12 United States Patent
Nakil et al.

US009710762B2

US 9,710,762 B2
Jul. 18, 2017

(10) Patent No.:
45) Date of Patent:

(54)
(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(51)

(52)

DYNAMIC LOGGING

Applicant: Juniper Networks, Inc., Sunnyvale,
CA (US)

Inventors: Harshad Bhaskar Nakil, San Jose, CA
(US); Ankur Singla, Belmont, CA

(US); Rajashekar Reddy, San Jose,
CA (US)

Assignee: Juniper Networks, Inc., Sunnyvale,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 397 days.

Appl. No.: 13/841,736

Filed: Mar. 15, 2013

Prior Publication Data
US 2013/0332601 Al Dec. 12, 2013
Related U.S. Application Data

Provisional application No. 61/729,4°74, filed on Nov.
23, 2012, provisional application No. 61/723,684,

(Continued)

Int. CL

GO6F 15/173 (2006.01)
GO6N 99/00 (2010.01)
HO4L 12/26 (2006.01)
HO4L 12/24 (2006.01)
HO4L 29/14 (2006.01)
GO6l’ 11/00 (2006.01)
HO4L 12/761 (2013.01)
HO4L 29/12 (2006.01)
U.S. CL

CPC GO6N 99/005 (2013.01); GOoF 11/008

(2013.01); HO4L 41/0631 (2013.01); HO4L
41/147 (2013.01); HO4L 43/04 (2013.01);

HO4L 43/0852 (2013.01); HO4L 43/10
(2013.01); HO4L 45/16 (2013.01); HO4L 69/40
(2013.01); HO4L 61/103 (2013.01)

(38) Field of Classification Search

CPC ..o, GO6N 99/005; GO6F 11/008; GO6F
2009/45591; HO4L 41/0631; HO4L
41/14°7; HO4L 43/04; HO4L 43/0852;
HO4L 43/10; HO4L 69/40; HO4L 41/06;
HO4L 41/069
USPC ..., 709/217, 218, 219, 223, 224

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,120,685 B2* 10/2006 Ullmann et al. 709/224
7,818,274 Bl * 10/2010 Ottamalika 706/45
(Continued)

Primary Examiner — Liangche A Wang
Assistant Examiner — Kaylee Huang

(74) Attorney, Agent, or Firm — Shumaker & Sieflert,
P.A.

(57) ABSTRACT

In general, techniques are described for dynamically modi-
tying the extent of logging performed by logging informa-
tion generators 1n response to events detected 1n logging
information received by the collector. In some examples, a
network device includes one or more processors and a
collector executed by the processors to receive a log mes-
sage that includes logging information from a generator. The
network device also includes a rules engine to apply one or
more rules that each specily a condition and a corresponding
action to the logging information to identily a matching rule,
wherein the rules engine, upon 1dentifying a matching rule,
executes the action of the matching rule to generate and send
a logging modification message to increase an extent to
which the generator generates logging information.

18 Claims, 7 Drawing Sheets

RECEIVE BASELINE LOGGING INFORMATION |/ 300
FROM AN APPLICATION

l

APPLY RULES TO THE BASELINE —302
LOGGING INFORMATION

|

304
MATCH RULE TQ DIRECT AN \(_
APPLICATION TRACE ? / NO

lTEE
SEND LOGGING MODIFICATION MESSAGE TO THE | 308
APPLICATION TO REQUEST
THE APPLICATION TRACE
RECEIVE AND STORE ADDITIONAL LOG MESSAGE [—308
INCLUDING APPLICATION TRACE RESULTS
i 310
NO/ MATGH RULE TO DIREGT
\ AN ACTIVE PROBE ?
l YES
SEND LOGGING MODIFICATION MESSAGE TQ THE [— 312
APPLICATICN TO REQUEST THE ACTIVE PROBE
RECEIVE AND STORE ADDITIONAL LOG MESSAGE |~ =14
INCLUDING ACTIVE PROBE RESULTS

STORE BASELINE LOGGING INFORMATION [—316
TO LOG DATABASE

US 9,710,762 B2
Page 2

Related U.S. Application Data

filed on Nov. 7, 2012, provisional application No.
61/723,685, filed on Nov. 7, 2012, provisional appli-
cation No. 61/722,696, filed on Nov. 5, 2012, provi-
sional application No. 61/721,979, filed on Nov. 2,
2012, provisional application No. 61/721,994, filed
on Nov. 2, 2012, provisional application No. 61/718,

633, filed on Oct. 25, 2012, provisional application
No. 61/656,468, filed on Jun. 6, 2012, provisional

application No. 61/656,469, filed on Jun. 6, 2012,
provisional application No. 61/656,471, filed on Jun.

6, 2012.

(56) References Cited
U.S. PATENT DOCUMENTS

8,825,840 B2* 9/2014 Chung GOo6F 21/552
709/224

2007/0143795 Al* 6/2007 Tran GOOF 11/3636
725/46

2013/0070762 Al* 3/2013 Adams HO04L 49/70
370/389

2013/0097304 Al* 4/2013 Asthana HO4L 41/5025
709/224

2013/0227352 Al* 8/2013 Kumarasamy et al. 714/47.1

* cited by examiner

U.S. Patent Jul. 18, 2017 Sheet 1 of 7 US 9,710,762 B2

1 :
CUSTOMERS y

SERVICE PROVIDER NETWORK

7

’/10

DATA CENTER

IP FABRIC
20

CHASSIS CHASSIS
SWITCH SWITCH
ADMINISTRATOR 18A 18M
24
VIRTUAL TOR TOR 14
NETWORK |~ SWITCH soe SWITCH
CONTROLLER [T __16A o 16N |
ui“‘ \\ ,-/ _\- j/
oo, [T 'SUBNET “7] " “suBNET
1 N

SERVER f\\ SERVER SERVER
26 29 12A T L 12X

FIG. 1

U.S. Patent Jul. 18, 2017 Sheet 2 of 7 US 9,710,762 B2

26
VIRTUAL NETWORK |~ %% o IFMAP SERVER 10
CONTROLLER T P/
4 ==

IP FABRIC
20

CHASSIS CHASSIS CHASSIS
SWITCH SWITCH SWITCH
18A 18B 18M
" »
‘\

7=

r---------_-___-__-__-

TOR SWITCH TOR SWITCH TOR SWITCH
16A 16B Y X 16N
J l) l)
_SUBNET1 - ‘<. SUBNET2 _-° <. SUBNET3 .~
SR 1~ Ts— T T mg- T
e —— ==
|
I~ 12A . 12B 12X
Iy
VN AGENT e
1 SERVER 1 SERVER 2 SERVER X
39A |
1] /31
Iy
HYPERVISOR I _30A
1 VIRTUAL
:: SWITCH
NFTo || NFT4
32 22 VIRTUAL VIRTUAL
x SWITCH SWITCH
34 34
Y e 30B 30X
| VNO | VN1
N / THRS S
o~ I: N
I
I
Il
417 11

FIG. 2

U.S. Patent Jul. 18, 2017 Sheet 3 of 7 US 9,710,762 B2

VNC GLOBAL
LOAD BALANCING

VNC NODE
102A

ANALYTICS VM | RULES ANALYTICSVM | RULES

104A ENGINE N ENGINE
200A 200N

ANALYTICS DB
106A

CONFIGURATION VM CONFIGURATION VM
108A 108N

CONFIG. DB
110A

CONTROL PLANE VM CONTROL PLANE VM
112A 112N

NW DISC NW DISC

146A

143A 148N

NETWORK
160

SERVER
170

VN SWITCH
172

U.S. Patent Jul. 18, 2017 Sheet 4 of 7 US 9,710,762 B2

ADMINISTRATOR
24

\ VNC NODE
! 102A
ANALYTICS VM :
104A '
RULES COLzLoi(;TOR
206A =

146A

RULES ENGINE

ANALYTICS DB | LOG DATABASE 200A

106A 202A

CONFIGURATION VM
108A

CONFIG. DB
110A

144A

]
—
o

N
Q
Co

150A

CONTROL PLANE VM
I 112A
\1I

-----------------—————---d

SERVER
170

VN SWITCH
172

FIG. 4

U.S. Patent Jul. 18, 2017 Sheet 5 of 7 US 9,710,762 B2
RECEIVE BASELINE LOGGING INFORMATION 300
FROM AN APPLICATION
APPLY RULES TO THE BASELINE 302
LOGGING INFORMATION

304
MATCH RULE TO DIRECT AN
APPLICATION TRACE ? NO
YES

SEND LOGGING MODIFICATION MESSAGE TO THE 306
APPLICATION TO REQUEST

THE APPLICATION TRACE

RECEIVE AND STORE ADDITIONAL LOG MESSAGE |— 3038
INCLUDING APPLICATION TRACE RESULTS
310
NO MATCH RULE TO DIRECT
AN ACTIVE PROBE ?
YES

SEND LOGGING MODIFICATION MESSAGE TO THE 312

APPLICATION TO REQUEST THE ACTIVE PROBE
RECEIVE AND STORE ADDITIONAL LOG MESSAGE |— 314
INCLUDING ACTIVE PROBE RESULTS
STORE BASELINE LOGGING INFORMATION 316
TO LOG DATABASE

FIG. 5

U.S. Patent Jul. 18, 2017 Sheet 6 of 7 US 9,710,762 B2

COMPUTING DEVICE
400
PROCESSOR(S)
COMMUNICATION UNIT(S)
402
INPUT DEVICE(S)

OUTPUT DEVICE(S)
406

COMM. CHANNEL(S)
416

STORAGE DEVICE(S)
408

VIRTUALIZATION
MODULE

APPLICATION(S)

412 414A-414N

TRACE
ROUTINE
420

PROBE
ROUTINE
418

OPERATING SYSTEM

410

FIG. 6

U.S. Patent Jul. 18, 2017 Sheet 7 of 7 US 9,710,762 B2

SEND BASELINE LOGGING INFORMATION 930
TO A COLLECTOR IN A LOG MESSAGE
RECEIVE LOGGING MODIFICATION MESSAGE 532
FROM THE COLLECTOR
534
MESSAGE DIRECTS AN
APPLICATION TRACE ? NO
YES
PERFORM APPLICATION TRACE TO GENERATE 536
NEW LOGGING INFORMATION

538
MESSAGE DIRECTS AN
ACTIVE PROBE ?
NO
YES

PERFORM ACTIVE PROBE TO GENERATE NEW
LOGGING INFORMATION

540

542

RETURN NEW LOGGING INFORMATION TO THE
COLLECTOR IN A NEW LOG MESSAGE

FIG. 7

US 9,710,762 B2

1
DYNAMIC LOGGING

PRIORITY CLAIM

This application claims the benefit of U.S. Provisional

Application No. 61/729.474, filed Nov. 23, 2012; U.S.
Provisional Application No. 61/723,684, filed Nov. 7, 2012;
U.S. Provisional Application No. 61/723,685, filed Nov. 7,
2012; U.S. Provisional Application No. 61/722,696, filed
Nov. 5, 2012; U.S. Provisional Application No. 61/721,979,
filed Nov. 2, 2012; U.S. Provisional Application No. 61/721,
994, filed Nov. 2, 2012; U.S. Provisional Application No.
61/718,633, filed Oct. 25, 2012; U.S. Provisional Applica-
tion No. 61/656,468, filed Jun. 6, 2012: U.S. Provisional
Application No. 61/656,469, filed Jun. 6, 2012; and U.S.
Provisional Application No. 61/656,471, filed Jun. 6, 2012;
the entire content of each of which being incorporated herein
by reference.

TECHNICAL FIELD

The invention relates to computer networks and more
particularly to logging information for virtual networks.

BACKGROUND

In a typical cloud data center environment, there 1s a large
collection of interconnected servers that provide computing
and/or storage capacity to run various applications. For
example, a data center may comprise a facility that hosts
applications and services for subscribers, 1.€., customers of
data center. The data center may, for example, host all of the
infrastructure equipment, such as networking and storage
systems, redundant power supplies, and environmental con-
trols. In a typical data center, clusters of storage systems and
application servers are interconnected via high-speed switch
tabric provided by one or more tiers of physical network
switches and routers. More sophisticated data centers pro-
vide infrastructure spread throughout the world with sub-
scriber support equipment located i various physical host-
ing facilities.

For troubleshooting purposes, a data center may include
a logging device, or “collector,” that communicates with
devices within the data center to obtain information from the
devices that describes the devices” operation, such as errors,
events, operations performed, etc. Devices that generate
logging information may alternatively be referred to herein
as “generators.” Such information 1s commonly referred to
as log information and the collector may record the log
information to a database or a collection of log files that 1s
a central repository of logging information for devices 1n the
system. To the extent possible, system administrators often
prefer to diagnose conditions in the distributed systems
using logging information rather than reproducing the prob-
lems, which 1s generally undesirable. In distributed systems,
such as the aforementioned data center, a large number of
devices may generate logging information.

The generation, storage, and use of logging information
require balancing a number of tradeofls however. For
example, while generating as much logging information as
possible 1s often desirable for troubleshooting, logging copi-
ous amounts of mformation can produce large log files and
also takes up bandwidth and computational resources, which
may slow the application and other applications concur-
rently executing on the device. Conversely, logging too little
information risks rendering the logging information of little
value 1n troubleshooting.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY

In general, techniques are described for dynamically
modifying the extent of logging performed by logging
information generators in response to events detected 1n
logging information received by the collector. For example,
a generator device may log information to an extent that
accords with a logging baseline and regularly update the
collector with the baseline logging information. The collec-
tor may determine, by analyzing the baseline logging infor-
mation, that an event has occurred on or been detected by the
generator that indicates a need for a greater logging extent.
In other words, the collector may determine that the gen-
erator 1s to log more information than what 1s stipulated by
the logging baseline due, e.g., to an error event. The col-
lector may therefore direct the generator to increase its
logging extent to log additional information. In some
instances, this directive may include requesting the genera-
tor to reply with additional state information. In some
instances, this directive may include requesting the genera-
tor to actively probe the application by, e.g., triggering a
diagnostic subroutine that generates additional logging
information than what 1s stipulated by the baseline. The
techniques may, as a result, enable a collector to dynamically
adapt the extent of logging performed by a logging infor-
mation generator to expand the amount of logging informa-
tion collected when needed. In a data center environment in
which a large number of devices may generate logging
information, the techniques may result 1n a more manage-
able collection of logging information.

In one aspect, a method includes receiving, by a collector,
a log message that includes logging information from a
generator. The method also includes applying, by the col-
lector, one or more rules that each specily a condition and a
corresponding action to the logging information to identity
a matching rule. The method further includes, upon ident-
tying a matching rule, executing the action of the matching
rule to generate and send a logging modification message to
increase an extent to which the generator generates logging
information.

In another aspect, a network device includes one or more
processors and a collector executed by the processors to
receive a log message that includes logging information
from a generator. The network device also includes a rules
engine to apply one or more rules that each specily a
condition and a corresponding action to the logging infor-
mation to 1dentily a matching rule, wherein the rules engine,
upon 1dentitying a matching rule, executes the action of the
matching rule to generate and send a logging modification
message to increase an extent to which the generator gen-
crates logging information.

In another aspect, a method includes sending, by a com-
puting device and to a collector, baseline logging informa-
tion for an application in a log message. The method also
includes receiving, by the computing device and from the
collector, a logging modification message. The method
further includes, responsive to the logging modification
message, increasing an extent to which the application
generates logging information. The method also includes
sending, by the computing device and to the collector, an
additional log message that includes additional logging
information generated by the application 1n accordance with
the 1increased extent.

In another aspect, a network device includes one or more
processors and an application executed by the processors.
The network device also includes an output device to send,
to a collector, baseline logging information for the applica-

US 9,710,762 B2

3

tion 1n a log message. The network device further icludes
an 1nput device to receive, from the collector, a logging
modification message, wherein the application, responsive
to the logging modification message, increases an extent to
which the application generates logging information, and
wherein the output device sends, to the collector, an addi-
tional log message that includes additional logging infor-
mation generated by the application 1n accordance with the
increased extent.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and draw-
ings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram illustrating an example network
having a data center in which examples of the techniques
described herein may be implemented.

FIG. 2 1s a block diagram 1llustrating an example imple-
mentation of the data center of FIG. 1 1n further detail.

FIG. 3 1s a block diagram 1llustrating an example imple-
mentation of a virtual network controller for facilitating
operation of one or more virtual networks 1n accordance
with one or more embodiments of this disclosure.

FIG. 4 1s a block diagram illustrating, 1n detail, example
components of a virtual network controller to dynamically
modily logging information generated by data center ele-
ments according to techniques described herein.

FIG. 5 1s a flowchart illustrating an example mode of
operation ol a virtual network controller to dynamically
modily logging information generated by a data center
clement or other generator according to techniques
described herein.

FIG. 6 1s a block diagram illustrating an example com-
puting device configured to dynamically modify an extent of
logging 1n response to directives from a collector, according
to techniques described 1n this disclosure.

FIG. 7 1s a flowchart illustrating an example mode of
operation by an application to dynamically modify an extent
of logging 1n response to directives from a collector, accord-
ing to techniques described 1n this disclosure.

Like reference characters denote like elements throughout
the figures and text.

DETAILED DESCRIPTION

FI1G. 1 1s a block diagram illustrating an example network
8 having a data center 10 in which examples of the tech-
niques described herein may be implemented. In general,
data center 10 provides an operating environment for appli-
cations and services for customers 11 coupled to the data
center by service provider network 7. Data center 10 may,
for example, host infrastructure equipment, such as network-
ing and storage systems, redundant power supplies, and
environmental controls. Service provider network 7 may be
coupled to one or more networks administered by other
providers, and may thus form part of a large-scale public
network infrastructure, €.g., the Internet.

In some examples, data center 10 may represent one of
many geographically distributed network data centers. As
illustrated 1n the example of FIG. 1, data center 10 may be
a facility that provides network services for customers 11.
Customers 11 may be collective entities such as enterprises
and governments or individuals. For example, a network
data center may host web services for several enterprises and

10

15

20

25

30

35

40

45

50

55

60

65

4

end users. Other exemplary services may include data stor-
age, virtual private networks, traflic engineering, file service,
data mining, scientific- or super-computing, and so on. In
some embodiments, data center 10 may be individual net-
work servers, network peers, or otherwise.

In this example, data center 10 includes set of storage
systems and application servers 12A-12X (herein, “servers
12°) interconnected via high-speed switch fabric 14 pro-
vided by one or more tiers of physical network switches and

routers. Switch fabric 14 1s provided by a set of 1ntercon-
nected top-of-rack (TOR) switches 16 A-16N (collectively,
“TOR switches 16”) coupled to a distribution layer of
chassis switches 18A-18M (collectively, “chassis switches
18"). Although not shown, data center 10 may also include,
for example, one or more non-edge switches, routers, hubs,
gateways, security devices such as firewalls, intrusion detec-
tion, and/or 1ntrusion prevention devices, servers, computer
terminals, laptops, printers, databases, wireless mobile
devices such as cellular phones or personal digital assistants,
wireless access points, bridges, cable modems, application
accelerators, or other network devices.

In this example, TOR switches 16 and chassis switches 18
provide servers 12 with redundant (multi-homed) connec-
tivity to IP fabric 20 and service provider network 7. Chassis
switches 18 aggregate tratlic flows and provides high-speed
connectivity between TOR switches 16. TOR switches 16
may be network devices that provide layer 2 (MAC) and/or
layer 3 (e.g., IP) routing and/or switching functionality. TOR
switches 16 and chassis switches 18 may each include one
or more processors and a memory, and that are capable of
executing one or more software processes. Chassis switches
18 are coupled to IP fabric 20, which performs layer 3
routing to route network traflic between data center 10 and
customers 11 by service provider network 7.

Virtual network controller (VNC) 22 provides a logically
and 1n some cases physically centralized controller for
facilitating operation of one or more virtual networks within
data center 10 1n accordance with one or more embodiments
of this disclosure. In some examples, VNC 22 may operate
in response to configuration mmput received from network
administrator 24. Virtual network controller 22 operates as a
logging information collector to obtain logging information
from different elements of data center 10, including any of
chassis switches 18, TOR switches 16, IF-MAP server 26,
and any of servers 12 or applications executing thereon.
Chassis switches 18, TOR switches 16, IF-MAP server 26,
and any of servers 12 may generally be referred to as
“generators” herein. Although described below primarily
with respect to server 12A, the techniques of this disclosure
may therefore be applied to at least any of the atoremen-
tioned network elements.

Server 12A 1s configured to generate logging information
in accordance with a baseline extent of logging. Server 12A
and other generators of logging information are alternatively
referred to herein as “generators.” The baseline extent refers
to the types and amount of logging information that 1s
collected by generators under ordinary or “baseline” oper-
ating circumstances with the logging extent unmodified by
VNC 22. Server 12 A sends collected logging information to
VNC 22 m log messages. Server 12A may send the log
messages periodically or responsive to some event, e.g., the
generation of new logging information or a certain amount
of logging information generated, to update the logging
information for server 12A on VNC 22. In the illustrated
example, server 12A sends log message 25 including newly-
generated logging information to VNC 22,

US 9,710,762 B2

S

In accordance with techniques described herein, VNC 22
analyzes the logging information in log message 25 to
determine that the extent of logging performed by server
12A should be modified. Virtual network controller 22
therefore generates and sends logging modification message
27 to server 12A to indicate to server 12A the new extent of
logging. Server 12A modifies 1ts logging operations to
conform to the extent of logging specified by VNC 22,
which may include increasing an amount of logging by, e.g.,
returning state information already stored to memory for an
application, directing the application to execute one or more
diagnostic subroutines to generate additional logging infor-
mation, setting a variable or flag that causes the application
to generate logging information to a greater extent over the
baseline. Server 12A returns the logging information gen-
erated 1n accordance with the increase over the baseline
extent 1 log message 29. In this way, VINC 22 dynamically
adapts the extent of logging performed by server 12A to
expand the amount of logging information collected when
indicated by previously-received logging information (here,
the logging information in log message 25).

In some examples, 1n addition to dynamically adjusting
the extent of logging information generated by server 12A,
VNC 22 may also direct server 12A to modily a rate of
sending log messages. For instance, server 12A may gener-
ate log messages for baseline logging information periodi-
cally. When directed by VNC 22 according to described
techniques, server 12A may increase the rate of log mes-
sages and/or may send logging information generated in
accordance with the increase over the baseline extent as
soon as possible after 1ts generation to rapidly provide the
logging information to VNC 22 to facilitate rapid response
to the events of interest, e.g., errors and/or exceptions caused
by the execution of one or more applications by server 12A.

FIG. 2 1s a block diagram 1llustrating an example imple-
mentation of data center 10 of FIG. 1 1n further detail. In the
example of FIG. 2, data center 10 includes an overlay
network that extends switch fabric 14 from physical
switches 16, 18 to software or “virtual” switches 30A-30X
(collectively, “virtual switches 307). Virtual switches 30
dynamically create and manage one or more virtual net-
works 34 usable for communication between application
instances. In one example, virtual switches 30 execute the
virtual network as an overlay network, which provides the
capability to decouple an application’s virtual address from
a physical address (e.g., IP address) of the one of servers
12A-12X (*servers 12”°) on which the application 1s execut-
ing. Each virtual network may use 1ts own addressing and
security scheme and may be viewed as orthogonal from the
physical network and its addressing scheme. Various tech-
niques may be used to transport packets within and across
virtual network(s) 34 over the physical network.

Each virtual switch 30 may execute within a hypervisor,
a host operating system or other component of each of
servers 12. In the example of FIG. 2, virtual switch 30A
executes within hypervisor 31, also often referred to as a
virtual machine manager (VMM), which provides a virtu-
alization platform that allows multiple operating systems to
concurrently run on one of host servers 12. In the example
of FIG. 2, virtual switch 30A manages virtual networks 34,
cach of which provides a network environment for execution
of one or more virtual machines (VMs) 36 on top of the
virtualization platform provided by hypervisor 31. Each VM
36 1s associated with one of the virtual subnets VN0O-VIN2
managed by the hypervisor 31.

In general, each VM 36 may be any type of software
application and may be assigned a virtual address for use

5

10

15

20

25

30

35

40

45

50

55

60

65

6

within a corresponding virtual network 34, where each of the
virtual networks may be a diflerent virtual subnet provided
by virtual switch 30A. A VM 36 may be assigned its own
virtual layer three (LL3) IP address, for example, for sending
and receiving communications but may be unaware of an IP
address of the physical server 12A on which the virtual
machine 1s executing. In this way, a “virtual address™ 1s an
address for an application that differs from the logical
address for the underlying, physical computer system, e.g.,
server 12A 1n the example of FIG. 2.

In one implementation, each of servers 12 includes a
corresponding one of virtual network (VIN) agents 35A-35X
(collectively, “VN agents 357) that controls the overlay of
virtual networks 34 and that coordinates the routing of data
packets within server 12. In general, each VN agent 35
communicates with virtual network controller 22, which
generates commands to control routing of packets through
data center 10. VN agents 35 may operate as a proxy for
control plane messages between virtual machines 36 and
virtual network controller 22. For example, a VM 36 may
request to send a message using its virtual address via the
VN agent 35A, and VN agent 35A may 1 turn send the
message and request that a response to the message be
received for the virtual address of the VM 36 that originated
the first message. In some cases, a VM 36 may imvoke a
procedure or function call presented by an application
programming interface of VN agent 35A, and the VN agent
35A may handle encapsulation of the message as well,
including addressing.

In one example, network packets, e.g., layer three (LL3) IP
packets or layer two (L2) Ethernet packets generated or
consumed by the instances ol applications executed by
virtual machines 36 within the virtual network domain may
be encapsulated in another packet (e.g., another IP or Eth-
ernet packet) that i1s transported by the physical network.
The packet transported in a virtual network may be referred
to herein as an “inner packet” while the physical network
packet may be referred to herein as an “‘outer packet.”
Encapsulation and/or de-capsulation of wvirtual network
packets within physical network packets may be performed
within virtual switches 30, e.g., within the hypervisor or the
host operating system runming on each of servers 12. As
another example, encapsulation and de-capsulation func-
tions may be performed at the edge of switch fabric 14 at a
first-hop TOR switch 16 that 1s one hop removed from the
application instance that originated the packet. This func-
tionality 1s referred to herein as tunneling and may be used
within data center 10 to create one or more overlay net-
works. Besides IPinlP, other example tunneling protocols

that may be used include IP over GRE, VXLAN, MPLS over
GRE, etc.

As noted above, virtual network controller 22 provides a
logically centralized controller for facilitating operation of
one or more virtual networks within data center 10. Virtual
network controller 22 may, for example, maintain a routing
information base, €.g., one or more routing tables that store
routing information for the physical network as well as one
or more overlay networks of data center 10. Similarly,
switches 16, 18 and virtual switches 30 maintain routing
information, such as one or more routing and/or forwarding
tables. In one example implementation, virtual switch 30A
of hypervisor 31 implements a network forwarding table
(NEFT) 32 for each virtual network 34. In general, each NEF'T
32 stores forwarding information for the corresponding
virtual network 34 and identifies where data packets are to
be forwarded and whether the packets are to be encapsulated
in a tunneling protocol, such as with a tunnel header that

US 9,710,762 B2

7

may include one or more headers for diflerent layers of the
virtual network protocol stack.

The routing mmformation may, for example, map packet
key information (e.g., destination IP information and other
select mformation from packet headers) to one or more
specific next hops within the networks provided by virtual
switches 30 and switch fabric 14. In some case, the next
hops may be chained next hop that specily a set of opera-
tions to be performed on each packet when forwarding the
packet, such as may be used for flooding next hops and
multicast replication. In some cases, virtual network con-
troller 22 maintains the routing information 1n the form of a
radix tree having leal nodes that represent destinations
within the network. U.S. Pat. No. 7,184,437 provides details
on an exemplary embodiment of a router that utilizes a radix
tree for route resolution, the contents of U.S. Pat. No.
7,184,437 being incorporated herein by reference in 1ts
entirety.

As shown 1n FIG. 2, each virtual network 34 provides a
communication framework for encapsulated packet commu-
nications 37 for the overlay network established through
switch fabric 14. In this way, network packets associated
with any of virtual machines 36 may be transported as
encapsulated packet communications 37 via the overlay
network. In addition, 1n the example of FIG. 2, each virtual
switch 30 includes a default network forwarding table NFT
and provides a default route that allows a packet to be
forwarded to virtual subnet VNO without encapsulation, 1.e.,
non-encapsulated packet communications 39 per the routing
rules of the physical network of data center 10. In this way,
subnet VINO and virtual default network forwarding table
NF'T, provide a mechanism for bypassing the overlay net-
work and sending non-encapsulated packet communications
39 to switch fabric 14.

Moreover, virtual network controller 22 and wvirtual
switches 30 may communicate using virtual subnet VNO 1n
accordance with default network forwarding table NFT,
during discovery and imtialization of the overlay network,
and during conditions where a failed link has temporarily
halted communication via the overlay network. Once con-
nectivity with the virtual network controller 22 1s estab-
lished, the virtual network controller 22 updates 1ts local
routing table to take into account new information about any
falled links and directs virtual switches 30 to update their
local network forwarding tables 32. For example, virtual
network controller 22 may output commands to virtual
network agents 35 to update one or more NFTs 32 to direct
virtual switches 30 to change the tunneling encapsulation so
as to re-route communications within the overlay network,
for example to avoid a failed link.

When link failure 1s detected, a virtual network agent 35
local to the failed link (e.g., VN Agent 35A) may immedi-
ately change the encapsulation of network packet to redirect
trailic within the overlay network and notifies virtual net-
work controller 22 of the routing change. In turn, virtual
network controller 22 updates its routing information any
may 1ssues messages to other virtual network agents 35 to
update local routing information stored by the virtual net-
work agents within network forwarding tables 32.

VM1 36 or an application executing thereon 1s configured
to generate logging information 1n accordance with a base-
line extent of logging. VM1 36 sends collected logging
information to VNC 22 1n log messages. In the 1illustrated
example, VM1 36 sends log message 41 including newly-
generated logging information to VNC 22. VM1 36 may be
configured to send log message 41 using the default network
forwarding table NFT, that provides a default route that

10

15

20

25

30

35

40

45

50

55

60

65

8

allows a packet to be forwarded to VINC 22 by virtual subnet
VNO without encapsulation, 1.e., non-encapsulated packet
communications 39 per the routing rules of the physical
network of data center 10. In some examples, VM1 36 may
be configured with a virtual network address that virtual
switch 30A maps to a physical network address of VNC 22
for non-encapsulated transmission of log message 41 to
VNC 22.

In still further examples, VM1 36 sends log message 41
by VN agent 35A operating as a proxy for control plane
messages between virtual machines 36 and virtual network
controller 22. For example, VM1 36 request to send log
message 41 using 1ts virtual address via the VN agent 35A,
and VN agent 35A may in turn send log message 41 and
request that a response to the message be receirved for the
virtual address of the VM 36 that originated log message 41.
In some cases, a VM 36 may mnvoke a procedure or function
call presented by an application programming interface of
VN agent 35A, and the VN agent 35A may handle encap-
sulation of the message as well, including addressing.

VNC 22 analyzes the logging information 1n log message
25 to determine that the extent of logging performed by
VM1 36 should be modified. Virtual network controller 22
therefore generates and sends logging modification message
43 to server VM1 36 to indicate to VM1 36 the new extent
of logging. VM1 36 modifies i1ts logging operations to
conform to the extent of logging specified by VNC 22,
which may include increasing an amount of logging by, e.g.,
returning state information already stored to memory for an
application or by directing the application to execute one or
more diagnostic subroutines to generate additional logging
information. VM1 36 may return the logging information
generated in accordance with the increase over the baseline
extent to VNC 22 1n a log message according to techniques
described above.

FIG. 3 15 a block diagram illustrating an example imple-
mentation of a virtual network controller 100 for facilitating
operation of one or more virtual networks in accordance
with one or more embodiments of this disclosure. Virtual
network controller 100 may, for example, correspond to
virtual network controller 22 of data center 10 of FIGS. 1
and 2.

As 1llustrated 1n the example of FIG. 3, distributed virtual
network controller (VNC) 100 includes one or more virtual
network controller (“VNC”) nodes 102A-102N (collec-
tively, “VNC nodes 102”). VNC nodes 102 that peer with
one another according to a peering protocol operating over
network 160. Network 160 may represent an example
instance of switch fabric 14 and/or IP fabric 20 of FIG. 1. In
the illustrated example, VNC nodes 102 peer with one
another using a Border Gateway Protocol (BGP) implemen-
tation, an example of a peering protocol. VNC nodes 102
provide, to one another using the peering protocol, nfor-
mation related to respective elements of the virtual network
managed, at least in part, by the VNC nodes 102. For
example, VNC node 102A may manage a first set of one or
more servers operating as virtual network switches for the
virtual network. VNC node 102A may send information
relating to the management or operation of the first set of
servers to VNC node 102N by BGP 118A. Other elements
managed by VNC nodes 102 may include network control-
lers and/or appliances, network inirastructure devices (e.g.,
.2 or L3 switches), communication links, firewalls, and
VINC nodes 102, for example. Because VINC nodes 102 have
a peer relationship, rather than a master-slave relationship,
information may be sufliciently easily shared between the
VNC nodes 102. In addition, hardware and/or software of

US 9,710,762 B2

9

VNC nodes 102 may be sufliciently easily replaced, provid-
ing satisiactory resource tungibility.

Each of VNC nodes 102 may include substantially similar
components for performing substantially similar function-
ality, said functionality being described hereinafter primarily

with respect to VNC node 102A. VNC node 102A may
include an analytics database 106A for storing diagnostic
information related to a first set of elements managed by
VNC node 102A. VNC node 102A may share at least some
diagnostic information related to one or more of the first set
of elements managed by VNC node 102A and stored in
analytics database 106, as well as to receive at least some
diagnostic information related to any of the elements man-
aged by others of VNC nodes 102. Analytics database 106 A
may represent a distributed hash table (DHT), for instance,
or any suitable data structure for storing diagnostic infor-
mation for network elements in a distributed manner in
cooperation with others of VINC nodes 102.

VNC node 102A may include a configuration database
110A for storing configuration information related to a first
set of elements managed by VNC node 102A. Control plane
components of VNC node 102A may store configuration
information to configuration database 110A using interface
144A, which may represent an Interface for Metadata
Access Points (IF-MAP) protocol implementation. VINC
node 102A may share at least some configuration informa-
tion related to one or more of the first set of elements
managed by VNC node 102A and stored i configuration
database 110A, as well as to receive at least some configu-
ration mformation related to any of the elements managed
by others of VNC nodes 102. Configuration database 110A
may represent a distributed hash table (DHT), for instance,
or any suitable data structure for storing configuration
information for network elements in a distributed manner 1n
cooperation with others of VINC nodes 102.

Virtual network controller 100 may perform any one or
more of the illustrated virtual network controller operations
represented by modules 130, which may include orchestra-
tion 132, user intertace 134, VINC global load balancing 136,
and one or more applications 138. VNC 100 executes
orchestration module 132 to facilitate the operation of one or
more virtual networks 1n response to a dynamic demand
environment by, e.g., spawning/removing virtual machines
in data center servers, adjusting computing capabilities,
allocating network storage resources, and modifying a vir-
tual topology connecting virtual switches of a virtual net-
work. VINC global load balancing 136 executed by VNC 100
supports load balancing of analytics, configuration, commu-
nication tasks, e.g., among VNC nodes 102. Applications
138 may represent one or more network applications
executed by VNC nodes 102 to, e.g., change topology of
physical and/or virtual networks add services, or aflect
packet forwarding.

User interface 134 includes an interface usable to an
administrator (or software agent) to control the operation of
VNC nodes 102. For instance, user interface 134 may
include methods by which an administrator may modity, e.g.
configuration database 110A of VNC node 102A. Adminis-
tration of the one or more virtual networks operated by VINC
100 may proceed by uniform user interface 134 that pro-
vides a single point of administration, which may reduce an
administration cost of the one or more virtual networks.

VNC node 102A may include a control plane virtual
machine (VM) 112 A that executes control plane protocols to
tacilitate the distributed VNC techniques described herein.
Control plane VM 112A may 1n some instances represent a
native process. In the illustrated example, control VM 112A

10

15

20

25

30

35

40

45

50

55

60

65

10

executes BGP 118A to provide information related to the
first set of elements managed by VNC node 102A to, e.g.,
control plane virtual machine 112N of VNC node 102N.
Control plane VM 112A may use an open standards based
protocol (e.g., BGP based L3VPN) to distribute information
about 1ts wvirtual network(s) with other control plane
instances and/or other third party networking equipment(s).
(Given the peering based model according to one or more
aspects described herein, different control plane instances
(e.g., diflerent 1instances of control plane VMs 112A-112N)
may execute different software versions. In one or more
aspects, e.g., control plane VM 112A may include a type of
soltware of a particular version, and the control plane VM
112N may include a different version of the same type of
software. The peering configuration of the control node
devices may enable use of different software versions for the
control plane VMs 112A-112N. The execution of multiple
control plane VMs by respective VNC nodes 102 may
prevent the emergence of a single point of failure.

Control plane VM 112A communicates with virtual net-
work switches, e.g., illustrated VM switch 174 executed by
server 170, using a communication protocol operating over
network 160. Virtual network switches facilitate overlay
networks 1n the one or more virtual networks. In the illus-
trated example, control plane VM 112A uses Extensible
Messaging and Presence Protocol (XMPP) 116A to com-
municate with at least virtual network switch 172 by XMPP
interface 150A. Virtual network route data, statistics collec-
tion, logs, and configuration information may in accordance
with XMPP 116 A be sent as XML documents for commu-
nication between control plane VM 112A and the virtual
network switches. Control plane VM 112 A may in turn route
data to other XMPP servers (such as an analytics collector)
or may retrieve configuration information on behalf of one
or more virtual network switches. Control plane VM 112A
may further execute a communication interface 144A for
communicating with configuration virtual machine (VM)
108 A associated with configuration database 110A. Com-
munication interface 144 A may represent an IF-MAP inter-
face.

VNC node 102A may further include configuration VM
108A to store configuration information for the first set of
clement to and manage configuration database 110A. Con-
figuration VM 108A, although described as a wvirtual
machine, may 1n some aspects represent a native process
executing on an operating system of VNC node 102A.
Configuration VM 108A and control plane VM 112A may
communicate using IF-MAP by communication interface
144 A and using XMPP by communication interface 146A.
In some aspects, configuration VM 108A may include a
horizontally scalable multi-tenant IF-MAP server and a
distributed hash table (DHT)-based IF-MAP database that
represents configuration database 110A. In some aspects,
configuration VM 108A may include a configuration trans-
lator, which may translate a user friendly higher-level virtual
network configuration to a standards based protocol con-
figuration (e.g., a BGP L3VPN configuration), which may be
stored using configuration database 110A. Communication
interface 140 may include an IF-MAP interface for commu-
nicating with other network elements. The use of the IF-
MAP may make the storage and management of virtual
network configurations very flexible and extensible given
that the IF-MAP schema can be dynamically updated.
Advantageously, aspects of virtual network controller 100
may be flexible for new applications 138.

VNC node 102A may further include an analytics virtual
machine (VM) 104 A to store diagnostic information (and/or

US 9,710,762 B2

11

visibility information) related to at least the first set of
clements managed by VNC node 102A. Control plane VM
and analytics VM 104 may communicate using an XMPP
implementation by communication interface 146 A. Analyt-
ics VM 104 A, although described as a virtual machine, may
in some aspects represent a native process executing on an
operating system of VINC node 102A.

Analytics VM 104A may include analytics database
106A, which may represent an instance of a distributed
database that stores visibility information for virtual net-
works. Visibility information may describe visibility of both
distributed VINC 100 itself and of customer networks. The
distributed database may include an XMPP interface on a
first (southbound) side and a REST/JASON/XMPP 1nterface
on a second (northbound) side.

Virtual network switch 172 may implement the layer 3
forwarding and policy enforcement point for one or more
end points and/or one or more hosts. The one or more end
points or one and/or one or more hosts may be classified into
a virtual network due to configuration from control plane
VM 112A. Control plane VM 112A may also distribute
virtual-to-physical mapping for each end point to all other
end points as routes. These routes may give the next hop
mapping virtual IP to physical IP and encapsulation tech-
nique used (e.g., one of IPmnIP, NVGRE, VXLAN, etc.).
Virtual network switch 172 may be agnostic to actual
tunneling encapsulation used. Virtual network switch 172
may also trap interesting layer 2 (L2) packets, broadcast
packets, and/or implement proxy for the packets, e.g. using
one of Address Resolution Protocol (ARP), Dynamic Host
Configuration Protocol (DHCP), Domain Name Service

(DNS), etc.
In some cases, different VNC nodes 102 may be provided
by different suppliers. However, the peering configuration of

VNC nodes 102 may enable use of different hardware and/or
soltware provided by diflerent suppliers for implementing
the VNC nodes 102 of distributed VNC 100. A system
operating according to the techniques described above may
provide logical view of network topology to end-host 1rre-
spective ol physical network topology, access type, and/or
location. Distributed VNC 100 provides programmatic ways
for network operators and/or applications to change topol-
ogy, to aflect packet forwarding, and/or to add services, as
well as horizontal scaling of network services, e.g. firewall,
without changing the end-host view of the network.

Distributed virtual network controller 100 may perform
techniques described herein to dynamically adapt the extent
of logging performed by virtual network elements. These
techniques may be performed 1n a distributed manner, which
different VNC nodes 102 controlling logging information
collection and dynamically moditying the extent of logging
information generated by network elements for the VNC
node 102 controls, said techniques being described below
with respect to VINC 102A.

Analytics VM 104 A 1s configured in configuration data-
base 110 as a collector of logging information generated by
the set of network elements controlled, at least in part, by
VNC 102A. Analytics VM 104A receives logging informa-
tion from the network elements and stores the logging
information to analytics database 106A for analysis. Log-
ging information stored to analytics database 106 A may
indicate any ol a number of different network eclement
operation dimensions, mcluding resource utilization, types
of applications executed, packet transmission/receipt rate,
performance, etc., that may indicate to analytics VM 104A
and/or a data center administrator of a need to modity the
configuration of one or more network elements, increase the

10

15

20

25

30

35

40

45

50

55

60

65

12

number of resources, modily the solftware for executing
applications, and so forth. In the i1llustrated example, server
170 may send one or more log messages to VNC 102, which
control plane VM 112A receives and communicates to
analytics VM 104 A using XMPP by communication inter-
face 146 A. The log messages may include logging informa-
tion generated and sent according to a baseline extent.

Rules engines 200A-200N of respective analytics VMs
104 A-104N apply one or more (1.€., a set of) rules to logging
information collected by analytics VM 104 A and stored to
analytics DB 106 A. An administrator may use Ul 134 to
dynamically configure the rules applied by rules engine
200A to add, moditly, or remove rules. Rules engine 200A,
for example, may apply the rules or a strict subset of the
rules to logging information transported by incoming log
messages prior to analytics VM 104 A storing the logging
information to analytics DB 106A. Alternatively, or addi-
tionally, rules engine 200A may apply the rules or a strict
subset of the rules continually to logging information stored
to analytics DB 106A.

Each of the rules includes actions for a corresponding
condition that, when applied and matched by logging infor-
mation receirved, cause rules engine 200A to execute the
actions. The actions may include directing a network ele-
ment to modily the extent to which it generates and sends
logging information by, e.g., performing “on-demand’ infor-
mation collection responsive to VNC node 102A directives.
For example, on-demand information collection may
include tracing events 1n the virtual/physical memory space
of an application executing on the network element to obtain
logging information and may also, or alternatively, include
actively probing the application by directing the application
to execute one or more diagnostic subroutines that generate
diagnostic logging information.

In general, event tracing may include the recording of
information in a particular memory space, whether written to
the memory space by the application during normal opera-
tion 1n response to a directive received from VNC 102A (1.¢e.,
a collector). The techniques may therefore allow for the
production and logging of additional information once an
error or any other information message 1s received. In
general, application probing can mvolve directing the appli-
cation 1n question to run integrated diagnostic subroutines to
collect additional information that may be usetul to analytics
VM 104 A or an administrator in diagnosing error. Examples
of such subroutines include subroutines for setting up/moni-
toring new counters or events, running various diagnostics,
and performing trace routes or other methods to determine
a virtual or physical network path through a data center.

Analytics VM 104 A may direct an application to modity
the extent to which logging information 1s generated using
various techniques, including calling a method of an API
exposed by the application 1n accordance with XMPP 1nter-
face 150A. In the illustrated example, analytics VM 104
communicates with server 170 via control plane VM 112A
using XMPP by communication interface 146A. Calling a
method of an exposed API may represent an example
instance of logging modification message 43 of FIG. 2.

Server 170 sends additional traced information and/or
information retrieved by active probing to VNC 102A for
storage 1n analytics database 106 A where 1t can be retrieved
by an administrator or analyzed by analytics VM 104 A for
troubleshooting purposes. Server 170 may sends logging
information 1n accordance with XMPP interface 150A in this
example. However, other communication interfaces for
exchanging logging information between VNC 102A and
server 170 may be used, including Simple Object Access

US 9,710,762 B2

13

Protocol (SOAP), Common Object Broker Request Archi-
tecture (CORBA), Remote Procedure Calls (RPC), etc.

FIG. 4 1s a block diagram illustrating, in detail, example
components of a virtual network controller to dynamically
modily logging immformation generated by data center ele-
ments according to techniques described herein. Collector
204 A of analytics VM 104 A communicates with data center
clements to receive logging information 1n log messages. In
the illustrated example, collector 204 A receives log message
208 from application 212 executing on virtual machine 174
of server 170. Rules engine 200A applies a set of one or
more rules 206 A, which each defines conditions and a set of
one or more actions, to log messages recerved and collector
204 A stores a representation of the log messages (or at least
logging information transported therein) to log database
202A of analytics database 106A. Rules 206A are program-
mable, 1n that administrator 24 may interact with Ul 134 to
add, modity, or delete rules in rules 206 A using rule modi-
fication message 154. As a result, rules 206A may be
extended 1n the field or post development, and as new rules
are defined during system/solution testing or troubleshoot-
ing at customer sites. Collector 204A may be implemented
in hardware, software, firmware, or any combination
thereof.

Although described as a database, log database 202A may
be 1implemented using one or more of a variety of data
structures, including various types of databases, log files
(1.e., tlat files with a series of logged records), tables, linked
lists, maps, etc. Logging information in log database 202A
may be referenced by entries of a distributed hash table,
which allows multiple VNC nodes 102 to 1dentify a location
of and obtain logging information for a particular server, for
instance.

Logging information transported by log messages, includ-
ing log message 208, may have a structured format having
known field values to enable the application of rules 206 A
to structured data. For example, log messages may be
encoded using XML and may conform to XMPP.

A message may include, e.g., information in the follow
general format:

<msg-1d, stringl, fieldl, string2, field2, . . . >

The message i1dentifier “msg-1d” 1s a unique message
identifier that allows users to 1dentity and select the message
in log database 202A. The string fields, “stringl, “string?2,

and so forth can be any character string or bitstring, where
particular strings can identily a particular object, error,
exception, etc. The fields “field1,” “field2,” and so forth can
contain information relating to properties of the immediately
preceding string. Accordingly, a rule of rules 206A.:

if’ (string= , Tield1=) then (action)

In the above example of action may define one or actions
to be performed by rules engine 204 A (or other component
of VNC node 102A). For istance, 1if a particular error
occurs (as indicated by string and fieldl values) and pro-
duces results 1n a particular location, rules engine 200A may
perform an action to determine more information about the
error by directing application 212 to generate additional
logging information regarding the error. The string and field
values can be used 1n any manner to indicate any form of
error, and the actions can be any action that can be under-
taken by a computer. The directive to application 212 from
rules engine 200A may be to trace the contents of a par-
ticular bufler used by an application (i.e. store the contents
in the analytics database), retrieve tables or other informa-
tion, set up an active probe, etc.

10

15

20

25

30

35

40

45

50

55

60

65

14

Further examples of rules include rules such as:

1. it (Method_1 message-type 1s X) then (get Method_2
messages using parameters ifrom Method 1 message)

2. 1if (Method_1 message-type 1s Y) then (get Method_2
messages using parameters ifrom Method_1 message)

3. if (Method_2 message-type 1s 7)) then (set Method_3

trigger)

In the immediately preceding examples, “Method 17
refers to baseline logging, “Method 2” refers to application
tracing, and “Method 37 refers to active probing (e.g.,
triggering diagnostic subroutines 1n an application). In other
words, examples Rules 1 and 2 trigger application tracing it
either of two different message-types (“X” and “Y™, which
may be indicated by particular string/ficld combinations, for
instance) occurs, and Rule 3 triggers a particular probe 1f
another message-type (“Z”) occurs. In the illustrated
example, one of rules 206 A matches logging information
received 1n log message 208, and rules engine 200A per-
forms the corresponding action for the rule to send logging
modification message 210 to application 212 to modify the
extent of logging information generated. In some 1nstances,
a rule may cause logging imformation received 1 “Method
27 messages to trigger a “Method 3™ action, and vice-versa.
As noted above, the techniques may 1nclude other types of
rules other types of “methods™ that direct the generation of
logging information in other ways.

Other types of actions that may be defined by rules 206 A
1s the implementation and population of secondary tables
containing certain information. For example, rules 206A
when applied by rules engine 200A can direct applications
to generate and store specific additional information
required by certain troubleshooting applications to the sec-
ondary tables, which may store information 1n any format.

FIG. 5 1s a flowchart illustrating an example mode of
operation of a virtual network controller to dynamically
modily logging information generated by a data center
clement or other generator according to techniques
described herein. The example 1s described for illustrative
purposes with respect to components of VNC node 102A of
FIG. 4. Imtially, collector 204A receives baseline logging
information 1n a log message 208 from application 212 1n
accordance with a baseline extent for application 212 (300).
Rules engine 200A applies rules 206A or a strict subset
thereof to the baseline logging information to attempt to
match respective rule conditions to properties of the baseline
logging information (302). If one of rules 206A applied by
rules engine 200A matches and specifies an application
tracing action (YES branch of 304), rules engine 200A sends
logging modification message 210 to include a directive to
application 212 to perform an application trace (306). Sub-
sequently, collector 204 A receives a responsive log message
that includes the application trace results for analysis by, e.g.
analytics VM 104 A (308). Collector 204 A stores the logging
information to log database 202A.

If one of rules 206A applied by rules engine 200A
matches and specifies an active probe action (YES branch of
310), rules engine 200A sends logging modification message
210 to include a directive to application 212 to perform an
active probe (312). Subsequently, collector 204 A recerves a
responsive log message that includes the active probe results
for analysis by, e.g. analytics VM 104A (314). Collector
204 A stores the logging information to log database 202A
(316). If none of the rules 206A applied by rules engine
200A to log message 208 match (NO branch of 310),
collector 204 A only stores the logging information to log
database 202A (316). In some cases logging information
may match multiple rules 206 A and cause rules engine 200 A

US 9,710,762 B2

15

to execute multiple corresponding sets of actions of different
types (e.g., both application tracing and active probing).

FIG. 6 1s a block diagram illustrating an example com-
puting device configured to dynamically modify an extent of
logging 1n response to directives from a collector, according
to techniques described in this disclosure. Computing device
400 may represent, e.g., any ol servers 12, TORs 16, or
chassis switches 18 of FIG. 1. FIG. 6 illustrates only one
particular example of computing device 400, and many
other examples of computing device 400 may be used 1n
other instances. For example, a computing device that
implements TORs 16 and chassis switches 18 may include
a high-speed distributed forwarding plane.

As shown 1n the specific example of FIG. 6, computing
device 400 includes one or more processors 401, one or
more communication units 402, one or more mput devices
404, one or more output devices 406, and one or more
storage devices 408. Computing device 400 further includes
operating system 410, virtualization module 412, and one or
more applications 414A-414N (collectively “applications
414”). Virtualization module 412 may represent hypervisor
31 of server 12A, for instance, and applications 414 may
represent different VMs 36. Fach of components 401, 402,
404, 406, and 408 may be interconnected (physically, com-
municatively, and/or operatively) for inter-component com-
munications. As one example 1n FIG. 6, components 401,
402, 404, 406, and 408 may be coupled by one or more
communication channels 416. In some examples, commu-
nication channels 416 may include a system bus, network
connection, interprocess communication data structure, or
any other channel for communicating data. Virtualization
module 412 and applications 414, as well as operating
system 410 may also communicate information with one
another as well as with other components 1 computing
device 400. Virtualization module 412 includes software
switch 420 to switch packets on one or more virtual net-
works. Virtualization module 412 also includes flow trace
module 418 to determine physical network paths of network
flows switched by computing device 400 by generating tlow
trace packets and incrementally setting respective TTL
values to cause downstream switching device to return time
exceeded messages to computing device. Flow trace module

418 may represent an example mstance of FIM 48 of FIG.
1.

Processors 401, in one example, are configured to imple-
ment functionality and/or process 1nstructions for execution
within computing device 400. For example, processors 401
may be capable of processing instructions stored in storage
devices 408. Examples of processors 401 may include, any
one or more of a microprocessor, a controller, a digital signal
processor (DSP), an application specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), or equiva-
lent discrete or integrated logic circuitry.

One or more storage devices 408 may be configured to
store information within computing device 400 during
operation. Storage devices 408, in some examples, are
described as a computer-readable storage medium. In some
examples, storage devices 408 are a temporary memory,
meaning that a primary purpose of storage devices 408 1s not
long-term storage. Storage devices 408, 1n some examples,
are described as a volatile memory, meaning that storage
devices 408 do not maintain stored contents when the
computer 1s turned ofl. Examples ol volatile memories
include random access memories (RAM), dynamic random
access memories (DRAM), static random access memories
(SRAM), and other forms of volatile memories known 1n the
art. In some examples, storage devices 408 are used to store

5

10

15

20

25

30

35

40

45

50

55

60

65

16

program instructions for execution by processors 401. Stor-
age devices 408, in one example, are used by software or
applications running on computing device 400 (e.g., oper-
ating system 410, virtualization module 412 and the like) to
temporarily store information during program execution.

Storage devices 408, 1n some examples, also include one
or more computer-readable storage media. Storage devices
408 may be configured to store larger amounts of informa-
tion than volatile memory. Storage devices 408 may further
be configured for long-term storage of information. In some
examples, storage devices 408 include non-volatile storage
clements. Examples of such non-volatile storage elements
include magnetic hard discs, tape cartridges or cassettes,
optical discs, floppy discs, flash memories, or forms of
clectrically programmable memories (EPROM) or electri-
cally erasable and programmable memories (EEPROM).

Computing device 400, in some examples, also includes
one or more commumnication units 402. Computing device
400, 1n one example, utilizes communication units 402 to
communicate with external devices. Communication units
402 may communicate, in some examples, by sending data
packets over one or more networks, such as one or more
wireless networks, via inbound and outbound links. Com-
munication umts 402 may include one or more network
interface cards (IFCs), such as an FEthernet card, an optical
transceiver, a radio frequency transceiver, or any other type
of device that can send and receive information. Other
examples of such network interfaces may include Bluetooth,
3G and Wi-Fi1 radio components. In some examples, com-
puting device 400 utilizes communication units 402 to
exchange tunneled packets with other computing devices 1n
a virtualized network domain of a data center.

Computing device 400, 1n one example, also includes one
or more mput devices 404. Input devices 404, in some
examples, are configured to receive input from a user
through tactile, audio, or video feedback. Examples of input
devices 404 include a presence-sensitive display, a mouse, a
keyboard, a voice responsive system, video camera, micro-
phone or any other type of device for detecting a command
from a user. In some examples, a presence-sensitive display
includes a touch-sensitive screen.

One or more output devices 406 may also be included 1n
computing device 400. Output devices 406, 1n some
examples, are configured to provide output to a user using
tactile, audio, or video stimuli. Output devices 406, 1n one
example, include a presence-sensitive display, a sound card,
a video graphics adapter card, or any other type of device for
converting a signal 1into an appropriate form understandable
to humans or machines. Additional examples of output
devices 406 include a speaker, a cathode ray tube (CRT)
monitor, a liquid crystal display (LCD), or any other type of
device that can generate intelligible output to a user.

Computing device 400 may include operating system 412.
Operating system 412, i some examples, controls the
operation of components of computing device 400. For
example, operating system 412, 1n one example, facilitates
the communication of modules applications 414 with pro-
cessors 401, communication units 402, input devices 404,
output devices 406, and storage devices 410. Applications
414 may each include program instructions and/or data that
are executable by computing device 400.

As one example, application 414 A may include instruc-
tions that cause computing device 400 to perform one or
more of the operations and actions described 1n the present
disclosure. Application 414 A includes probe routine 418 and
trace routine 420. Responsive to directives from a collector,
probe routine 418 increases an extent to which application

US 9,710,762 B2

17

414A generates logging information. Responsive to direc-
tives from a collector, trace routine 420 reads application
trace information from memory to generate additional log-
ging information. Application 414 A sends generated logging
information to the collector.

FIG. 7 1s a flowchart illustrating an example mode of
operation by an application to dynamically modily an extent
of logging 1n response to directives from a collector, accord-
ing to techniques described 1n this disclosure. The example
mode of operation 1s described for illustrative purposes with
respect to computing device 400 of FIG. 6.

Initially, application 414A of computing device 400 1s
configured to send baseline logging information to a collec-
tor, such as VNC 22 of FIG. 1, in a log message (530).
Application 414 A receives a logging modification message
from the collector directing application 414A to modily the
extent of logging mformation generation (532). If the log-
ging modification message includes a directive to perform
an application trace (YES branch of 534), trace routine 420
executes to perform the application trace and generate new
logging information 1n accordance with zero or more param-
cters specified in the logging modification message (536).
For example, the logging modification message may specily
performing the application trace with respect to a particular
data structure stored by application 414A.

If the logging modification message includes a directive
to perform an active probe (YES branch of 538), probe
routine 418 executes to perform the probe to generate new
logging information (540). Performing the probe may
include setting a flag or modifying a variable to increase an
extent to which application 414A generates logging infor-
mation. Application 414A sends the newly-generated log-
ging mformation 1 a new log message to the collector for
analysis (542).

The techniques described herein may be implemented in
hardware, software, firmware, or any combination thereof.
Various features described as modules, units or components
may be implemented together 1n an integrated logic device
or separately as discrete but interoperable logic devices or
other hardware devices. In some cases, various features of
clectronic circuitry may be implemented as one or more
integrated circuit devices, such as an integrated circuit chip
or chipset.

If implemented in hardware, this disclosure may be
directed to an apparatus such a processor or an integrated
circuit device, such as an integrated circuit chip or chipset.
Alternatively or additionally, 11 implemented 1n software or
firmware, the techmques may be realized at least 1n part by
a computer-recadable data storage medium comprising
instructions that, when executed, cause a processor to per-
form one or more of the methods described above. For
example, the computer-readable data storage medium may
store such instructions for execution by a processor.

A computer-readable medium may form part of a com-
puter program product, which may include packaging mate-
rials. A computer-readable medium may comprise a com-
puter data storage medium such as random access memory
(RAM), read-only memory (ROM), non-volatile random
access memory (NVRAM), electrically erasable program-
mable read-only memory (EEPROM), Flash memory, mag-
netic or optical data storage media, and the like. In some
examples, an article ol manufacture may comprise one or
more computer-readable storage media.

In some examples, the computer-readable storage media
may comprise non-transitory media. The term “non-transi-
tory” may indicate that the storage medium 1s not embodied
1n a carrier wave or a propagated signal. In certain examples,

10

15

20

25

30

35

40

45

50

55

60

65

18

a non-transitory storage medium may store data that can,
over time, change (e.g., in RAM or cache).

The code or 1nstructions may be software and/or firmware
executed by processing circuitry including one or more
processors, such as one or more digital signal processors
(DSPs), general purpose microprocessors, application-spe-
cific mtegrated circuits (ASICs), field-programmable gate
arrays (FPGAs), or other equivalent integrated or discrete
logic circuitry. Accordingly, the term “processor,” as used
herein may refer to any of the foregoing structure or any
other structure suitable for implementation of the techniques
described herein. In addition, 1n some aspects, functionality
described 1n this disclosure may be provided within software
modules or hardware modules.

Various embodiments have been described. These and
other embodiments are within the scope of the following
examples.

What 1s claimed 1s:
1. A method comprising:
sending, by a control plane virtual machine of a virtual
network controller using an eXtensible Messaging and
Presence Protocol (XMPP) and to a virtual network
switch of a server device of a set of server devices that
implement a virtual network, configuration information
to configure the virtual network switch to forward, for
a virtual machine of the server device that executes an
application, network tratflic over the virtual network by
tunneling packets to one or more additional server
devices having corresponding virtual network switches
to facilitate overlay by the virtual network of a physical
network interconnecting the set of server devices,
wherein the virtual network controller comprises:
a configuration virtual machine to store and manage at
least a portion of a configuration database that stores
a set of configuration information for the virtual
network switches;
an analytics virtual machine to store and manage at
least a portion of an analytics database that stores a
set of logging information for the virtual network
switches:
receiving, by a collector executing by the analytics virtual
machine and via the control plane virtual machine, a
log message that includes logging information from a
generator of the server device;
applying, by a rules engine of the collector, one or more
rules that each specifies a condition and a correspond-
ing action to the logging information of the log mes-
sage to 1dentily a matching rule; and
upon 1dentitying the matching rule, executing the action
of the matching rule to generate and send a logging
modification message to increase an extent to which the
generator generates subsequent logging information,
wherein the action of the matching rule specifies at
least one of an active probe to trigger a diagnostic
subroutine of the application and an application trace to
trace contents of a memory buller used by the appli-
cation, and wherein the logging modification message
includes a directive to the generator to perform the at
least one of the active probe of the application and the
application trace of the application;
configuring, by the control plane virtual machine, the
virtual network switches using XMPP to send route
data and the set of configuration information to the
virtual network switches; and
recerving, by the control plane virtual machine using
XMPP, the log message and routing the log message to

US 9,710,762 B2

19

the analytics virtual machine for storage of the logging
information of the log message to the analytics data-
base.
2. The method of claim 1, further comprising:
receiving, by the collector, an additional log message that
includes additional logging information generated by
the generator 1n accordance with the increased extent.
3. The method of claim 2, wherein the action of the

matching rule specifies the active probe of the application,
and wherein the additional logging information comprises a
result of the active probe.

4. The method of claam 2, wherein the action of the

matching rule specifies the application trace of the applica-
tion, and wherein the additional logging information com-
prises a result of the application trace.

5. The method of claim 1, further comprising:

receiving, by the collector, a rule modification message
that includes a new rule;

adding the new rule to the one or more rules; and

applying the new rule to the logging information.

6. A network device comprising:

at least one memory;

one or more processors operably coupled to the at least
one memory;

a virtual network controller configured for execution by
the one or more processors and comprising:

a control plane virtual machine to send, using an eXten-
sible Messaging and Presence Protocol (XMPP) and to
a virtual network switch of a server device of a set of
server devices that implement a virtual network, con-
figuration information to configure the virtual network
switch to forward, for a virtual machine of the server
device that executes an application, network tratlic over
the virtual network by tunneling packets to one or more
additional server devices having corresponding virtual
network switches to facilitate overlay by the virtual
network of a physical network interconnecting the set
of server devices;

a configuration virtual machine to store and manage at
least a portion of a configuration database that stores a
set of configuration information for the virtual network
switches:

an analytics virtual machine to store and manage at least
a portion of an analytics database that stores a set of
logging information for the virtual network switches,

wherein the analytics virtual machine 1s configured to
execute a collector to receive, via the control plane
virtual machine, a log message that includes logging
information from a generator of the server device,

wherein the analytics virtual machine 1s further config-
ured to execute a rules engine to apply one or more
rules that each specifies a condition and a correspond-
ing action to the logging information of the log mes-
sage to 1dentity a matching rule,

wherein the rules engine, upon identitying the matching
rule, executes the action of the matching rule to gen-
crate and send a logging modification message to
increase an extent to which the generator generates
subsequent logging information, wherein the action of
the matching rule specifies at least one of an active
probe to trigger a diagnostic subroutine of the applica-
tion and an application trace to trace contents of a
memory builer used by the application, and wherein the
logging modification message includes a directive to
the generator to perform the at least one of the active
probe of the application and the application trace of the
application, and

10

15

20

25

30

35

40

45

50

55

60

65

20

wherein the control plane virtual machine configures the
virtual network switches by using XMPP to send route
data and the set of configuration information to the
virtual network switches, and

wherein the control plane virtual machine uses XMPP to
receive the log message for the virtual network switch
and routing the log message to the analytics virtual
machine for storage of the logging information of the
log message to the analytics database.

7. The network device of claim 6, wherein the collector

receives an additional log message that includes additional
logging information generated by the generator in accor-
dance with the increased extent.

8. The network device of claim 7, wherein the action of

the matching rule specifies the active probe of the applica-
tion, and wherein the additional logging information com-
prises a result of the active probe.

9. The network device of claim 7, wherein the action of

the matching rule specifies the application trace of the
application, and wherein the additional logging information
comprises a result of the application trace.

10. The network device of claim 6,

wherein the control plane virtual machine 1s configured to
receive a rule modification message that includes a new
rule and add the new rule to the one or more rules,

wherein the rules engine applies the new rule to the
logging information.

11. The network device of claim 6,

wherein the analytics database includes a log database,

wherein the collector stores the logging information to the
log database.

12. The network device of claim 11,

wherein the analytics virtual machine 1s configured to
analyze the analytics database to diagnose conditions of
the virtual network.

13. A system comprising;:

a virtual network controller comprising;:

at least one memory;

first one or more processors operably coupled to the at
least one memory;

a control plane virtual machine configured for execu-
tion by the first one or more processors to send, using,
an eXtensible Messaging and Presence Protocol
(XMPP) and to a virtual network switch of a server
device of a set of server devices that implement a
virtual network, configuration information to config-
ure the wvirtual network switch to forward, for a
virtual machine of the server device that executes an
application, network traflic over the virtual network
by tunneling packets to one or more additional server
devices having corresponding virtual network
switches to facilitate overlay by the virtual network
of a physical network interconnecting the set of
server devices;

a configuration virtual machine configured for execu-
tion by the first one or more processors to store and
manage at least a portion of a configuration database
that stores a set of configuration information for the
virtual network switches;

an analytics virtual machine configured for execution
by the first one or more processors to store and
manage at least a portion of an analytics database
that stores a set of logging information for the virtual
network switches,

wherein the analytics virtual machine 1s configured to
execute a collector to recerve, via the control plane

US 9,710,762 B2

21

virtual machine, a log message that includes logging
information from a generator of the server device,
wherein the analytics virtual machine 1s further con-
figured to execute a rules engine to apply one or
more rules that each specifies a condition and a
corresponding action to the logging information of
the log message to 1dentify a matching rule,
wherein the rules engine, upon identifying the match-
ing rule, executes the action of the matching rule to
generate and send a logging modification message to
increase an extent to which the generator generates
subsequent logging information, wherein the action
of the matching rule specifies at least one of an active
probe to trigger a diagnostic subroutine of the appli-

cation and an application trace to trace contents of a
memory builer used by the application, and wherein
the logging modification message includes a direc-
tive to the generator to perform the at least one of the
active probe of the application and the application
trace of the application, and

wherein the control plane virtual machine configures
the virtual network switches by using XMPP to send
route data and the set of configuration information to
the virtual network switches, and

wherein the control plane virtual machine uses XMPP
to receive the log message for the virtual network
switch and routing the log message to the analytics
virtual machine for storage of the logging informa-
tion of the log message to the analytics database; and

the server device, wherein the server device comprises:

a memory;

second one or more processors operably coupled to the

memory;

a virtual machine configured for execution by the second

ONe Or mMore pProcessors;

the generator, wherein the generator 1s configured for

execution by the virtual machine;

an output device to send, to the collector of the virtual

network controller, the baseline logging information
for the application 1n the log message; and
an mnput device to receive, from the collector of the virtual
network controller, the logging modification message,

wherein the generator, responsive to the logging modifi-
cation message, increases the extent to which the
generator generates subsequent logging information,
and

wherein the output device sends, to the collector, an

additional log message that includes additional logging
information generated by the generator in accordance
with the increased extent.

14. The system of claim 13, wherein the server device
turther comprises an active probe module of the generator to
execute the active probe, wherein the additional logging
information comprises a result of the application probe.

15. The system of claim 13, wherein the server device
turther comprises an application trace module to execute the
application trace, wherein the additional logging informa-
tion comprises a result of the application trace.

16. A non-transitory computer-readable storage medium
comprising instructions for causing one or more programs-
mable processors to:

5

10

15

20

25

30

35

40

45

50

55

60

22

send, by a control plane virtual machine of a virtual
network controller using an eXtensible Messaging and
Presence Protocol (XMPP) and to a virtual network
switch of a server device of a set of server devices that
implement a virtual network, configuration information
to configure the virtual network switch to forward, for
a virtual machine of the server device that executes an
application, network tratflic over the virtual network by
tunneling packets to one or more additional server
devices having corresponding virtual network switches
to Tacilitate overlay by the virtual network of a physical
network interconnecting the set of server devices,
wherein the virtual network controller comprises:
a configuration virtual machine to store and manage at
least a portion of a configuration database that stores
a set of configuration information for the virtual
network switches;
an analytics virtual machine to store and manage at
least a portion of an analytics database that stores a
set of logging mformation for the virtual network
switches;

receive, by a collector executing by the analytics virtual

machine and via the control plane virtual machine, a
log message that includes logging information from a
generator of the server device;

apply, by a rules engine of the collector, one or more rules

that each specifies a condition and a corresponding
action to the logging information of the log message to
identily a matching rule; and

upon identifying the matching rule, execute the action of

the matching rule to generate and send a logging
modification message to increase an extent to which the
generator generates subsequent logging information,
wherein the action of the matching rule specifies at
least one of an active probe to trigger a diagnostic
subroutine of the application and an application trace to
trace contents ol a memory buller used by the appli-
cation, and wherein the logging modification message
includes a directive to the generator to perform the at
least one of the active probe of the application and the
application trace of the application;

configure, by the control plane virtual machine, the virtual

network switches using XMPP to send route data and
the set of configuration information to the wvirtual
network switches; and

receive, by the control plane virtual machine using XMPP,

the log message and routing the log message to the
analytics virtual machine for storage of the logging
information of the log message to the analytics data-
base.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the instructions further cause
the one or more programmable processors to:

receive, by the collector, an additional log message that

includes additional logging information generated by
the generator in accordance with the increased extent.

18. The non-transitory computer-readable storage
medium of claim 17, wherein the action of the matching rule
specifies the active probe of the application, and wherein the
additional logging information comprises a result of the
active probe.

	Front Page
	Drawings
	Specification
	Claims

