US009715388B2

a2y United States Patent (10) Patent No.: US 9,715,388 B2

Chung et al. 45) Date of Patent: Jul. 25, 2017
(54) INSTRUCTION AND LOGIC TO MONITOR GO6F 11/34 (2006.01)
LLOOP TRIP COUNT AND REMOVE LOOP GO6L 9/45 (2006.01)
OPTIMIZATIONS (52) U.S. CL
CPC GO6F 9/325 (2013.01); GOGF 9/30072
(75) Inventors: Jaewoong Chung, Sunnyvale, CA (2013.01); GO6F 9/3842 (2013.01); GO6F
(US): Hyunchul Park, Sunnyvale, CA 9/3857 (2013.01); GO6F 11/348 (2013.01);

GO6F 11/3409 (2013.01); GO6F 8/443
(2013.01); GO6F 2201/88 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(US); Hongbo Rong, Cupertino, CA
(US); Cheng Wang, San Ramon, CA
(US); Youfeng Wu, Palo Alto, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA

(US) (56) References Cited
(*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 646 days. 5,909,573 A 6/1999 Sheaffer et al.
7,318,223 B2 1/2008 Blainey et al.
(21) Appl. No.: 13/996,861 (Continued)
(22) PCT Filed: Mar. 30, 2012 OTHER PUBLICATIONS
(86) PCT No.: PCT/US2012/031711 Shukla (Lightweight, Cross-Procedure Tracing for Runtime Opti-
§ 371 (c)(1) mization, 2003, 58 pages).*
c)(1), .
(2), (4) Date: Jun. 21, 2013 (Continued)
(87) PCT Pub. No.: WO2013/147896 Primary Examiner — George (G1roux |
(74) Attorney, Agent, or Firm — Patent Capital Group
PCT Pub. Date: Oct. 3, 2013
(57) ABSTRACT
(65) Prior Publication Data
Logic and instruction to monitor loop trip count are dis-
US 2014/0208085 A1 Jul. 24, 2014 closed. Loop trip count information of a loop may be stored
in a dedicated hardware buller. Average loop trip count of
(31) Int. CL | the loop may be calculated based on the stored loop trip
Goot 15/00 (2006-O:~) count information. Based on the average trip count, loop
GO6E 7/36 (2006-O:~) optimizations may be removed from the loop. The stored
Gool 9/00 (2006-0:) loop trip count information may include an identifier 1den-
Goot 9/44 (2006-0:) tifying the loop, a total loop trip count of the loop, and an
Gool 9/32 (2006.01) exit count of the loop.
GO6F 9/30 (2006.01)
GO6F 9/38 (2006.01) 26 Claims, 24 Drawing Sheets

Identlify
loop

1802

Estimated high Ioop trip count?
1804

YES

Transform loop to use Remove loop
TC_BCC_CMIT -— optimizations
1806 1814
A

YES

US 9,715,388 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2001/0044930 A1 11/2001 Miyata et al.
2005/0240896 A1 10/2005 Wu et al.
2007/0169030 Al1* 7/2007 Tarditn, Jr. GO6F 9/466
717/140

OTHER PUBLICATIONS

Wang et al. (Y-Branches: When You Come to a Fork in the Road,
Take It; Oct. 2003, pp. 1-11).*

Cavazos et al. (Rapidly Selecting Good Compiler Optimizations
using Performance counters, Mar. 2007, pp. 1-13).*

Zhao et al (Predicting the Impact of Optimizations for Embedded
Systems, Jun. 2003, pp. 1-11).*

International Search Report and Written Opinion dated Nov. 29,

2012 1n International Application No. PCT/US2012/031711, filed
Mar. 30, 2012.

* cited by examiner

U.S. Patent Jul. 25, 2017 Sheet 1 of 24 US 9,715,388 B2

PROCESSOR
102

EXECUTION UNIT 108

PACKED INSTRUCTION
SET 109

MEMORY

GRAPHICS/VIDEO I\ | MEMORY CONTROLLER }/ INSTRUCTION
CARD HUB

112 116

LEGACY

| NTROLLER
DATA STORAGE /O CONTRO

124
USER INPUT

INTERFACE

A o - ﬂﬂ#ﬂ'#

WIRELESS
TRANSCEIVER
126

1/O
CONTROLLER HUB 13 . SERIAL

EXPANSION PORT

FLASH BIOS _ AUDIO
128 CONTROLLER

NETWORK
CONTROLLER FIG. 1A

100 134

U.S. Patent Jul. 25, 2017 Sheet 2 of 24 US 9,715,388 B2

PROCESSING 141
CORE

__ /0
I T l 154
. >
SRAM CTL
147 UART
155
>
BURST FLASH . USB
INTERFACE - 156
148 >

BLUETOOTH
UART

PCMCIA/CF

- CARD CT 157
LCD CT _

150 EXPANSION INTERFACE

DMA CTL _
151
15

ALTERNATE BUS

MASTER INTERFACE
152

FIG. 1B

US 9,715,388 B2

Sheet 3 of 24

Jul. 25, 2017

U.S. Patent

WINPT APV PN U VPR GNP TR VTR ST TR T TR T !!i.‘

691
J0V4d31NI
SSITIHIM

L““““““ L1 F L 1 J }

I
i
i
i
|
i
i
i
i
i
i
i
i
i
i
i
{

091

891
INILSAS
O/l

Jl Ol

9T
dHIVO

iii

997
dOSS3004d NIVIA

19T
d40SS3004d00 ANIS

[ot e e e e e e . o e e

US 9,715,388 B2

Sheet 4 of 24

Jul. 25, 2017

U.S. Patent

¢ 9Old

JHIOVD T 13AT1 OL IHIVD T 1IAT1 0L
¢Ce 817 vic
JAOIN d NV LSvd NOY
m OTZ YYOMLIN 802 tie
SSVdASE / 314 43LSIDIY d NHOMLIN SSVdASE / I114 ¥I1SIDIY YIDIINI v_wmm

907 ¥31NAIHDS ¥IT1NAIHIS

dd 31dINIS H3TNQIHIS d4 TYHINID/MOTS ¥3TNQIHIS 1SV AHOWIN
IN3IND
F1IND dON LNIOd ONILYO14/4IDILNI dON AMOINIIA

YAINYNIY HI1SIDIY/HOLYIO0TIV

veT _ 0€¢ £0¢
| 3ININD don dHIVD FDVHL ANIDNI ¥3QH¥O0 40 1NO

25
NOY 344
3A0I0WIN 430003d 002
NOILINYLSNI HOSSIIOUd
CY4d
57 ¥IHIL343Yd

NOILINYLSNI

(N3 INOUY4

Ve Old

US 9,715,388 B2

0€E
AyoOMITGNOA aNOvd
0 A4OMNMJ19gNOd ¢ Q4OMIT9NOAd
0 1€ Z€ G6 96 /7T
_.4
g
= 0Z¢
\ AYOM DDV
D
P
e
7
0 d4OM T Q4OM 9 QdOM L QHOM
-
m 0 ST 91 1€ ¢€ 6 96 11T 211 LZT
W,
-
m.. 01€
= JLAE ADDVd
r4)
31.1A9 u._.>m
QT 91 €¢ Ve 1€ ¢€ G6 96 €0T 0T TIT ZIT 61T 02T /2T

U.S. Patent

d¢ Ol

US 9,715,388 B2

EYE
479N04 Aiovd
0 319N0G 1 319n0q
< 0 €9 9 LTT
g
-~
&
\& ire
= TONIS AIHiIovd
P
i
P,
0 319NIS T 319NIS Z I19NIS € I1ONIS
— ”
(— m
2., 0 TE ©C¢ €9 79 56 96 LCT
\f,
gl
= 1873
41VH daxMOvd
0 41VH T 41VH ¢ 41VH € 41VH ¥ 41VH Q 41VH 9 41VH LAIVH |
T I€ € TR €9 19 6/ 08 S6 96 IIT ¢I1

U.S. Patent

U.S. Patent Jul. 25, 2017 Sheet 7 of 24 US 9,715,388 B2

120 119 112 111 104 103 24 23 16 15

bbbb bbbb | bbbb bbbb | bbbb bbbb _ bbbb bbbb | bbbb bbbb | bbbb bbbb

UNSIGN ED PACKED BYTE REPRESENTAT!ON 344

120 119 112 111 104 103 24 23 16 15

sbbb bbbb | sbbb bbbb | sbbb bbbb _ sbbb bbbb | sbbb bbbb | sbbb bbbb

SIGNED PACKED BYTE REPRESENTATION 345

112 111 16 15

UNSIGNED PACKED WORD REPRESENTATION 346

127 0.136 111 16 15 0

SIGNED PACKED WORD REPRESENTATION 347

127 92 91 32 31 0

dddd dddd dddd dddd dddd dddd dddd dddd . dddd dddd dddd dddd dddd dddd dddd dddd

UNSIGNED PACKED DOUBLEWORD REPRESENTATION 348

127 92 91 32 31 0

sddd dddd dddd dddd dddd dddd dddd dddd ' sddd dddd dddd dddd dddd dddd dddd dddd

SIGNED PACKED DOUBLEWORD REPRESENTATION 349

FIG. 3C

U.S. Patent Jul. 25, 2017 Sheet 8 of 24 US 9,715,388 B2

N
~
O, on
O
~
g
N
o N
(o 8]
L1y
L
O O
oh
£ Fﬁl
. on
O
N
00
- 0
o~
00 o I~
o
n
. m
L. ik
O
e
LN
i
O
yorf
i
~
on
o
r~
o
™
O
a g
o
O
N
™
o
™~
on
o,
00
~
&N

39

U.S. Patent Jul. 25, 2017 Sheet 9 of 24 US 9,715,388 B2

3

a4

22 21 20 19 12 11 8 7
380
FIG. 3F

24 23

28 27

16 15
- HHHH“ - - ““

31

q iiiii 4” iiiiiiiiiiii 1-1. iiiii qiiii
I N T4 3% - viv — —
vty | 91v ay v oty ! 3ov 907
DNINGNVH JLIHM AHOW3IIN av3iy AHOW3IN i |,
iiii!h iiiiiii I ;Li iiiii rii!i

007 ANN3dId

Vv Ol

US 9,715,388 B2
=
=
3

1747

LINM 3HOVI YLV 0Ly
LINN

Ly AYOWIIN
LINN 911 YL1VG

~ 097 (S)431SN1D NOILNDIX3
-~
= 599 _
797

— %&wm (S)LINN
~—
5 ONIN NOILND3X3
i
7). :m

: — _

: gCh _

“ (SILINM S3T14 HA1SID3Y TYDISAHd “_
[~ e S— —
= iy, Sip—— “ T "
Q | 9S¥ (SILINN ¥I1NAIHIS o 1IN "
ﬁ, .H. :::::::::: T L __ANINEHUIY
= " sy m.IIL 0SY
- |__LINNYOLVOOTIV/INVNIY | LINN INIONI NOILND3X3 qy -U 14

— 3
OFY LINN 300230 LN AN3 LNOY S

8¢y HOL34 NOLLONYLSNI —
7€, o6t

LINN NOLLDIa3Yd 3400

9P LINN 911 NOILDONYLSNI
eV LINN IHOVD NOILONYISNI

HONWVUY

U.S. Patent

US 9,715,388 B2

.4

o

S

&

o

o

~

- —

2 i

7 | bTS |
I{S)LINN ¥ITIOYLNOD
| AOWIN |

> gTc i Q3ILVYOILNI “

& (S)LINN ¥ITIOYINO) | === —————— ===

" sng

e —

= LINN LN3OV

J INILSAS

U.S. Patent

¢ Old

!

_

“

90S (S)LINN IHOVD AIUVHS “

T —— |

| —-————— _ | 809 “
BT SJIHAVYD

L NPOS QILV¥OIINI |

| 1 (SluNn |

| 1 3JHOVD | | _

L—— 2 “

| NZ0S W00 | VZ0S 30D “

00S
H0SS3ID0Ud

U.S. Patent Jul. 25, 2017 Sheet 12 of 24 US 9,715,388 B2

615

Fm———— =

| |

| | /

600 | e ——————— e o e 610

)

|

)

|

|

|

|

|
1 P‘
|
| PJ
: PROCESSOR
-
| 695

645 620 640
DISPLAY GMCH - MEMORY
650
ICH
660 670

EXTERNAL
GRAPHICS

PERIPHERAL
DEVICE

US 9,715,388 B2

Sheet 13 of 24

Jul. 25, 2017

U.S. Patent

8¢L | yiva anv 0/
3002

19VHOLS Yivd

9TL

veL
AYOWIWN

L Ol

S30IAIA ASNON
LEL WINOD (44 /AYYOIAD

vis 8TL
$301A3A O/ 10Q144 SNd

0ZL

veL

O/t olany

” 174
o6z m 262 —~ 4/ 7
96L SOIHAVYD
36L LISAIHD gy 143d-HOIH
e~y B~
o |ed| |ord [T e oz
0SL
28, 981 88/ 8LL 9/L CLL
€L
YW NI AYOWAN
HOSSID0Ud d0s$$3004d

00L

U.S. Patent Jul. 25, 2017 Sheet 14 of 24 US 9,715,388 B2

MEMORY
734

ol

o
3
V) -
LLl v o)
O O N
o 2
8 & S 00
O
- -
o O
E 4 E—
g et
o = LL.
LA - =
o J
LL.
e,

!
LEGACY I/O
815

oC
O
.
V)
L1}
()
QO
o
o

800 \
MEMORY
732

US 9,715,388 B2

Sheet 15 of 24

Jul. 25, 2017

U.S. Patent

6 Ol

PTS
(S)LINN]
HITIOYLNOD
AHOWIN _
A3LVYOILNI

ov6 €6 0€6
LINN AV1dSIA LINN VIAIQ LINN NIVdS

919
(S)LINN
HITIOYLNOD SN

905
(S)LINN FHOVD QIYVHS

S —

|
|
_
_
|
“.

015 | g .m.
|

“waisss 1 res 1
| 1 (SIINn)
| | 3HOVD I
S SR i |
| NZ0S3Y0d |
| L

tttttttttt 016
d0SS$300Ud NOILLVYOIlddY

8¢6
d40SS300Hd

oianyv

vZ6

1DVINI

SIIHAVYD
G31VUDAINI

0z6

(S)HOSSIDOUd VIAIW

006
diHO V
NO INJ1SAS

U.S. Patent Jul. 25, 2017 Sheet 16 of 24 US 9,715,388 B2

1000

IMAGE
PROCESSOR

VIDEO
PROCESSOR
1020

1015

SPI

USB UART SDIO DISPLAY HDMI
1025 1030 1035 1040 1045
SECURITY FS
MIPI FLASH DDR ENGINE EC
1050 1055 1060 1065 1070

FIG. 10

U.S. Patent Jul. 25, 2017 Sheet 17 of 24 US 9,715,388 B2

FABRICATION 1165

HARDWARE
MODEL
SIMULATION (HDL OR PHYSICAL

SOFTWARE DESIGN DATA)
1120 1110

STORAGE MEDIUM 1100

FIG. 11

U.S. Patent Jul. 25, 2017 Sheet 18 of 24 US 9,715,388 B2

FIG. 12

US 9,715,388 B2

Sheet 19 of 24

Jul. 25, 2017

U.S. Patent

¢l Ol

COtT
FOVNONV1 1A HOIH

80¢ET
J3T1IdNOD

135S NOLLONYLSNI

ANILVNUA LY

POET
d311dINOD 98X

90¢T
1000 AHVNIgG 98X

A%}
J3LHIANOD
NOILONYLSNI

O1¢ET
400J AHVNIL
L3S NOLLONYLSNI

JHYMLA0S JALLVNYALTY

JUVMAUVYH

o1t

3400 135 NOILONYULSNI Ve

JH0OD 135 NOILONYLSNI

98X INO 15Vt 98X NV LNOHLIM HOSSID0Hd

1V H1IM 40553004d

Pl "OIA

US 9,715,388 B2

ovvi

4"

Sheet 20 of 24

Jul. 25, 2017

V=« v —> SH
0—> [P + 0] LS & d €S
(CA>TT+TA) =d ‘8S

v+ 29+ 0] AT — pY

0—> [P + 0] LS :€S
JIuIod

0cvli

U.S. Patent

TODDLd ST+ A ——2NUWY « P —>SU 9 v+ 29+ T LS LS 0 —>1pd + 0d] LS ¢ «d €S

(CI>U+TD =d ' S8SEA>UN+AD =dSS IS+ U+ 0 AT—D ¥ ¥+ + S —> "1

FIPT 1U9 ¢ d 6S

b+ 7d —> T

(€A >T7T+ W) =d *8S

O —> Iy +7d + 1Tl LS LS

| b+ S — oY

F P —» Y

v+ 29+ 0¥l A1 — i
0 —>[rd + 0"l LS :€S
.N..m.wiﬁ .:EEQQ o |

0Lvi

ocrl

US 9,715,388 B2

Sheet 21 of 24

Jul. 25, 2017

U.S. Patent

ST DI

0vGl

ITHg ¢ d LSl
o) |
IXA]

I =+ IXH

0GG1

TIODDéd6S T+ TNV P> S 94—y + 29 + 1] LS LS ‘0 —> [yd + 0] LS ¢ «d €S

elmmvﬁzmvn&ywmémvmn:mmvﬂm"wmh_f.&;y: AT—> P ‘v + S —>9U 1.

—
. 1CG 1

R S
0—> [P¥ + 0¥l LS ¢ d €S

(CA>TT+ T =d *8S
¥+ 29+ 0dl a1 — vy

0—> ¥ + 0¥ LS €S
JUIuIod
02S1

0€SG1

o1

US 9,715,388 B2

-~

&

g

g |

2

i

)

— i_ 6S PHId—> I V=td —>SH O —Ir+ 29+ Tl LS LS 0 —>[+¥d + 0¥]| 1S ¢, d €S
y—

—

) :.8S ¢ =d :8S ° m :
ﬁ, l@mvm:mmv A S8SCH>U+ TN =d8SIS+ T+ 0 dT—>rd T+ S "1
=

p

L€9L

b+t —> S

0—> [P+ 0] LS ¢ d €S|
(A>T +7D) =d ‘8S
P+ Td+ 04l dT —> v |

0—> [F¥ + 0] LS :€S
MU UI0)

0291

U.S. Patent

0€91

AR

US 9,715,388 B2

~

-

- LIND 4O 009 DOIX d :6S

m F+7d — 0l
¢0Ll (CA>TT+ 70 =d :8S

- 0d — Iy + 7 + 1] LS :LS

= b+Sd — 9Y

a:,‘,.w,, V- 7d — &Y

m ¥+ + 0dl A1 — +d

0 = + 0¥ LS :€S

V0.l

U.S. Patent

00Z1

U.S. Patent Jul. 25, 2017 Sheet 24 of 24 US 9,715,388 B2

Identify

loop
1802

Estimated high loop trip count?

Transform loop to use Remove loop
TC BCC CMIT optimizations
1806 1814

Does loop have high trip count?

YES

Optimize loop and use TC_BCC
1820

YES

Does loop have low trip count?

NO

END
1816

FIG. 18

US 9,715,388 B2

1

INSTRUCTION AND LOGIC TO MONITOR
LOOP TRIP COUNT AND REMOVE LOOP
OPTIMIZATIONS

FIELD OF THE INVENTION

The present disclosure pertains to the field of processing
logic, microprocessors, and associated instruction set archi-
tecture that, when executed by the processor or other pro-
cessing logic, perform logical, mathematical, or other func-
tional operations.

DESCRIPTION OF RELATED ART

Utilizing computer coding algorithms, program code
which 1s executed multiple times (such as a loop) can be
optimized to increase performance. However, adding opti-
mizations to loops may result 1n some fixed overhead which
negatively impacts performance. Therefore, to benefit from
optimization, the code within an optimized loop has to be
executed a minimum number of times so that the perfor-
mance benefit from optimization exceeds the negative
impact on performance from the overhead. Traditionally, the
number of times a loop 1s executed (also known as the loop
trip count) was estimated by methods such as observing the
execution time of a loop. Based on the estimate, loops were
selectively optimized 1f the estimated loop trip count was
high. However, such methods often do not provide an
accurate estimate of the loop trip count, leading to unin-
tended loop optimizations, and consequently, poor perifor-
mance. Thus, there 1s a need to efliciently and accurately
determine loop trip counts when program code 1s executed.

DESCRIPTION OF THE FIGURES

Embodiments are 1llustrated by way of example and not
limitation 1n the Figures of the accompanying drawings:

FIG. 1A 1s a block diagram of a system according to one
embodiment;

FIG. 1B 1s a block diagram of a system according to one
embodiment;

FIG. 1C 1s a block diagram of a system according to one
embodiment;

FIG. 2 1s a block diagram of a processor according to one
embodiment;

FIG. 3A illustrates packed data types according to one
embodiment;

FIG. 3B illustrates packed data types according one
embodiment;

FIG. 3C illustrates packed data types according to one
embodiment;

FIG. 3D illustrates an instruction encoding according to
one embodiment;

FIG. 3E illustrates an mstruction encoding according to
one embodiment;

FIG. 3F illustrates an instruction encoding according to
one embodiment;

FIG. 4A 1llustrates elements of a processor micro-archi-
tecture according to one embodiment;

FIG. 4B illustrates elements of a processor micro-archi-
tecture according to one embodiment;

FIG. 5 1s a block diagram of a processor according to one
embodiment;

FIG. 6 1s a block diagram of a computer system according,
to one embodiment:

FI1G. 7 1s a block diagram of a computer system according,
to one embodiment:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 1s a block diagram of a computer system according,
to one embodiment:

FIG. 9 1s a block diagram of a system-on-a-chip according,
to one embodiment;

FIG. 10 1s a block diagram of a processor according to one
embodiment;

FIG. 11 1s a block diagram of an IP core development
system according to one embodiment;

FIG. 12 1illustrates an architecture emulation system
according to one embodiment.

FIG. 13 illustrates a system to translate instructions
according to one embodiment.

FIG. 14 illustrates optimization of program code in an
embodiment.

FIG. 15 illustrates exemplary optimized code to track
loop trip count 1n an embodiment.

FIG. 16 illustrates exemplary optimized code to track
loop trip count 1n an embodiment.

FIG. 17 illustrates exemplary code without loop optimi-
zations which reduces commit overhead 1n an embodiment.

FIG. 18 1llustrates a method for transforming code with
loops 1n an embodiment.

DETAILED DESCRIPTION

The following description describes an instruction and
processing logic to efliciently monitor loop trip count within
Or 1n association with a processor, computer system, or other
processing apparatus. In the following description, numer-
ous specific details such as processing logic, processor
types, micro-architectural conditions, events, enablement
mechanisms, and the like are set forth 1n order to provide a
more thorough understanding of embodiments of the present
invention. It will be appreciated, however, by one skilled 1n
the art that the invention may be practiced without such
specific details. Additionally, some well known structures,
circuits, and the like have not been shown 1n detail to avoid
unnecessarily obscuring embodiments of the present inven-
tion.

Although the following embodiments are described with
reference to a processor, other embodiments are applicable
to other types ol integrated circuits and logic devices.
Similar techniques and teachings of embodiments of the
present invention can be applied to other types of circuits or
semiconductor devices that can benefit from higher pipeline
throughput and improved performance. The teachings of
embodiments of the present invention are applicable to any
processor or machine that performs data manipulations.
However, the present invention 1s not limited to processors
or machines that perform 512 bit, 256 bit, 128 bit, 64 bit, 32
bit, or 16 bit data operations and can be applied to any
processor and machine in which manipulation or manage-
ment of data 1s performed. In addition, the following
description provides examples, and the accompanying draw-
ings show various examples for the purposes of illustration.
However, these examples should not be construed in a
limiting sense as they are merely intended to provide
examples of embodiments of the present invention rather
than to provide an exhaustive list of all possible implemen-
tations of embodiments of the present invention.

Although the below examples describe instruction han-
dling and distribution in the context of execution units and
logic circuits, other embodiments of the present mmvention
can be accomplished by way of a data or instructions stored
on a machine-readable, tangible medium, which when per-
formed by a machine cause the machine to perform func-
tions consistent with at least one embodiment of the inven-

US 9,715,388 B2

3

tion. In one embodiment, functions associated with
embodiments of the present invention are embodied 1n
machine-executable instructions. The instructions can be
used to cause a general-purpose or special-purpose proces-
sor that 1s programmed with the instructions to perform the
steps of the present invention. Embodiments of the present
invention may be provided as a computer program product
or soltware which may include a machine or computer-
readable medium having stored thereon instructions which
may be used to program a computer (or other electronic
devices) to perform one or more operations according to
embodiments of the present invention. Alternatively, steps of
embodiments of the present invention might be performed
by specific hardware components that contain fixed-function
logic for performing the steps, or by any combination of
programmed computer components and fixed-tunction hard-
ware components.

Instructions used to program logic to perform embodi-
ments of the invention can be stored within a memory 1n the
system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
a network or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information 1n a form readable by
a machine (e.g., a computer), but 1s not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMSs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), F

Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Frasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmit-
ting electronic mstructions or information in a form readable
by a machine (e.g., a computer).

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design 1n a number of manners. First, as 1s
useful 1n simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices 1n the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specilying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored 1n any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium
to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design 1s transmitted, to the extent that
copying, bullering, or re-transmission of the electrical signal
1s performed, a new copy 1s made. Thus, a communication
provider or a network provider may store on a tangible,
machine-readable medium, at least temporarily, an article,
such as information encoded 1nto a carrier wave, embodying
techniques of embodiments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

In modern processors, a number of different execution
units are used to process and execute a variety of code and
instructions. Not all instructions are created equal as some
are quicker to complete while others can take a number of
clock cycles to complete. The faster the throughput of
instructions, the better the overall performance of the pro-
cessor. Thus it would be advantageous to have as many
istructions execute as fast as possible. However, there are
certain instructions that have greater complexity and require
more 1n terms of execution time and processor resources.
For example, there are floating point instructions, load/store
operations, data moves, eftc.

As more computer systems are used 1n internet, text, and
multimedia applications, additional processor support has
been 1ntroduced over time. In one embodiment, an 1nstruc-
tion set may be associated with one or more computer
architectures, including data types, instructions, register
architecture, addressing modes, memory archltecture, inter-
rupt and exception handling, and external input and output
(1/0).

In one embodiment, the 1nstruction set architecture (ISA)
may be implemented by one or more micro-architectures,
which includes processor logic and circuits used to 1mple-
ment one or more mstruction sets. Accordingly, processors
with different micro-architectures can share at least a portion
of a common 1nstruction set. For example, Intel® Pentium
4 processors, Intel® Core™ processors, and processors from
Advanced Micro Devices, Inc. of Sunnyvale Calif. imple-
ment nearly i1dentical versions of the x86 struction set
(with some extensions that have been added with newer
versions), but have different internal designs. Similarly,
processors designed by other processor development com-
panies, such as ARM Holdings, Ltd., MIPS, or their licens-
ces or adopters, may share at least a portion a common
istruction set, but may include different processor designs.
For example, the same register architecture of the ISA may
be implemented in different ways 1n different micro-archi-
tectures using new or well-known techniques, including
dedicated physical registers, one or more dynamically allo-
cated physical registers using a register renaming mecha-
nism (e.g., the use of a Register Alias Table (RAT), a
Reorder Bufler (ROB) and a retirement register file. In one
embodiment, registers may include one or more registers,
register architectures, register files, or other register sets that
may or may not be addressable by a software programmer.

In one embodiment, an instruction may include one or
more 1nstruction formats. In one embodiment, an instruction
format may indicate various fields (number of bits, location
of bits, etc.) to specily, among other things, the operation to
be performed and the operand(s) on which that operation 1s
to be performed. Some nstruction formats may be further
broken defined by instruction templates (or sub formats).
For example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields and/or defined to have a given
field interpreted differently. In one embodiment, an instruc-
tion 1s expressed using an instruction format (and, 11 defined,
in a given one of the 1mstruction templates of that instruction
format) and specifies or indicates the operation and the
operands upon which the operation will operate.

Scientific, financial, auto-vectorized general purpose,
RMS (recognition, mining, and synthesis), and visual and
multimedia applications (e.g., 2DD/3D graphics, image pro-
cessing, video compression/decompression, voice recogni-
tion algorithms and audio manipulation) may require the
same operation to be performed on a large number of data

items. In one embodiment, Single Instruction Multiple Data

US 9,715,388 B2

S

(SIMD) refers to a type of instruction that causes a processor
to perform an operation on multiple data elements. SIMD
technology may be used 1n processors that can logically
divide the bits 1n a register into a number of fixed-sized or
variable-sized data elements, each of which represents a
separate value. For example, 1n one embodiment, the bits 1n
a 64-bit register may be organized as a source operand
contaiming four separate 16-bit data elements, each of which
represents a separate 16-bit value. This type of data may be
referred to as ‘packed’ data type or ‘vector’ data type, and
operands of this data type are referred to as packed data
operands or vector operands. In one embodiment, a packed
data i1tem or vector may be a sequence of packed data
clements stored within a single register, and a packed data
operand or a vector operand may a source or destination
operand of a SIMD 1nstruction (or ‘packed data instruction’
or a ‘vector instruction’). In one embodiment, a SIMD
istruction specifies a single vector operation to be per-
formed on two source vector operands to generate a desti-
nation vector operand (also referred to as a result vector
operand) of the same or different size, with the same or
different number of data elements, and in the same or
different data element order.

SIMD technology, such as that employed by the Intel®
Core™ processors having an instruction set including x86,
MMX™, Streaming SIMD Extensions (SSE), SSE2, SSE3,
SSE4.1, and SSE4.2 nstructions, ARM processors, such as
the ARM Cortex® family of processors having an instruc-
tion set including the Vector Floating Point (VFP) and/or
NEON 1instructions, and MIPS processors, such as the
Loongson family of processors developed by the Institute of
Computing Technology (ICT) of the Chinese Academy of
Sciences, has enabled a significant improvement 1n appli-
cation performance (Core™ and MMX™ are registered
trademarks or trademarks of Intel Corporation of Santa
Clara, Calit.).

In one embodiment, destination and source registers/data
are generic terms to represent the source and destination of
the corresponding data or operation. In some embodiments,
they may be implemented by registers, memory, or other
storage areas having other names or functions than those
depicted. For example, in one embodiment, “DEST1” may
be a temporary storage register or other storage area,
whereas “SRC1” and “SRC2” may be a first and second
source storage register or other storage area, and so forth. In
other embodiments, two or more of the SRC and DEST
storage arcas may correspond to different data storage
clements within the same storage area (e.g., a SIMD regis-
ter). In one embodiment, one of the source registers may also
act as a destination register by, for example, writing back the
result of an operation performed on the first and second
source data to one of the two source registers serving as a
destination registers.

FIG. 1A 1s a block diagram of an exemplary computer
system formed with a processor that includes execution units
to execute an 1instruction 1n accordance with one embodi-
ment of the present imnvention. System 100 includes a com-
ponent, such as a processor 102 to employ execution units
including logic to perform algorithms for process data, 1n
accordance with the present ivention, such as in the
embodiment described herein. System 100 1s representative

of processing systems based on the PENTIUM® I1I, PEN-
TIUM® 4, Xeon™, [tanium®, XScale™ and/or Stron-
g ARM™ microprocessors available from Intel Corporation
of Santa Clara, Calif., although other systems (including
PCs having other microprocessors, engineering worksta-
tions, set-top boxes and the like) may also be used. In one

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiment, sample system 100 may execute a version of
the WINDOWS™ operating system available from Micro-
soit Corporation of Redmond, Wash., although other oper-
ating systems (UNIX and Linux for example), embedded
soltware, and/or graphical user interfaces, may also be used.
Thus, embodiments of the present invention are not limited
to any specific combination of hardware circuitry and soft-
ware.

Embodiments are not limited to computer systems. Alter-
native embodiments of the present invention can be used in
other devices such as handheld devices and embedded
applications. Some examples of handheld devices include
cellular phones, Internet Protocol devices, digital cameras,
personal digital assistants (PDAs), and handheld PCs.
Embedded applications can include a micro controller, a
digital signal processor (DSP), system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform one or more structions 1n accordance with at least
one embodiment.

FIG. 1A 1s a block diagram of a computer system 100
formed with a processor 102 that includes one or more
execution units 108 to perform an algorithm to perform at
least one 1nstruction in accordance with one embodiment of
the present invention. One embodiment may be described in
the context of a single processor desktop or server system,
but alternative embodiments can be included 1n a multipro-
cessor system. System 100 1s an example of a ‘hub’ system
architecture. The computer system 100 includes a processor
102 to process data signals. The processor 102 can be a
complex 1nstruction set computer (CISC) microprocessor, a
reduced instruction set computing (RISC) microprocessor, a
very long instruction word (VLIW) microprocessor, a pro-
cessor implementing a combination of instruction sets, or
any other processor device, such as a digital signal proces-
sor, for example. The processor 102 1s coupled to a processor
bus 110 that can transmit data signals between the processor
102 and other components 1n the system 100. The elements
of system 100 perform their conventional functions that are
well known to those familiar with the art.

In one embodiment, the processor 102 includes a Level 1
(L1) internal cache memory 104. Depending on the archi-
tecture, the processor 102 can have a single internal cache or
multiple levels of internal cache. Alternatively, 1n another
embodiment, the cache memory can reside external to the
processor 102. Other embodiments can also include a com-
bination of both internal and external caches depending on
the particular implementation and needs. Register file 106
can store diflerent types of data in various registers including
integer registers, tloating point registers, status registers, and
instruction pointer register.

Execution unit 108, including logic to perform integer and
floating point operations, also resides 1n the processor 102.
The processor 102 also includes a microcode (ucode) ROM
that stores microcode for certain macroinstructions. For one
embodiment, execution unit 108 includes logic to handle a
packed 1nstruction set 109. By including the packed nstruc-
tion set 109 in the instruction set ol a general-purpose
processor 102, along with associated circuitry to execute the
instructions, the operations used by many multimedia appli-
cations may be performed using packed data 1n a general-
purpose processor 102. Thus, many multimedia applications
can be accelerated and executed more efliciently by using
the full width of a processor’s data bus for performing
operations on packed data. This can eliminate the need to

US 9,715,388 B2

7

transter smaller units of data across the processor’s data bus
to perform one or more operations one data element at a
time.

Alternate embodiments of an execution unit 108 can also
be used 1n micro controllers, embedded processors, graphics
devices, DSPs, and other types of logic circuits. System 100
includes a memory 120. Memory 120 can be a dynamic
random access memory (DRAM) device, a static random
access memory (SRAM) device, flash memory device, or
other memory device. Memory 120 can store instructions
and/or data represented by data signals that can be executed
by the processor 102.

A system logic chip 116 1s coupled to the processor bus
110 and memory 120. The system logic chip 116 in the
illustrated embodiment 1s a memory controller hub (MCH).
The processor 102 can communicate to the MCH 116 via a
processor bus 110. The MCH 116 provides a high bandwidth
memory path 118 to memory 120 for mstruction and data
storage and for storage ol graphics commands, data and
textures. The MCH 116 1s to direct data signals between the
processor 102, memory 120, and other components in the
system 100 and to bridge the data signals between processor
bus 110, memory 120, and system 1/O 122. In some embodi-
ments, the system logic chip 116 can provide a graphics port
for coupling to a graphics controller 112. The MCH 116 1s
coupled to memory 120 through a memory interface 118.
The graphics card 112 1s coupled to the MCH 116 through
an Accelerated Graphics Port (AGP) interconnect 114.

System 100 uses a proprietary hub interface bus 122 to
couple the MCH 116 to the 1/O controller hub (ICH) 130.
The ICH 130 provides direct connections to some I[/O
devices via a local 1/0 bus. The local I/0 bus 1s a high-speed
I/O bus for connecting peripherals to the memory 120,
chupset, and processor 102. Some examples are the audio
controller, firmware hub (tflash BIOS) 128, wireless trans-
ceiver 126, data storage 124, legacy 1I/O controller contain-
ing user mput and keyboard interfaces, a serial expansion
port such as Universal Serial Bus (USB), and a network
controller 134. The data storage device 124 can comprise a
hard disk drive, a floppy disk drive, a CD-ROM device, a
flash memory device, or other mass storage device.

For another embodiment of a system, an instruction in
accordance with one embodiment can be used with a system
on a chip. One embodiment of a system on a chip comprises
of a processor and a memory. The memory for one such
system 1s a flash memory. The flash memory can be located
on the same die as the processor and other system compo-
nents. Additionally, other logic blocks such as a memory
controller or graphics controller can also be located on a
system on a chip.

FIG. 1B illustrates a data processing system 140 which
implements the principles of one embodiment of the present
invention. It will be readily appreciated by one of skill 1n the
art that the embodiments described herein can be used with
alternative processing systems without departure from the
scope of embodiments of the invention.

Computer system 140 comprises a processing core 159
capable of performing at least one instruction in accordance
with one embodiment. For one embodiment, processing core
159 represents a processing unit of any type of architecture,
including but not limited to a CISC, a RISC or a VLIW type
architecture. Processing core 139 may also be suitable for
manufacture in one or more process technologies and by
being represented on a machine readable media 1n suflicient
detail, may be suitable to facilitate said manufacture.

Processing core 139 comprises an execution unit 142, a
set of register file(s) 145, and a decoder 144. Processing core

10

15

20

25

30

35

40

45

50

55

60

65

8

159 also includes additional circuitry (not shown) which 1s
not necessary to the understanding of embodiments of the
present invention. Execution unit 142 1s used for executing
instructions received by processing core 1359. In addition to
performing typical processor instructions, execution unit
142 can perform 1instructions in packed instruction set 143
for performing operations on packed data formats. Packed
instruction set 143 includes instructions for performing
embodiments of the invention and other packed instructions.
Execution unit 142 1s coupled to register file 145 by an
internal bus. Register file 145 represents a storage area on
processing core 159 for storing information, including data.
As previously mentioned, 1t 1s understood that the storage
area used for storing the packed data 1s not critical. Execu-
tion unit 142 1s coupled to decoder 144. Decoder 144 1s used
for decoding instructions received by processing core 159
into control signals and/or microcode entry points. In
response to these control signals and/or microcode entry
points, execution unit 142 performs the appropriate opera-
tions. In one embodiment, the decoder 1s used to interpret the
opcode of the mstruction, which will indicate what operation
should be performed on the corresponding data indicated
within the 1nstruction.

Processing core 159 1s coupled with bus 141 for commu-
nicating with various other system devices, which may
include but are not limited to, for example, synchronous
dynamic random access memory (SDRAM) control 146,
static random access memory (SRAM) control 147, burst
flash memory interface 148, personal computer memory
card international association (PCMCIA)/compact flash
(CF) card control 149, liquid crystal display (LCD) control
150, direct memory access (DMA) controller 151, and
alternative bus master interface 152. In one embodiment,
data processing system 140 may also comprise an 1/0O bridge
154 for communicating with various 1/O devices via an I/O

bus 153. Such I/O devices may include but are not limited
to, for example, universal asynchronous receiver/transmitter
(UART) 155, universal serial bus (USB) 156, Bluetooth
wireless UART 157 and I/O expansion interface 158.

One embodiment of data processing system 140 provides
for mobile, network and/or wireless communications and a
processing core 159 capable of performing SIMD operations
including a text string comparison operation. Processing
core 159 may be programmed with various audio, video,
imaging and communications algorithms including discrete
transformations such as a Walsh-Hadamard transtform, a fast
Fourier transtorm (FFT), a discrete cosine transform (DCT),
and their respective inverse transforms; compression/de-
compression techniques such as color space transformation,
video encode motion estimation or video decode motion
compensation; and modulation/demodulation (MODEM)
functions such as pulse coded modulation (PCM).

FIG. 1C 1llustrates yet alternative embodiments of a data
processing system capable of performing SIMD text string
comparison operations. In accordance with one alternative
embodiment, data processing system 160 may include a
main processor 166, a SIMD coprocessor 161, a cache
memory 167, and an input/output system 168. The mnput/
output system 168 may optionally be coupled to a wireless
interface 169. SIMD coprocessor 161 1s capable of perform-
ing operations including mnstructions 1n accordance with one
embodiment. Processing core 170 may be suitable for manu-
facture 1n one or more process technologies and by being
represented on a machine readable media in suflicient detail,
may be suitable to facilitate the manufacture of all or part of
data processing system 160 including processing core 170.

US 9,715,388 B2

9

For one embodiment, SIMD coprocessor 161 comprises
an execution unit 162 and a set of register file(s) 164. One
embodiment of main processor 165 comprises a decoder 165
to recognize instructions of instruction set 163 including
instructions in accordance with one embodiment for execu-
tion by execution unit 162. For alternative embodiments,
SIMD coprocessor 161 also comprises at least part of
decoder 165B to decode instructions of instruction set 163.
Processing core 170 also includes additional circuitry (not
shown) which 1s not necessary to the understanding of
embodiments of the present invention.

In operation, the main processor 166 executes a stream of
data processing instructions that control data processing
operations of a general type including interactions with the
cache memory 167, and the input/output system 168.
Embedded within the stream of data processing instructions
are SIMD coprocessor instructions. The decoder 165 of
main processor 166 recognizes these SIMD coprocessor
istructions as being of a type that should be executed by an
attached SIMD coprocessor 161. Accordingly, the main
processor 166 1ssues these SIMD coprocessor instructions
(or control signals representing SIMD coprocessor instruc-
tions) on the coprocessor bus 172 where from they are
received by any attached SIMD coprocessors. In this case,
the SIMD coprocessor 161 will accept and execute any
received SIMD coprocessor nstructions intended for 1it.

Data may be received via wireless interface 169 for
processing by the SIMD coprocessor instructions. For one
example, voice communication may be received 1n the form
of a digital signal, which may be processed by the SIMD
coprocessor instructions to regenerate digital audio samples
representative ol the voice communications. For another
example, compressed audio and/or video may be received 1n
the form of a digital bit stream, which may be processed by
the SIMD coprocessor instructions to regenerate digital
audio samples and/or motion video frames. For one embodi-
ment of processing core 170, main processor 166, and a
SIMD coprocessor 161 are integrated into a single process-
ing core 170 comprising an execution unit 162, a set of
register file(s) 164, and a decoder 165 to recognize instruc-
tions of instruction set 163 including instructions 1n accor-
dance with one embodiment.

FIG. 2 1s a block diagram of the micro-architecture for a
processor 200 that includes logic circuits to perform instruc-
tions 1n accordance with one embodiment of the present
invention. In some embodiments, an instruction in accor-
dance with one embodiment can be implemented to operate
on data elements having sizes of byte, word, doubleword,
quadword, etc., as well as datatypes, such as single and
double precision iteger and floating point datatypes. In one
embodiment the in-order front end 201 is the part of the
processor 200 that fetches instructions to be executed and
prepares them to be used later 1n the processor pipeline. The
front end 201 may include several units. In one embodiment,
the instruction prefetcher 226 fetches instructions from
memory and feeds them to an instruction decoder 228 which
in turn decodes or interprets them. For example, 1in one
embodiment, the decoder decodes a received 1nstruction 1nto
one or more operations called “micro-instructions™ or
“micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the mstruction 1nto an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations 1n accordance with one embodiment. In
one embodiment, the trace cache 230 takes decoded uops
and assembles them into program ordered sequences or
traces 1n the uop queue 234 for execution. When the trace

10

15

20

25

30

35

40

45

50

55

60

65

10

cache 230 encounters a complex instruction, the microcode
ROM 232 provides the uops needed to complete the opera-
tion.

Some 1nstructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, 1f more than four micro-ops
are needed to complete a instruction, the decoder 228
accesses the microcode ROM 232 to do the instruction. For
one embodiment, an instruction can be decoded 1nto a small
number of micro ops for processing at the instruction
decoder 228. In another embodiment, an instruction can be
stored within the microcode ROM 232 should a number of
micro-ops be needed to accomplish the operation. The trace
cache 230 refers to a entry point programmable logic array
(PLA) to determine a correct micro-instruction pointer for
reading the micro-code sequences to complete one or more
instructions 1n accordance with one embodiment from the
micro-code ROM 232. After the microcode ROM 232
finishes sequencing micro-ops for an instruction, the front
end 201 of the machine resumes fetching micro-ops from the
trace cache 230.

The out-of-order execution engine 203 i1s where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buflers to smooth out and
re-order the tlow of 1nstructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buflers and
resources that each uop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register file. The allocator also allocates an entry for
cach uop 1n one of the two uop queues, one for memory
operations and one for non-memory operations, 1n front of
the 1nstruction schedulers: memory scheduler, fast scheduler
202, slow/general floating point scheduler 204, and simple
floating point scheduler 206. The uvop schedulers 202, 204,
206, determine when a uop 1s ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 202 of one
embodiment can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule uvops for execution.

Register files 208, 210, sit between the schedulers 202,
204, 206, and the execution units 212, 214, 216, 218, 220,
222, 224 in the execution block 211. There 1s a separate
register {ile 208, 210, for integer and tloating point opera-
tions, respectively. Each register file 208, 210, of one
embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been
written into the register file to new dependent uops. The
integer register file 208 and the floating point register file
210 are also capable of communicating data with the other.
For one embodiment, the integer register file 208 1s split into
two separate register files, one register file for the low order
32 bits of data and a second register file for the high order
32 bits of data. The floating point register file 210 of one
embodiment has 128 bit wide entries because floating point
istructions typically have operands from 64 to 128 bits 1n
width.

The execution block 211 contains the execution units 212,
214, 216, 218, 220, 222, 224, where the 1nstructions are
actually executed. This section includes the register files
208, 210, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 200 of one embodiment 1s comprised of a
number of execution units: address generation unit (AGU)

US 9,715,388 B2

11

212, AGU 214, fast ALU 216, fast ALU 218, slow ALU 220,
floating point ALU 222, floating point move unit 224. For
one embodiment, the floating point execution blocks 222,
224, execute tloating point, MMX, SIMD, and SSE, or other
operations. The floating point ALU 222 of one embodiment
includes a 64 bit by 64 bit tloating point divider to execute
divide, square root, and remainder micro-ops. For embodi-
ments of the present invention, instructions involving a
floating point value may be handled with the floating point
hardware. In one embodiment, the AL U operations go to the
high-speed ALU execution units 216, 218. The fast ALUs
216, 218, of one embodiment can execute fast operations
with an effective latency of half a clock cycle. For one
embodiment, most complex integer operations go to the
slow ALU 220 as the slow ALU 220 includes integer
execution hardware for long latency type of operations, such
as a multiplier, shifts, flag logic, and branch processing.
Memory load/store operations are executed by the AGUs
212, 214. For one embodiment, the integer AL Us 216, 218,
220, are described in the context of performing integer
operations on 64 bit data operands. In alternative embodi-
ments, the ALUs 216, 218, 220, can be implemented to
support a variety of data bits including 16, 32, 128, 256, eftc.
Similarly, the floating point units 222, 224, can be imple-
mented to support a range of operands having bits of various
widths. For one embodiment, the floating point units 222,
224, can operate on 128 bits wide packed data operands 1n
conjunction with SIMD and multimedia instructions.

In one embodiment, the uops schedulers 202, 204, 206,
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed 1n processor 200, the processor 200 also includes
logic to handle memory misses. If a data load misses 1n the
data cache, there can be dependent operations 1n flight 1n the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes
instructions that use incorrect data. Only the dependent
operations need to be replayed and the independent ones are
allowed to complete. The schedulers and replay mechanism
ol one embodiment of a processor are also designed to catch
istruction sequences for text string comparison operations.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to
identily operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers of an
embodiment should not be limited 1n meaning to a particular
type of circuit. Rather, a register of an embodiment 1s
capable of storing and providing data, and performing the
tfunctions described herein. The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store thirty-two bit integer data. A register
file of one embodiment also contains eight multimedia
SIMD registers for packed data. For the discussions below,
the registers are understood to be data registers designed to
hold packed data, such as 64 bits wide MMX™ registers
(also referred to as ‘mm’ registers 1 some instances) in
microprocessors enabled with MMX technology from Intel
Corporation of Santa Clara, Calif. These MMX registers,
available in both integer and floating point forms, can
operate with packed data elements that accompany SIMD
and SSE instructions. Similarly, 128 bits wide XMM regis-
ters relating to SSE2, SSE3, SSE4, or beyond (referred to

10

15

20

25

30

35

40

45

50

55

60

65

12

generically as “SSEx”) technology can also be used to hold
such packed data operands. In one embodiment, in storing
packed data and integer data, the registers do not need to
differentiate between the two data types. In one embodi-
ment, iteger and floating point are either contained 1n the
same register file or diflerent register files. Furthermore, 1n
one embodiment, floating point and integer data may be
stored 1n different registers or the same registers.

In the examples of the following figures, a number of data
operands are described. FIG. 3A illustrates various packed
data type representations 1n multimedia registers according
to one embodiment of the present invention. FIG. 3A
illustrates data types for a packed byte 310, a packed word
320, and a packed doubleword (dword) 330 for 128 bits
wide operands. The packed byte format 310 of this example
1s 128 bits long and contains sixteen packed byte data
clements. A byte 1s defined here as 8 bits of data. Information

for each byte data element 1s stored 1n bit 7 through bit 0 for
byte 0, bit 15 through bit 8 for byte 1, bit 23 through bit 16

for byte 2, and finally bit 120 through bit 127 for byte 15.
Thus, all available bits are used 1n the register. This storage
arrangement increases the storage efliciency of the proces-
sor. As well, with sixteen data elements accessed, one
operation can now be performed on sixteen data elements 1n
parallel.

Generally, a data element 1s an individual piece of data
that 1s stored 1n a single register or memory location with
other data elements of the same length. In packed data
sequences relating to SSEx technology, the number of data
clements stored 1n a XMM register 1s 128 bits divided by the
length 1 bits of an individual data element. Similarly, 1n
packed data sequences relating to MMX and SSE technol-
ogy, the number of data elements stored 1n an MMX register
1s 64 bits divided by the length 1n bits of an individual data
clement. Although the data types illustrated in FIG. 3A are
128 bit long, embodiments of the present invention can also
operate with 64 bit wide or other sized operands. The packed
word format 320 of this example 1s 128 bits long and
contains eight packed word data elements. Each packed
word contains sixteen bits of information. The packed
doubleword format 330 of FIG. 3A 1s 128 biats long and
contains four packed doubleword data elements. Each
packed doubleword data element contains thirty two bits of
information. A packed quadword 1s 128 bits long and
contains two packed quad-word data elements.

FIG. 3B illustrates alternative in-register data storage
formats. Each packed data can include more than one

independent data element. Three packed data formats are
illustrated; packed half 341, packed single 342, and packed

double 343. One embodiment of packed half 341, packed
single 342, and packed double 343 contain fixed-point data
clements. For an alternative embodiment one or more of
packed half 341, packed single 342, and packed double 343
may contain floating-point data elements. One alternative
embodiment of packed haltf 341 1s one hundred twenty-eight
bits long containing eight 16-bit data elements. One embodi-
ment of packed single 342 1s one hundred twenty-eight bits
long and contains four 32-bit data elements. One embodi-
ment of packed double 343 1s one hundred twenty-eight bits
long and contains two 64-bit data elements. It will be
appreciated that such packed data formats may be further
extended to other register lengths, for example, to 96-bits,
160-bits, 192-bits, 224-bits, 256-bits or more.

FIG. 3C illustrates various signed and unsigned packed
data type representations 1n multimedia registers according
to one embodiment of the present mmvention. Unsigned
packed byte representation 344 illustrates the storage of an

US 9,715,388 B2

13

unsigned packed byte in a SIMD register. Information for
cach byte data element 1s stored 1n bit seven through bit zero
for byte zero, bit fifteen through bit eight for byte one, bit
twenty-three through bit sixteen for byte two, and finally bit
one hundred twenty through bit one hundred twenty-seven
for byte fifteen. Thus, all available bits are used in the
register. This storage arrangement can increase the storage
cliciency of the processor. As well, with sixteen data
clements accessed, one operation can now be performed on
sixteen data elements in a parallel fashion. Signed packed
byte representation 345 illustrates the storage of a signed
packed byte. Note that the eighth bit of every byte data
clement 1s the sign indicator. Unsigned packed word repre-
sentation 346 illustrates how word seven through word zero
are stored 1n a SIMD register. Signed packed word repre-
sentation 347 1s similar to the unsigned packed word in-
register representation 346. Note that the sixteenth bit of
cach word data element 1s the sign indicator. Unsigned
packed doubleword representation 348 shows how double-
word data elements are stored. Signed packed doubleword
representation 349 1s similar to unsigned packed doubleword
in-register representation 348. Note that the necessary sign
bit 1s the thirty-second bit of each doubleword data element.

FI1G. 3D 1s a depiction of one embodiment of an operation
encoding (opcode) format 360, having thirty-two or more
bits, and register/memory operand addressing modes corre-
sponding with a type of opcode format described i the
“IA-32 Intel Architecture Software Developer’s Manual
Volume 2: Instruction Set Relerence,” which 1s which 1s
available from Intel Corporation, Santa Clara, Calif. on the
world-wide-web (www) at intel.com/design/litcentr. In one
embodiment, and instruction may be encoded by one or
more of fields 361 and 362. Up to two operand locations per
istruction may be identified, icluding up to two source
operand identifiers 364 and 365. For one embodiment,
destination operand identifier 366 i1s the same as source
operand identifier 364, whereas 1n other embodiments they
are different. For an alternative embodiment, destination
operand 1dentifier 366 1s the same as source operand 1den-
tifier 365, whereas 1n other embodiments they are different.
In one embodiment, one of the source operands 1dentified by
source operand 1dentifiers 364 and 365 1s overwritten by the
results of the text string comparison operations, whereas in
other embodiments 1dentifier 364 corresponds to a source
register element and identifier 365 corresponds to a desti-
nation register element. For one embodiment, operand iden-
tifiers 364 and 365 may be used to 1dentify 32-bit or 64-bit
source and destination operands.

FIG. 3E 1s a depiction of another alternative operation
encoding (opcode) format 370, having forty or more bits.
Opcode format 370 corresponds with opcode format 360 and
comprises an optional prefix byte 378. An instruction
according to one embodiment may be encoded by one or
more of fields 378, 371, and 372. Up to two operand
locations per instruction may be i1dentified by source oper-
and 1dentifiers 374 and 375 and by prefix byte 378. For one
embodiment, prefix byte 378 may be used to 1dentity 32-bit
or 64-bit source and destination operands. For one embodi-
ment, destination operand identifier 376 1s the same as
source operand identifier 374, whereas 1n other embodi-
ments they are different. For an alternative embodiment,
destination operand identifier 376 i1s the same as source
operand identifier 375, whereas 1n other embodiments they
are diflerent. In one embodiment, an 1nstruction operates on
one or more of the operands 1dentified by operand 1dentifiers
374 and 375 and one or more operands identified by the
operand 1dentifiers 374 and 375 1s overwritten by the results

10

15

20

25

30

35

40

45

50

55

60

65

14

of the mstruction, whereas 1n other embodiments, operands
identified by identifiers 374 and 375 are written to another
data element in another register. Opcode formats 360 and
3770 allow register to register, memory to register, register by
memory, register by register, register by immediate, register
to memory addressing specified 1n part by MOD fields 363
and 373 and by optional scale-index-base and displacement
bytes.

Turning next to FIG. 3F, in some alternative embodi-
ments, 64 bit single instruction multiple data (SIMD) arith-
metic operations may be performed through a coprocessor
data processing (CDP) instruction. Operation encoding (op-
code) format 380 depicts one such CDP 1nstruction having
CDP opcode fields 382 and 389. The type of CDP instruc-
tion, for alternative embodiments, operations may be
encoded by one or more of ficlds 383, 384, 387, and 388. Up
to three operand locations per 1nstruction may be 1dentified,
including up to two source operand identifiers 385 and 390
and one destination operand 1dentifier 386. One embodiment
of the coprocessor can operate on 8, 16, 32, and 64 bit
values. For one embodiment, an instruction 1s performed on
integer data elements. In some embodiments, an instruction
may be executed conditionally, using condition field 381.
For some embodiments, source data sizes may be encoded
by field 383. In some embodiments, Zero (7)), negative (IN),
carry (C), and overtlow (V) detection can be done on SIMD
fields. For some instructions, the type of saturation may be
encoded by field 384.

FIG. 4A 1s a block diagram 1llustrating an in-order pipe-
line and a register renaming stage, out-of-order 1ssue/execu-
tion pipeline according to at least one embodiment of the
invention. FI1G. 4B 1s a block diagram 1llustrating an in-order
architecture core and a register renaming logic, out-of-order
1ssue/execution logic to be mcluded 1n a processor according
to at least one embodiment of the invention. The solid lined
boxes 1n FIG. 4A 1llustrate the 1n-order pipeline, while the
dashed lined boxes illustrates the register renaming, out-oi-
order issue/execution pipeline. Similarly, the solid lined
boxes i FIG. 4B illustrate the in-order architecture logic,
while the dashed lined boxes illustrates the register renam-
ing logic and out-of-order 1ssue/execution logic.

In FIG. 4A, a processor pipeline 400 includes a fetch stage
402, a length decode stage 404, a decode stage 406, an
allocation stage 408, a renaming stage 410, a scheduling
(also known as a dispatch or issue) stage 412, a register
read/memory read stage 414, an execute stage 416, a write
back/memory write stage 418, an exception handling stage
422, and a commit stage 424.

In FIG. 4B, arrows denote a coupling between two or
more units and the direction of the arrow indicates a direc-
tion of data flow between those units. FIG. 4B shows
processor core 490 including a front end unit 430 coupled to
an execution engine unit 450, and both are coupled to a
memory unit 470.

The core 490 may be a reduced instruction set computing,
(RISC) core, a complex instruction set computing (CISC)
core, a very long instruction word (VLIW) core, or a hybnd
or alternative core type. As yet another option, the core 490
may be a special-purpose core, such as, for example, a
network or communication core, compression engine,
graphics core, or the like.

The front end unit 430 includes a branch prediction unit
432 coupled to an instruction cache unit 434, which 1is
coupled to an instruction translation lookaside butler (TLB)
436, which 1s coupled to an mstruction fetch unit 438, which
1s coupled to a decode unit 440. The decode unit or decoder
may decode instructions, and generate as an output one or

US 9,715,388 B2

15

more micro-operations, micro-code entry points, microin-
structions, other instructions, or other control signals, which
are decoded from, or which otherwise reflect, or are derived
from, the original instructions. The decoder may be imple-

mented using various different mechanisms. Examples of 5

suitable mechanisms include, but are not limited to, look-up
tables, hardware implementations, programmable logic
arrays (PLAs), microcode read only memories (ROMs), etc.
The mstruction cache unit 434 1s further coupled to a level
2 (L2) cache unit 476 in the memory unit 470. The decode
unit 440 1s coupled to a rename/allocator umt 452 1n the
execution engine unit 450.

The execution engine unit 450 includes the rename/
allocator umit 452 coupled to a retirement unit 454 and a set
of one or more scheduler unit(s) 456. The scheduler unit(s)
456 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 456 i1s coupled to the physical register
file(s) unit(s) 458. Each of the physical register file(s) units
4358 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, etc.,
status (e.g., an instruction pointer that 1s the address of the
next mstruction to be executed), etc. The physical register
file(s) unit(s) 458 1s overlapped by the retirement unit 154 to
illustrate various ways i1n which register renaming and
out-of-order execution may be implemented (e.g., using a
reorder bufler(s) and a retirement register file(s), using a
tuture file(s), a history bufler(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.).
Generally, the architectural registers are visible from the
outside of the processor or from a programmer’s perspec-
tive. The registers are not limited to any known particular
type of circuit. Various different types ol registers are
suitable as long as they are capable of storing and providing
data as described herein. Examples of suitable registers
include, but are not limited to, dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. The retirement unit 454 and the
physical register file(s) unit(s) 4358 are coupled to the execu-
tion cluster(s) 460. The execution cluster(s) 460 includes a
set of one or more execution units 162 and a set of one or
more memory access units 464. The execution umts 462
may perform various operations (e.g., shiits, addition, sub-
traction, multiplication) and on various types of data (e.g.,

scalar floating point, packed integer, packed floating point,
vector iteger, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
456, physical register file(s) unit(s) 458, and execution
cluster(s) 460 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/
vector 1nteger/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—
and 1n the case of a separate memory access pipeline, certain
embodiments are implemented 1n which only the execution
cluster of this pipeline has the memory access unit(s) 464).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
1ssue/execution and the rest in-order.

10

15

20

25

30

35

40

45

50

55

60

65

16

The set of memory access units 464 1s coupled to the
memory unit 470, which includes a data TLB umt 472
coupled to a data cache unit 474 coupled to a level 2 (LL2)
cache unit 476. In one exemplary embodiment, the memory
access units 464 may include a load unit, a store address
unit, and a store data unit, each of which 1s coupled to the
data TLB unit 472 1n the memory unit 470. The L2 cache
unit 476 1s coupled to one or more other levels of cache and
eventually to a main memory.

By way of example, the exemplary register renaming,
out-of-order 1ssue/execution core architecture may imple-
ment the pipeline 400 as follows: 1) the instruction fetch 438
performs the fetch and length decoding stages 402 and 404;
2) the decode unit 440 performs the decode stage 406; 3) the
rename/allocator unit 452 performs the allocation stage 408
and renaming stage 410; 4) the scheduler unit(s) 456 per-
forms the schedule stage 412; 5) the physical register file(s)
unit(s) 458 and the memory unit 470 perform the register
read/memory read stage 414; the execution cluster 460
perform the execute stage 416; 6) the memory unit 470 and
the physical register file(s) unit(s) 458 perform the write
back/memory write stage 418; 7) various units may be
involved in the exception handling stage 422; and 8) the
retirement unit 454 and the physical register file(s) unit(s)
458 perform the commit stage 424.

The core 490 may support one or more instructions sets
(e.g., the x86 1nstruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so 1n a variety of ways including
time sliced multithreading, simultaneous multithreading,
(where a single physical core provides a logical core for each
of the threads that physical core 1s simultancously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as 1n the Intel® Hyperthreading technology).

While register renaming 1s described in the context of
out-of-order execution, it should be understood that register
renaming may be used 1n an in-order architecture. While the
illustrated embodiment of the processor also includes a
separate 1nstruction and data cache units 434/474 and a
shared .2 cache unit 476, alternative embodiments may
have a single internal cache for both instructions and data,
such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that 1s external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

FIG. § 1s a block diagram of a single core processor and
a multicore processor 300 with integrated memory controller
and graphics according to embodiments of the invention.
The solid lined boxes in FIG. 5 illustrate a processor 500
with a single core 502A, a system agent 510, a set of one or
more bus controller units 516, while the optional addition of
the dashed lined boxes illustrates an alternative processor
500 with multiple cores 502A-N, a set of one or more
integrated memory controller unit(s) 314 1n the system agent
unmit 510, and an integrated graphics logic 508.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache
units 506, and external memory (not shown) coupled to the
set of integrated memory controller units 514. The set of

US 9,715,388 B2

17

shared cache units 506 may include one or more mid-level
caches, such as level 2 (L2), level 3 (LL3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations therecof. While 1n one embodiment a ring
based interconnect unit 512 interconnects the integrated
graphics logic 508, the set of shared cache units 506, and the
system agent unit 310, alternative embodiments may use any
number of well-known techniques for interconnecting such
units.

In some embodiments, one or more of the cores 502A-N
are capable of multi-threading. The system agent 510
includes those components coordinating and operating cores
502A-N. The system agent unit 510 may include {for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 502A-N and the
integrated graphics logic 508. The display unit 1s for driving
one or more externally connected displays.

The cores 502A-N may be homogenous or heterogeneous
in terms ol archutecture and/or instruction set. For example,
some of the cores 502A-N may be in order while others are
out-of-order. As another example, two or more of the cores
502A-N may be capable of execution the same instruction
set, while others may be capable of executing only a subset
of that instruction set or a different instruction set.

The processor may be a general-purpose processor, such
as a Core™ 13, 15, 17, 2 Duo and Quad, Xeon™, Itantum™,
XScale™ or StrongARM™ processor, which are available
from Intel Corporation, of Santa Clara, Calif. Alternatively,
the processor may be from another company, such as ARM
Holdings, Ltd, MIPS, etc. The processor may be a special-
purpose processor, such as, for example, a network or
communication processor, compression engine, graphics
processor, co-processor, embedded processor, or the like.
The processor may be implemented on one or more chips.
The processor 500 may be a part of and/or may be imple-
mented on one or more substrates using any of a number of
process technologies, such as, for example, BiCMOS,
CMOS, or NMOS.

FIGS. 6-8 are exemplary systems suitable for imncluding
the processor 500, while FIG. 9 1s an exemplary system on
a chip (SoC) that may include one or more of the cores 502.
Other system designs and configurations known in the arts
tor laptops, desktops, handheld PCs, personal digital assis-
tants, engineering workstations, servers, network devices,
network hubs, switches, embedded processors, digital signal
processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media
players, hand held devices, and various other electronic
devices, are also suitable. In general, a huge variety of
systems or electronic devices capable of incorporating a
processor and/or other execution logic as disclosed herein
are generally suitable.

Referring now to FIG. 6, shown 1s a block diagram of a
system 600 1n accordance with one embodiment of the
present invention. The system 600 may include one or more
processors 610, 615, which are coupled to graphics memory
controller hub (GMCH) 620. The optional nature of addi-
tional processors 615 1s denoted 1n FIG. 6 with broken lines.

Each processor 610,615 may be some version of the
processor 500. However, 1t should be noted that 1t 1s unlikely
that integrated graphics logic and integrated memory control
units would exist in the processors 610,615. FIG. 6 illus-
trates that the GMCH 620 may be coupled to a memory 640
that may be, for example, a dynamic random access memory
(DRAM). The DRAM may, for at least one embodiment, be

associated with a non-volatile cache.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

The GMCH 620 may be a chipset, or a portion of a
chipset. The GMCH 620 may communicate with the pro-
cessor(s) 610, 615 and control interaction between the
processor(s) 610, 615 and memory 640. The GMCH 620
may also act as an accelerated bus interface between the
processor(s) 610, 615 and other elements of the system 600.
For at least one embodiment, the GMCH 620 communicates
with the processor(s) 610, 615 via a multi-drop bus, such as
a frontside bus (FSB) 695.

Furthermore, GMCH 620 1s coupled to a display 645
(such as a flat panel display). GMCH 620 may include an
integrated graphics acceleratorr GMCH 620 1s further
coupled to an mput/output (I/0O) controller hub (ICH) 650,
which may be used to couple various peripheral devices to
system 600. Shown for example 1n the embodiment of FIG.
6 1s an external graphics device 660, which may be a discrete
graphics device coupled to ICH 650, along with another
peripheral device 670.

Alternatively, additional or different processors may also
be present in the system 600. For example, additional
processor(s) 615 may include additional processors(s) that
are the same as processor 610, additional processor(s) that
are heterogeneous or asymmetric to processor 610, accel-
erators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or
any other processor. There can be a variety of diflerences
between the physical resources 610, 615 1n terms of a
spectrum of metrics of merit including architectural, micro-
architectural, thermal, power consumption characteristics,
and the like. These differences may eflectively manifest
themselves as asymmetry and heterogeneity amongst the
processors 610, 615. For at least one embodiment, the
various processors 610, 615 may reside 1n the same die
package.

Referring now to FIG. 7, shown 1s a block diagram of a
second system 700 1n accordance with an embodiment of the
present invention. As shown in FIG. 7, multiprocessor
system 700 1s a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. Each of
processors 770 and 780 may be some version of the pro-
cessor 500 as one or more of the processors 610,615.

While shown with only two processors 770, 780, 1t 1s to
be understood that the scope of the present invention 1s not
so limited. In other embodiments, one or more additional
processors may be present 1n a given processor.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Proces-
sor 770 also includes as part of 1ts bus controller units
point-to-point (P-P) interfaces 776 and 778; similarly, sec-
ond processor 780 includes P-P interfaces 786 and 788.
Processors 770, 780 may exchange information via a point-
to-point (P-P) interface 750 using P-P interface circuits 778,
788. As shown 1n FIG. 7, IMCs 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of main memory
locally attached to the respective processors.

Processors 770, 780 may each exchange information with
a chupset 790 via individual P-P interfaces 752, 754 using
point to point mterface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-perfor-
mance graphics circuit 738 via a high-performance graphics
interface 739.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both

US 9,715,388 B2

19

processors’ local cache information may be stored in the
shared cache 1f a processor 1s placed 1nto a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation I/O
interconnect bus, although the scope of the present invention
1s not so limited.

As shown 1 FIG. 7, various I/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodi-
ment, second bus 720 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 720 includ-
ing, for example, a keyboard and/or mouse 722, communi-
cation devices 727 and a storage unit 728 such as a disk drive
or other mass storage device which may include instruc-
tions/code and data 730, in one embodiment. Further, an
audio 1/0 724 may be coupled to second bus 720. Note that
other architectures are possible. For example, instead of the
point-to-point architecture of FIG. 7, a system may imple-
ment a multi-drop bus or other such architecture.

Referring now to FIG. 8, shown 1s a block diagram of a
third system 800 in accordance with an embodiment of the
present invention. Like elements in FIGS. 7 and 8 bear like
reference numerals, and certain aspects of FIG. 7 have been
omitted from FIG. 8 m order to avoid obscuring other
aspects of FIG. 8.

FIG. 8 illustrates that the processors 870, 880 may include
integrated memory and I/O control logic (“CL”) 872 and
882, respectively. For at least one embodiment, the CL 872,
882 may include mtegrated memory controller units such as
that described above 1n connection with FIGS. 5§ and 7. In
addition. CL 872, 882 may also include 1I/O control logic.
FIG. 8 illustrates that not only are the memories 832, 834
coupled to the CL 872, 882, but also that I/O devices 814 are
also coupled to the control logic 872, 882. Legacy 1/O
devices 815 are coupled to the chipset 890.

Referring now to FIG. 9, shown 1s a block diagram of a
SoC 900 1n accordance with an embodiment of the present
invention. Similar elements 1 FIG. 5 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 9, an interconnect unit(s) 902
1s coupled to: an application processor 910 which includes
a set of one or more cores 902A-N and shared cache unit(s)
906; a system agent unit 910; a bus controller unit(s) 916; an
integrated memory controller unit(s) 914; a set or one or
more media processors 920 which may include integrated
graphics logic 908, an 1image processor 924 for providing
still and/or video camera functionality, an audio processor
926 for providing hardware audio acceleration, and a video
processor 928 for providing video encode/decode accelera-
tion; an static random access memory (SRAM) unit 930; a
direct memory access (DMA) unit 932; and a display unit
940 for coupling to one or more external displays.

FIG. 10 illustrates a processor containing a central pro-
cessing unit (CPU) and a graphics processing unit (GPU),
which may perform at least one 1nstruction according to one
embodiment. In one embodiment, an instruction to perform
operations according to at least one embodiment could be
performed by the CPU. In another embodiment, the mnstruc-
tion could be performed by the GPU. In still another
embodiment, the instruction may be performed through a
combination of operations performed by the GPU and the
CPU. For example, 1n one embodiment, an instruction 1n
accordance with one embodiment may be recerved and
decoded for execution on the GPU. However, one or more
operations within the decoded instruction may be performed

10

15

20

25

30

35

40

45

50

55

60

65

20

by a CPU and the result returned to the GPU for final
retirement of the instruction. Conversely, 1n some embodi-
ments, the CPU may act as the primary processor and the
GPU as the co-processor.

In some embodiments, instructions that benefit from
highly parallel, throughput processors may be performed by
the GPU, while instructions that benefit from the perfor-
mance ol processors that benefit from deeply pipelined
architectures may be performed by the CPU. For example,
graphics, scientific applications, financial applications and
other parallel workloads may benefit from the performance
of the GPU and be executed accordingly, whereas more
sequential applications, such as operating system kernel or
application code may be better suited for the CPU.

In FIG. 10, processor 1000 includes a CPU 1005, GPU
1010, image processor 1015, video processor 1020, USB
controller 1025, UART controller 1030, SPI/SDIO control-
ler 1035, display device 1040, memory interface controller
1045, MIPI controller 1050, flash memory controller 10355,
dual data rate (DDR) controller 1060, security engine 1065,
and I°S/I*C controller 1070. Other logic and circuits may be
included 1n the processor of FIG. 10, including more CPUs
or GPUs and other peripheral interface controllers.

One or more aspects of at least one embodiment may be
implemented by representative data stored on a machine-
readable medium which represents various logic within the
processor, which when read by a machine causes the
machine to {fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium
(“tape”) and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually
make the logic or processor. For example, IP cores, such as
the Cortex™ family of processors developed by ARM
Holdings, Ltd. and Loongson IP cores developed the Insti-
tute of Computing Technology (ICT) of the Chinese Acad-
emy of Sciences may be licensed or sold to various custom-
ers or licensees, such as Texas Instruments, Qualcomm,
Apple, or Samsung and implemented 1n processors produced
by these customers or licensees.

FIG. 11 shows a block diagram illustrating the develop-
ment of IP cores according to one embodiment. Storage 1130
includes simulation software 1120 and/or hardware or soft-
ware model 1110. In one embodiment, the data representing
the IP core design can be provided to the storage 1130 via
memory 1140 (e.g., hard disk), wired connection (e.g.,
internet) 1150 or wireless connection 1160. The IP core
information generated by the simulation tool and model can
then be transmitted to a fabrication facility where it can be
fabricated by a 3™ party to perform at least one instruction
in accordance with at least one embodiment.

In some embodiments, one or more 1nstructions may
correspond to a first type or architecture (e.g., x86) and be
translated or emulated on a processor of a different type or
architecture (e.g., ARM). An instruction, according to one
embodiment, may therefore be performed on any processor
or processor type, including ARM, x86, MIPS, a GPU, or
other processor type or architecture.

FIG. 12 illustrates how an instruction of a first type 1s
emulated by a processor of a different type, according to one
embodiment. In FIG. 12, program 1205 contains some
instructions that may perform the same or substantially the
same function as an instruction according to one embodi-
ment. However the instructions of program 1205 may be of
a type and/or format that 1s different or incompatible with
processor 1215, meaming the instructions of the type in
program 12035 may not be able to executed natively by the

US 9,715,388 B2

21

processor 1215. However, with the help of emulation logic,
1210, the instructions of program 1205 are translated into
instructions that are natively capable of being executed by
the processor 1215. In one embodiment, the emulation logic
1s embodied 1n hardware. In another embodiment, the emu-
lation logic 1s embodied 1n a tangible, machine-readable
medium containing soitware to translate mstructions of the
type 1n the program 1205 into the type natively executable
by the processor 1215. In other embodiments, emulation
logic 1s a combination of fixed-function or programmable
hardware and a program stored on a tangible, machine-
readable medium. In one embodiment, the processor con-
tains the emulation logic, whereas in other embodiments, the
emulation logic exists outside of the processor and 1s pro-
vided by a third party. In one embodiment, the processor 1s
capable of loading the emulation logic embodied 1n a
tangible, machine-readable medium containing software by
executing microcode or firmware contained 1n or associated
with the processor.

FIG. 13 1s a block diagram contrasting the use of a
soltware 1nstruction converter to convert binary instructions
in a source instruction set to binary instructions 1n a target
istruction set according to embodiments of the mmvention.
In the illustrated embodiment, the instruction converter 1s a
software instruction converter, although alternatively the
instruction converter may be implemented 1n software, firm-
ware, hardware, or various combinations thereof. FIG. 13
shows a program i1n a high level language 1302 may be
compiled using an x86 compiler 1304 to generate x86 binary
code 1306 that may be natively executed by a processor with
at least one x86 1nstruction set core 1316. The processor with
at least one x86 nstruction set core 1316 represents any
processor that can perform substantially the same functions
as a Intel processor with at least one x86 1nstruction set core
by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 1nstruction set core, 1n order to achieve
substantially the same result as an Intel processor with at
least one x86 1nstruction set core. The x86 compiler 1304
represents a compiler that 1s operable to generate x86 binary
code 1306 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 1instruction set core 1316. Similarly,
FIG. 13 shows the program 1n the high level language 1302
may be compiled using an alternative instruction set com-
piler 1308 to generate alternative istruction set binary code
1310 that may be natively executed by a processor without
at least one x86 instruction set core 1314 (e.g., a processor
with cores that execute the MIPS 1nstruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1312 1s used to convert the
x86 binary code 1306 into code that may be natively
executed by the processor without an x86 instruction set
core 1314. This converted code 1s not likely to be the same
as the alternative instruction set binary code 1310 because
an 1nstruction converter capable of this 1s dithcult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive 1nstruction set. Thus, the instruction converter 1312
represents software, firmware, hardware, or a combination
thereol that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1306.

10

15

20

25

30

35

40

45

50

55

60

65

22

Embodiments of the present invention involve instruc-
tion(s) to efhiciently monitor loop trip count. In an embodi-
ment, loop trip count information of a loop may be stored in
a dedicated hardware butler. The average loop trip count of
the loop may be calculated based on the stored loop trip
count information. Based on the average trip count, loop
optimizations may be applied or removed from the loop. In
an embodiment, the stored loop trip count information
includes an identifier 1dentifying the loop, a total loop trip
count of the loop, and an exit count of the loop. In an
embodiment, the loop optimization(s) may be based on a
determination that the average loop trip count 1s above a
threshold. In an embodiment, loop optimization(s) may be
removed based on a determination that the average loop trip
count 1s below a threshold. In an embodiment, a section of
code 1dentified for optimization may contain an atomic
region. An atomic region may be a region of the code where
all the statements 1n that region have to be executed as a
whole. The atomic region of code may be demarcated by a
commit statement. In an embodiment, execution of at least
a commit instruction 1n the loop may be skipped.

In an embodiment, the stored loop trip count information
may be removed based on a determination that the average
loop trip count 1s above a threshold or below a threshold. In
an embodiment, 1f the hardware buffer overflows, the stored
loop trip count information in the hardware bufler may be
replaced based on a cache algorithm.

FIG. 14 illustrates optimization of program code 1410 1n
an embodiment. Program code 1410 may refer to compiler
code, optimization code, application code, library code, or
any other known formulation of code. In an exemplary
embodiment, program code 1410 may be executed by a
computer processor, such as binary code that 1s ready for
execution, dynamically compiled for execution on proces-
sor, and/or dynamically optimized to execute on a processor.
In addition, the insertion of code (operations, function calls,
etc) and optimization of the code 1s performed through
execution of program code, such as compiler and/or opti-
mization code. As an example, optimization code 1s dynami-
cally executed on a processor at runtime to optimize pro-
gram code just before execution of the program code on a
Processor.

In an embodiment, the program code 1410 to be opti-
mized may first be 1dentified as program code which needs
optimization. For example, a specific instruction or demar-
cation 1s utilized to indicate a section of code to be optimized
or would likely benefit from optimization. As another
option, a programmer provides hints regarding sections of
the program code, which are utilized by optimization code
to 1dentily sections for optimization. In another embodi-
ment, a region 1s 1dentified/selected based on profiling
information. For example, program code 1s profiled during
execution by hardware, software executing on the processor,
firmware, or a combination thereof. Here, profiling of the
code generates hints or modifies original software hints, as
well as provide direct 1dentification of regions for optimi-
zations. In addition, a section of code 1s potentially identified
by certain attributes, such as a specific type, format, or order
of the code. As a specific illustrative example, code includ-
ing loops are targeted for potential optimization. For
example, the program code 1410 includes a loop as seen at
statement 1414 where the code branches back to statement
1412 it variable P 1s a particular boolean value. And profiling
of the loops during execution determines which of the loops
should be optimized. Also, 11 the loop 1ncludes specific code,
such as loads and stores, that are to be optimized, then the
region icluding such code 1s 1dentified for optimization. As

US 9,715,388 B2

23

can be seen from exemplary program code 1410, the code
includes loads and stores capable of being hoisted and sunk
out of the loop to optimize loop execution.

In an embodiment, the section of code identified {for
optimization may contain an atomic region. An atomic
region 1s a region of the code where all the statements 1n that
region have to be executed as a whole. The atomic region of
code may be demarcated by a commit statement 1412.
However, any known method of indicating a region 1is
atomic may be utilized.

Code optimization such as dynamic binary optimization,
used 1n hardware/software co-designed architectures, relies
on atomic region support to solve many tough issues 1n the
optimized code, such as memory order violation, imprecise
exception, etc. However, the atomic region commit enforces
strict sequential consistence which not only becomes a
barrier to optimize 1structions across the commit boundary,
but also causes stalls since the commit needs to wait until all
memory references are globally visible.

In an embodiment, program code 1410 idenftified for
optimization may be converted to the program code 1420,
1430, 1440, and 1450. Program code 1420-1450 performs
the same function as program code 1410, and may be more
cllicient than program code 1410. Program code 1420-1450
utilizes a conditional commit branch (BCC 1nstruction) to
optimize the code 1410. In an embodiment, a conditional
commit branch skips a commit operation it there 1s enough
speculative resources available for program execution until
the next conditional commit operation. In FIG. 14, the
conditional commit operation 1s shown in the inner loop
1430 (as BCC), indicating that the loop 1430 1s executed
without any commit operations until speculative resources
available for program execution are exhausted. When specu-
lative resources are exhausted, the execution exits the inner
loop 1430, commuits 1440, and repeats the inner loop 1430
alter executing an outer loop branch 14350. Restructuring
program code 1410 to use conditional commits 1) reduces
stalls by skipping unnecessary commits, and 2) increases
performance since multiple 1terations of loops can be
executed 1n parallel, through for example, pipelining.

However, unless there are multiple iterations of the inner
loop 1430 (.e., a high i1nner loop trip count), and the
conditional commit 1s skipped many times, 1ssues which
aflect performance may arise. For example, 1f the original
program code loop’s 1410 trip count 1s N, the original
program code loop 1410 takes B (e.g., 5) cycles, each
commit takes C (e.g., 2) cycles, the pipelined kernel 1430

takes S (e.g., 3) cycles to execute, and the pipelined ramp-up
code 1420 and outer loop branch 1450 take R (e.g., 18)

cycles, then the original program code loop 1410 will take
N*(B+C)=/N cycles and the restructured code with condi-
tional commits (1420-1450) will take N*S+C+R=3N+20
cycles. Thus, the restructured code with conditional commuts
(1420-1450) will be more etlicient if 7N>3N+20, or N>5. In
other words, the restructured code with conditional commits
(1420-1450) will have to skip at least 5 consecutive commits
in order to achieve a performance improvement. The trip
count of the inner loop 1430 may be low 1f the inner loop
1430 uses large amounts of speculative resources, thus
forcing frequent commits 1440, and consequently, the
execution of the outer loop branch 1430.

In an embodiment, the trip count of optimized code (for
example, restructured code using conditional commits 1420-
1450) may be momnitored for low trip counts to check
whether some of the optimizations should be reverted (for
example, reverted to the original program code loop 1410).
FIG. 15 1llustrates exemplary optimized code to track loop

10

15

20

25

30

35

40

45

50

55

60

65

24

trip count 1n an embodiment. In an embodiment, the loop trip
count may be stored 1n a register without utilizing dedicated
hardware support. A register (RIN) may be mitialized 1521 to
an 1nitial value such as 0. Within the loop 1530, the value 1n
the register may be incremented, so that each time the loop
1530 1s executed, the value 1n the register retlects the
iteration number of the loop 1530. Upon exiting the loop two
memory update operations 1541 may be performed 1n the
commit section of the code 1540. The first memory opera-
tion may increment a counter 1n memory (mem|[BK]) by the
value 1n the register RN (1.e., the current loop trip count
value). The second memory operation may increment a
second counter 1n memory (mem[EX]) by 1 to keep track of
the number of times of exit of the loop 1530. In an
embodiment, the outer loop branch 1550 may include an
instruction to reset the register RN back to an imitial value
such as zero (not shown). To obtain the average loop trip
count, the total loop trip count (value 1n mem|[BK]) may be
divided by the number of times of exit from the loop (value
in mem|EX]). However, maintaining a separate register
without utilizing hardware support may impact performance
because of the use of the additional register RN, the use of
one instruction slot 1531 within loop 1530, and the two
memory update operations 1541.

FIG. 16 illustrates exemplary optimized code to track
loop trip count 1n an embodiment. In an embodiment,
hardware support may efliciently keep track of the loop trip
count without the overheads pertaining to the code 1illus-
trated 1 FIG. 15. A conditional commit instruction (as
described above) with additional functionality may be added
to the optimized program code. The conditional commit
instruction with the added functionality (TC_BCC 1631)
istructs the computer processor to store loop trip count
information 1n a dedicated hardware bufler. The hardware
bufler (trip count bufiler) may store 1) an i1dentifier 1denti-
tying the loop (for example, loop 1630), 2) the respective
total loop trip count, and 3) the exit count from the respec-
tive loop. The average loop trip count can be calculated by
dividing the total loop trip count by the exit count from the
loop. In an embodiment, the i1dentifier identifying the loop
may be the branch instruction pointer (IP) address of the
TC_BCC struction 1631. In an embodiment, at particular
time 1ntervals the trip count builer may be examined and the
trip count information may be updated to the meta-data
associated with the respective loops.

In an embodiment, the trip count buller may store trip
count information of multiple loops, and may be of a limited
size. 11 the bufler overflows, the data in the bufler may be
replaced based on a cache algorithm, including, Least
Recently Used, Most Recently Used, Pseudo-Least Recently
Used, Random Replacement, Segmented Least Recently
Used, 2-Way Set Associative, Least Frequently Used, Adap-
tive Replacement Cache, Multi Queue Caching Algorithm
and Re-Reference Interval Prediction.

In an embodiment, based on the detected loop trip count
of a particular loop of optimized code (for example, loop
1630), the computer processor may (for example, utilizing
binary optimization soitware) convert the optimized code
back to code without the loop optimizations, for example,
the non-optimized program code 1410 (FIG. 14). For
example, the processor may determine the loop trip count of
loop 1630 from the trip count builer and determine whether
the trip count 1s high enough to oflset the overhead of the
optimized code (for example, overhead related to the execu-
tion of ramp up code and outer loop branch code as
discussed 1n relation to FIG. 14), and if the trip count 1s too

US 9,715,388 B2

25

low to oflset the overhead, convert the optimized code
1620-1650 to non-optimized code such as the code 1410

(FI1G. 14).

In an embodiment, to etliciently utilize the space in the
trip count builer, the trip count builer may only store entries
for loops which have a loop count lower than a threshold.
Thus, 1n an embodiment, 11 the processor examines the trip
count bufler for the loop count of an optimized loop, and
does not find an entry for that loop, the processor may
conclude that the trip count for that loop 1s higher than the
threshold, and consequently, determine that the loop should
not be transformed back to a non-optimized loop.

FIG. 17 illustrates exemplary code without loop optimi-
zations which reduces commit overhead 1n an embodiment.
In an embodiment, program code without loop optimiza-
tions, such as code 1410 (FIG. 14), may utilize a conditional

commit instruction (TC_BCC_OR_CMIT 1702) to reduce
commit overhead. The TC BCC OR _CMIT instruction
may cause the processor to perform a commit operation 1
the code execution exits loop 1700. In other words, 11 the
condition to exit the loop 1s false, the code will be executed
again irom the beginning of the loop 1702. If the condition
to exit the loop 1s true, the processor will perform a commut.

In a further embodiment, the functionality to update a trip
count bufler (1.e., a dedicated hardware bufler to store trip
count information) as discussed in relation to FIG. 16 may
be integrated with the TC_BCC_OR_CMIT instruction. For
example, each time the TC_BCC_OR_CMIT istruction 1s
executed and the processor determines that loop 1700 has to
be executed again, a total loop trip count for loop 1700 may
be incremented in the trip count bufler. In addition, each
time code execution exits loop 1700, a exit loop counter
associated with loop 1700 may be incremented in the trip
count bufller. The average loop trip count for loop 1700 may
be calculated based on the total trip count and the exit loop
count associated with loop 1700.

In an embodiment, based on the detected loop trip count
of a particular loop without loop optimizations (for example,
loop 1700), the computer processor may convert the code
without loop optimizations to optimized code, for example,
the optimized code 1620-1650 (FIG. 16). For example, the
processor may determine the average loop trip count of loop
1700 from the trip count bufller and determine whether the
trip count 1s high enough to offset overhead associated with
execution of an optimized version of the code (for example,
overhead related to the execution of ramp up code and outer
loop branch code as discussed in relation to FIG. 14), and 1f
the trip count 1s high enough to offset the overhead, convert
the code without loop optimizations to optimized code, such
as code 1620-1650 (FIG. 16).

In an embodiment, to efhiciently utilize the space 1n the
trip count butler, the trip count builer may only store entries
tor loops which have a loop count higher than a threshold.
Thus, 1n an embodiment, 1 the processor examines the trip
count bufler for the loop count of a particular non-optimized
loop, and does not find an entry for that loop, the processor
may conclude that the trip count for that loop 1s lower than
the threshold, and consequently, determine that the loop
should not be transformed to an optimized loop.

FIG. 18 illustrates a method for transforming code with
loops 1n an embodiment. In an embodiment, the TC_BC-
C_CMIT and TC_BCC nstruction may be integrated into
code to etliciently execute code with loops. The computer
processor may first identily code with one or more loops
(box 1802). For each loop, the processor may estimate
whether the loop has a high trip count (box 1804). If a high

loop trip count 1s not estimated, the loop 1s not modified (box

10

15

20

25

30

35

40

45

50

55

60

65

26

1816), and the processor may wait for a period of time and
repeat 1804. If a high loop trip count 1s estimated at 1804,
the loop may be transformed to use the TC_BCC_CMIT
instruction (box 1806). When executing the loop with the
TC_BCC_CMIT instruction, commit operations may be
skipped when possible, and loop trip count information may
be stored 1n a hardware loop trip count bufler. The loop trip
count bufler may be checked periodically to determine
whether the loop has a high trip count (box 1808). If a high
loop trip count 1s not detected, the loop 1s not modified (box
1816). If a high loop trip count 1s detected, the loop 1s
optimized, and 1s modified to use the TC_BCC instruction
(box 1820). When executing the loop with the TC_BCC
instruction, commit operations may be skipped when pos-
sible, and loop trip count information may be stored 1n a
hardware loop trip count builer. The loop trip count bufler
may be checked periodically to determine whether the loop
has a low trip count (box 1812). If a low trip count 1s not
detected, the loop 1s not modified (box 1816). If a low trip
count 1s detected, the loop optimizations may be removed
(box 1814), and the loop may be transformed to utilize
TC_BCC_CMIT (box 1806), and 1806-1816 may be
repeated.

In an embodiment, at 1812, if the processor determines
that the loop 1includes multiple loop optimizations and a low
loop trip count 1s detected, the processor may first determine
whether some of the loop optimizations can be retained with
reasonable performance. If so, the processor may retain the
profitable optimizations and remove only the optimizations
which may degrade performance. The processor may
execute 1814 and remove all optimizations 11 1t determines
that none of the optimizations are profitable.

A person having ordinary skill in the art will appreciate
that high and low loop trip counts are relative, and may vary
based on the type of code and the type of hardware/software
executing the code. For example, the trip count threshold
needed for efliciently pipelining a loop may be different
from the trip count needed for redundancy elimination.

Embodiments of the mechanisms disclosed herein may be
implemented 1n hardware, software, firmware, or a combi-
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including
volatile and non-volatile memory and/or storage elements),
at least one mput device, and at least one output device.

Program code may be applied to mput instructions to
perform the functions described herein and generate output
information. The output information may be applied to one
or more output devices, in known fashion. For purposes of
this application, a processing system includes any system
that has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

The program code may be implemented 1n a high level
procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented 1n assembly or machine language,
it desired. In fact, the mechanisms described herein are not
limited 1n scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques

US 9,715,388 B2

27

described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMSs), erasable programmable read-only memories
(EPROMs), tlash memories, electrically erasable program-
mable read-only memories (EEPROMSs), magnetic or optical
cards, or any other type of media suitable for storing
clectronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, an 1nstruction converter may be used to
convert an 1nstruction from a source instruction set to a
target 1nstruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The struc-
tion converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction con-
verter may be on processor, oil processor, or part on and part
ofl processor.

Thus, techniques for performing one or more nstructions
according to at least one embodiment are disclosed. While
certain exemplary embodiments have been described and
shown 1n the accompanying drawings, 1t 1s to be understood
that such embodiments are merely illustrative of and not
restrictive on the broad invention, and that this invention not
be limited to the specific constructions and arrangements
shown and described, since various other modifications may
occur to those ordinarily skilled 1n the art upon studying this
disclosure. In an area of technology such as this, where
growth 1s fast and further advancements are not easily
foreseen, the disclosed embodiments may be readily modi-
flable 1n arrangement and detail as facilitated by enabling
technological advancements without departing from the
principles of the present disclosure or the scope of the
accompanying claims.

What 1s claimed 1s:

1. A non-transitory machine-readable medium having
stored thereon an instruction, which 1f performed by a
machine causes the machine to perform a method compris-
ng:

storing loop trip count information of a loop 1n a hardware

bufler dedicated to store trip count information;
calculating an average loop trip count of the loop based on
the stored loop trip count information; and

removing any loop optimizations from the loop based on

the average loop trip count.

10

15

20

25

30

35

40

45

50

55

60

65

28

2. The machine-readable medium of claim 1, wherein the
stored loop trip count information includes an 1dentifier
identifying the loop, a total loop trip count of the loop, and
an exit count of the loop.

3. The machine-readable medium of claim 1, further
comprising executing a commit instruction 1 the loop
before removing the loop optimization, wherein removing
the loop optimization comprises skipping execution of the
commit istruction.

4. The machine-readable medium of claim 1, wherein the
method further comprises:

removing the stored loop trip count information upon
determining that the average loop trip count 1s one of:
a) above a threshold and b) below a threshold.

5. The machine-readable medium of claim 1, further
comprising applying the loop optimization upon determin-
ing that the average loop trip count 1s above a first threshold,
wherein the loop optimization 1s subsequently removed
upon determining that the average loop trip count is below
a second threshold.

6. The machine-readable medium of claim 1, further
comprising, upon overtlow of the hardware bufler, replacing
the stored loop trip count information based on a cache
algorithm.

7. The machine-readable medium of claim 3, wherein the
commit instruction demarcates an atomic section of code
and skipping the commit instruction causes the atomic
section of code to not execute.

8. A method comprising:

storing loop trip count information of a loop 1n a hardware
bufler dedicated to store trip count information;

calculating an average loop trip count of the loop based on
the stored loop trip count information; and

removing any loop optimizations from the loop based on
the average loop trip count.

9. The method of claim 8, wherein the stored loop trip
count information includes an identifier identitying the loop,
a total loop trip count of the loop, and an exit count of the
loop.

10. The method of claim 8, further comprising, executing
a commit instruction 1n the loop before removing the loop
optimization, wherein removing the loop optimization com-
prises skipping execution of the commit instruction.

11. The method of claim 8, further comprising:

removing the stored loop trip count information upon
determining that the average loop trip count 1s one of:
a) above a threshold and b) below a threshold.

12. The method of claim 8, further comprising applying
the loop optimization upon determining that the average
loop trip count 1s above a first threshold, wherein the loop
optimization 1s subsequently removed upon determining that
the average loop trip count 1s below a second threshold.

13. The method of claim 8, wherein the method further
COmMprises:

upon overtlow of the hardware buller replacing the stored
loop trip count information based on a cache algorithm.

14. The machine-readable medium of claim 10, wherein
the commit instruction demarcates an atomic section of code
and skipping the commit instruction causes the atomic
section of code to not execute.

15. A system comprising;:

a dedicated hardware bufller to store loop trip count

information of a loop;

a computer processor to calculate an average loop trip
count of the loop based on the stored loop trip count
information, and remove any loop optimizations from
the loop based on the average loop trip count.

"y

US 9,715,388 B2

29

16. The system of claim 15, wherein the stored loop trip
count information includes an identifier 1dentitying the loop,
a total loop trip count of the loop, and an exit count of the
loop.

17. A system comprising:

a processor for executing computer nstructions, the com-

puter instructions comprising:
storing loop trip count information of a loop 1n a

hardware bufler dedicated to store trip count infor-
mation;
calculating an average loop trip count of the loop based
on the stored loop trip count information; and
removing any loop optimizations from the loop based
on the average loop trip count.

18. The system of claim 17, wherein the stored loop trip
count information includes an identifier identitying the loop,
a total loop trip count of the loop, and an exit count of the
loop.

19. The system of claim 17, wherein the computer mstruc-
tions further comprise executing a commit istruction in the
loop before removing the loop optimization, wherein remov-
ing the loop optimization comprises skipping execution of
the commit instruction.

20. The system of claim 17, wherein the computer instruc-
tions further comprise:

removing the stored loop trip count information upon

determining that the average loop trip count 1s one of:
a) above a threshold and b) below a threshold.

21. The system of claim 17, wherein the computer instruc-

tions further comprise applying the loop optimization upon

10

15

20

25

30

determining that the average loop trip count 1s above a first
threshold, wherein the loop optimization 1s subsequently
removed upon determining that the average loop trip count
1s below a second threshold.

22. The system of claim 21, wherein the loop optimization
1s removed upon determining that the average loop trip
count 1s below a second threshold.

23. The system of claim 17, wherein the computer instruc-
tions further comprise:

upon overtlow of the hardware butler replacing the stored

loop trip count information based on a cache algorithm.

24. The machine-readable medium of claim 19, wherein
the commiut instruction demarcates an atomic section of code
and skipping the commit instruction causes the atomic
section of code to not execute.

25. A non-transitory machine-readable medium having
stored thereon data, which 1f performed by at least one
machine, causes the at least one machine to fabricate at least
one integrated circuit to perform a method comprising:

storing loop trip count information of a loop 1n a hardware

bufler dedicated to store trip count information;
calculating an average loop trip count of the loop based on
the stored loop trip count information; and

removing any loop optimizations from the loop based on

the average loop trip count.

26. The machine-readable medium of claim 25, wherein
the stored loop trip count information includes an i1dentifier
identifving the loop, a total loop trip count of the loop, and
an exit count of the loop.

e

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

