:#:#: ¥

X kX K X K ¥ X xrx BX ¥
&

NN NN NN

#:Jr:q-:lr:ar*
E N)

“
X
¥
X
X
F
¥
X
¥
¥
X
)
¥
F
¥
X
X
F
¥
X
¥
¥
X
)
¥
F
¥
X

X
¥
¥
X

M
T
™
::
:*:*4-*
aa N
X a o
P
e
o
Xk kX
P
EEE
X koK
EaE
e
Xk K X
aa N
e

o
EE
#:Jr:l':lr:l':lr:l"r
EE ek ok
P NN NN

P A A A Al A 3 Al e)

»

Iy
i
X
I
i
X
IS
i
X
IS
i
I3
IS
i
X
IS
i
X
IS
i
X

Foy

¥

i
P e

Fo g g)

IS
i

i
F i a r a r a r a al r pr r f

¥

e

Foay

X

¥

e e e e e e e e e e e e e e

F A i g e e

I N N e B D NN D N NN O D N N N

¥ ¥
¥
X X

Py
Eals

e e

i
dp e e g e dp ey e p dpr e dr e p ey e e dr e ke

N e e e e e
N

X

i

»
X
»
¥
»
¥
»

¥

X

X

e e

O N M

P
]

Fo
i

Foay
[

E)
i

i
gty
i

r

X
5

RO N RN
Py

P

[

e T e e
e e
P N N N)

I
¥

NN
¥
r

dr oy ey ey
i

o a at a a

¥
X
¥
¥
¥
¥
¥
w

X

I
¥
i
¥
-t-\'-\'-'r-\'-\'-'r:-\'-\'-\'-\'-\'-’r-\'-\'-’r-\'-\'-’r-\'-\'-’r-\'-\'-\'-\'-\'
¥
¥
r

aa
_:-'r N
P
LK
X
i
i
i
i
r

¥
¥
¥
¥
¥
¥
w

ny
;:*:*-u-.\-a-u-a-a-u-
PN
i a
NN N DN NN D D MM NN S NN M
e e e e
| I

X
X
"

- ¥
-'r:-'r-\'#

P)
e o e o e e o e e e e e T e

F g g a e g al r al yr a alr y
Fo e e g g el i g

g g g a a aa a)

Fo A g g a r rr a a al r a

P N g g

i
N N N N N

A I N N B D NN e 0 A N N A D D 0T

T

i
o
o e o T o T e o e T T e T e e T T e T

e e T e e e e e e

i
ar ar i e e Ya o Ty T oy e o o e e T Ty T T T Ty
N N N N N N N A

o
o o e T e T

T
X X

N N N N N N N N N NN N N

¥
Jr:-v.-
e e e

s
X

i
ot
X
¥
i
X
ke

-
e o T Ty

PN) Eaa
T T g, L

R Y Y VL
-
s a-*a-*a-falr*q- N

F]

e T T T e T e T ey

RN NN, WAL A NN N NN
bt o

Ea o

Ea o

EaEN Ok kXK kK N K kK

> X
F]

AENICRING Ko o WORHINA
N N N N N N A

E)
X

EaU o
S

a-:a-:a-:a-:a-:a-: X :a-:a-:a-:a-:a- Tt *a-:a-:a-:a-:a-:x
-
Ty T T Ty

A A A A A e e e e

N)
e Ty

ECaE)
Pty

N aE aE a aE aEaE aa

N N N N N)

E A A
'
e e

¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
T 4

X

T

Pl

:*:*:*:*:*:‘
-
NN N NN

ES
g
E

™
RN N
X

i

r

X
¥
ir
X
X

gty
X
"

X
¥
¥
X
¥

"

¥
¥

¥
¥
¥
w

X X

a4
i

a
ottt
X a
o
o
[

X
X
¥
¥
¥
¥
¥
w

X e a a yk
|]
P P N]

N
k:k:k:k:k:k:k:k:kfﬁ .;Jr:lr .
.
e a a a P
A LI T 3

LC A
il

Xx
Pt

s
X

T &
Pty
ey
X a ey
X
o
X
X
"

X
e ek
i
X
¥
i
X
r

RN N

X
X
X
X
X
X
"

T &

1K KKKy Y

X
¥
"

¥
¥
x
¥

"

)

e
RN NN
T

Tt T e T

N

wodd
-r-'r-'r*

¥
¥
X
T '
¥
-i'-'r-'r-'r-'r-'r:-'r-'r-t-t-'r-t
"

ENCNE E N e o

i
Foay
r

r

r'-t:-t*-t*-t Xy

Nl M al

T 4
Pttt
r

a
i
i

A

g ar g e g e g g e g e e

P e R e
L
X

"
»
¥
a»

¥ Ay
P
L g e

XX
xx

s
s

ok d ok h ok ek ko kNN

e e e
X e

"_:_‘_-u- ok
f._-h._-l'

-

™
__.:_a-:xr:a-:a-::r ¥
TR et e)
et e e ety
ot
X
X X kKK kKK
X ar kN
o
e
L o
X
X ok kK ok
Dt ol ol ok
N e
N N
ot
R MM N M NN

Jr:k:#:#:lr:#:lr:lr:lr:#:lr s
e e

»

i

PN
¥

X
X
)
X
X
)
X
X

»

dr e
a
i

Foy

i X

Foay
™

X
X
X

X ¥
B
xx
X ¥

»

iy
N s
'

X

i

i

i

i

i

X

i

i

i

i
-h-u-:-h:-u-h-u-h-t-h-t-h-u-
N

i

N N M N M)

¥ Jr:Jr:#:k:#:#:#:#:#:k:#:#:k* .
Er et ekl o kol
o N o g
F]
e e e e e

-
T T

e e

Jr*k:k:k:k:#:k:k:k:#:k:k:x
N A
N
ek bl ol b 3 el o
N

F]

N NN NN NN

DNl
X ok K Nk N kKN k
EE ok)

-

U N NN

X

X -'r:-'r:-'r
'y
i
F
X
i
¥
X
i
i
X
r

i

e

i X
™

X
)

P

RANNRNNNNNNNNNNN
N

)

Jr:Jr:Jr:Jr:Jr:#:#:#:#:#*#*Jr*#*#*#*#*#
N

P
P
ay
E
P
Xy
¥y
E
ay
E
P
Xy
¥y
E
ay
E
¥y
Xy

oy ey

P N

¥
E
E
Xy
ES
E

Ty

N

S

I e e e e e e e e e ey
)
e e el
‘rJrJrJrJrJr:Jr:Jr:Jr:#:#:#*#*#*#*#*#*Jr*#*#**
o
RN M NN NN N NN
NN NN NN N MMM

S el
X ¥ **k:k:k:#:a-:k:a
N M M
NN N N NN

F]
AL NN

x Jr:Jr:Jr:Jr:Jr:a
F]
R NN

s
Foat g
P
i

:-h:-'r-h-'r
o a
P
i
Py
¥
¥
i
¥
¥
r

P

N N

E N N N N N A

Nt kel
R NN N N NN N NN

:":"::"Jr P :*:*:":*:":":":*:":*:":":*:*:"
ol at aal ok b aa at F aE al ak aal al ak
o N N e O
N N al a a a a aa al aa a a a
o Nl Nl ke
g a a aa a a
L N) E R S g)
X oa Kk Lt kol ok
N o N ey
X ok K oKk oh o Bl bl b
X X K KK X L A et o N N
D N N
X kK Xk ¥ N
X oa x ok bt St ok aF ol ol o aF el
X X K KN A N A g
PN N
) N N ok k)
Xy x a o e e
N N N N e
X ar ey Lt kol ok
JrJr####EI‘#;###############
X ok K oKk oh P BN el ol
EE etk o N ol ke
B o N N
X kK Xk ¥ N
D e b ok el S aF s a el o aF et
N A N A g
X ok N ok Nk k K o NN e
P N N ok k)
Xk o e e
Xk x x K x Wy X X Kk K kKN E KKK
X oa Kk E b o o
ECNCE NN N A
X ok N ok ko k kN ok ok ko koKX P N
L o N N S EE ok)
######*##t#### S WO
Xk kK X EE CaE N N
X ok Xk bt o o at
Jr:Jr:Jr:Jr:Jr:Jr:Jr e :a-:k:a-:a-:k*& *#*#*#:a-:k:#:a-:k:x
Xk Ea s NN e
X kX kX l‘#l‘k#mlrl‘lrl‘lrl'
PN EE) s
) EN CaE N
X ok N ok ¥ ok K N ol
X X K KK X X kX KX Bl o
B) s
X kK Xk ¥ Xk x ki ENC N N
-
T T T :Jr:a-:#:a-:ﬂ
x i e E Rk Jr:lr:lr:lr:lr:lr:i
t#*i#####a
Ea
X ok N ok Nk
o) Jr:lr:lr:lr:lr:lr:i
o at
R g
X ok N ok koA
x EaE
s
:"a-*a-*:*:*:*:*:":"
o b
Bl o
-
NN

el

L
-
T Y

i
i

Ly

o

CUT

Se

£2X per‘t

-k
X'
-'a-*a-:#:a
1 'a-:a-:a-:a-:a-:a-:a- N
i,
N el ol sl sl el sl)
2 T e T T T e T T
o e e T e e e ae
A T Ty T e T e Ty
T e T e e e e e T T T T
2 T e T T T T
d A T g g e e T o T e g T
e T T e o T e o e T o T T Ty
oA T e e e e e e e T e
1A A A AT T T T
Ao e T e Y e a ae aea Tarae
g
oo o e T T o T T o e T o T T e e T Ta T
e a T a T
L A A
W Ty T o o Ty e e T e o T e T T
F o A e Xk
N A X ¥
o T e T - Pl
W T e e T ae e T xx
o e T e T e T T Pl
T T o T X
e e X k'
'rkk##mlrlr##kklrk# x' ki
Pl T ol Sl T
O el o N Pl 3
P P XA
a2 W
o e e e e
C Sy N P N
e P
:k:#:k:#:m:#:k:#*#*k el sl
P N N
T e A
Ty Pl
CNa o
o P W
T ol
oy P

X X X
e o

Pl P
Tl Pl
X oo
S P
;,,;,,;,,;ﬂ;;;*} o
e Xy
[iy e e
A A
Pl P
S o g
Pl P
:a-:a-:a-*a-* *#*#*a-*#:#:a-:#* x
T Pl
wixy Faragrara
P P
Ky P
X X
Ny P
l':Jr:#:#:#:#:&:#:#:#:&:#:&J:r a-*#*#:q-*#*#*a-l
r#k##k##k###k#:hti####
o e ey ey Py ey Pl
S Al N X R
A A A e A A A e e e e Ay e
L O N S R g Py g eg e
L e g b o ool
A el Sl el Sl gl el MM Mt
e e e e e
e g g g e
A e e e a a a a a a a
L A N A S R R e e ey PPy Py
e e e e e T e e e e Ay e
A e T T T e
e e e L e o oy ey o
E e e AT T

Jd
e 'r:'r *#:a-:#:#:a-:#:#:ﬂ
T Ty L TR M a0 2
W weeln e
P (LN LN
el LML S o 0
ExEn NN KEy
L 3 ""i’ i’"""i’*i’*ﬁ'*i’ ey
Ml e e e e e e
e e e e e e e
T: "bi' i’bﬁ'*?bi’**bi’*i’bﬁ'*

':-"'r e e e e T e
ey e e e e e e e e
i’"""i’ ""i’ i’"""i’*i’*ﬁ'*i’*i’*ﬁ'* !
ety e e e e e e
ey e e e e e e e e e
i’bﬁ"-i' "bi' kkﬁ"-i’*?tﬁ'bi’*i’bﬁ't !
ey e e e e e e e e
N e e e e e e e e
i’"""i’ ""i’ i’"""i’*i’*ﬁ'*i’*i’*ﬁ'* !
ety e e e e e e
‘_i'*i"_ *i"_ *i'*i' "‘_i' r "‘_i'*i' 1
i’bﬁ'*i' "bi' i’bﬁ' i’bﬁ'k !
ey ey o O
ey e e e e e e e
i’"""i’ ""i’ i’kﬁ'* i’kﬁ'k !
ety A N
ey e e TR e e T T
i’bﬁ'*i' "bi' i’bﬁ' i’bﬁ'k !
ey e e e e T

i L r F Fr k F 1
e LA LA
*bkﬁ-t "bi' kbkﬁ- v - ﬁ-*b*k |
wror L Lt
ML N, 2 o LN
ey ey ey

Fir * [= ok ki 1
e AL Al LAt Al
NN NN N

F r L B J F i k i Ir 1
o IR

" " NN
L LM ol Ll
e LA LA
NN NN NN

F r r F r 1
e LN L allaAL
""t "‘_i' r "‘_?*?‘_ﬁ'* |
L) L Al
e wrow LAl
NN NNy AN
ey e e e e e e e e e

S " P O S S e S 1
""t "‘_i' k"* *"* *"*i' |
NN NN NN
i’"""i’ ""i’ i’kﬁ'k !
ety e ey
ey N NN
i’bﬁ'*i' "bi' i’bﬁ'k !
ey wr ey
N e e
i’"""i’ ""i’ i’kﬁ'k !
et e ey
NN N x NN
i’bﬁ'*?b bi’ r i’bﬁ'k !
et " ey
e “r e
i’"""i’* *i' i’kﬁ'k !
et "r ey
NN v NN
i’bﬁ'*?b bi’ i’bﬁ'k !
et " ey
e “r e
i’kﬁ'*i’*i’ *i' i’kﬁ'k !
S "r o U
‘_?*?‘_ﬁ"_i’*i’*ﬁ'*i’ *" "‘_?*?‘_ﬁ"_i’*i’ 1
i’bﬁ'*?bi’*?bi’*i’b b" b?""bi’*i’bﬁ'* !
NS LA
e e e e e e e ey

.
i’kﬁ'*i’*i’*i’*i’*i’* r *?*ﬁ'*i’*i’*** !
e e r e e Ty
-
‘_?*?‘_ﬁ"_i’*i’bﬁ' v "._i"_ﬁ"_i'*i' 1
i’bﬁ'*?bi’*?b r "-"'*i’bﬁ'* !
et r R

[[1
ki r "

Fr - 1
i’bﬁ' r |
- r

r
r
r
r
r

I O
L N N N N N
L N NN N N NN
L N I
I I I N
L I I I

ry¥ ry¥ ¥y Y roy¥roy Yoy royrry

-
ax

T
ax
T

e e e e i i i T e e e i i i B
T T
T T
o
o
x x

N
- -
iEq

ax

T
ax

-

-
ax

L N N Y)
-
-

I I I I I
x

A N N N N N N NN N NN NN NN NN NN NN NN NN NN

e I
NN N
raroraror
o
L L
ax o
)
x o
T T
x

x

..-
x
x
-
x

L)
LA I
L)

+

X
a»

L I A A A A A T A
.

NN NN N NN NN NN NN NN NN NN NN NN NN NN

™
iy
S

i
I B I I O B B e]

PN
EEN
¥
EE
PN
X X
EE
EEN
¥
EE

X
X
)
X
X
)
X
X
)
X

¥

r¥r r Yy Yy yYT YT YT rYYYYYrYYYYYYYYYYYYYYYYY Y Y YT SYSrY YISO TT

L I I I
s

m
. **
aTx Ty
Pt
Eal ks
g
#*Jr*lr:a-:lr
A
Eals
o x
s

Foay

IR NN N
i

F3

N NN N
ara Ty

i

TaTa
M]

i
X
i

x
i

x
e e e
X
ey
'y
P A A A A A S A A A A kA
NN

]

e
B
e
X ¥
P
) xx

X
)
X
X
)
X

Foay

i

X

F3

i
P
P
Py
i
i
iy
X

)
P

EEE b ok £l ot ot o e
I o

oy

4
LACNE NS Sl el g g) 4-*#;*4-:*:#:#1
L) W e
L) X X N K X X kK ¥

PN EaCE

¥ *Jr:lr:lr
KR Kk K Ky kN R KK X

Pl X o
:Jr:lr:lr:lr: *#*#*#:#:a-:#:#: Jr:lr:lr :Jr:#:lr*
Xk k¥ ¥k X k¥ ENEN
:Jr:lr:lr:lr:lr ok Jr:lr:lr:#:lr:lr:lr o Jr:lr:lr:lr:l
EE X ar a L
oAy Ea o O
##kk###k@##kl
L) EaE b o L
PN EaE X a o
L) X ok X kX Xk kK
4
r:k:ar:a-" NN *a-:*:*:&*kﬂ*q- ¥ *4-:#:*:#1
Yoy))
¥ P Ca
L) X X KN X X K K K
EE EE X ar a
oy Ea o x
Xk k x Ea EaE
:":*:*:":*:*Jr*:*:*:*:*:*:*:*:*:":*:*:*:*:":
4

D N N A NN

E
"
o
Ty
“r
e
Sy
e
“r
Ty
“r
e
r

¥

T
x

T

T
x

o
o
x T
X ox

x

x

|Jrararar;

F

£

X X
X
L)
X ¥
Iy
X
ENE)
X
L)

X a

e
Eara)

X ¥
Iy
L)
X ¥
Iy
X
LN S NN
Iy
L) E)

W e

r:a-:ar:a-:ar *a-:&:k:&:a-;
L) EE b

X a

L)
N N

Pl iaiers
P N
'r:#:#:#*#*lr ok Jr‘rlr:lr:lr:#:lr:lr
o i

drodr oo ko ko d

X ¥
:Jr:q-:lr:q-*‘f#ﬂ-}:Jr:q-:*:#:q-*
S iy ¥

ENE N s e

##kkgksi:ik####
L) b

4
NN N RN NN N A AL N NN

X A Y
Ea) Xk

Sheet 6 of 21

'
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L
L
r
L

-

F

L]

-

i o
X
Xk kK a4
X & X gy -
EE

-

L]

PN

N

o
-

i

i r

X
)
X

X X
Eals
X X

i
i

s
F3

Eals
ks

i
i

s
s

i
i

X
P
it
X a

PN
it

N N N N N N N M)

i
™

Foa
)

s
s

¥
)
F
X
F
X
¥
)
F
X

s
Eals
ks
s
Eal s
ks
s
Eals
ks
s
Eal s
ks
s
Eals
ks
s

X
)
X
X
)
X
X
)
X
X
)
X
X
)
X
X

X X
Eals
X X
s
X x
ks
X X
Eals
X X
s
X x
ks
X X
Eals

X
X a

Foay
Foay

Foay
Fay

s
s

X
Foay

'
:-'r-'r-'r X
o e e

s
s

X ¥

e e e N
i

-'r:-'r
e e)

bbb
4
e

B I O O I I I B O D I O T I I I O I I I R I I I I I I)

L I I O I I O I O O I N O I I A I O O

XN,

Fl

s
F3

X
N

F)
i
i
X
x
¥
F)
o
i
X
x
P
F)
o

PN

a
oy

P
X

X

P
)
kX

FIG. 3

US 9,715,592 B2

U.S. Patent Jul. 25, 2017 Sheet 7 of 21 US 9,715,592 B2

FIG. 4a

T

-
. T
[
o

r

oW
+ r

h B bk b b b b b b b b b b b b b b b b b b B b b b b b B b b b b B B b b B b b B b b B B b B b B B b B b b b b b b b b b b b B b b B b b B b b b b b b b b B b b b b b b b b b b b b b b b b b B b b B b b b F & b b &b b 3§ F []

; 4 & b b & b b & b b & b b b b b b b b B b § & b b B b b B b b b b b B b b b b B B b b B b B b b b B b bbbk kW bk Wbk bk Wk kW bk kbW bk Wk kW bk Wk kb k kWb kWb Wk kW bk kK bk kW bk kW bk kKR kN R R R R R | T T T) ‘-* 1]

b B = b = b = b w bk v b = b = b v b = b = & B = b = b = b = b w b » b = b = b v b o b o b =0 b = &k L] B = b = b = b w b w bk » b = b o b o b o b o b o b o b o b o b o b o b o b o b o b o b w b o b o b o b o b o b o b o b o b w b o0 b 0 b = b =k I+ '* |] -
v

*l*l*l*l*."l*l*l*l*l*l*l*l*l*l*l*l*l*l* l*l*l*l*l*l*l*l*l*l*l*l*l*l l*l*l*l*l*l*l*t
B b b b b B § & B B B B b b B B b b b b B bk b b b b B b b bbbk LU I B B N
4 & b B b P& b b B b b B b b B b b bk B & b b B b b bk b b & bk kbR
*.I.Il‘.-.lll.-.lll. ll.-.lll.-.l...Illll‘-
L]
- -

%

-
. -k
. -\._"'.
. _,,.f‘.
r
I T

._.:1

N

L]

F
L] T
L]

-

- -

=
ﬁ"' r'l
LN iﬂl
5
i S -

L
L]

i
[]

1
e

LI
- B
T

&

e

.-..
]

-
]

-.

]

T
-

R e e E E E R E R

..
|
-
-

-
[]

e T e e

ABENAENNSENN RN SRS RISSRRSERSNERAS R R N, JURBES e e
; u LN 1 M . N

T T A A A A

I.l LI l-l L lrl B & bk b & bk b b bk b b bk b b b b B b B B b B B b B B b b g [] LI I N
B b &k b & b b & B & b b b F K &k b B b b b b b b B b B B B b b b B b b b b b & b &b b &b B & & bk b b b b §
B = b = b n b n b =m b o b o b v b o b o b o b o b o b o b o b o b 0o b 0 b 0o b 0 b 0 R b b s b on B,

E::'- {.s-"'rﬁ

L | . F

e
o
Ju
-
-
s -'.-5-
ra B '
f-.g-ﬂf .

:E_

T T T A A A A A A A LS
-
1
r

-5
%

"vm-ﬁ'

£44

4 4 & 4 443484438 asEsasaasasasasassasasasassasaasSsasaasaSsassasasasassassasassasasasasaSassassasasasassaasaasaaaasSaasaaSaasaaasaaaaaaaas
L]
e e
. - SR .- e C - - . - - L CRCIE I T a -
LB
g
aza

-.-
A
Sy
s
a%a

Y
r
.
.
T
e
LI
)
-
n
ol
-
ﬁ -
Y
-

[]
II:I'II \
ar

.I--
X
]
'
L
*
" -
ig:;:.
-ama
T e e T T e e e e e e

- m k.]

L] L]
—H B RN N EEEEREENBENNERENNNENN. -'II-II-I--II. II-II-II'IIIII‘:_I"IIIII-I"II IIII-II-II-II-II-IIIII-II:_IIIIII-I"III RS FEEFEEFEEy -II-IIIII-II-IIIII-II-IIIII-II-IIIII-II-III* L e e .
A E E EE I EE S EEEEEEEEEEEN E N E N EEEEEEEEEN E N EE I EEEEEEEEN EE EEEEEEEEEEN E N BN IS S SN S NN NN EEEEEN EE I EEEEEEEEEN EE SR EEEEEEEEEN HE NN I NN IS I NN NSNS NN NN NS EEE N EEEEEEEEEEEEN EEEE NN,
) = b = b = b = b = b = b = b = b = b o b o b = b o b = b = b = b = b = b = b o b = b o b o b = b o b o b = b o b o b = b = b o b = b o b o b = b o b o b = b o b o b = b o b o b = b o b o b = b o b o b = b o b o b = b o b o b = b o b o b = bk n b o b = b o b o b = b o b = b = b o b o b = b o b o b = b o b o b = b o b o b = b o b o b = b &= = h.
C LN N N R R N N N N R R R N N R R R N R R R N R N R R R N N R O R R N N O N N N N R N R N N N N O N R R N O N N R R I N R N R R N N O N N R O N O L R N O N R R O N N R O N N N O N A O N A R A N R I R A A N R A B R D R R AN DR DN R R DAL LR DAL B DAL DA N R BN DL T R B
T

* ._i x
:
etk
o o

Taa s
.
",
S

]
'l
-.|
»
a
L
'

e

A,

it
%
e e
4
[| & "
LA -
[] [I
ﬂ wr
a vl {4 =

A
-
*

W]
x v
s
-
-

ﬁ"

¥

1]

T
e

r

r L] +
I ;:'- .

e
.

e b i)

l:l::"_
]
T4
]
. R
3 x
. LB AR

5
I

s wwrr
L I
v

]
L

E ‘P
B
e e
A l'...,: _l'

"
ra 4
.
+ =
_. - 1
e A
A
1] *'.
r
:i #‘t
L) ‘I-'r
-+ -+

LA N N

] "
il- rb'" |'| '.|.'.'| "_Jr - .
ry m e ':l

L]

l-:lfE

T
%‘iﬂ' :
TaTaT

h.

g‘r

T L]

W]
ad

|
‘i
R
F. .

-y
J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'.-'J'J'-'J'f-'i'f-'i'f-'i'f-'i‘i‘-‘i‘f-‘i‘f-‘i‘.h
X .
W
-.

W
-.

[I] .I. l.h. l.Il'-'-'-'-'-'-'-'-'-'-'-'-'-'- -'-'i'-'i'-'i'.'i'i'.'.'i'i'.'i'.'i'i'i'l'i'l'.'l'.'l'l'l'.-'l'l'l'l'l'l'l'l'l ------'-'-'-'-'-'-'- L] -'- L] -'- L] i'. L] i'. L] l'l E] l'l'l'-------'-'i'-'.'-'i'-'l'l'l'l'l'l'l'l'l'l'l' T T *b*
B b b b B bk B B b B B bbbk k [] [] B bk b b bk b b bk b b b b B b b b b B b b B b b B B b B B b B B b B B b B B b B B b B B b B B b B B b B B B B B b B B b B B B B B b B B B B B b B B & [] [] [] [] [] B bk b b b bk B bk bk B bk kb k K LI I N I] LI I N I] LI []
-H*****qy#;;;;*bbbbbbbu-u-u-u-rlru-r.-l.-l.-u-l.-u-u-J.-J.-JrJ.-J.-J.-J.-J.-J.-J.-J.-J.-J.-***k***;*;*;*y#;;;;;;|.-.n-.nhnnn R R ok
- LI T R B B) = b on = b = b = b & B b b bk b b b B bk b b k& [] [] [] [] [] []
L]

Ta Ta l'lbbbbb

LI LI [] [] [] L
[I B |

[] LI

L]
N . .I.lll.I.lllililllilillr"l'-'l'-\-*.
[] B b bk b b b bk b b b b bk LI

x
-
]
- r
-
-
]
- r
-
-
]
- r
-
-
]

1] 1] 1]
| I | I | I
R e LN N R M M R R g N B N O N e e e R R R T R .-

U.S. Patent Jul. 25,2017

L T
Sesrion

(s 5P

{Ung, 5P}

(U BPps

{Ung SPyy)

Sheet 8 of 21

P AR SPy
200k Checkout

3. Enter credentials Uy

Vst TRI SPy
20 ek Checkout

3. Emter credentials Ly

.0 R 8Py
20000k Checkout
3. Enter credentials iy

1. Wisit LRI SPy
200k Checkout

A Emter oredentials Ly

FIG. 4b

US 9,715,592 B2

Flag

ot

“bought Iy

%

% jf:::ug}-it ,fﬁ

& W

En j{}y fg" i

& W

Enjoy fa”

Fieament

fratal vy

Foken

Liata Flow

2P-TTP
TTE-5P

Aynlabel

FIG. 4¢

SembLabel

MAND, AU

' g, o
.:' L r':I .1{ ! - = - ;=r
AT AN i/ . R ¥

US 9,715,592 B2

Sheet 9 of 21

Jul. 25, 2017

U.S. Patent

" susaned
4oRNY

L e]

] F] Fl a4
”b.H.:.H.'.”b.H#H#”*H#H#”*H#H#”*H#H#”h H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H.'.”b.H.:.H#”*H#H#”*H#H#”*H#H#”*Hb.
A e T e e e e aa Ta F o A A I Al A
F A B o e
Jd
A T e T o e T e T e A A T T e o T e o o e T o o e T o e T e u..H*H...HkH...H...HkH&H...H#H...H#H#H*H#HJ ...Hu_.H...H#Hu..H*H...HkH...H...Hu..H*H...HkH...H...Hu_.H...H#Hu..H*H...HkH...H...Hu..H*H...HkH...H...Hu_.H...H#Hu..H*H...HkH...H...Hu..H...H...HkH*H...Hu_.H...H#HkH&H#H#H...H#H#H&.H#H&H*H.
o oA A T a T e o T T ar o T e T o a aa a Tarae a Tara a Tar ar ae Tar Tarar ae Tarar ae Tar Tar ae a Tarar a Taray a Taraa a a a a Tarae a Tarae o T Ta Ta T Ta T
4
F o A u..HkH.,_.HkHkH*HkH#H#HkH#H*H&H&H#HJ .,_.Hu_.H.,_.H#Hu..HkH.,_.HkH.,_.H.,_.Hu..H*H.,_.HkH.,_.H.,_.Hu_.H.,_.H#Hu..H#H.,_.HkH.,_.H.,_.Hu..H*H.,_.HkH.,_.H.,_.Hu_.H.,_.H#Hu..H*H.,_.HkH.,_.H.,_.Hu..H.,_.H.,_.HkHkH.,_.Hu_.H.,_.H#HkH#H#HkH#H*H&H#H#H&H#H.
o o e o ae o o U e o o o, o e o oo o o o o e Do e e e e e e o e e e
o oA A T a T e o T T ar o o o T o T o T o T T e T
A e T e e e e aa Ta oA o e T o e T o o T T o e T e Pl
F o A P
ar oo T o T e a a a Ta ar o o e T o e T T o T T o T T T o
A A T a e T e o T o e T e T e e T o
F A F o N Pl
o oA A T a T e o T T ar o o o T o T o T o T T e)
A e T e e e e aa Ta oA o e T o e T o o T T o e T e Pl
F o A P
ar oo T o T e a a a Ta ar o o e T Ty e T o T T o e T T e o
A A T a e T e o T o e T e e e e e P
o A T e T Pl
.........k.....................h..nunl.lwl o x T Hm‘ N x K e NN
A T L P
ar T W o
NN M._.#k o
A T T x4 Pl
ol HiHthHiHiH_..—r TH.___.H&..._..._. - ...H...H...H...
T P gy -_W..; (Pl
~H~..H...H*H...H.¢ ...H...HkH...H*H...H#ﬂ&...._ » ._,...qH._,.Hh HkH...H.;H...H....._..;J! " I-HH kH...H...H...
T e Ty T e T T e o T e T Foas Pl
P N o Tk U valragrags T P
T e Ty e a a] ar o o e T o e T T o T T o T T T o
P A A T a e T e o T o e T e T e e T o
T e T L A A F o N A N Pl
T o oA A T a T o T T Pl Pl el el sl ol)
T e Ty A e T o e T e e T T e T T Pl P, W Oy Pl
P N P x PN Xk P N A P
T e Ty T e T) x)) u A T o
P Pl P N N xx P o T P
T e T P N e x4 Xk x P Pl
T Pl)) x T) ar T T
T e Ty T e T xx x4 P e NN A T Pl
P N P x 'y P B o e A R A A W R A A A
, 1
H*H...Hu_.H...HkaH&H#H#H...H#H#H&.H#H&H*H ...HkH...H...H...HkH*H...Hu_.H...H#Hu..H*H#Hkﬂ*n#nkn*n#nkﬂ*n#nkﬂ* NN kkH...H#H#H*H#HkH*H#Hk o ﬂ.HkH*H... o #*H...Hk : ...HkH...H#Hu..H*H...HkH...H...Hu_.H...H#Hu..H*H...HkH...H...Hu..H*H...HkH...H...HkH...H#H#Hﬂ#H&H.«H#H&H* ﬂ_.n . Hu..H*H...HkH...H...Hu..H...H...HkHﬂ...HkH...H#H#H&H#H&H*H.
oo o o T e T T o T T T T T oA o T T o T o o T e o T T o o T e T Ty o o T o g Ty o o T e o T T ar o o T e T o T g a T a Tarae a Tara a Tae a a Tar Ta a T Ta a Te Ta Ta e o oA aaa a Tarae o T o T T o T T T
e T e T e a T T T A I el Al e o A o T o e T T o e T e e T e o e T aa T T a ae a T T e e e T R oo T e T e e e T T e e T T T T T
L A P A N E o I . I o B o F o A A
oo T o o T T o T o T T o oo T e T T o o T e Ty T o T o e o T o T T o T T o e T o e T T e T T oo T e T T o T T e T o T g a T a Tara a Tar ar a Tar Tar ar a Tar TIa ar VI ar a aar a Taar a Tarar a a aa a TarTae T Ta T
A T o e o e T e TR e e A T A T e A o T e T T o e T g e A e T aaea Ta a a Tae a e T T o T T B ol el L el o el s
B A N o o o o A F o A A I R
oo o g T e o T o T T Tl o T o T e o T e e o T o e T o e T T o o T g o g a T a Tara o Ta Ta a T Ta a T T ar o o T e T o g a T T a Tar ar a Tar Tarar ar Tarar ar Tar Tar ae Ta Tar ar a Tar ae Tar aa a aa a Tarae ae Tar ae T a Ta T Ta T
el e A o ety oyt vy oyt oy gy Py g B A A A I Al A
F o I B o e o A
T T Ty o T o ey e T T o e T e T T o T Ty o e a aae o Tar a a Ta Ta ae Ta Ta a ae Tar a ae Ta Ta a Ta TaT oo o T e o T o T T e T o T o T o T o T e o T e e o T o Tty e Yo T o o T e T o T o T T T T T
E o A Al A e e el B el o I el el el
B A N I a e a ua Poa alrnr a pa tpg vatap i oa e oy g g P g e F o A S A R
ar oo T e T T o o T o T Tl T o e a T a Ta ae o Tar a Ta T Ta a T Ta a T T o oA T T o T e o T T T T T ar o T e T o a aa a Tarae a Tara a Tar ar ae Tar Tarar ae Tarar ae Tar Tar ae a Ta a a Tar ae Taraa a aa a Tarae o Tarae o T Ta Ta T Ta T
R A oA o T o o e T o e T e e T B A A I o Al A
F o o N B I e i
T o T o Ty o o T e o Ty o o T o e T Ty o o T o e Ty o o T e e T T oo o e T T o o T o o T e e T T T T T oo o T e T T o o T e T o T o T o T o T e o T T e o Ty o Tty e Yo T o o T e T o T o T e T T T
Ao T e T o e T e T e E ar aaea Ta a a Tae a o e T o e T o e T T o e o e T e T e o e T e T B A ol el N el o el s
B e a a a N A F o A A I R
oo Yo o T T o T T e e T T oo o e Ty e o T T o T g T Ty R e A g T T ar e T Ty e o T o o T ar oo o T e T o T T e T e o T e o T T e T T T ar o A Ty g T
N A NN A A AN e e e e e e e e e e e e e B U e e e e a a TaT e Al kA NN AN
T o e T e T T e B I " A T e T E A T e T T e T T
a#k##k##kk####k##k##klﬁk._ il”##k##k##k##k##k##k###&. . Ii.i..._......._..............._......._......._......._..._..._..._..._......__......__......._......__......__......._......__......__......._......__......__......._......__......__..._..._..._..__......__......._......__......__......._......__..._..__......._......__......__......._......__......__......._..._..__......__......._......__......__......._......__..._..__..._..._......__......__......._......._......._......._......._......._......................._......._......._......._..._..._..._..._......._......._.##k##k##k##k##k##k##k##k .R. .ll................_................._..._..._................_.
e T e T e T . A T e g g g g e g g g g g g g g e R o Rl o o o o N s W T T e T T
oo o T T T e T B T T Ao A T o T e T e T T o e T T e T T o T T e T o e T e o T o T e o o T o e T e T T o o T e Ty o g T e o T T o T T e N ol s ol
T e e e T L I I e I el B o e T
........_...................nﬁ w _m [n el St e e .._..............._..._......._..._......._..._......._..._......._..._......._..._......._..._......._..._..............._..........._..........._..........._..........._..........._..........._.........#kk##k##k##k##k##k##k##&.\ o el et b
T e T T w . “ o oA A T o T e T e o T o e T T e T T o T T e T o g a T a Tara a Tar ar ae Ta Tar ar ae Tarar ae Tar Tar ae a Tar a a Tar ay a a a a Ta ae Ta T T e T
NN N Cor o T T N A A B A e el el Tor T2 Vo Toe Tae Ty
T e T e - £ K- e L I o o a P
.............q....ﬂﬂ. SIS 2 oA T T o T e T e e o T o e T T e T T o T e T o o T o T o T T o T T o e T o e T T o o T o e T T e T T T T
T T T : P R A I I ol ol A o el S T
T T T e Lo A e A P
T T ﬂ............“.- o T o T e o T ey o o T o e T T e T T o T e T o g e T o T o T e o o T o e T T e T T o o T o T o o T e o T T T T W T
T T ey F N I N el el A el e - Pl
T T T | F o o A N 3 AT Ty
o Ta e T T T o T A A A T o T e T e e o T o e T e T T o o T T o o T o T o T e o T Ty o o T o e T Ty o o T o e T o o o T T T
B e | . | F N ol Al el A e a3 Pl
A e T T e F P e
.1.................."". . . ﬁ............n.-_,........_,.._,....._,.._,....._,.._,....._,........_,........_,.._,....._,.._,....._,.._,....._,........_,........_,........_,.._,....._,.._,....._,.._,....._,..q...k.q....q.q....q.q....q.q....q.q...k.q....q.q...“- . o T
T T m P F N I N el el A el e Pl
T e : . P B O o o o g L T
T e T Ty . & Ea T T Ty A o o o o e o o D o o o o o o e e o o e e e o e T T
S T e, A e T L o A I el ol kel al el s e T
T e T T e T T T O I I o N e e e T
T e T T T e T T oA A T o T e T ey o T o e T T e o T T e T o a ara a Tarae a Tara a Tar Tar ae a Tar ar ae Tar Tar ae Ta Tar a a Tr a a Tr a a a a Ta Ta Ta Ta T T e T
P) W A A o ol A e e v gyt oy oyt eyt i Pyl og oy Py gfial ') ¥ T
T e T A A N A I I i a a a a B e T
N N P T e T T T e T T oo o e o o T o o o e o o e e o o e e e o e e e e Pt N N
e T e T e A T e e N A o ol A el s o e T e
o e T T e T e e A e T e e e T e I A I o o o o g
T e T N . U o T T e T T e T e ey oA A A T o T o T e e T T o o T e T Ty e T T o T e T o g a T a Tarae a Tarar a Tar Tar ar a Tar ar ae Tara ae Tar Ta a Ta Tr a ae Tar a a a a Ta a Ta Ta a W T e T
L A A R N alal N alal sl P _l-_...r...k......u........k*...u_....#k*...k......u_.......u..*...k...#k*...k......u_....#k*...k......u..*...k......u_....#k*...k...#k*#k*#k*#khq#k*#k*#k*#kl - e
.1..........k._,....._,.._,..q....._,..,_.kk#kk*kk#kkkkkﬂiklkﬂlrﬂﬂl.h e Hl#ikﬂﬂlrﬂﬂlrﬂﬂlrﬂlﬂﬂihq._,....._,.._,........_,..,_.._,.........,_.._,.........q...._,.._,......_,.u_........._,.h_.._,........k._......_,...q......._,..,_.._,.u_.....,_.._,..............._,.._,......_,.k........_,.h_.._,........k._,....._,...q......._,......_,.u_.....,_.._,..,_............_,.._,....._,.k........_,..,_.._,........k._,....._,...q......._,......_,.u_.....,_.._,.h_............_,.._,....._,.k........_,..,_.._,........k._,....._,...q......._,......_,.u_........._,.h_.._.........k._,....._,.k......._,..,_.._,.........,_.._,.........q...._,.._,......_,.u_........kﬂ#ﬂi&i#ﬁ.lhﬂﬂlhﬂﬂlhﬂﬂlrﬂﬂlr!h e
R el A ol Al o e ol o i el ol el el o ol s
F o A I A A
T Ty T e T e o T e o e T e T T T T Ty e a aa a aa a Tara a Tara a Tar ar a a Tar a ar Tar a ae Tar Ta ae Ta Tar a a Tar a a aa a aa a Taraea Tara a Tar ar a Ta Tar ar ar Tarar ae Tar Tar ae Ta Tar a a Tar ay a aa a ara a Tarae a Tara a Tar ar ae Tar Tar ar ae Tarar ae Tar Tar ae Ta Tar a a Tara a Tar a a a ara a Taraea Tara a Tar ar ae Tar T o e T o e T T o T T o T T T e
L I A A I o Al A A o el o ol A o o ol
e A o o o o O O o A
oo o T e T T o T T e T o T ey T o T e o T e T T o e T e T T o o T T T o T o T e o T ey o T o e T T e T T o T T e T o T e o T e e o T o e T e T T o o T T o e T o T o T e o T ey o e T o e T Ty o o T o e T T T o T o T T o T T o e T o e T T e T T
A el A o ol Al B a ol al a a a a a a a al aE al el el o ol s
F o A I R I O I
T T o T e T e o T e o e T e T T T Ty e o a aa a Tarae a Tara a Tar ar a a Tar a ar Tar ar ae Tar Tar a Ta Tar a a Tar a a r a a a aa a Tarae a Tara a Tar ar a Ta Tar ar a Tarar ae Tar Tar ae a Tar ar a Taray a aa a ara a Tarae a Tara a Tar ar ar Tar ar ar ae Tarar ae Tar Tay ae Ta Tar ar a Tar a a Tar a a a ara a Taraea Tara a Tar ar ae Tar Tar ae ae Tara ae Tar Ta ae Ta Ta a a Ta a
L A A A I el ol o a a al a a a a a o al a a a a al al a a a a a a al al al al a a a a ala aaal as
e A N o o o o o O A
oo o T e T T o T T e T o T o T T o T e e T e o o T e T T o o T o T T e T o T e o T e o o T o e T T e T T o o T e T o e T o T e o T e o T e o e T e T Ty T T e Ty o T a a a Tara a Tara a Tar ar a Tar Tar a a Tarar ae Tar ar ae Ta Tar ar a Tara a aaa a araa Taraea Tara a Ta ar ae Ta Tar a ae Tr a ae Ta Ta a T Ta
R I al a a a a al a a a a al a l l a a a a gy g g g gggy pa goytg yogig gog gghy g a a rp ap apa ia y yiy g oy P g ual vy og g oy P gt
F o A R P P x x x x xx B I I O N
T o T Ty o T e o T Ty o o T e T T e o T o e T g o T e o T e o T Ty o o T o e T T o T T o e T T e T T Pl ¥ 0 ¥ ¥ oA T T o T o T o T o T Ty o o Ty o e T T e T T o o T o e T o o T e T e o T e o T e e T T o T T
L A A I ol el a3 P ¥ x x L A I ol Al A el
B o o A o o P x » F
oo o T e o T T e T o T ey e T o T e o T e e T T o e T o e T T o o T T o g a T a Tar ae o Ta Ta a T Ta T ¥ Pl oo o e Ty e o T o T T e T o T e T o T e o T e e T T o e T T o T T o o T e T o o T e o T e o T T o T T T
el o ol o x E el A el A o el
B o I A A ¥ T x x F o A O I
T g e Ty o T o T e o T Ty o T e T T e o Ty Ty T o e T o T o T e o T T o T T o e T T T M o) " ur Bt Ty o o T e T T o o T e T o a aa a Tarae a Tara a Tar Tar ae Ta Tar ar ae Tara ae Tar Tar a a Tar a ae Tara a a ara a Tarae o Tar a a Ta Ta a T Ta a T T
E o I ol Al el el el T x X x x B o o O ol Al A el el
B o i a a P X ™ x E N o o a
oo o T e T T o o T o e T T o T e T o T e o T e e o T o o T T e T Ty o o T e Ty o T o T e e T e o T T T T) x) x x ¥ ¥ P i A A T o T o T e e T e o o T e T T e T T o T e T o o T e o T o T e o T T e T T o e T o e T T e T T
e A el A o ol Al o g g e e e e e e e e e e e o e gy g g g oy g g ey o ey eyt g uy P ey oy g Py gy P g e it
F o A I A A
T Ty T e T e o T e o e T e T T T T Ty e a aa a aa a Tara a Tara a Tar ar a a Tar a ar Tar a ae Tar Ta ae Ta Tar a a Tar a a aa a aa a Taraea Tara a Tar ar a Ta Tar ar ar Tarar ae Tar Tar ae Ta Tar a a Tar ay a aa a ara a Tarae a Tara a Tar ar ae Tar Tar ar ae Tarar ae Tar Tar ae Ta Tar a a Tara a Tar a a a ara a Taraea Tara a Tar ar ae Tar T o e T o e T T o T T o T T T e
o e o oo o Lo o o o o o oo o o T o o o o T o o o o o o Do oo oo oD Lo o o T oo o o o oo o D o T o e o Lo o o T o o o oo oo o o T o D oo o Lo o o T o o o o o o T o o oo o e o Lo o o T oo o e o Lo o o o o o T e e o o o o T o o o o o o o e
L]
| A & ow-
|
L]
|
|
L]
1 . . .
Fye . . ﬁ . .
et N 2
, R Y .]
’ d ._ . . N . . R . . .
¥ ") -
L]] -
- & 1 " "
: v .
. -
.
ta

suibuse

LLiIBliEAd YO

e der e ok i

'saoes

__ ."."."."."."%

FOSRG0 pUR SN wwﬂumxm

SHnsal ejenjeAg
saed <Bel4 TSy thdy

G Old

49 "Ol4 Woi 49 OId OL

US 9,715,592 B2

“T_.

_.__mmﬁ-mum

AL G RN

I...._ a"a ..-.....-.n .

e .-...m..-.

e -I.' o .I.I.I.I.I.I. i .I.I.I.I.I.I. . .I.I.I.I.I.I. o .I.I.I.I.I.I. i l ol kR .I.I.I.I.I.I. L] .I.I.I.I.I. i .I.I.I.I.I. o .I.I.I.I.I.I. L] .I. .I.I.I.I.I.I.I. LI] .I.I.I.I.I.I.I. L] .I.I.I.I.I.I.I. LI] .I.I.I.I.I.I.I. LI] .I.I.I.I.I.I.rl

Sheet 10 of 21

P

n-hs....__. - -

-.._.-li. ..

i
_1.. __.l___..

w e e e e e e e T e
. ..r..r..r..'..r E] ua ..r".r N

1] .
'
A LIT.-l.r.__.._.._.r.- " = m ® ®m ® ®m E E E E E ®EE E E ®E ®E = E ®E E S ®E E E E ®EE =N E E E E = E E E EE EEEEEE EEEEEE EEEEE S EEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEE
.r .__ .
b bk d .._ .
" aomoa . .
" CE) .._.._.r.._.__.r.._.__ T .

Ak N x -
a2 a mw oa] b b = I -.__._..._
--------------------------------h-.__.__.._.__._. .__.__.__

ot
&

ﬁmm

u.n-n-u.n-n.u.n.n.n.n.n-u.n-n-u.n-n.u.n.n.n.n.n.n.n-n-u.n-n.u.n-n.n.n.n.n.n-n-n.n-n.u.n-n.n.n.n.n.n-n.n.n-n.u.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n.n-n.n. NN LN

.r..r. .r.r..r‘..f‘..f..r..r..f..f..r..r..r..f..r..rl..r..r..r. L]
& bk & & kb s A s s bk s E NN & & & .rl.rb.

- '.T.T.r.'.r.'.r.r.r.'.r.r.r.f.r.r o A ok E I I T
IIIIIIIIIIIIIIIIIIIIIIIIIIII:IIlllII:IIIIIIlllllllllllll'bbbbbbbbb

E I B B) E I I B

&
.T.T.TE.I.T.T.I.TE.IE.T.I.TE.T
.r.r.r.r.TI.r.r.r.T.r.T.r.r.r.r a & & K

oo S i i i i i e e mﬁﬁ Ay R

-l-l-l-.r.r.r.l.r.r.r.r.r.r.r.r.r.r.r.r.T.r.r.T.r.r.r.r.r.r.r.rll.r.r.T.r.r.r.r.r.r.r.-. -

.
L L

Jul. 25, 2017

4
2 m 2 w2 ®m a2 N A A % E-1& 5 & 58 =S =2 %S 5 A =S =a A A S SE NSNS NS S S S NS ESE =SS =S NS NS ESE =SS =S NS ESE =S =S NS ESEESE NSNS ESE =SS =SS =S E S =S =S NS NS S S =S =S NS A =S =S ESEEa
4 & = m w = m = w @ = s mw ®m ff W E ®E E NN E E E ®E E E E ®E E N E S E ®E ¥ SN E E S N E E S SN E S EE S S E E N N EE S N E E SN E SN E N N E S S N E N E N N SN E N N E E N E S EEE N EEE S EEEEEEE s ww s wws s swowowowomoar

n.nnn-.-_.-_n-n.u.n.n.n.n.n-n.n-n-u.n-n.u.n.n.n.nnn.n.n-.—
W e e = eO I" " = s m s " " w @ 6w w @ EEE wE L AR AN " Ew -...-.._..__.__

AN O O e s s O R
'I'I}I'I'I'I'I'I}I.ll.Il.lI.II.II.'I.II.II.II.II.Il.lI.II.Il.lI.II.Il.lI.II.Il.lI.II.Il.lI.II.Il.lI.II'I}I'I'I}I'I'I}I'I'I}I' I.ll.ll.ll.ll

U.S. Patent

.r.r.r
L]

" & " & @ & § & " A W & § & ® A § &2 & & A A2 §F A & A W A §F A & A W A §F & F A N A § & F A N A § & F A N A §N & & " & = A § & @ A ® A § A N A § N N & N A § N §N & N & § &N §F A N & § & §F A E & § & §F A N & & N A N & N &S
. e e T e T e e e T e e e T e e e e e e e e e e e T e e e e e T e e T e e T e e T e e e T e T e .

‘. ‘.j‘..‘...‘..‘..‘..l.j‘..‘.-l..‘.
.T.r.r.r.r.!.r.r.r.r .r

- b & & & & & b & = &
LI ibb.'b.'.'bbbbbbb.'bbbbb
L - .J.r.r.r .r'

&

US 9,715,592 B2

Sheet 11 of 21

Jul. 25, 2017

U.S. Patent

49 Ol

e

. Pl I g A ity i i B P Ty M aaa
S e SR ST TN st B L R R i ROt ;
B B "B ko ' B BTN ol - Ty’ b ‘™. . "ata" . " ' rr ..If LT er.-_-._hl. 'S ‘£ N NN NN NN NN NN NS
. ...__.- ._..-. I rﬂ.. Iy I . - . . e o E .-.__.r.._.__.._.r.._.__.._.r.r.__.._.r.._.r.__.r.__.__.._.r.._.__.._.r.._.__.._.__.l -
My .".._._..._L.”... i Y e T L LN L . . -

e

fa e . . . [Hiﬂﬂ“ﬂ“ﬂ”m .

n 1 1 1 1
B & & b & & b & L] E I b & & ks ko ok L] b b ko E b b & b om s b s R d ks ok

-.“.._”.._”.._”.._.r o L1...1 .__...Hiﬂ .r..” L P * .._'.__ K Fatat et
h [O AL ot E‘ h“.r.._.r
L - - ..ﬂ "] I
ko k & P) Ak ax
I NN N a & & a & . -
=
et i

£

E
™

-
ol
RN

b bk b oh M od o d s hoA

RN
P

....... -
o & ar
F I I I | |
B b & b b & I T T R I I R R R F R I
L R R Xox A Xy T,

L BN B B B B) L BN B BN BN B B PR R R R

»
F s -
2 a M. N

b.-...-b- L] ..h L BN B BN BN B BN B

BQ ‘0|4 0] _. B9 ‘0|4 WOJ

US 9,715,592 B2

Sheet 12 of 21

Jul. 25, 2017

U.S. Patent

o
4 A
2 A

FIG. 7

eg "Old

US 9,715,592 B2

(AIS7ANT NI TENsAG

I NI T&S@ZE& i M TH
m zm zm

)

Sheet 13 of 21

L

-

auﬁ

.I

Pl osge "y 3

Jul. 25, 2017

SRR B aT MOHA MRy

_m _wz.m_ E Sl uw et ﬁ RS SRIY %

ﬁﬂ?ﬁw FIENY

U.S. Patent

US 9,715,592 B2

Sheet 14 of 21

Jul. 25, 2017

U.S. Patent

48 Old

U.S. Patent Jul. 25, 2017 Sheet 15 of 21 US 9,715,592 B2

FIG. 9a

U.S. Patent Jul. 25, 2017 Sheet 16 of 21 US 9,715,592 B2

o T S

eI < B A

U.S. Patent

Jul. 25, 2017 Sheet 17 of 21

US 9,715,592 B2

Computer System

Executable
> Software
1002
A
) Y
1003

Engine | i Attack Pattern

7

FIG. 10

US 9,715,592 B2

Sheet 18 of 21

Jul. 25, 2017

U.S. Patent

L1 Old

OLLIN oo1ne(]

abel01g

Nd

,/l\) LOLL

—p B0IAS(] INdU)

SOLLA
Y

i,

aoeLIS1UY]

701 _.\/\ HJOMION

JaneS |~ GELL

PARS | PELL

0e9

1oABg | EELL

18U} U]

MIOMIEN
12007

janiag T\ LELL

BARS | ZELL

/\J_‘_\:

. ot Aeidsi

i

US 9,715,592 B2

Sheet 19 of 21

Jul. 25, 2017

U.S. Patent

. e .:“.M\m., eﬁﬁ%ﬁ.ﬂ”i

B DT TR F

¢l Old

by IdY Lhdy Py
poyoery ssadyg wpaieg

- RGOTeRA Y

. .wﬁmﬁﬁﬁw _

58X
(v

Ld Sy
HAPAH

uj Bo mdang
RO POPINY (5 RoogANTY
() B aﬁmﬁ
pFRIEmsug ﬁ_ s U 8o
of Eﬁmﬁmﬂw
(58 14V wm, Hppeuy
GSS [dY Sf uipeyuy

0SS i¥'T

(S8 1dV ¢

HHH E fequinye Em_ﬁ _.JﬁﬁmﬁwW”EE

BOSSS

M 5 e

S HY

YSINULY
GHTPRYRaY
DRXAY
HRISNT
WEISN]
Iy

Hapay
4Py

4451

I 1. R ED
88X
iV

J.._.__......ﬁ-.1

W 3. .”..WM.,W,,H%,. -M.ﬁ “ﬁw .W,\.u

et b Y % I & 3
it o F . § .

iy
moyoay)y g

mﬁwamﬁmﬂ T 3E 3
sdS HY

SEINeS
AL

bis Pt F N HE i

UBYO I © p g gy

(IS8 IdY ST uppaspay
€388 IdV Sf uipequry

wpauy yad O1RA(]

1] -IBUIHOO U Y

VY
LY

5581 d IS

{fjeomyoad R JLL

RE TN

Y

US 9,715,592 B2

Sheet 20 of 21

Jul. 25, 2017

U.S. Patent

VMdIN

90¢t1

el | Towel) diiH e

G4eM

05E1

¢l 9Ol

00t}

cl

!

oltl

1001 _H__v

o

o

$ r
-
- ¥

RN

-

LLEL
viel sooel| e M%M%W m
ST
SooBl] polage] e ANIDNS
rrmrc\\\
0LEl faaxgwmﬂﬂ
)
b0 |
TOVISILINI —

U.S. Patent Jul. 25, 2017 Sheet 21 of 21 US 9,715,592 B2

1400
Testing Environment Configured
1402

User Interactions Recorded 1404
Labels Inferred 1406

408
Attack Patterns Applied
1410
Attack Reported

FIG. 14

US 9,715,592 B2

1

DYNAMIC ANALYSIS SECURITY TESTING
OF MULTI-PARTY WEB APPLICATIONS VIA
ATTACK PATTERNS

BACKGROUND

Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims 1n this
application and are not admitted to be prior art by inclusion
in this section.

Embodiments relate to computer security, and 1n particu-
lar, to dynamic analysis security testing of multi-party web
applications via attack patterns.

An increasing number of commercial online applications
leverage trusted third parties (IT'TPs) in conjunction with
web-based security protocols to meet their security needs.
For instance, many online applications rely on authentica-
tion assertions 1ssued by identity providers to authenticate
users using a variety of web-based single sign-on (SSO)
protocols.

Similarly, on-line shopping applications use online pay-
ment services and Cashier-as-a-Service (CaaS) protocols to
obtain proof-of-payment before delivering the purchased
items. For example, the use of PAYPAL PAYMENT has led
to the widespread integration of CaaS APIs by websites
implementing online shopping.

This scenario has been further combined with SSO. For
instance, the “Log in with Paypal” not only allows users to
log 1n to the Online Shopping websites using their PAYPAL
credentials, but 1t also provides the ability to directly check-
out without the need to login to PAYPAL again. This broad
class of protocols 1s herein referred to as security-critical
Multi-Party Web Applications (MPWAs).

Three enftities may take part 1n these protocols: the user U
(through a web browser B), the web application (playing the
role of Service Provider, SP), and a TTP. However, the
design and implementation of the protocols used by MPWAs
may be subject to errors leading to security vulnerabilities.

For instance, the incorrect handling of the OAuth 2.0
access token by a vulnerable SP can be exploited by an
attacker hosting another SP. If the User (the victim) logs into
the attacker’s SP, the attacker obtains an access token from

the victim and can replay 1t in the vulnerable SP to login as
the victim.

SUMMARY

A secunity testing framework leverages attack patterns to
generate test cases for evaluating security of Multi-Party
Web Applications (MPWAs). Attack patterns comprise
structured artifacts capturing key information to execute
general-purpose attacker strategies. The patterns recognize
commonalities between attacks, for example abuse of secu-
rity-critical parameter(s), and the attacker’s strategy relating
to protocol patterns associated with those parameters. A
testing environment 1s configured to collect several varieties
of HT'TP traflic with the MPWA. (The terms HTTP traflic,
traces, and HTTP traces used herein as synonyms). User
interaction with the MPWA while running security proto-
cols, 1s recorded. An inference module executes the recorded
symbolic sessions, tagging elements 1n the HTTP tratlic with
labels. This labeled HTTP traflic i1s referenced to determine
particular attack patterns that are to be applied, and corre-
sponding specific attack test cases that are to be executed
against the MPWA. Attacks are reported back to the tester

10

15

20

25

30

35

40

45

50

55

60

65

2

for evaluation. Embodiments may be implemented with
penetration testing tools, 1n order to automate execution of

complex attacker strategies.

An embodiment of a computer-implemented method
comprises an engine executing a user action with a Multi-
Party Web Application (IMPWA), and the engine receiving a
trace of HT'TP traflic with the MPWA resulting from the user
action. The engine assigns a label to the trace to create a
labeled trace, and the engine applies an attack pattern to the
labeled trace to identily an attack. The engine reports the
attack to a user interface.

A non-transitory computer readable storage medium
embodies a computer program for performing a method
comprising an engine executing a user action with a Multi-
Party Web Application (MPWA). The engine receives a trace
of HITP traflic with the MPWA resulting from the user
action, and assigns a plurality of labels to the trace to create
a labeled trace. The engine receives an attack pattern com-
prising a structured artifact, executes the structured artifact
against the labeled trace to 1dentily an attack, and reports the
attack to a user interface.

An embodiment of a computer system comprises one or
more processors, and a software program executable on said
computer system. The software program 1s configured to
cause an engine to execute a user action with a Multi-Party
Web Application (MPWA), and receive a trace of HI'TP
traflic with the MPWA resulting from the user action. The
soltware program 1s further configured to cause the engine
to assign a syntactic label, a semantic label, and a flow label
to the trace to create a labeled trace. The software program
1s Turther configured to cause the engine to receive an attack
pattern comprising a structured artifact, to execute the
structured artifact against the labeled trace to identily an
attack, and to report the attack to a user interface.

In some embodiments assigning the label comprises
assigning a semantic label.

In certain embodiments the semantic label i1dentifies an
clement of the trace as unique to an application, a user, or a
SESS101.

According to various embodiments the semantic label
identifies the trace as mandatory.

In particular embodiments assigning the label comprises
assigning a flow label.

In some embodiments the flow label identifies a generator
of the trace and a recipient of the trace.

According to certain embodiments the flow label indicates
the generator as a trusted third party (1TP) and the recipient
as a service provider (SP), or indicates the generator as the
SP and the recipient as a T'TP.

In various embodiments the flow label 1s based upon a
location of an element 1n the trace.

In particular embodiments the attack pattern comprises a
structured artifact executable by the engine.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages ol embodiments.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1a shows a SAML-based SSO scenario.

FIG. 16 shows a standard CaaS scenario.

FIG. 1¢ shows an email notification and acknowledge-
ment scenario.

FIGS. 2a-b show attacks against security critical MPWAs.

FIG. 3 1s a simplified view of an approach to dynamic
security testing according to an embodiment.

FIG. 4a shows a STRIPE checkout protocol.

US 9,715,592 B2

3

FIG. 4b shows user actions and flags of STRIPE check-
out.

FIG. 4¢ shows an excerpt of inference on STRIPE check-
out.

FIG. § shows a
architecture.

FIGS. 6a-b are simplified diagrams illustrating a testing
engine flow.

FIG. 7 shows an excerpt of a HI'TP trace augmented with
HTTP elements information.

FIG. 8a shows attack strategies against MPWASs 1nvesti-
gated 1n literature.

FIG. 8b shows various attack patterns.

FIG. 9a shows an attack pattern for RAL.

FIG. 96 shows an extract function.

FIG. 9¢ shows a replay function.

FIG. 10 1llustrates hardware of a special purpose com-
puting machine configured to perform security testing
according to an embodiment.

FIG. 11 illustrates an example computer system.

FIG. 12 shows attacks that have been discovered.

FIG. 13 shows a simplified view of a system for dynamic
security testing according to an embodiment.

FIG. 14 1s a simplified flow diagram showing a process
according to an embodiment.

simplified view of a testing engine

DETAILED DESCRIPTION

Described herein are methods and apparatuses configured
to perform dynamic analysis security testing ol multi-party
web applications via attack patterns. In the following
description, for purposes of explanation, numerous
examples and specific details are set forth 1n order to provide
a thorough understanding of the present invention. It will be
evident, however, to one skilled in the art that embodiments
of the present invention as defined by the claims may 1include
some or all of the features in these examples alone or 1n
combination with other features described below, and may
turther include modifications and equivalents of the features
and concepts described herein.

A secunity testing framework leverages attack patterns to
generate test cases for evaluating security of Multi-Party
Web Applications (MPWAs). Attack patterns comprise
structured artifacts capturing key information to execute
general-purpose attacker strategies. The patterns recognize
commonalities between attacks, for example abuse of secu-
rity-critical parameter(s), and the attacker’s strategy relating,
to protocol patterns associated with those parameters. A
testing environment 1s configured to collect several varieties
of HT'TP traflic with the MPWA. User interaction with the
MPWA while running security protocols, 1s recorded. An
inference module executes the recorded symbolic sessions,
tagging elements 1 the HTTP traflic with labels. ThJS
labeled HTTP traflic 1s referenced to determine particular
attack patterns that are to be applied, and corresponding
specific attack test cases that are to be executed against the
MPWA. Attacks are reported back to the tester for evalua-
tion. Embodiments may be implemented with penetration
testing tools, 1n order to automate execution of complex
attacker strategies.

Embodiments pursue an automatic black-box testing tech-
nique of security-critical MPWAs. The approach 1s based on
an observation and a conjecture.

The observation 1s that, regardless of their purpose, the
security protocols at the core of MPWAs may share a
number of features.

10

15

20

25

30

35

40

45

50

55

60

65

4

1) By interacting with SP (and/or T'TP), U authenticates
and/or authorize some action,

2) TTP (SP, resp.) generates a security token,
3) the security token 1s dispatched to SP (T'TP, resp.) through
the web browser, and
4) SP (T'TP, resp.) checks the security token and completes
the protocol by taking some security-critical decision.
The conjecture 1s that the attacks found in the literature
(and possibly others still to be discovered) are instances of
a limited number attack patterns. Accordingly a detailed
study of attacks discovered in MPWAs of real-world com-
plexity was conducted, and similarities analyzed. This led to
identifying a small number of application-independent
attack patterns concisely describing actions of attackers
while performing these attacks.
FIG. 13 presents a simplified view of a system 1300
according to an embodiment. In particular, user 1302 1nter-
acts with an interface 1304 of a secunty testing framework

1305. That framework 1s 1n communication with a Multi-
Party Web Application (MPWA) 1306 via an underlying

penetration tool 1319.

Specifically, the penetration tool 1s configured to execute
user actions 1312 to communicate with the MPWA. These
user actions are collected with the help of the user through
the interface. The engine provides instructions 1314 to make
the penetration testing tool execute these user actions for
purposes of probing the MPWA.

The penetration tool exposes an Application Program
Interface (API) that can serve multiple purposes. For
example, HT'TP requests and responses can be mutated by
the engine via API calls that set proxy rules.

Based upon the user actions, the MPWA interacts with
various other entities (e.g., TTPs, Service Providers, etc.)
through the web 1350 to generate outgoing H1TP tratlic and
receive incoming HTTP tratlic 1316. The penetration tool
observes and records 1n non-transitory computer-readable
storage medium 1315, traflic with the MPWA.

Here, the MPWA refers to the web application scenario 1n
which various parties like SP, TTP, user, etc., are involved.
The execution of user actions will cause the penetration
testing tool open a web browser to communicate with the
other enfities (T'TP, SP, etc.) It 1s this through this browser
that the penetration testing tool collects the required HT'TP
traffic.

The testing framework further comprises an engine 1308
that 1s configured to receive these traces. This engine per-
forms certain processing tasks upon the traces in order to
provide a security analysis.

In particular, the engine 1308 may comprise an inference
module 1310. That module 1s configured to receive the
traces from the MPWA, and to assign syntactic, semantic,
and/or data flow labels thereto. Significant further detail
regarding the mference labeling 1s provided in connection
with the example described below.

Briefly, however, syntactic labeling can involve matching,
HTTP elements against simple regular expressions. This can
allow preliminary 1dentification of trace content as compris-
ing URL parameters, strings, text, numbers, tokens, and/or
other types of expressions.

Semantic labeling performed by the engine may mvolve
active testing of the MPWA to assess various properties of
the individual elements involved in the trace. Such proper-
ties may reflect umiqueness of the values of these elements,
or whether the element 1s mandatory or optional.

For example, semantic analysis may indicate whether a

parameter (trace element value) 1s unique to a session. This

US 9,715,592 B2

S

form of uniqueness 1s indicated where an element of the
trace 1s assigned different values 1n different sessions.

Semantic analysis may indicate whether a parameter
(trace element value) 1s unique to a user. This 1s 1ndicted
where an element of the trace 1s assigned the same value in
the sessions of the same user.

Semantic analysis may indicate whether a parameter is
unique to an application. This 1s indicted where an element
of the trace 1s assigned the same value 1n the sessions of a
single service provider (SP).

Semantic analysis indicates a trace as being mandatory,
where the element must be present 1n order for the protocol
to complete successiully. This can be revealed by having the
penetration tool remove the element from the HITP trace,
and then seeing 1f the interaction (e.g., HT'TP traflic) con-
tinues or ceases.

Another form of labeling 1s data flow labeling. Flow

labels represent the data flow properties of an element 1n the
HTTP traflic. Two examples of flow labels are: TTP-SP and

SP-TTP. Label TTP-SP (SP-TTP, resp.) indicates that the
corresponding element has been received from TTP (SP,
resp.) and then sent to SP (TTP, resp.). Again, further details
of this inference labeling 1s provided 1n connection with the
example which follows later below.

Based upon labeled traces 1311, the engine 1s further
configured to reference a plurality of attack patterns 1322
that are stored (e.g., 1n a database 1324) within a non-
transitory computer readable storage medium 1320. The
attack patterns are developed based upon analysis of extant
or foreseen attacks upon MPWAs. The attack patterns cap-
ture and express a general-purpose attacker strategy in
executable programming logic that 1s not limited to a
particular MPWA architecture.

In certain embodiments, the attack patterns may be stored
in a same database that includes the original received traces
and/or labeled traces from the MPWA. However, this is not
required and 1n other embodiments the attack patterns may
be stored separately from the labeled and/or original trace
information.

Based upon the result of this processing of labeled traces
according to stored attack pattern(s), the engine 1s config-

ured to 1dentily an attack 1330, and provide a report 1332 of

that attack to the tester (e.g., via the interface).

The report may 1dentify various security protocols and/or
parameters allected by the attack. Upon receipt of the report
the tester can evaluate those aspects, with an eye toward
developing eflective countermeasures.

FIG. 14 15 a simplified flow diagram showing a method
1400 according to an embodiment. In a first step 1402, an
engine of the testing system 1s configured to collect infor-
mation relating to the security protocol of a MPWA.

In a second step 1404, the engine records (user) interac-
tions with the MPWA. As mentioned previously, this inter-
action may result from manual interaction between a tester

10

15

20

25

30

35

40

45

50

and the MPWA, and/or from automated probing activity of 55

a penetration tool controlled by the tester.

In a third step 1406, the engine creates labels (e.g.,
syntactic, semantic, data tlow, location) by inference activ-
ity. Additional details regarding that inference activity
according to an embodiment, are described in detail 1n
connection with the example below.

In a fourth step 1408, the engine applies attack patterns to
the labeled HT'TP traces. These attack patterns may be stored
in an underlying database, for example an in-memory data-
base.

In a fifth step 1410, the engine reports an attack resulting
from application of the attack pattern. This reported attack

60

65

6

received by the user, may then be the subject of further
analysis (e.g., to determine possible patches, structural
changes, countermeasures, etc.)

Particular implementations of dynamic security testing
according to embodiments, are now presented in connection
with the following examples.

EXAMPLES

FIGS. 1a-c provide pictorial representations of example
MPWASs leveraging SSO, CaaS, and Verification via Email
vE) solutions. The MPWA’s of FIGS. 1a-c feature (1) a
user U, operating a browser B, who wants to consume a
service from a service provider SP and (11) a service provider
SP that relies on a trusted-third-party TTP to deliver its
services. TLS (and valid certificates at TTP and SP) are used
to securely exchange messages.

The following notations are also used:

U, , (attacker playing the role of a malicious user);

SP, , (attacker playing the role of a malicious service pro-
vider); and

SP .- (the target service provider which is also the SP under
test).

FIG. 1a shows the SAML 2.0 SSO protocol, where SP
relies on TTP (the Identity Provider, IdP for short) to
authenticate a user U belore granting the user access to one
ol its resources. The protocol starts (steps 1-2) with U asking
SP for a resource located at URI _SP. SP 1n turn redirects B
to IdP with the authentication request AuthRequest (step 3).
The RelayState field carries the URI_SP of the requested
resource. IdP then challenges B to provide valid credentials
that are entered by U (steps 4-6). If the authentication
succeeds, IdP 1ssues a digitally signed authentication asser-
tion (AuthAssert) and mstructs the user to send 1t (along with
the RelayState) to the SP (step 7). SP checks the assertion
and delivers the requested resource (step 8).

A severe man-in-the-middle attack against the SAML-
based SSO for GOOGLE Apps was reported. The attack, due
to a deviation from the standard whereby AuthAssert did not
include the identity of SP (for which the assertion was
created), allowed a malicious agent hosting a SP (say SP, /)
to reuse AuthAssert to access the resource of the victim U
(say U;) stored at GOOGLE, the target SP (say SP.). More
in detail, after a session S, of the protocol involving U, and
SP, , 1n which SP,, receives the AuthAssert from U, the
malicious agent starts another session S, playing therole U, ,
and mischievously reuses the assertion obtained 1n S, 1 S,
to trick GOOGLE (SP.) mto believing he 1s U

FIG. 15 1llustrates a typical MPWA running the PAYPAL
Payments Standard CaaS protocol where TTP authorizes U
to purchase a product P at SP. Here, TTP 1s a Payment
Service Provider (PSP) played by PAYPAL. SP 1s identified
by PAYPAL through a merchant account identifier (Pay-
eeld). U places an order for purchasing P (steps 1-5). SP
sends the Payeeld, the cost of the product (Cost) and a return
URI (ReturnURI) to TTP by redirecting B (step 6). By
interacting with PSP, U authorizes the payment of the
amount to SP (steps 7-9). The transaction 1dentifier (Trans-
actionld) 1s generated by PSP and passed to SP by redirect-
ing B to ReturnURI (step 10). The Transactionld 1s then
submitted by SP to T'TP to get the details of the transaction
(TransactionDetails) 1n steps 11-12. Upon successiul veri-
fication of the TransactionDetails, SP sends U the status of
the purchase order (step 13).

A vulnerability 1n the integration of the PAYPAL Pay-
ments Standard protocol in osCommerce 2.3.1 and Abante-
Cart 1.0.4 that allowed a malicious party to shop for free was

US 9,715,592 B2

7

discovered. The attack 1s as follows: from a session S, of the
protocol involving the PSP and the malicious party control-
ling both a user (U,,) and a SP (SP,,), the malicious party
obtains a payee (merchant) identifier. Later, in the checkout
protocol session S, between U, ,and the target SP (SP.), the
malicious agent replays the value of Payeeld obtained 1n the
other session and manages to place an order for a product 1n
SP.- by paying herself (instead of SP).

While MPWAs for SSO and CaaS scenarios received a
considerable attention, several other secunity critical
MPWAs may be need of scrutiny. For instance, websites
often send security-sensitive URIs to their users via email
for verification purposes. This scenario occurs frequently for
account registration: an account activation link 1s sent via
email to the user who 1s asked to access his email and click
on the link contained 1n the email message. An illustration
of this scenario 1s provided i FIG. 1c¢. Here, TTP 15 a
mailbox provider MP that guarantees SP that a user U 1s in
control of a given email address (Email). During registra-
tion, U provides Email to SP (steps 1-5). SP sends the
account activation URI (ActLink) via email to U and when
U visits his inbox at MP he gets access to ActLink (steps 6-9)
and by clicking 1t, the status of the account activation 1is
loaded 1 U’s browser (steps 10-12). This scenario 1s not just
limited to account activation as the same process 1s followed
by many SPs to vernity the authenticity of security-critical
operations such as password reset. For generality, this sce-
nario 1s referred to as Verification via Email (in short, VVE).

Some SPs (e.g. twitter.com) do not properly perceive
and/or manage the risk associated to the security-sensitive
URIs sent to their users. It turns out that some of these URIs
give access to sensitive services skipping any authentication
step. For instance, when a user has not signed into twitter for
more than 10 days, twitter.com sends emails to the user
about the tweets the user missed and this email contains
security-sensitive URIs that directly authenticates the user
without asking for credentials. Such a URL can be used by
an attacker to silently authenticate a victim to an attacker
controlled twitter account. This attack 1s widely known as
login CSRF.

FIGS. 2a-2b present ten prominent attacks that were
discovered 1n literature on SSO- and CaaS-based MPWAs.
It includes the two attacks mentioned above (excluding login
CSRF 1n twitter), corresponding to the 1st row for SAML
SSO, and the 4th row for CaaS. Not considered here are XSS
and XML rewriting attacks, see below for detail. Hereafter,
we brietly describe the other attacks.

Attack #2: the attacker hosts SP,, to obtain the Access-
Token 1ssued by the TTP FACEBOOK for authenticating U,
in SP, . The very same AccessToken 1s replayed against SP -
to authenticate as Uj.

Attack #4: the attacker hosts SP,, to obtain Merchantld
from the TTP PAYPAL. This Merchantld is replayed during
a transaction T at SP.. and the attacker manages to success-
tully complete T but the payment of the transaction 1is
credited to SP, .

Attack #5: the attacker completes a transaction T, at SP-
and the payment Token issued by the TTP PayPal for
completing this transaction 1s reused by the attacker to
complete another transaction T, at SP,, without payment.

Attack #6: the attacker spoofs the Appld of SP, in the
session between U, and SP, , to obtain AccessToken of Uy.
The very same AccessToken 1s then replayed 1n a session
between SP -and SP - to authenticate as U at SP .. In another
example, a logic tlaw 1n flash was applied to capture the
AccessToken. However, only the basic strategy of this attack
1s considered.

10

15

20

25

30

35

40

45

50

55

60

65

8

Attack #7: initially, the attacker obtains an authentication
assertion (AuthAssert) during his session with the SP.. The
attacker forces victim’s browser to submit AuthAssert to
SP - to silently authenticate U, as U, , at SP..

Attack #8: the attacker obtains the value of AuthCode
during the session between U, ,and SP.. The attacker forces
U, s browser to submit this value to SP . to silently authen-
ticate U as U,, at SP..

Attack #9: the attacker replaces the value of RedirectURI
to a malicious URI (MALICIOUSURI) in the session
between U,-and SP,,. TTP sends AuthCode of U, to MALI-
CIOUSURI and the attacker obtains it. The AuthCode 1s
then replayed 1n the session between U, ,and SP.- to authen-
ticate as U, at SP..

Attack #10: the attacker replaces the value of Redirec-
tURI to a malicious URI (MALICIOUSURI) 1n the session
between U, and SP,,. TTP sends Access Token of U, to
MALICIOUSURI and the attacker obtains 1t. The AuthCode
1s then replayed in the session between U,, and SP. to
authenticate as U, at SP.

Various threat models are now discussed. The attacks
shown 1n FIGS. 2a-2b can be discovered by considering the
Web Attacker threat model outlined below.

Web Attacker: he/she can control a SP (referred to as the
SP,) that 1s integrated with a TTP. The SP,, can subvert the
protocol tlow (e.g., by changing the order and value of the
HTTP requests/responses generated from her SP, including
redirection to arbitrary domains). The web attacker can also
operate a browser and communicate with other SPs and
TTPs.

Notice also that none of the attacks discussed requires the
threat scenario 1 which the TTP can be played by the
attacker. This threat scenario 1s not considered here.

Inspection of the attacks i FIGS. 2a-2b reveals the
following.

1. The attacks leverage a small number of nominal
sessions of the MPWA under test, namely those played
by U;, U,, SP. and SP,, concisely represented by
(U,, SP,), (U,,, SP,), (U, SP,,), (U,. SP,,). For the
sake of simplicity B and the TTP are left implicit since
we 1dentily the browser with the user and the TTP,
according to the threat model considered, 1s assumed to
be trustworthy.

2. The attacks amount to combining sessions obtained by
tampering with the messages exchanged in one nominal
session or by replacing some message from one nomi-
nal session into another.

By session 1t 1s indicated any sequence of HI'TP requests
and responses corresponding to an execution of the MPWA
under test. A goal 1s to i1dentily recipes, called attack
patterns, that specity how nominal sessions can be tampered
with and combined to find attacks on MPWAs. A first phase
1s 1dentitying and comparing attack strategies for the attacks
in FIGS. 24-26 and then abstracting them into general, 1.e.
application-independent, attack patterns.

Attack strategies are built on top of the following three
operations:

REPLAY x FROM S, IN S,: indicating that the value of
the HITP element x extracted while executing session
S, 15 replayed 1nto session S,;

REPLACE x WITH v IN R: denoting that the HTTP
clement x (e.g. SID) 1s replaced with the value v (e.g.,
abcd1234) while executing the sequence of HTTP
requests 1 R; and

REQUEST-OF x FROM R: indicating the extraction of
the HI'TP request transporting the HI'TP element x
while executing the sequence of HT'TP requests 1n R.

US 9,715,592 B2

9

For the sake of simplicity, presented here 1s the replay of
a single element, but attack patterns can support simultane-
ous replay of multiple elements. By loosening the notation
(U, SP) are used 1 place of R to indicate the sequence of
HTTP requests underlying the session (U, SP).

The attack strategies corresponding to the attacks

described i FIGS. 2a-2b are given 1n FIG. 8a.

In attack strategy #1 (and #2) the attacker runs a session
with the victim user U, playing the role of the service
provider SP,, and replays AuthAssert (AccessToken, resp.)
into a new session with a target service provider SP,. The
attacker tries thus to impersonate the victim (U, at SP..

Attack strategy #3 (and #4) 1s analogous to the previous
ones, the diflerence being that the user role in the first
session 1s played by the malicious user and the replayed
clement 1s Payeeld (Merchantld, resp.). Here the goal of the
attacker 1s to use credits generated by TTP, in the first
session, for SP,, on SP.

Attack strategy #5 differs from the previous ones in that
the User and the SP roles are played by U,, and SP..
respectively 1n both sessions. In doing so the attacker aims
to *“gain” something from SP.. by re-using the Token
obtained in a previous session with the same SP ..

Attack strategy #6 1s the composition of two basic reply
attack strategies. The element Appld, obtained by running a
session between the victim user U,-and the malicious service
provider SP, ., 1s replayed to get the AccessToken which 1s
then in turn replayed by the attacker U, , to authenticate as
U, at SP,. Thus, the result should be the same obtained by
completing a session between U, and SP .

In attack strategy #7 (and #8) the HTTP request (cf.
REQUEST-OF keyword) transporting AuthAssert (Auth-
Code, resp.) 1n a session played by U, ,on SP1s replaced on
a sequence comprising a single HTTP request in which U, ,
sends a HI'TP request to SP - (denoted as [U,, SEND req]).
Thus, the result should be the same obtained by completing
a session between U, and SP..

In attack strategy #9 (#10) U, ,includes a malicious URI
(MALICIOUSURI) 1n the session between U, and SP.. In
doing so, the credential AuthCode (AccessToken, resp.) 1s
received by U, . By replaying this intercepted AuthCode
(AccessToken, resp.) in the session between U, ;and SP, the
attacker aims to authenticate as U, - 1in SP . Thus, the result
should be the same obtamned by completing a session
between U, and SP .

The attack strategies 1n FIG. 8a are distilled into a small
set of general, 1.e. application 1ndependent, attack patterns
which are summarized 1in FIG. 85. To 1llustrate, consider the
attack pattern RA1. This pattern has been obtained from
attack strategy #1 (#2) 1n FIG. 8a by abstracting the element
to replay, 1.e. AuthAssert (AccessToken, resp.) into a param-
cter X. The generation of all other attack patterns go along
the same lines. For the creation of the attack pattern LCSRF
we were clearly mspired by attacks #7 and #8. It turns out
that this attack pattern 1s a bit more general than what 1t was
created for. In fact, 1t can uncover general CSRF based on
POST requests. An example of this 1s discussed later below.

A key step in the execution of an attack pattern 1s the
selection of the elements to be replaced or replayed. For
instance, when executing RA1 against a given MPWA, the
parameter X can be mstantiated with any element occurring,
in the HTTP trace resulting from the execution of (U, SP, /).

To tackle the problem the sessions are inspected and the
clements enriched occurring in the HTTP trace with syntac-
tic, semantic, location and tlow labels whose meaning 1s
summarized below.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Syntactic labels provide type information:
URL: a URL, e.g. redirect_uri=http://google.com,
BLOB: an alphanumeric string with (optionally) special
characters, e.g. code=vrDK7rE4,
WORD: a string comprised only of alphabetic characters,
¢.g. response_type=token,
EMALIL: an email
usrmame=jdoe@example.com,
EMPTY: an empty value, e.g. state=,
NUMBER: a number, ¢.g. 1d=3,
BOOL: a boolean value, ¢.g. new=true, and
UNKNOWN: none of the other syntactic labels match this
string, e.g., #target.
Semantic labels provide information on the role played by
the element within the MPWA:

SU (Session Unique): the element 1s assigned di
values 1n different sessions,

UU (User Unique): the element 1s assigned the same value
in the sessions of the same user,

AU (App Unique): the element 1s assigned the same value in
the sessions of a single SP,

MAND (Mandatory): the element must be occur for the
protocol to complete successiully; here MAND 1s not
necessarily secret and SU,

RURI (Redirect URI): the element must be MAND, 1t must
be a URL that 1s passed as a parameter 1n a request uri and
it 1s later found 1n the Location header of a redirection
response.

Flow labels are assigned to element labeled MAND. Two
flow labels may be used: TTP-SP and SP-T'TP. Label TTPSP
(SP-T'TP, resp.) indicates that the corresponding element has
been recerved from TTP (SP, resp.) and then sent to SP (T'TP,
resp.). Location labels denotes the location imn the HTTP
Message where the element has been found. The labels used
are REQUESTURI, REQUESTHEADER, REQUEST-
BODY, RESPONSEHEADER and RESPONSEBODY 1ndi-
cating the location of the element as request URI, request
header, request body, response header, response body
respectively.

The preconditions 1 FIG. 85 determine how these ele-
ments are selected for each pattern. For instance, since RA1
1s a replay attack that tries to reply an element from (U,
SP,,) to (U,, SP,), it 1s reasonable to replay only those
elements that flow from TTP to SP 1.e., data flow label
TTP-SP. Indeed, these are the ones that likely comprise
specific values that TTP 1ssues for the U,. In addition, 1t
would make little sense to replay elements whose values do
not change over different traces. This 1s why that pattern
select only elements 1in the trace that are tagged either as
session unique (SU) or user unique (UU) (the users are
different among the sessions where the reply takes place).
The precondition of RA2 1s analogous to that of RA1, but
since RA2 replays an element from (U, ,, SP,) to (U, , SP.),
then that element must flow from SP to TTP. Similar
reasoning holds for other attack patterns. For RedURI pat-
tern, only the URLs that are chosen by the SP - are consid-
ered, but can be changed by the users (see the previous
definition of RURI label).

FIG. 85 also introduces a new attack pattern named RAS
which 1s ispired from the “credential leak in browser
history” threat model mentioned 1 the OAuth 2.0 threat
model and security considerations document. According to
this threat model, U, ,and U ;. shares the same browser. In the
attack strategy, U, ,replays (to SP) the HI'TP elements that
are 1ssued by the TIP to SP., for U,. Notice that in the
preconditions 1t 1s mentioned that the security critical param-

address, c.g.

Terent

US 9,715,592 B2

11

eters which 1s used 1n this attack strategy must be located 1n
the request URL. The request URLSs of a session 1s stored in
the browser history.

Last but not least, attack patterns need a way to determine
whether the attack strategy they executed was successiul to 53
detect any attack. The post-conditions included 1n FIG. 856
serve this purpose. The idea 1s that each one of the four
nominal sessions 1s associated with a Flag that defines what
determines a successiul completion of 1ts nominal session.
For instance, a string “Welcome Victim™ could be the Flag 10
for the nominal session (U, SP,) of a MPWA implementing
a SSO solution. The concept of Flag will be further clarified
in the next section. The post-condition 1s just a program that
checks whether a certain Flag 1s captured or not while
executing the strategy. A value of the form (U, SP) 1n the 15
column Post-condition stands for this program checking for
the Flag associated with (U, SP). It must be noticed that the
definition of post-condition depends on the specific appli-
cation under test.

FI1G. 3 outlines the two processes underlying an approach 20
according to embodiments. In the first one, executable attack
patterns are created, reviewed, and improved by security
experts. The second process allows testers to 1dentily secu-
rity i1ssues in their MPWAs. In a nutshell, the testers (e.g.,
developers of a MPWA) take advantage of the security 25
knowledge embedded within the executable attack patterns.
What 1s requested of testers 1s not much more of what they
have to do anyhow 1n order to test the business logic of their
MPWAS.

Creating, reviewing, and improving attack patterns may 30
involve at least two skills: web application security knowl-
edge and implementation skills Security experts, 1n particu-
lar those used to perform penetration testing of web appli-
cations, have clearly both. Security experts can thus read and
understand attack patterns like those sketched in FIG. 8b. 35
Improving an attack pattern, by changing few things here
and there to e.g., make 1t a bit more general, 1s also a
straightforward follow-up step. Creation of attack patterns
asks for some more effort and, more importantly, for mspi-
ration. With the exception of RAS, all attack patterns 1n FIG. 40
86 have been inspired by attacks reported in literature. The
discovery of a previously unknown attack not yet covered by
our catalog of attack patterns is, of course, another source of
inspiration. In general, security experts can craft attack
patterns capturing novel attack strategies to explore new 45
types of attacks. This 1s the case for attack pattern RAS,
which we developed to explore the “credential leak in
browser history” threat model. This threat model, referred to
as the browser history attacker, 1s important because brows-
ers can be shared (e.g., public libranies, internet cafes). To 50
the best of our knowledge we are the first to include this in
a black-box security testing approach. A browser history
attacker shares the same browser with other Users. It i1s
assumed that the user does not always clear her browser
history, but she properly signs out from her login sessions. 55
The attack pattern RAS leverages this threat model by
replaying all elements that the attacker can collect from the
browser history of the victim. As seen below, use of this
threat model allows detecting two attacks that could not be
discovered otherwise. 60

Diflerent phases of a security testing framework accord-
ing to embodiments, are now described. FIGS. 4a-¢ show
how these phases concretely apply on the following illus-
trative example.

The developer Diana has implemented the STRIPE 65
checkout solution in her web application. She 1s required to
ensure that (rl) the new feature works as 1t should and (r2)

12

it does not harm the security of her web application. Diana
teels confident for (r1) as the STRIPE API 1s documented
and there are several demo implementations available 1n the
Internet that she can use as references. However, she does
not for (r2) as she does not have a strong security back-
ground.

As shown below, embodiments empower people like
Diana (referred to as the tester) to do a systematic usage of
the body of knowledge collected by security experts.

A first phase (P1) Configuration, 1s now described. The
tester configures the testing environment so to be able to
collect traces for the four nominal sessions: S;,=(U,., SP.),
S.=(U,, SP,), S;=(U,, SP,,), and S,=(U,,, SP,,). To this
end, the Tester creates two user accounts, U,.and U, , in her
service provider SP, and a reference implementation SP, .
Notice that, this step does not require any security back-
ground and normally does not add-up any additional cost for
the tester that wants to functionally test her MPWA. All
major TTPs provide reference implementations to foster
adoption of their solutions. In case a working official refer-
ence 1mplementation 1s not available, another SP (running
the same protocol) can be used.

A second phase (P2) Recording, 1s now described. In
order to allow the testing engine to automatically collect the
necessary HT'TP ftraflic, the tester records the user actions
(UAs for short) corresponding to sessions S; to S,. This
amounts to collecting the actions U, -and U, , perform on the
browser B while running the protocol with SP.. and SP, .
Additionally, for each sequence of UAs, the Tester must also
identify a Flag, 1.e. a regular expression used to determine
the successiul completion of the user actions. Flags are
different between each other so to be able to ensure which
session was completed without any ambiguity. Standard
Web browser automation technologies like Selenium Web
Driver and Zest can be used for recording UAs. Such
technology could be extended to allow the tester to define
Flags by simply clicking on the web page elements (e.g., the
payment confirmation form) that identify the completion of
the user actions. Off-the-shelf market tools already 1mple-
ment this kind of feature to determine the completion of the
login operation.

A third phase (P3) Inference, i1s now described. The
inference module automatically executes the symbolic ses-
sions recorded in the previous phase and tags the elements
in the resulting HTTP tratlic with the labels as previously
described. More information (e.g., inference of the MPWA
observable work-tlow) could be used to target more complex
attacks. Embodiments combine inferring the syntactic and
semantic properties with the concept of inferring tlow labels
to render embodiments more automatic and eflicient.

The 1nference results of sessions S, to S, are stored 1n a
data structure named labeled HTTP trace.

A fourth phase (P4) Application of Attack Patterns, 1s now
described. Labeled HTTP traces (output of inference) are
used to determine which attack patterns shall be applied and
corresponding attack test cases are executed against the
MPWA.

A fifth phase (P3) Reporting, 1s now described. Attacks (1f
any) are reported back to the tester and the tester evaluates
the reported attacks.

To assess the generality and the effectiveness of embodi-
ments, a security testing framework based on OWASP ZAP
(a popular open-source penetration testing tool) has been
developed, and run against a number of prominent MPWASs

US 9,715,592 B2

13

implementations. This tool has been able to identity the
following:

two previously unknown attacks against websites inte-
grating LINKEDIN’s Javascript API-based SSO that
cause an access token replay attack and a persistent
XSS attack;

a previously unknown redirection URI fixation attack
against the implementation of the OAuth 2.0 protocol
in PAYPAL’s “Log in with PayPal” SSO solution
which allows a network attacker to steal the authori-
zation code of the victim and replay 1t to log 1n as the
victim 1n any SP website using the same SSO solution;

a previously unknown attack i the payment checkout
solution offered by STRIPE (integrated in over 17
thousand websites); the attack allows an attacker to
impersonate a SP to obtain a token from the victim User
which 1s subsequently used to shop at the impersonated
SP’s online shop using the victim’s credit card; and

seven previously unknown vulnerabilities 1n a number of
websites (e.g., developer.linkedin.com, pinterest.com,
websta.me) leveraging the SSO solutions offered by
LINKEDIN, FACEBOOK, and INSTAGRAM.

Besides the SSO and the CaaS scenarios, a popular family
of MPWAs, namely the Venfication Via Email (VVE) sce-
nario, was imvestigated. This 1s often used by websites to
send security-sensitive information to users via email. By
testing the security of Alexa Top 500 websites we found that
a number of prominent websites such as daillymotion.com,
cnet.com, groupon.com are vulnerable to login CSRF
attacks.

The 1dea that prior attacks proposed on SSO and CaaS
share commonalities 1s not new. However, embodiments
provide the first black-box security testing approach that has
experimental evidence of applicability 1n both SSO and
CaaS domains.

Prior work on security analysis of MPWAs 1s focused on
SSO and CaaS scenarios. Embodiments evaluate the MPWA
scenar1o 1 which websites sends security-sensitive infor-
mation to users via email and show that seven Alexa top 500
websites are vulnerable to login CSRF attack.

Embodiments develop a fully functional prototype of our
approach on OWASP ZAP, a widely-used open-source pen-
etration testing tool. The tool 1s available online at the
companion website (https://sites.google.com/site/mp-
waprobe/).

Embodiments i1dentity 11 previously unknown wvulner-
abilities 1n security-critical MPWAs leveraging the SSO and
CaaS protocols of LINKEDIN, FACEBOOK, INSTA-
GRAM, PAYPAL, and STRIPE.

The example was implemented on top of OWASP ZAP
(owasp.org/index.php/OWASP Zed Attack Proxy Project)
(ZAP, 1n short). In this way the two core phases of the testing
engine (ci. P3 and P4 above) are fully automated and take
advantage ZAP to perform common operations such as
execution of UAs, manipulating HTTP traflic using proxy
rule, regular expression matching over HT'TP traflic, etc.

The STRIPE checkout protocol 1s illustrated 1n FIG. 4a.
It 1s shightly different than the PAYPAL Payments Standard
presented 1 FIG. 1b.

The STRIPE protocol of FIG. 4a works as follows. In
steps 1-5, the user U visits SP—an e-shopping application—
at URI_SP and mitiates the checkout of a product item
[—the item 1s 1dentified by I_ID. Upon receiving the check-
out request, SP returns a payment form embedded with a
unique 1dentifier (DataKey) 1ssued by STRIPE to SP (step
6). The user provides credit card details (Credentials) to
STRIPE and DataKey 1s sent in this request (steps 7-8).

10

15

20

25

30

35

40

45

50

55

60

65

14

After verilying the validity of Credentials, Stripe returns a
token (Token) which 1s specific to the SP (steps 9-10). Upon
presenting Token and Secret (a secret credential possessed
by each SP integrating the STRIPE checkout solution) and
Amt (cost of 1), SP withdraws Amt from the user’s credit
card (steps 11-12). Finally, the status of the transaction 1s
sent to the user (step 13).

Under the phase (P1) Configuration, Diana uses the SP
she implemented as SP, and the official reference imple-
mentations provided by STRIPE as SP,,. For each of them,
she creates the two user accounts U, and U, ..

Under the phase (P2) Recording, FIG. 45 summarizes the
UAs and Flags collected by Diana during the recording
phase. Note that the UAs are obtained from steps 1, 4, and
7 of FIG. 4a, while the Flag 1s derived from step 13 1n FIG.
4a. (I,-1, indicate four different items).

Under the phase (P3) Inference, an excerpt of the infer-
ence results of the protocol underlying Diana’s implemen-
tation of the STRIPE checkout protocol 1s shown 1n FIG. 4c.

Under the phase (P4) Application of Attack Patterns, the
result ol applying each attack pattern of FIG. 8b on this
example 1s reported immediately below. Under the phase
(P5) Reporting, the RAS attack 1s reported to Diana. Execu-
tion details of attack patterns are logged and can be
ispected.

Details of the result of applying the attack pattern on
STRIPE checkout are now described.

RA1 REPLAY Token FROM (U,; SP,,) IN (U, SP.).
This attack pattern reports no attacks. When the attack
test-case reaches Step 10 of FIG. 4a, U,’s Token which
was actually 1ssued for SP,,1s replayed by U, , against
SP... The TTP STRIPE 1dentifies a mismatch between
the owner of Secret and the SP for which T

oken was
issued and returns an error status at Step 12.

RA2 REPLAY DataKey FROM (U, ; SP,) IN (U, ; SP).
No attacks reported. Similar reasons as the previous
one: the attacker replays DataKey belonging to SP, . 1n
the checkout session at SP. Hence the Token returned
by TTP cannot be used by SP. to receive a success
status at Step 12.

RA3 REPLAY Token FROM (U, SP,) IN (U, ; SP). No
attack reported. In STRIPE checkout, the validity of a
Token expires once 1t 1s used. Reuse of Token returns

an error.
RA4 REPLAY DataKey FROM (U, ; SP) IN S where

S=REPLAY Token FROM S IN (U, ,; SP.). This attack
pattern reports an attack as there 1s no protection
mechanism 1n the STRIPE checkout solution that pre-
vents spoofing of the DataKey by another SP. Initially,
the attack test case replays the DataKey from (U, ; SP)
into (U,; SP,,). When the Token obtained in this
session by SP,, 1s replayed into session (U, SP.),
STRIPE does not 1dentity any mismatch and returns a
success status at Step 12. This allows the attacker U, ,
to impersonate U, and to purchase a product at SP..

RAS This attack strategy 1s not applicable to STRIPE as
there are no elements with data tlow TTP-SP that also
have REQUESTURL as location (basically none of
those elements would be present 1n the browser his-
tory).

LCSRF REPLACE req WITH REQUEST-OF Token
FROM (U, SP, IN [U,, SEND req]. This pattern
detects an attack. The test case generated sends a HI'TP
POST request corresponding to Step 10 with an unused
Token. This request alone i1s enough to complete the
protocol and to uncover a CSRF. In our experiment this
was discovered on the demo implementation of

US 9,715,592 B2

15

STRIPE. Indeed it 1s not unusual that this kind of
protections are missing in the demo systems. We do not
know whether any productive MPWAs sufler from this.
Determining this would require specific testing users on
the productive system or the buying of real products.

RedURI This pattern 1s not applicable as there are no

URIs that have data flow TTP-SP and semantic prop-
erty RURI.

FIG. 5 outlines a high-level architecture of a testing
engine. The Tester provides the necessary mput to our
Testing Engine that in turn employs OWASP ZAP to probe
the MPWA. The “R” with the small arrow 1s a short notation
of the request-response channel pair that clarifies who are
the requester and the responder of a generic service. In
particular, the Testing Engine invokes the API exposed by
/AP to perform the following operations.

The API 1s invoked to E

Execute user actions and collect
HTTP traces. UAs, expressed as Zest script, can be executed
via the Selentum Web Driver module of ZAP and the
corresponding HT'TP trace can be collected from ZAP.

The API 1s set to Proxy rule setting. Proxy rules can be
specified, as Zest scripts, to mutate HI'TP requests and
response passing through the built-in Proxy of ZAP.

The API 1s mvoked to Evaluate Flag. Execute regular
expression-based pattern matching within the HT'TP trace so
to, e.g., evaluate whether the Flag 1s present in the HT'TP
trace.

Hereatter are detailed the two core phases (P3 and P4) of
the testing engine embodiment that follow the flow depicted
in FIGS. 6a and 6. Each step 1s tagged by a number to
simplity the presentation of the flow.

The role of inference 1in the process flow 1s as follows.
With reference to the steps of FIGS. 6a and 65, the following
activities are performed by the inference module after the
tester records (step 1) the four <UAs, Flag> corresponding,
to sessions S, S,, S;, and S, 1n (P2).

Trace collection occurs in steps 2-3. The input UAs are
executed and corresponding HT'TP traces are collected. The
Flags are used to verily whether the collected traces are
complete. The collected HT'TP traces are represented as
HT(S,), HT(S,), HT(S;), and HT(S,).

The traces are stored as an array of <request, response,
clements> triplets. Each triplet comprises the HI'TP request
sent via OWASP ZAP to the MPWA, the corresponding
HTTP response, and details about the HTTP eclements
exchanged. An excerpt of a trace related to the illustrative
example of FIG. 4a 1s depicted 1n FIG. 7 1n JSON format.
For simplicity, only one entry of the trace array and only one
HTTP element are presented. Here the focus 1s on the HT'TP
clements. For each of them we store the name (“name”), the
value (“Value”) its location 1n the request/response
(“source”, e.g., “source”’="request.body” indicates that the
clement occurs 1n the request body of the HT'TP request), the
associated request URL (““url™), 1ts data tlow patterns, syn-
tactic and semantic labels that are 1initially empty and will be
inferred 1n the next activities. For instance, the element
illustrated 1n FIG. 7 1s the Token shown 1n Step 10 of FIG.
da.

Steps 4-10 of FIGS. 6a-b show syntactic and Semantic
Labeling. The collected HT'TP traces are ispected to infer
the syntactic and semantic properties of each HI'TP element.

While syntactic labeling 1s carried out by matching the
HTTP elements against simple regular expressions, seman-
tic labeling may require (e.g. for MAND) active testing of
the MPWA. For instance, to check whether an element e
occurring 1 HT(U, ; SP) 1s to be given the label MAND,

the inference module generates a proxy rule that removes e

5

10

15

20

25

30

35

40

45

50

55

60

65

16

from the HTTP requests (Step 6). By activating this proxy
rule (Step 7), the inference module re-execute the UA
corresponding to the session (U, , SP.) and checks whether
the corresponding Flag 1s present in the resulting trace (steps
8-9). For imstance, the eclement Token (see FIG. 7) 1s
assigned the syntactic labels BLOB and the semantic labels
SU and MAND.

Data Flow Labeling 1s shown 1n step 11. After syntactic
and semantic labeling, the data tflow properties of each
MAND element 1n the trace 1s analyzed to 1dentily the data
flows (either TTP-SP or SP-TTP). In order to i1dentily the
protocol patterns, it 1s necessary to distinguish TTP and SP
from the HTTP trace. This 1s done by identifying the
common domains present in the HI'TP trace of the two
different SPs (SP, and SP,,) implementing the same proto-
col and classitying the messages from/to these domains as
the messages from/to TTP.

The output of the inference phase 1s the labeled HTTP
traces (LHT(S,);LHT(S,);LHT(S;);LHT(S,)).

The role of the attack patterns engine of FIG. 5 1s now
described. Each attack pattern has a name, the goal the
attacker (who follows the attack strategy defined in the
pattern) aims to achieve, the underlying threat model, inputs
used, pre-conditions, actions and post-conditions. The mputs
to the attack pattern range over the LHTs (labeled HT'TP
traces generated by the inference module), UAs of the
nominal sessions, and the corresponding Flags. The goal,
pre-conditions, actions and post-conditions are built on top
of the mnputs. The pattern 1s applicable if and only 1t 1ts
pre-conditions hold (steps 12-14 of FIGS. 6a and 6b). As
soon as the pattern pre-conditions hold, the actions are
executed (steps 15-17 of FIG. 65). The actions contain the
logic for generating proxy rules that mimics the attack
strategy. The generated proxy rules are loaded in ZAP and
UAs are executed. The execution of UAs generates HT'TP
requests and responses. The proxy rules mampulates the
matching requests and responses. As last step of the actions
execution, the post-conditions 1s checked. If 1t holds (step 18
of FIG. 6b), an attack report 1s generated with the configu-
ration that caused the attack (step 19 of FIG. 6b).

An example on Attack Pattern for RA1 1s described. To
illustrate, let us consider the Replay Attack pattern RA1
reported 1n FIG. 8b. In FIG. 9a, we show the pseudo-code
describing it. The Threat Model considered 1s the Web
Attacker. To evaluate the applicability of the pattern, the
output of the inference phase 1s sutlicient (LHT(U,, SP,)):
the attack pattern 1s executed in case at least one element x
has the proper data flow and semantic label (line 6-7). For
cach selected element x (line 9), the function extract (X,
UAs(U;.SP,) (line 10) executes UAs(U ,, SPM) returning
the value e associated with x. This value e 1s then used by
the function replay (x, e, UAs(U,,, SP)) (line 11) to replay
the value of ¢ while executing UAs(UM; SPT), and gener-
ating the corresponding HTTP_ logs. The logs are finally
used 1n the Postconditions to check whether Flag(U ,; SP)
occurs. To clarify how the attack patterns engine leverages
the API exposed by ZAP to interact with the built-in Proxy,
the pseudo-codes corresponding to the extract and replay
functions are reported i FIG. 96 and FIG. 9c, respectlvely
In FIG. 954, at first, the function generate break_rule (x) 1s
invoked. Given an element x, it returns a proxy rule rb
breaking the execution of ZAP, when an occurrence of X 1s
detected. The proxy rules include regular expressions used

to 1dentily the elements in the HTTP traflic. Then, the ZAP
API load_rule ZAP(rule) loads rb in ZAP. The ZAP API
execute_ZAP(UAs) executes the UAs 1n ZAP and returns
the generated HT'TP_logs. The HTTP_logs are taken as

US 9,715,592 B2

17

input by the function extract_value (x, HI'TP_logs) extract-
ing from them the value e, associated to x. In FIG. 9c¢, the
function generate_replay_rule (X, €) returns the proxy rule rr

used to detect and replace the value of the element x with e.
Then, the ZAP API load_rule_ZAP(rule) loads rr in ZAP.

The ZAP API execute_ ZAP(UAs) executes the UAs in ZAP
and returns the generated HTTP_logs.

Notice that, besides the functions mentioned above, 1n
order to help the security expert in defimng new attack
patterns, we provide several functions. The full list of
functions that can be used in the definition of attack patterns
1s available at https://sites.google.com/site/mpwaprobe.

To test the eflectiveness of our approach, the prototype
implementation was run against a large number of real-
world MPWAs. The criteria used to select our target MPWAS
1s now described.

We selected S5O, CaaS and VVE (see FIG. 1c¢) scenarios
as the targets of our experiments. For the SSO scenario, we
adopted a strategy to 1dentily SPs integrating SSO solutions
offered by LINKEDIN, INSTAGRAM, PAYPAL, and
FACEBOOK. Additionally, we prioritized the results using
the Alexa rank of SPs. For the CaaS scenario, we targeted
publicly available demo SPs integrating PAYPAL Express
Checkout and STRIPE checkout solutions. For the VvE
scenar1o, we selected the websites belonging to the Alexa
Global Top 500 category.

We have been able to identily several previously
unknown vulnerabilities. The new attacks are reported in
FIG. 12. We have promptly notified our findings to the
flawed SPs and TTPs and most of them acknowledged our
reports and promptly patched their solutions. As some SPs
have not yet patched the vulnerabilities, FIG. 12 anonymizes
the names of those SPs.

We cluster the attacks in four classes (see last column of
FIG. 12) according to their similarities with respect to
known attacks. This allows us to show the capabilities of our
approach not only to detect attacks already known 1n litera-
ture, but also to find similar attacks in MPWAs implement-
ing different protocols and in different MPWA scenarios.

Attack class N represents a new kind of attack. The RAS
pattern that leverages the browser history attacker threat
model discovered an attack in the integration of the LINKE-
DIN IS API SSO solution at developer.linkedin.com (#32)
The presence of the nonexpiring user 1d of the victim 1n the
browser history allows an attacker to hiyjack the victim’s
account. Another SP website that appears 1n the Alexa top 10
e-commerce website category 1s also vulnerable to the same
attack (#al).

Attack class NS represents a known kind of attack has
been applied to a different MPWA scenario. By applying the
RA4 attack pattern, we were able to detect a previously
unknown attack in the CaaS scenario (#a3 of FIG. 12). It
must be noted that RA4 i1s inspired by an attack in SSO
scenario (see #6 of FIG. 2b), and our protocol-independent
approach allowed us to detect i1t 1n a different scenario. In
particular, we 1dentified the attack in the payment checkout
solution offered by STRIPE: the attack allows an attacker to
impersonate a SP (by replaying its publicly available API
key) to obtain a token from the victim user which 1s
subsequently used to shop at the impersonated SP’s online
shop using the victim’s credit card. As reported in FIG. 12,
this attack 1s applicable to all SPs implementing the STRIPE
checkout solution. Similarly, using our login CSRF attack
pattern, we tested the VvE scenario and discovered the
tollowing (#a4):

1) login CSRF attack 1in the account registration process

of OpenSAP and seven other SPs (all having Alexa Global

10

15

20

25

30

35

40

45

50

55

60

65

18

rank less than 500). One of the victim SP 1s a popular
video-sharing website. The account activation link (ActLink
of FIG. 1c¢) 1ssued by this website not only activated the
account, but also authenticated the user without asking for
credentials. An attacker can create a fake account that looks
similar to the victim’s account and authenticate the victim to
the fake account. This enables the attacker to keep track of
the videos searched by the victim and use this information
to embarrass the victim.

2) twitter.com sends an email to a user 11 he/she has not
signed 1nto twitter for more than 10 days. The URLs
included 1n this email directly authenticates the user without
asking for credentials. This 1s a potential launchpad {for
performing login CSRF attacks. A totally diflerent login
CSRF attack against twitter.com was previously discovered
and 1t was demonstrated how a login CSRF attack 1n
twitter.com becomes a login CSRF vulnerability on all of its
client websites.

Attack class NP represents a known kind of attack 1is
applied to different protocols or implementations of the
same scenario (S5O, CaaS, or VvE). Using the RA1 attack
pattern which 1s mspired by the attacks against GOOGLE’s
SAML SSO (ct. #1 of FIG. 2a) and FACEBOOK’s OAuth
SSO (ct. #2 of FIG. 2a), we discovered a similar 1ssue 1n the
integration of the LinkedIn JS API S5O solution at INstant
(#a6) and another SP (#a5) which has an Alexa US Rank
(http://www.alexa.com/topsites/countries/US) less than
55,000. The vulnerable SPs authenticated the users based on
their email address registered at LINKEDIN and not based
on their SP-specific user 1d.

We discovered login CSRF attacks 1n two SPs (#a8, both
having Alexa Global Rank less than 1000) integrating the
Instagram SSO solution and another SP (#a9 of FIG. 12,
with Alexa Australia rank (http://www.alexa.com/topsites/
countries/AU) less than 4200) integrating the LinkedIn
OAuth 2.0 SSO. The attack pattern that discovered these
attacks 1s mspired from the login CSRF attacks against SPs
integrating the Browser Id SSO and Facebook SSO solutions
(see #7 and #8 of FIG. 2b).

Our attack pattern that tampers the redirect URI (inspired
from #9 of FIG. 2b) reported that in Pinterest’s implemen-
tation of the Facebook SSQO, 1t 1s possible to leak the OAuth
2.0 authorization code of the victim to the network attacker
by changing the protocol of the redirect URI from “https™ to
“http” (#al10 of FIG. 12). This was due to the presence of an
unprotected Pinterest authentication server. The same vul-
nerability was found in all SPs implementing the “Login

with PayPal” S5O solution (#all of FIG. 12). However, 1n
this case 1t was due to incorrect validation of the redirect
URI by the IdP PayPal.

Attack class NA represents a known kind of attack on a
specific protocol 1s applied to new SPs (still using the same
protocol offered by the same TTP). This shows how our
technique can cover the kinds of attacks that were reported
in literature. For instance, we tested a publicly available
demo shopping cart application (integrating PAYPAL
Express Checkout) provided by sanwebe.com and noticed
that the RA3 attack pattern reported an attack (#al2 of FIG.
12) similar to ci. #5 of FIG. 2a.

We were also able to manually identify two attacks. We
created one single attack pattern that generalizes an XSS
attack strategy. While writing the preconditions and the
attacker strategy was straightforward, the post-condition
was more challenging. Indeed establishing whether a XSS
payload 1s successiully executed 1s a known issue 1n the
automatic security testing community. In our preliminary
experiments, we just relied on the tester to mspect the results

US 9,715,592 B2

19

of the pattern and to determine whether the XSS payload
was successiully executed. By doing so we uncovered an
XSS vulnerability 1in the INstant website integrating the
LinkedIn JS API SSO. Additionally, we manually analyzed
the data flow between SP and TTP in SPs integrating
LinkedIn REST API SSO to identify tainted data elements.
We replaced the value of tainted elements with XSS pay-
loads and 1dentified another XSS vulnerability in a SP that
has Alexa Global rank less than 300 (#al3).

In general, coverage 1s a general issue for the black-box
security community. Though each of our attack patterns can
state precisely what it 1s testing, our approach 1s not an
exception 1n this respect. For instance, 1t can only detect
known types of attacks because our attack patterns are
inspired from known attacks. Creative security experts could
craft attack patterns capturing novel attack strategies to
explore new types of attacks. Two cases can be foreseen
here. The new attack patterns (new recipes) can be built
(cooked) on top of the available preconditions, actions, and
post-conditions (ingredients). In this case 1t should be pretty
straightforward for security experts to cook this new recipe.
If new ingredients are necessary, extensions are needed.
These can range from adding a simple operation on top of
OWASP ZAP up to extending the inference module with
e.g., control-flow related inferences and similar. Another
research direction could focus on integrating fuzzing capa-
bilities within some of our attack patterns. A clear drawback
1s that this extension will likely make the entire approach
subject to false positives. A more challenging research
direction could focus on automated generation of attack
patterns. Though this may look as a Holy Grail quest, there
may be reasonable paths to explore. For instance, when
considering replay attacks and the patterns we created for
them, 1t 1s clear that the attack search space we are covering,
1s far from being complete. How many sessions and which
sessions should be considered 1n the replay attack strategy as
well as which goal that strategy should target remain open
questions. However attack patterns could be automatically
generated to explore this combinatorial search space.

A few attacks reported 1n the MPWA literature are not
covered by our attack patterns. In fact, FIGS. 2a and 25 do
present neither XML rewriting attacks nor XSS attacks. For
XSS we did not 1nvest too much 1n that direction as there are
already specialized techniques in literature that are both
protocol- and domain-agnostic. By adding XML support,
new attack patterns can be created to target also XML
rewriting attacks. This can be a straightforward extension of

our approach and prototype especially considering that
OWASP ZAP supports Jython. Basically, all Java libraries

can be run within OWASP ZAP so that Java functions
performing transformations on the HTTP traflic (e.g.,
base64, XML parsing). Our approach can also be extended
to handle postMessage: frames would be considered as
protocol entities and their interactions as communication
events. While there are no conceptual 1ssues to perform this
extension, there 1s technical obstacle as, at the moment,
OWASP ZAP provides only partial support to intercept
postMessages.

Embodiments call for the tester to provide the initial
configurations. The quality of these configurations has a
direct impact on the results. For istance if the Flags are not
chosen properly, our system may report false positives.

In conclusion, embodiments present an approach for
black-box secunity testing MPWAs. The core of our
approach 1s the concept of application-agnostic attack pat-
terns. These attack patterns are inspired from the similarities
in the attack strategies of the previously discovered attacks

5

10

15

20

25

30

35

40

45

50

55

60

65

20

against MPWAs. The implementation of our approach 1is
based on OWASP ZAP, a widely-used open-source legacy
penetration testing tool. By using our approach, we have
been able to 1dentity serious drawbacks 1n the SSO and CaaS
solutions offered by LINKEDIN, PAYPAL, and STRIPE,
previously unknown vulnerabilities 1n a number of websites

leveraging the SSO solutions offered by FACEBOOK and
INSTAGRAM and automatically generate test cases that
reproduce previously known attacks against vulnerable inte-
gration ol the PAYPAL Express Checkout service.

FIG. 10 illustrates hardware of a special purpose com-
puting machine configured to perform security testing
according to an embodiment. In particular, computer system
1001 comprises a processor 1002 that i1s 1n electronic
communication with a non-transitory computer-readable
storage medium 1003. This computer-readable storage
medium has stored thereon code 1005 corresponding to an
attack pattern. Code 1004 corresponds to an engine. Code
may be configured to reference data stored 1n a database of
a non-transitory computer-readable storage medium, for
example as may be present locally or 1n a remote database
server. Software servers together may form a cluster or
logical network of computer systems programmed with
software programs that communicate with each other and
work together 1n order to process requests.

It 1s noted that 1n the specific embodiment of FIG. 10, the
engine 1s shown as being part of a database. Such an
embodiment can correspond to applications performing pro-
cessing by a powerlul engine available as part of an 1n-
memory database (e.g., the HANA in-memory database
available from SAP SE of Walldort, Germany). However,
this not required and in certain embodiments (e.g., that
shown 1n FIG. 13) the engine may be implemented 1n other
ways, for example as part of an overlying application layer.

An example computer system 1100 1s illustrated 1n FIG.
11. Computer system 1110 includes a bus 11035 or other
communication mechanism for communicating information,
and a processor 1101 coupled with bus 1105 for processing
information. Computer system 1110 also includes a memory
1102 coupled to bus 1105 for storing information and
instructions to be executed by processor 1101, including
information and instructions for performing the techniques
described above, for example. This memory may also be
used for storing variables or other intermediate information
during execution of mstructions to be executed by processor
1101. Possible implementations of this memory may be, but
are not limited to, random access memory (RAM), read only
memory (ROM), or both. A storage device 1103 1s also
provided for storing information and instructions. Common
forms of storage devices include, for example, a hard drive,
a magnetic disk, an optical disk, a CD-ROM, a DVD, a flash
memory, a USB memory card, or any other medium from
which a computer can read. Storage device 1103 may
include source code, bimnary code, or software files for
performing the techniques above, for example. Storage
device and memory are both examples of computer readable
mediums.

Computer system 1110 may be coupled via bus 1105 to a
display 1112, such as a cathode ray tube (CRT) or liquid
crystal display (LCD), for displaying information to a com-
puter user. An input device 1111 such as a keyboard and/or
mouse 1s coupled to bus 1105 for communicating informa-
tion and command selections from the user to processor
1101. The combination of these components allows the user
to communicate with the system. In some systems, bus 11035
may be divided into multiple specialized buses.

US 9,715,592 B2

21

Computer system 1110 also includes a network intertace
1104 coupled with bus 1105. Network interface 1104 may
provide two-way data communication between computer
system 1110 and the local network 1120. The network
interface 1104 may be a digital subscriber line (DSL) or a
modem to provide data communication connection over a
telephone line, for example. Another example of the network
interface 1s a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links are another example. In any such implementation,
network interface 1104 sends and receives electrical, elec-
tromagnetic, or optical signals that carry digital data streams
representing various types of information.

Computer system 1110 can send and receive information,
including messages or other interface actions, through the
network interface 1104 across a local network 1120, an
Intranet, or the Internet 1130. For a local network, computer
system 1110 may communicate with a plurality of other
computer machines, such as server 1115. Accordingly, com-
puter system 1110 and server computer systems represented
by server 1115 may form a cloud computing network, which
may be programmed with processes described herein. In the
Internet example, soltware components or services may
reside on multiple different computer systems 1110 or serv-
ers 1131-1135 across the network. The processes described
above may be implemented on one or more servers, for
example. A server 1131 may transmit actions or messages
from one component, through Internet 1130, local network
1120, and network interface 1104 to a component on com-
puter system 1110. The software components and processes
described above may be implemented on any computer
system and send and/or receirve information across a net-
work, for example.

The above description illustrates various embodiments of
the present invention along with examples of how aspects of
the present invention may be implemented. The above
examples and embodiments should not be deemed to be the
only embodiments, and are presented to illustrate the flex-
ibility and advantages of the present invention as defined by
the following claims. Based on the above disclosure and the
tollowing claims, other arrangements, embodiments, 1mple-
mentations and equivalents will be evident to those skilled
in the art and may be employed without departing from the
spirit and scope of the invention as defined by the claims.

What 1s claimed 1s:
1. A computer-implemented method comprising:
an engine ol an m-memory database executing a user
action with a Multi-Party Web Application (MPWA);
the engine receiving a trace of HTTP traflic with the
MPWA resulting from the user action, the HT'TP traflic
comprising part of a security protocol;
the engine causing an element to be removed from the
trace that results in the HTTP traflic ceasing and the
security protocol not completing successtully;
the engine assigning a semantic label to the trace com-
prising the element, to create a labeled trace indicated
as mandatory;
the engine applying an attack pattern to the labeled trace
to 1dentily an attack, wherein the attack pattern 1s stored
in the m-memory database; and
the engine reporting the attack to a user interface.
2. A method as 1 claam 1 wherein the engine 1s in
communication with a tool to probe the MPWA.
3. A method as 1n claim 1 wherein the semantic label
turther 1dentifies an element of the trace as unique to an
application, a user, or a session.

10

15

20

25

30

35

40

45

50

55

60

65

22

4. A method as 1 claim 1 wherein assigning the label
comprises assigning a flow label.

5. Amethod as 1n claim 4 wherein the flow label 1dentifies
a generator of the trace and a recipient of the trace.

6. A method as 1n claim 5 wherein the flow label indicates
the generator as a trusted third party (1TP) and the recipient
as a service provider (SP), or indicates the generator as the
SP and the recipient as a TTP.

7. A method as 1n claim 5 wherein the tflow label 1s based
upon a location of the element in the trace.

8. A method as 1 claim 1 wherein the attack pattern
comprises a structured artifact executable by the engine.

9. A non-transitory computer readable storage medium
embodying a computer program for performing a method,
said method comprising;:

an engine of an mm-memory database executing a user
action with a Multi-Party Web Application (MPWA);

the engine receiving a trace of HITP trathc with the
MPWA resulting from the user action, the HITP traflic
comprising part of a security protocol;

the engine causing an element to be removed from the
trace that results 1n the HTTP traflic ceasing and the
security protocol not completing successtully;

the engine assigning a plurality of labels to the trace
comprising the element, to create a labeled trace includ-
ing a semantic label indicating the labeled trace as
mandatory;

the engine receiving an attack pattern comprising a struc-
tured artifact, the attack pattern stored 1n the in-memory
database:

the engine executing the structured artifact against the
labeled trace to i1dentily an attack; and

the engine reporting the attack to a user interface.

10. A non-transitory computer readable storage medium
as 1n claim 9 wherein the plurality of labels comprise a
syntactic label and a flow label.

11. A non-transitory computer readable storage medium
as 1 claim 10 wheremn the semantic label identifies an
clement of the trace as unique to an application, a user, or a
SESS101.

12. A non-transitory computer readable storage medium
as 1n claim 10 wherein the engine 1s 1n communication with
a tool to probe the MPWA.

13. A non-transitory computer readable storage medium
as 1n claim 10 wherein the tlow label 1identifies a location of
the element 1n the trace.

14. A non-transitory computer readable storage medium
as 1n claim 10 wherein the structured artifact comprises a
name, a goal, an mnput, and a condition.

15. A computer system comprising:

one or more processors including an engine of an 1n-
memory database;

a memory coupled to the one or more processors and
comprising a soltware program, executable on said
computer system, the software program configured to
cause the engine to:

execute a user action with a Multi-Party Web Application
(MPWA);

recerve a trace of HI'TP trathic with the MPWA resulting
from the user action, the HTTP trailic comprising part

of a security protocol;

cause an element to be removed from the trace that results
in the H1TP trathic ceasing and the security protocol
not completing successtully;

US 9,715,592 B2
23

assign a syntactic label, a semantic label, and a flow label

to the trace comprising the element, to create a labeled
trace 1including a semantic label indicating the labeled
trace as mandatory;

receive an attack pattern comprising a structured artifact, 3

the attack pattern stored in the mn-memory database;
execute the structured artifact against the labeled trace to
identify an attack; and

report the attack to a user interface.

16. A computer system as 1n claim 15 wherein the 10
semantic label 1dentifies an element of the trace as unique to
an application, a user, or a session.

17. A computer system as 1n claim 15 wherein the engine
1s 1n communication with a tool to probe the MPWA.

18. A computer system as in claim 15 wherein the flow 15
label indicates a generator of the trace as a trusted third party
(TTP) and a recipient of the trace as a service provider (SP),
or indicates the generator as the SP and the recipient as a
TTP.

19. A computer system as in claim 15 wherein the tlow 20
label 1s based upon a location of an element 1n the trace.

G x e Gx o

24

	Front Page
	Drawings
	Specification
	Claims

