12 United States Patent

Perry et al.

US009707485B2

US 9,707,485 B2
Jul. 18, 2017

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR CLOUD
PROCESSING AND OVERLAYING OF
CONTENT ON STREAMING VIDEO
FRAMES OF REMOTELY PROCESSED
APPLICATIONS

(71) Applicant: Sony Computer Entertainment
America LLC, San Mateo, CA (US)

(72) Inventors: David Perry, Monarch Beach, CA
(US); Rui Filipe Andrade Pereira,
Aliso Viejo, CA (US); Noam Rimon,
Foster City, CA (US)

(73) Assignee: Sony Interactive Entertainment
America LLC, San Mateo, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/744,727
(22) Filed: Jun. 19, 2015

(65) Prior Publication Data
US 2015/0287161 Al Oct. 8, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/767,806, filed on
Feb. 14, 2013, now Pat. No. 9,092,910, which 1s a

(Continued)
(51) Int. CL
A63F 9/24 (2006.01)
A63F 13/53 (2014.01)
(Continued)

(52) U.S. CL
CPC A63F 13/53 (2014.09); GO6T 1/20
(2013.01); GO6T 11/00 (2013.01); GO9G 5/003
(2013.01);
(Continued)
(58) Field of Classification Search
CPC A63F 13/00; A63F 13/60; A63F 13/53;
GO6T 11/60
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,422,674 A * 6/1995 Hooper HO4N 7/17318
348/E5.108

2005/0212968 Al 9/2005 Ryal

(Continued)

FOREIGN PATENT DOCUMENTS

KR 10-2009-0002789 1/2009
KR 10-2012-0106778 9/2012

Primary Examiner — Steve Rowland

(74) Attorney, Agent, or Firm — Martine Penilla Group,
LLP

(57) ABSTRACT

A first application executes on one or more computing
systems to generate a series of original frame pixel data sets
for rendering of graphical images associated with the first
application execution. A second application executes on one
or more computing systems to detect one or more key
graphical images present in the series of original frame pixel
data sets. Upon detection of the one or more key graphical
images, the second application directs replacement of a
portion of pixel data 1n the series of original frame pixel data
sets with substitute pixel data so as to generate a series of
modified frame pixel data sets for encoding 1n lieu of the
series of original frame pixel data sets.

20 Claims, 10 Drawing Sheets

US 9,707,485 B2
Page 2

Related U.S. Application Data

continuation-in-part ol application No. 12/826,130,
filed on Jun. 29, 2010, now Pat. No. 8,968,087, which
1s a conftinuation-in-part of application No. 12/791,

819, filed on Jun. 1, 2010.

(60) Provisional application No. 61/727,370, filed on Nov.
16, 2012, provisional application No. 61/354,699,
filed on Jun. 14, 2010, provisional application No.
61/183,035, filed on Jun. 1, 2009, provisional
application No. 61/183,037, filed on Jun. 1, 2009,
provisional application No. 61/183,088, filed on Jun.
2, 2009, provisional application No. 61/183,546, filed
on Jun. 2, 2009, provisional application No.
61/323,354, filed on Apr. 12, 2010, provisional
application No. 61/345,534, filed on May 17, 2010.

(51) Inmt. CL
GO6T 11/00 (2006.01)
GO6T 1720 (2006.01)
G09G 5/00 (2006.01)
(52) U.S. CL
CPC A63F 2300/534 (2013.01); GO9G 2370/02
(2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
2010/0322306 Al1* 12/2010 Auoooovvrvininnn, HO4N 19/176
375/240.03

2012/0269494 Al 10/2012 Satyanarayana et al.

* cited by examiner

U.S. Patent Jul. 18, 2017 Sheet 1 of 10 US 9,707,485 B2

Video Server System 120

! Video Source /O Device 100
130 145)
y
!
Processor Storage
150 155

Client Qualifier —
160 Game Server
125
Client
Client 1108
110A

Fig. 1

U.S. Patent Jul. 18, 2017 Sheet 2 of 10 US 9,707,485 B2

XIi XI| 1 X
Controller | Game Game Game
269 ' Logic Logic Logic
I 210A 2108 2100
220 | |285| |220| |285| | 220 i;._.._é_
215 7/ | OS 0S
>
— — 215 —
DEP DEP |
245C 2458 |
|
| Video DEP
ET%I; 245A 3D Driver
| | Grabber 20
247 |
] | GPU
| | 239
Overlay
DEP Logic |
270C 290 !
Shared
PRE Memory
250 240
/\ 1
l ENC ENC
2ODA 2558
| T
|
Post Post =
| 260A 260B

I _ ::{:_J]
/ /O Device

130 — 145

Fig. 2

U.S. Patent Jul. 18, 2017 Sheet 3 of 10 US 9,707,485 B2

Room Controi

; . e Search
R0V - p— S R

810B —

810C

Fig. 3

U.S. Patent Jul. 18, 2017 Sheet 4 of 10 US 9,707,485 B2

(Generate
1110
Render
- 1120 Encode
input Map 1010 1150
D->K |
(100, 200 - 400, 500) -> F1
RedButton -> SpaceBar Psi\gge Deliver
. 1160
Right tilt -> D
lL.eft motion -> A
Add
Overlay Map
1140 l 1170
Fig. 4
Fig. 5 z
| HReceive

’ 1180

U.S. Patent

Jul. 18, 2017

Video DEP I

Fig. 6

Sheet 5 of 10

US 9,707,485 B2

Shared '
2oL Memory 3D Driver '
| Grabber 240) 230
| 247 ;
[| GPU
Overlay B £39
Logic
290
- — _]___ ' Augmentation
i PRE | Logic 2000
250 Key
Detection
Logic
ENC ENC | 2001
255A 2558
:l;__' .___1___ Overlay
| | Generation
Post Post Logic
260A 2608 2003
— |

——J
iy by oy

U.S. Patent

Jul. 18, 2017

Sheet 6 of 10

US 9,707,485 B2

i ErsmElm rd b TR T LR ARy

el - g mo E ol kA R

'."--'-'-'—.-. e ol o ol A

fryya-waararery Fe TS ETYT ETTIT IR ETS I TR AR AR LD B R AL N B 8 B L)

ey ey E T T T T T T ET TR ST ERL

k- dm .-\ifi.ii‘ifi‘iii—fl‘-

v mwrd m e o "N

\

2101

2105

L E N R R L]
T

LTI ET TR T T

e gh iy ok e e

2103 ~

b#ii*ii-‘*ib#i

Fdd prhmpmyp ey

— 2101

US 9,707,485 B2

Sheet 7 of 10

Jul. 18, 2017

U.S. Patent

2107

—

AR

i

mmw.ﬂ. S
R
o

Fig. 10

U.S. Patent Jul. 18, 2017 Sheet 8 of 10 US 9,707,485 B2

2121

Application 1 |

(e.g., game) ‘ — |
[2123

j)ﬁﬁ 2125 w__[

(e.g., Augmentation Logic 2000)

l_ { 2127

)

Client Computer
System
2129

Fig. 11

U.S. Patent Jul. 18, 2017 Sheet 9 of 10 US 9,707,485 B2

/f"‘“"““ 1601
| - | |
Search video frame for key graphical image representing user
achievement level.

f 1602

Detect key graphical image of user achievement level. i

Query database to determine user's universal achievement
status.

— 1605

J

iunlviubrlab'vshe'shlallnl e kb lamivlalivbialbbbd il

| Correlate user's universal achievement status to stored
i overlay image.

j’ 1607

I Acquire overlay construction data for correlated overlay image.

e

f 1609

Supply acquired overlay construction data to overiay logic.

R T S eyl

Fig. 12

U.S. Patent

1300 —\

Jul. 18, 2017 Sheet 10 of 10 US 9,707,485 B2
r1309 r1309 u 1309 r1309 1309
Host! Host2 Host3 Host4 | o e e | HostN
Applicatians 1307
Operating Systems 1305
0S1 OS2 0S3 0S4 OS5 - 0S6
Hypervisor 1303
FPhysical Components 1301
Processors Memory Storage NICs
1301A 1301B 1301C 1301D

Fig. 13

US 9,707,485 B2

1

SYSTEMS AND METHODS FOR CLOUD
PROCESSING AND OVERLAYING OF
CONTENT ON STREAMING VIDEO
FRAMES OF REMOTELY PROCESSED
APPLICATIONS

CLAIM OF PRIORITY

This application 1s a continuation application under 335

U.S.C. 120 of prior U.S. application Ser. No. 13/767,806, ,

filed Feb. 14, 2013, which: 1) claims priornity under 35
U.S.C. 119(e) to U.S. Provisional Patent Application No.
61/727,370, filed Nov. 16, 2012, enftitled “Systems and
Methods for Cloud Processing and Overlaying of Content on
Streaming Video Frames of Remotely Processed Applica-
tions,” the disclosure of which i1s incorporated herein by
reference 1n 1ts entirety, and 2) 1s a continuation-in-part
application under 335 U.S.C. 120 of prior U.S. patent appli-
cation Ser. No. 12/826,130, filed Jun. 29, 2010, entitled
“Video Game Overlay,” which A) claims priornity to U.S.
Provisional Patent Application No. 61/334,699, filed Jun.
14, 2010, entitled “Video Game Overlay,” and B) 1s a
continuation-in-part of U.S. patent application Ser. No.
12/791,819, filed Jun. 1, 2010, entitled “Qualified Video
Delivery,” which in turn claims priority to each of the
following U.S. Provisional Patent Applications Nos.:

61/183,035, filed Jun. 1, 2009, entitled “Game Server

Architecture,”

61/183,037, filed Jun. 1, 2009, entitled “Buflerless H.264
Variant,”

61/183,088, filed Jun. 2, 2009, entitled “I/O Level Virtu-
alization,”

61/183,546, filed Jun. 2, 2009, enftitled “Self-Spawning
Game Environments,”

61/323,334, filed Apr. 12, 2010, entitled *“Artificial
Frames,” and

61/345,534, filed May 17, 2010, entitled “Dynamic Game
Server Including Qualifier.”

Each of the above-identified U.S. Patent Applications and
U.S. Provisional Patent Applications 1s icorporated herein
by reference 1n 1ts entirety.

This application 1s also related to the following U.S.
Patent Applications:

Ser. No. 12/790,948, filed May 31, 2010, entitled “Builler-
less H.264 Variant,” and

Ser. No. 12/790,995, filed May 31, 2010, entitled “Game
Execution Environments.”

Ea_ch of the above-identified U.S. Patent Applications 1s
incorporated herein by reference in its entirety.

BACKGROUND

There are several models for the execution and rendering,
of video games. In the most simple model a game 1is
executed and rendered on a computing device local to a
player of the game. In another model a game state 1s
maintained at a central server and communicated over a
computing network to a client where rendering of video
takes place. This model 1s commonly used by multi-player
games 1 which the game state 1s dependent on inputs
received over the computing network from multiple players
of the game. In a third model a game state 1s maintained at
a central server that also renders video for delivery to clients
over a computing network as a video stream.

SUMMARY

The embodiments disclosed herein relate to systems and
method for cloud processing of applications and streaming,

15

20

25

30

35

40

45

50

55

60

65

2

of video frames of the cloud processing to a remote client.
The cloud processing can include applications that process
and output video frames of a first application (e.g., a video
game) to examine the image content, and based on the
examination, overlay content can be integrated into video
frames being transierred to the remote client. In one embodi-
ment, the overlay content can be merged with existing image
content being output by the first application. The merging
can be processed 1n various ways, and without limitation,

0 merging can include replacing pixels 1 specific frames or

sets of frames, tracking detected image objects and replacing
pixels for the detected 1image objects as they move from
frame to frame or over time.

In some examples, the overlay process 1s optimized so
that the video frames received by the user of the client
device will not detect that overlay processing was performed
(e.g., on the client’s display), and the output looks as 11 the
native application (e.g., first application) produced the
frames. In various examples, the first application can be a
video game application. In a system that allows for online
web play, a user with an account may be provided with a
large library of video games to choose from, which can be
thought of as first applications. In this context, many users
can be provided with accounts and many users can select
games and play simultaneously, either alone or 1 multi-
player mode with friends of a social network. During the
remote execution of first applications, one or more remotely
executed applications examine and process the video frames
that are the output of the first applications. These remotely
executed applications perform the overlay process and can
sync with game play to provide a new experience that was
not originally part a native application.

As will be discussed below, the servers that process the
applications remotely may be referred to as cloud processing
systems. The cloud processing systems can utilize many
servers, which may use virtualization hardware and soft-
ware, and the cloud processing systems may be distributed
among more than one data center. Well placed data centers
allow for reduced delay in streaming by their geographic
distributed. In some embodiments, load balancing may be
used to reduce delay and improve the performance of the
remote game play.

In one embodiment, a system for augmenting a remotely
served application 1s disclosed. The system includes a first
application executing on one or more computing systems to
generate a series of original frame pixel data sets for
rendering ol graphical images associated with the first
application execution. The system also includes a second
application executing on one or more computing systems to
detect one or more key graphical images present 1n the series
of original frame pixel data sets. Upon detection of the one
or more key graphical images, the second application directs
replacement of a portion of pixel data in the series of original
frame pixel data sets with substitute pixel data so as to
generate a series of modified frame pixel data sets for
encoding 1n lieu of the series of original frame pixel data
Sets.

In one embodiment, a method 1s disclosed for augmenting,
a remotely served application. The method includes search-
ing a video frame generated by an application to detect a key
graphical 1mage. The method includes detecting the key
graphical 1image 1n the video frame. The method includes
obtaining an overlay 1image representing a universal achieve-
ment status of the user. The method includes correlating the
user’s determined universal achievement status to one or
more ol a number of predefined overlay images stored on a
data storage device. The method includes acquiring overlay

US 9,707,485 B2

3

construction data from the data storage device for at least
one of the number of predefined overlay images correlated

to the user’s determined universal achievement status. The
method also includes supplying the acquired overlay con-
struction data to overlay logic for insertion of the at least one
of the predefined overlay images 1n the video frame.

In one embodiment, a data storage device having program
instructions stored thereon for augmenting a remotely served
application 1s disclosed. The data storage device includes
program 1instructions for searching a video frame generated
by an application to detect a key graphical image. The data
storage device imcludes program instructions for detecting
the key graphical image 1n the video frame. The data storage
device includes program instructions for obtaining an over-
lay 1image representing a universal achievement status of the
user. The data storage device includes program instructions
for correlating the user’s determined universal achievement
status to one or more of a number of predefined overlay
images stored on a data storage device. The data storage
device includes program instructions for acquiring overlay
construction data from the data storage device for at least
one of the number of predefined overlay images correlated
to the user’s determined universal achievement status. The
data storage device also includes program instructions for
supplying the acquired overlay construction data to overlay
logic for insertion of the at least one of the predefined
overlay images in the video frame.

Other aspects of the invention will become more apparent
trom the following detailed description, taken 1n conjunction
with the accompanying drawings, illustrating by way of
example the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a game system, according to
various embodiments of the invention.

FIG. 2 1s a block diagram of embodiments of the video
source configured to serve multiple video games.

FIG. 3 shows overlays on game video (a video frame),
according to various embodiments of the mvention.

FIG. 4 shows part of an input map configured for mapping,
of user mputs to game commands, according to various
embodiments of the mnvention.

FIG. 5 shows methods of using an overlay, according to
various embodiments of the invention.

FIG. 6 shows an extension of the video source to include
video augmentation logic, 1n accordance with an example
embodiment of the present invention.

FIG. 7 shows an example of a video frame 1mage corre-
sponding to video frame data to be processed by the aug-
mentation logic.

FIG. 8 shows an example target pixel pattern associated
with the example video frame image of FIG. 7.

FIG. 9 shows an overlay image to be communicated 1n the
form of overlay construction data from the overlay genera-
tion logic to the overlay logic.

FIG. 10 shows the video frame of FIG. 7 following
insertion ol the overlay image in response to the key
detection logic detecting the presence of the target pixel
pattern corresponding to the key graphical image as shown
in FIG. 8.

FIG. 11 shows a system for augmenting a remotely served
application, 1n accordance with one embodiment of the
present mvention.

FIG. 12 shows a method for augmenting a remotely
served application, 1n accordance with one embodiment of
the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 13 shows a diagram of a cloud computing system for
generation and execution of a remotely served computer

application, 1n accordance with one embodiment of the
present 1nvention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth 1n order to provide a thorough understanding of the
present invention. It will be apparent, however, to one
skilled in the art that the present invention may be practiced
without some or all of these specific details. In other
instances, well known process operations have not been
described 1n detail in order not to unnecessarily obscure the
present 1vention.

A pixel data set of a display frame 1mage generated by a
computer application executing on a first computing system,
1.€., server system/cloud system, for transmission over a
network, to be displayed by a second computing system, 1s
intercepted 1n route from the computer application to the
network. An 1dentification 1s made of a target portion of the
intercepted pixel data set corresponding to visual content to
be modified 1n the display frame 1image. A revised pixel data
set 15 generated for the display frame 1mage in which the
target portion of the mntercepted pixel data 1s modified to
alter the corresponding visual content in the display frame
image. The revised pixel data set 1s provided 1n place of the
intercepted pixel data set for transmission over the network
to be displayed by the second computing system. The
computer application 1s unaware of the pixel data set inter-
ception and revision.

A system 1s disclosed herein for augmenting a remotely
served application, 1n accordance with one embodiment of
the present invention. The system 1ncludes a frame augmen-
tation module defined to intercept a pixel data set of a
display frame image generated by a computer application
executing on a {irst computing system for transmission over
a network to be displayed by a second computing system,
1.€., by a user’s computing system. The frame augmentation
module 1s defined to i1dentily a target portion of the inter-
cepted pixel data set corresponding to visual content to be
modified in the display frame 1mage, 1.e., corresponding to
a key graphical image. The frame augmentation module 1s
defined to generate a revised pixel data set for the display
frame 1mage 1n which the target portion of the intercepted
pixel data 1s modified to alter the corresponding visual
content 1n the display frame image. The frame augmentation
module 1s defined to provide the revised pixel data set in
place of the intercepted pixel data set for transmission over
the network to be displayed by the second computing
system. The frame augmentation module 1s defined separate
from the computer application and operated independently
from the computer application.

In various embodiments, the first computing system
referred to above, on which the computer application 1s
executing, 1s a cloud computing platiorm providing a virtual
machine upon which the computer application 1s executed,
and the network 1s the internet. Also, 1n various embodi-
ments, the computer application 1s a computer game appli-
cation.

In one example embodiment, the target portion of the
intercepted pixel data set corresponds to visual content
within the display frame 1mage representing a user of the
computer application. The revised pixel data set can be
generated to modily an appearance of an object that would
be depicted by a rendering of the target portion of the
intercepted pixel data set. Also, the revised pixel data set can

US 9,707,485 B2

S

be generated to replace an object that would be depicted by
a rendering of the target portion of the intercepted pixel data
set with a depiction of a different object. Also, the revised
pixel data set can be generated to depict an object overlying
an 1mage that would be depicted by a rendering of the target
portion of the intercepted pixel data set.

In various embodiments, pixel data sets of display frame
images are transmitted over the network in accordance with
a first frame rate, and the frame augmentation module 1is
defined to generate revised pixel data sets for display frame
images 1n accordance with a second frame rate greater than
the first frame rate. For example, in one embodiment, the
second frame rate 1s twice the first {frame rate.

The system for augmenting a remotely served application
can also include an application extension module defined to
provide computer executable instructions for processing
user input signals related to the modified target portion of the
intercepted pixel data as displayed by the second computing
system. The computer application executes without an
awareness ol the computer executable instructions provided
by the application extension module. In some instances, the
frame augmentation module can be defined to generate the
revised pixel data set based on direction received from the
application extension module as a result of processing user
input signals related to a previously modified target portion
of intercepted pixel data having been displayed by the
second computing system.

A method for augmenting a remotely served application
includes executing a computer application on a first com-
puting system, 1.¢., server system/cloud system, to generate
pixel data sets of display frame 1images for transmission over
a network to be displayed by a second computing system,
1.e., user's computing system. The method includes an
operation for intercepting a pixel data set of a display frame
image generated by the computer application. It should be
understood that the computer application executes without
an awareness of the pixel data set interception. The method
also includes an operation for identifying a target portion of
the mtercepted pixel data set corresponding to visual content
to be modified 1n the display frame 1image. The method also
includes an operation for generating a revised pixel data set
tor the display frame image 1n which the target portion of the
intercepted pixel data 1s modified to alter the corresponding
visual content in the display frame image. The method
turther includes an operation for transmitting the revised
pixel data set in place of the intercepted pixel data set over
the network to be displayed by the second computing
system.

In various embodiments of the above-mentioned method,
the first computing system 1s a cloud computing platform
providing a virtual machine upon which the computer appli-
cation 1s executed, and the network 1s the internet. Also, the
computer application can be a computer game application.
In some cases, the target portion of the intercepted pixel data
set corresponds to visual content within the display frame
image representing a user of the computer application.

In some embodiments, the pixel data sets of display frame
images are generated by the computer application 1n accor-
dance with a first frame rate, and the revised pixel data sets
for the display frame 1mages are generated 1n accordance
with a second frame rate greater than the first frame rate.
Then, the revised pixel data sets are transmitted over the
network 1n accordance with the first frame rate in place of
the intercepted pixel data sets. In some embodiments, the
second frame rate 1s twice the first frame rate.

The method can also include processing user input signals
related to the modified target portion of the intercepted pixel

10

15

20

25

30

35

40

45

50

55

60

65

6

data as displayed by the second computing system. It should
be understood that the computer application executes with-
out an awareness ol processing ol the user nput signals
related to the modified target portion of the intercepted pixel
data. In some embodiments, the revised pixel data set is
generated based on a result of processing user input signals
related to a previously modified target portion of intercepted
pixel data having been displayed by the second computing
system.

FIG. 1 1s a block diagram of a game system 100, accord-
ing to various embodiments of the invention. The game
system 100 1s configured to provide a video stream to one or
more clients 110, separately numbered 110A, 110B, etc. by
way ol example, via a network 115. The game system 100
typically includes a video server system 120 and an optional
game server 125. The video server system 120 may be
configured to provide the video stream in a wide variety of
alternative video formats, including formats yet to be
defined. Further, the video stream may include video frames
configured for presentation to a user at a wide variety of
frame rates. Typical frame rates are 30 frames per second, 60
frames per second, and 120 frames per second, although
higher or lower frame rates are included in alternative
embodiments of the mvention.

The clients 110, 1.e., 110A, 110B, etc., may include
terminals, personal computers, game consoles, tablet com-
puters, telephones, set top boxes, kiosks, wireless devices,
digital pads, stand-alone devices, handheld game playing
devices, and/or the like. Typically, the clients 110 are con-
figured to receive encoded video streams, decode the video
streams, and present the resulting video to a user, e.g., a
player of a game. The processes of recerving encoded video
streams and/or decoding the video streams typically include
storing 1ndividual video frames in a receive buller of the
client 110. The video streams may be presented to the user
on a display integral to the client 110 or on a separate device
such as a monitor or television.

The clients 110 are configured to receive video streams
via the network 115. The network 115 may be any type of
communication network, including a telephone network, the
Internet, wireless networks, powerline networks, local area

networks, wide area networks, private networks, and/or the
like. In some embodiments, the video streams are commu-
nicated via standard protocols, such as TCP/IP or UDP/IP.
Alternatively, the video streams can be communicated via
proprietary standards.

A typical example of the clients 110 1s a personal com-
puter including a processor, non-volatile memory, a display,
decoding logic, network communication capabilities, and
iput devices. The decoding logic may include hardware,
firmware, and/or software stored on a computer readable
medium, 1.e., on a non-transitory data storage device. Sys-
tems for decoding (and encoding) video streams are well
known 1n the art and vary depending on the particular
encoding scheme used.

The video stream (and optionally audio stream) received
by the clients 110 1s generated and provided by the video
server system 120. The video stream includes video frames
(and the audio stream includes audio frames). The video
frames are configured (e.g., they include pixel information
in an appropriate data structure) to contribute meaningiully
to the 1mages displayed to the user. As used herein, the term
“video frames™ 1s used to refer to frames including predomi-
nantly information that 1s configured to contribute to, e.g., to
ellect, the images shown to the user through rendering of the

US 9,707,485 B2

7

frame information 1n a visual display. Most of the disclosure
provided herein with regard to “video frames™ can also be
applied to “audio frames.”

The clients 110 are typically configured to receive mputs
from a user. These inputs may include game commands
configured to change the state of the video game or other-
wise allect game play. The game commands can be recerved
using 1nput devices and/or may be automatically generated
by computing instructions executing on the clients 110.
Input devices of the clients 110 may include, for example, a
keyboard, a joystick, a pointing device, a force feedback
device, a motion and/or location sensing device, a mouse, a
touch screen, a neural interface, a camera, input devices yet
to be developed, and/or the like. The received game com-
mands are communicated from the clients 110 via the
network 113 to the video server system 120 and/or the game
server 125.

The game server 125 can be optionally operated by a
different entity than the video server system 120. For
example, the game server 125 may be operated by the
publisher of a multiplayer game. In this example, the video
server system 120 1s optionally viewed as a client by the
game server 125 and optionally configured to appear from
the point of view of the game server 125 to be a client
executing a game engine. Commumnication between the
video server system 120 and the game server 125 optionally
occurs via the network 115. As such, the game server 125
can be a multiplayer game server that sends game state
information to multiple clients, one of which 1s video server
system 120.

The video server system 120 includes a video source 130,
an /O (input/output) device 145, a processor 150, and
non-transitory data storage 155. The video server system
120 may include one computing device or be distributed
among a plurality of computing devices. These computing
devices are optionally connected via a communications
system such as a local area network.

The video source 130 1s configured to provide a video
stream, €.g., streaming video or a series of video frames that
form a moving picture. In some embodiments, the video
source 130 includes a video game engine and rendering
logic. The video game engine 1s configured to receive game
commands from a player and to maintain a copy of the state
of the video game based on the received commands. This
game state includes the position of objects 1 a game
environment, and may also include a point of view of the
user. The game state may also include properties, 1images,
colors and/or textures of objects. The game state 1s typically
maintained based on game rules, as well as game commands
such as move, turn, attack, set focus to, interact, use, and/or
the like. Part of the game engine 1s optionally disposed
within the game server 125. The game server 125 may
maintain a copy of the state of the game based on game
commands received from multiple players using geographi-
cally disperse clients. In these cases, the game state is
provided by the game server 1235 to the video source 130,
where a copy of the game state 1s stored and rendering 1s
performed. The game server 125 may receive game com-
mands directly from clients 110 via the network 115, and/or
may recerve game commands via the video server system
120.

The video source 130 can include rendering logic, e.g.,
hardware, firmware, and/or software stored on a computer
readable medium, such as the non-transitory data storage
155. This rendering logic 1s configured to create video
frames of the video stream based on the game state. All or
part of the rendering logic 1s optionally disposed within a

10

15

20

25

30

35

40

45

50

55

60

65

8

graphics processing unit (GPU). Rendering logic typically
includes processing stages configured for determining the
three-dimensional spatial relationships between objects and/
or for applying appropriate textures, etc., based on the game
state and viewpoint. The rendering logic produces raw video
that 1s then usually encoded prior to communication to the
clients 110. The raw video may be encoded using any
available encoding method for which the remote device has
a compatible decoding capability. The encoding process
produces a video stream that i1s optionally packaged for
delivery to a decoder on a remote device.

The video stream 1s characterized by a frame size and a
frame rate. Typical frame sizes include 800x600, 1280x720
(e.g., 720p), 1024x768, although any other frame sizes may
be used. The frame rate 1s the number of video frames per
second. A video stream may include different types of video
frames. For example and without limitation, the H.264
standard includes a “P” frame and a “I” frame. I-frames
include information to refresh all macro blocks/pixels on a
display device, while P-frames include information to
reiresh a subset thereol. P-frames are typically smaller in
data size than are I-frames. As used herein the term “frame
s1z€”” 1s meant to refer to a number of pixels within a frame.
The term “frame data si1ze” 1s used to refer to a number of
bytes required to store the frame.

The video source 130 1s optionally configured to provide
overlays configured to be placed on other video. For
example, these overlays may include a command interface,
log-1n 1nstructions, messages to a game player, images of
other game players, video feeds of other game players (e.g.,
webcam video). In an example embodiment 1n which at least
one of the clients 110 1includes a touch screen interface, the
overlay may include a virtual keyboard, joystick, touch pad,
and/or the like. Also, 1n one example embodiment, an
overlay of a player’s voice 1s overlaid on an audio stream.
The video source 130 may also include one or more audio
sources.

In various embodiments, the I/O device 145 can be
configured for the video server system 120 to send and/or
receive information such as video, commands, requests for
information, a game state, client identities, player identities,
game commands, security information, audio, and/or the
like. The I/O device 145 can include communication hard-
ware such as a network card or modem. The I/O device 145
1s configured to communicate with the game server 125, the
network 115, and/or the clients 110.

The processor 150 1s configured to execute logic, e.g.,
software, included within the various components of the
video server system 120 discussed herein. For example, the
processor 150 may be programmed with software nstruc-
tions 1n order to perform the functions of the video source
130, the game server 125, and/or a client qualifier 160. The
video server system 120 optionally includes more than one
instance of the processor 150. The processor 150 may also
be programmed with software instructions in order to
execute commands received by the video server system 120,
or to coordinate the operation of the various elements of the
game system 100 discussed herein. The processor 150 may
include one or more hardware devices. It should be under-
stood that the processor 150 1s an electronic processor, 1.€.,
a computer processor.

The video server system 120 optionally includes the client
qualifier 160 which 1s configured to remotely determine the
capabilities of the clients 110. These capabilities can include
both the capabilities of a given client 110 1tself, and the
capabilities of one or more communication channels
between the given client 110 and the video server system

US 9,707,485 B2

9

120. For example, the client qualifier 160 may be configured
to test a communication channel through the network 115.

FIG. 2 1s a block diagram of embodiments of the video
source 130 configured to serve multiple video games. The
multiple video games can include multiple mstances of the
same video game and/or instances of diflerent video games.
The video games are optionally multiplayer games. For
example, a game state of one or more of the video games
may be maintained by one or more mstances of the game

server 123, each based on iputs received from multiple
clients 110.

The video games are executed using different instances of
game logic 210, individually labeled 210A, 2108, 210C, etc.
The game logic 210 1s configured to use a game state to
determine a game environment that can be rendered to a
video stream configured to be presented to a game player. In
some embodiments, the game environment 1s a three dimen-
sional virtual environment including game objects, avatars,
location of objects, their shapes, textures, and spatial rela-
tionships therebetween, and the like. A game environment
can include vertex data, transformation data and texture
data, and/or the like.

The rendering 1s typically based on one or more point of
views associated with a specific game player. The video
source 130 can include multiple instances of the game logic
210. The game logic 210 can optionally be a client of the
game server 125 and may be configured to communicate
with game server 125 via the network 115.

The game logic 210 1s configured to receive game com-
mands from one or more clients 110 and to process the
received commands according to a set of game rules. These
rules cover, for example, how avatars interact with other
avatars or 1n game objects, avatar movement, game nstance
management, and/or the like. The game logic 210 includes
hardware, firmware, and/or software stored on a computer
readable medium.

Each instance of the game logic 210 can be disposed on
a separate computing device, or several instances of the
game logic 210 can be disposed on the same computing
device, or a single instance of the game logic 210 can be
disposed across multiple computing devices. Game
instances can dynamically change the number and/or 1den-
tify of computing devices used depending on the require-
ments of the game environment the user 1s currently expe-
riencing. Instances of the game logic 210 disposed on the
same computing device are optionally executed within sepa-
rate virtual machines or virtual I/O shells. In some embodi-
ments, different instances of the game logic 210 are config-
ured to communicate game commands and/or game state
information directly to each other, e¢.g., without necessarily
communication through the game server 125.

The game logic 210 can execute on top of an operating
system (OS) 215. The operating system 215 may include
Windows™, [1nux, Unix, Mac OS™, Solaris™, and/or the
like. In some embodiments, the operating system 215 and
game logic 210 can operate on one or more virtual machine
platforms such as ESX, Hyper-V, and/or the like. In these
embodiments, one or more instances of the game logic 210
can be executed within a virtual machine. Also, multiple
instances of the game logic 210 may execute on the same
instance of the operating system 210. For example, FIG. 2
shows the game logic 210A and the game logic 210B both
executing on the same operating system 215. Multiple
instances of game logic 210 executing on the same operation
system 215 may, or may not, be configured for playing the
same video game.

10

15

20

25

30

35

40

45

50

55

60

65

10

In some embodiments, the game environments deter-
mined by the game logic 210 are passed to an optional

virtual 3D video driver 220. The virtual 3D video driver 220

1s configured to appear, from the point of view of the game
logic 210, as a non-virtual 3D wvideo driver controlling a
graphics processing unit. Each instance of the game logic
210 may be associated with 1ts own 1nstance of the virtual
3D video driver 220, or the virtual 3D video driver 220 may
be shared by two or more instances of the game logic 210.

The virtual 3D video driver 220 1s further configured to
pass the received game environments to a (non-virtual) 3D
driver 230. Optionally, the delivery of game environments to
3D driver 230 1s coordinated by the various instances of the
virtual 3D video driver 220. For example, delivery can be
coordinated such that 3D driver 230 receives game envi-
ronments from one (or a minimum number of) virtual 3D
video driver 220 at a time. In some embodiments, each of the

virtual 3D video drivers 220 1s configured such that they

appear to be a separate process and a separate source of
video data to 3D driver 230. As such, 3D driver 230 is

configured to keep track of which video data results 1n which
video frames after rendering.

The video data received by 3D driver 230 are passed to
graphics processing unit (GPU) 235 for rendering into raw
video frames. The graphics processing unit 235 1s optionally
used to render more than one video stream 1n parallel. The
parallel production of video streams includes the generation
of these streams at the same time. However, parallel pro-
duction of video streams may, but does not necessarily,
include the processing of individual frames at the same time
within the graphics processing unit 235. For example, in
some embodiments 3D drniver 230 alternatively passes the
video data generated by the various members game logic
210 to the graphics processing umt 235. Data generated by
game logic 210A 1s used to make a video frame, and
subsequently data generated by game logic 210B 1s used to
make a video frame, etc. In this case, the video streams are
produced 1n parallel while individual frames are produced in
SEeries.

The virtual 3D video dnivers 220 can be configured to
manage the transfer of raw rendered video frames from 3D
driver 230. For example, the virtual 3D drivers 220 may be
used to coordinate the transier of video frames from the
control of 3D driver 230 to a shared memory 240. Following
rendering, the video frames are 1n a memory of the graphics
processing unit 235 or 1n a memory managed by the 3D

driver 230. In eirther case, they are under the control of the
3D driver 230. As the virtual 3D video drivers 220 manage

the communication of video data and frames to and from 3D
driver 230, 1n some embodiments, they are capable of
placing the video frames within parts of the shared memory

240 associated with specific video dynamic encoding pipe-
lines (DEPs) 245. The video DEPs 245 are individually

identified as video DEP 245A, DEP 245B, DEP 245C, etc.
In some embodiments, each video DEP 245 1s assigned
specific memory locations within the shared memory 240,
and 1s configured to retrieve video data from those memory
locations.

The shared memory 240 includes random access memory
(RAM) or a similar memory configured for ethicient reading
and writing of video data. The shared memory 240 is
configured to store video data for a plurality of different
video DEPs 245. Video data for different video DEPs 245 1s
optionally stored at the same time in shared memory 240.
The shared memory 240 may consist of a single hardware
device or may include multiple devices.

US 9,707,485 B2

11

The video DEPs 243 are dynamically allocated encoding
pipelines that are each configured to encode video data
rendered using the graphics processing unit 235. Fach
member of video DEPs 245 1s configured to encode to video
formats specified at the time the video DEP 245 1s provi-
sioned. This format specification 1s typically based on the
needs of one of clients 110 and/or the capabilities of the
communication path between the video server system 120
and the client 110. The video DEPs 245 are optionally
provisioned dynamically in response from a request from
one of clients 110. A member of video DEPs 245 can
optionally be configured to use more than one encoding

scheme.
Each video DEP 245 includes a grabber 247 configured to

grab video data from the shared memory 240 and transfer
this video data to a memory of the video DEP 245. FEach
video DEP 245 optionally includes a preprocessor (PRE)
250 configured to perform a color space conversion such as
RGB to YUV and/or a scaling operation to increase or
decrease the resolution of the video frame. The preprocessor
250 15 optional 1n embodiments wherein the output of the
graphics processing unit 235 1s 1n the YUV color space or
some other desired color space. Multiple preprocessors 250
may be mncluded in a video DEP 245 configured to produce
multiple video streams having video frames of different
S1ZES.

Each video DEP 245 includes at least one encoder (ENC)
255. By way of example mn FIG. 2, encoders 255 are
individually 1dentified as encoder 255A, encoder 2558, etc.
Each encoders 255 1s configured to encode the video data
according to a specific codec, and optionally a specific color
depth and/or frame size.

In some embodiments, video DEPs 243 are configured to
use two or more diflerent encoders to generate two or more
different video streams at the same time. These video
streams are based on the same game environment rendered
by the graphics processing unit 235 and, thus, include
essentially the same materials (with the possible exception
of overlays) and can be sent to different places. For example,
one of the video streams can be sent to the client 110A while
the other 1s sent to the client 110B. Alternatively, one of the
video streams can be sent to the client 110A and the other to
a website where third parties can watch the video. This
website 1s optionally part of a social networking site or a
game player’s site. The two diflerent video streams may be
different in the frame rate, encoding type, frame size, color
depth, etc. For example a video stream delivered to a social
networking website can be of much lower quality than the
video stream delivered to a game player who 1s playing a
game using the client 110A. The second video stream may
be directed to a game player who 1s playing the game or to
people who are merely observing the game play. A video
stream 1s optionally directed to more than one place.

The video DEP 245A can optionally include one or more
post processors (Post) 260. Individual examples of post
processors 260 are labeled 260A and 260B. The post pro-
cessors 260 are configured to package an encoded video
frame 1n a container 1n a format appropriate for communi-
cation over a network according to a public or proprietary
network protocol. For example, some protocols such as
Adobe RTMP require post processing while other video
standards such as H.264 Annex B do not require post
processing. Each of the post processors 260 may be asso-
ciated with a specific member of encoders 253, or several
post processors 260 may be configured to receive encoded
video frames from one member of encoders 255.

10

15

20

25

30

35

40

45

50

55

60

65

12

The output of post processors 260 1s directed to I/O
Device 145 for delivery to one or more of the clients 110.
The elements of video DEPs 245 discussed herein include
hardware, firmware and/or soitware stored on a computer
readable medium. For example, each of the video DEPs 245
may represent a set of solftware loaded mto memory and
executing using an electronic processor.

The operation of the video source 130 1s typically man-
aged by a controller 265. The controller 265 1includes
hardware, firmware and/or soitware stored on a computer
readable medium. For example, the controller 265 may
include software stored in memory and executed using a
MmICroprocessor.

FIG. 3 shows overlays on game video (a video frame),
according to various embodiments of the invention. Three
overlays 810A, 8108, and 810C (collectively identified as
overlays 810) have been applied to the video generated by
the video game. These overlays 810 may be applied as a
single overlay or as several separate overlays.

In one example, embodiment, each of the overlays 810
represents a diflerent game control mput as indicated by the
text therein. Overlay 810A represents a carriage return,
overlay 810B represents an escape key, and overlay 810C
represents a tab key. It should be appreciated that in other
embodiments, the overlays 810 can identify controller com-
mands. For example, the overlays 810A, 8108, and 810C,
may show 1cons for different game controller actions (e.g.,
button press, stick movement, tilt direction, shake, etc.) with
a corresponding descriptive action term. In some embodi-
ments, these overlays 810 are associated with specific
regions of the video frame and these specific regions are
mapped to the represented game control mput. For example,
the region of the 1mage occupied by overlay 810C 1s mapped
to the tab key such that clicking on or otherwise making a
selection 1n this region 1s interpreted as a tab keystroke.
Selection can be accomplished by using a pointing device
such as a joystick or mouse, or by touching this region on a
touch sensitive screen.

FIG. 3 further includes an overlay 820 representing a
game menu, such as may be used to manage a game room
or other aspect of game execution. Overlay 820 1ncludes a
plurality of active regions mapped to different game com-
mands (inputs). For example, the area occupied by the word
“search” within overlay 820 1s mapped to a search command
while the area occupied by the word “join” 1s mapped to a
command to join a game room.

FIG. 3 turther includes an overlay 830 including an 1image
of a game player. Overlay 830 may be a static or real-time
image of another game player. For example, 11 the video
frame 1llustrated 1in FIG. 3 1s to be sent to client 110A, then
overlay 830 may include a real-time video frame of a player
of client 110B. The overlay 830 may alternatively include a
view of the video game from another player’s point of view,
a view Irom a second point of view for a same player, or a
view ol some real-life event. In one example, overlay 830
includes a video frame based on a second point of view of
the same player whose first pomt of view was used to
generate the underlying image. This second point of view
can be generated using a second video DEP 245. The
number, shape, size, and characteristics of overlays that may
be placed over video data can vary widely. Overlays may or
may not be mapped to game commands. Overlays can be
applied either server and/or client side. Some embodiments
include overlays applied both server and client side.

The mapping of user mputs to game commands 1s not
limited to applications 1n which clients 110 include a touch
screen or pointing device. The mapping of user mputs to

US 9,707,485 B2

13

specific game commands can occur at clients 110 or at video
server system 120. For example, the 1Pad® from Apple
Computer, Inc. 1s configured to convert touches to its screen,
movements, and combinations of touches to specific com-
mands. The 1Pad® and 1Phone® are also configured to
convert movements of the device itself to specific com-
mands. However, other types of clients 110 may not have
these capabilities, 1n which case the mapping can occur at
video server system 120.

Mapping of user mputs to game commands 1s optionally
performed using a look-up table or other type of input
mapping. FI1G. 4 shows part of an input map 1010 configured
for mapping of user iputs to game commands, according to
various embodiments of the mvention. It should be under-
stood that an mput map 1010 for command mapping can
include more or less entries than shown 1n FIG. 4.

The first mapping shown in 1nput map 1010 1s a direct
character to character map of “D” to “K.” This type of
mapping may be useful i games that are configured for
several players to share a keyboard, each using their own
subset of the keys, by way of example. When such a game
1s played by geographically disperse game players, each
player may use the same keys but one of the player’s imputs
are mapped to a different part of the keyboard.

The second mapping shown 1n mput map 1010 includes
mapping ol a screen area to a key. Specifically, a rectangle
with corners at (100, 200) and (400, 500) 1s mapped to the
F1 function key. The coordinates can be 1n image, window,
or screen pixels. This type of mapping 1s useful when a touch
screen or pointing device 1s used as an mnput. This type of
mapping can be used to map images within an overlay to
specific game commands. This type of mapping can also be
dependent on movement of a finger or cursor on a screen, or
the number of points at which a touch screen 1s touched.

The third type of mapping shown in mput map 1010
includes mapping of a controller button to a key. Specifi-
cally, a “Redbutton” 1s mapped to a “Spacebar.” This type of
mapping can be used to map game controller mputs to
specific game commands. It should be understood that 1n
some embodiments of the present invention, a game con-
troller, and any function thereof (e.g., button, stick, tilt,
shake, etc.), can be mapped to a corresponding game com-
mand.

The fourth type of mapping shown in mmput map 1010
includes mapping motion (“Right T1lt”) of an input device to
a key. This type of mapping can be used with joysticks,
1Phones, 1Pads®, the Nintendo Wii1, or other type of clients
110 with motion or location sensing capabilities.

The fifth type of mapping shown in input map 1010
includes mapping of a movement of an object as detected by
an external device, such as a camera, to a key “A.” This type
of mapping 1s optionally used in clients 110 that include
radio or video motion detection systems. Using this type of
mapping allows games designed to be played using a
keyboard to be played using new types of mput devices,
such as the Kinect® from Microsoit.

A sixth type of mapping may be dynamic. For example,
in embodiments where motion of a finger on a touch screen
1s mapped to joystick movements, where the finger {first
touches the screen may be dynamically mapped to the
joystick “center” position. Screen positions just above,
below, right, left, etc., of the first touch position are mapped
to joystick positions up, down, left, right, etc., respectively.
As such, a joystick movement can be entered by {first placing,
a finger on the screen and then sliding the finger 1n some
direction. Dynamic mapping may also include multi-finger
touches to the screen. For example, a touch on a first point

10

15

20

25

30

35

40

45

50

55

60

65

14

of the screen can determine the location and orientation of
a mapping used to convert a second touch to a game
command.

FIG. 5 shows methods of using an overlay, according to
various embodiments of the invention. The overlay can be
audio or video. In the method of FIG. 5, a video frame 1s
generated using graphics processing unit 233 and an overlay
1s added to this video frame prior to encoding. The method
operations shown in FIG. 5 can optionally be performed 1n
parallel using several of game logic 210, several of video
DEP 245 and/or several of audio DEP 270.

Specifically, 1n a Generate Step 1110, a game environment
1s generated based on game rules and game commands
received via Network 1135 and clients 110 from one or more
game players. For example, a game player at client 110A and
a game player at client 110B may each provide a game
command that 1s used to update a game state from which the
game environment 1s generated. Generate Step 1110 may
include Receive State Step 515 and Determine 3D Data Step
520, as discussed with regard to FIG. 4. In some embodi-
ments, Generate Step 1110 includes generating audio data
based on events within the game, the game rules, and/or
received game commands.

In an optional Render Step 1120, the game environment
generated 1 Generate Step 1110 1s rendered using graphical
processing umt 235. Render Step 1120 1s an embodiment of
Render Step 525 discussed with regard to FIG. 4. The result
of Render Step 1120 1s a video frame. Render Step 1120 1s
optional 1n embodiments where the result of Generate Step
1110 1ncludes only audio data and/or does not include a 3D
game environment.

In a Provide Step 1130, the video frame generated in
Render Step 1120 and/or the audio data generated 1n Gen-
erate Step 1110 1s provided to one or more encoding pipe-
lines, such as video DEP 245A and/or audio DEP 270A. For
example, a video frame may be provided to video DEP 245A
while an audio frame i1s provided to audio DEP 270A.
Provide Step 1130 1s an embodiment of Transter Step 527 as
discussed with regard to FIG. 4.

In an Add Overlay Step 1140, a video overlay 1s added to
the video frame provided in Provide Step 1130, and/or an
audio overlay 1s added to audio data provided in Provide
Step 1130. Add Overlay Step 1140 1s typically performed
using Overlay Logic 290 and/or Overlay Logic 295 as
discussed with regard to FIG. 2. More than one video
overlay and more than one audio overlay are optionally
added in Add Overlay Step 1140. The audio overlay option-
ally includes audio data received from one or more of clients
110 as packets via network 115. For example, the audio
overlay can include voice data of game players received
from multiple clients 110.

In some embodiments, video source 130 receives audio
data from many clients 110, and the Add Overlay Step 1140
includes determining which of the audio data should be used
in a particular audio overlay. For example, while 10 game
players may be using video source 130, only the voice data
of two or three of these players may be included 1n the audio
overlay. The determination of which audio data to include 1n
an overlay 1s optionally based on a social relationship
between game players. For example, one game player may
select which, 1.e., whose, voice data he wishes to receive.
The social relationships can include membership 1n a guild,
party, being 1n a same battleground, or game instance, and/or
having avatars located near each other 1n the same game
environment, among others. In some embodiments, the
volume of audio data 1s adjusted responsive to an in-game
distance between two avatars.

US 9,707,485 B2

15

In an Encode Step 1150, the video frame and/or audio
data, as well as any overlays are encoded. This can be
accomplished using encoder 255 and/or audio encoder 280.
Encode Step 1150 1s an embodiment of Encode Step 535.
Encode Step 1150 may be performed before or after Add
Overlay Step 1150.

In a Deliver Step 1160, the video frame and/or audio data
encoded 1n Encode Step 1150 1s provided to one of clients
110 via network 115. The video frame and/or audio data are
optionally provided to more than one location. For example,
the same data can be provided to more than one game player.
Deliver Step 1160 1s an embodiment of Provide Step 5435
discussed with regard to FIG. 4.

In an optional Map Step 1170, part of a video overlay
applied 1n Add Overlay Step 1140 1s mapped to a game
command. For example, a region of the video frame to
which the video overlay was added can be set 1n a input map
1010 as mapping to a specific game command. An overlay
can be applied to more than one region of a display or a
video frame. Each region 1s optionally mapped to a diflerent
game command. The mmput map 1010 can be located on
video server system 120 or one of clients 110.

In an optional Receive Step 1180, a mapped game com-
mand 1s received at or within video source 130. The mapped
game command 1s optionally a command that has been
mapped from a region of a video frame to which an overlay
was applied. The received game command may have been
mapped at either one of clients 110 or at video server system
120. The received game command 1s optionally used to
update a state of the video game.

FIG. 6 shows an extension of the video source 130 to
include video augmentation logic 2000, in accordance with
an example embodiment of the present imvention. The
augmentation logic 2000 1s defined to analyze video frame
data provided by either the 3D dniver 230 to detect the
presence of key graphical images therein, and to provide
image overlay data to the overlay logic 290 in response to
detecting the presence of the key graphical images. In
various embodiments, the augmentation logic 2000 can be
defined to access and obtain video frame date from one or
more of the virtual 3D video driver 220, the 3D driver 230,
the shared memory 240, and/or the video DEP 245 by way
of the grabber 247. It should be appreciated that the video
frame data 1s recerved and processed by the augmentation
logic 2000 before the video frame data 1s encoded for
transmission from the video DEP 245 to one or more of
clients 110.

The augmentation logic 2000 includes key detection logic
2001 defined to search the received video frame data for the
presence ol a target pixel pattern corresponding to a key
graphical image. Depending on the implementation, the key
detection logic 2001 can be directed to search a portion of
an entire video frame or the entire video frame for the
presence of the target pixel pattern. The particular searching,
technique employed by the key detection logic 2001 at a
given time 1s referred to as the target search pattern. The
augmentation logic 2000 can be instructed as to what target
pixel pattern 1s to be searched and which target search
pattern 1s to be used.

FIG. 7 shows an example of a video frame 1mage corre-
sponding to video frame data to be processed by the aug-
mentation logic 2000. It should be understood that the video
frame 1mage of FIG. 7 1s provided by way of example and
in no way limits any feature or aspect of the invention
discussed herein. In the example video frame image of FIG.
7, akey graphical image 2101 corresponding to a target pixel
pattern 1s shown. The key detection logic 2001 function to

10

15

20

25

30

35

40

45

50

55

60

65

16

search the video frame data 1n accordance with a specified
target search pattern to detect the presence of the target pixel
pattern corresponding to the key graphical image 2101. In
one embodiment, the target search pattern 1s a rasterized
search pattern through the video frame image from side-to-
side and from top-to-bottom. In another embodiment, the
target search pattern includes multiple rasterized search
patterns through different regions of the video frame 1n a
simultaneous manner In one example of this embodiment,
the diflerent regions of the video frame are defined such that
the different regions do not overlap and such that the
different region together cover an entirety of the video
frame.

Also, mn one embodiment, the key detection logic 2001
can be defined to implement the search for the key graphical
image 1n a multi-step sub-target manner. Specifically, the
key detection logic 2001 can be directed to first search the
video frame for an indicator portion of the target pixel
pattern corresponding to a portion of the key graphical
image. In one embodiment, the portion of the target pixel
pattern may corresponding to a pixel set that includes sharp
contrasts and/or distinctive colors. Then, upon detecting the
presence of the indicator portion of the target pixel pattern,
the key detection logic 2001 can be directed to perform a
focused search for the target pixel pattern within a vicinity
of the detected indicator portion of the target pixel pattern.
It should be understood that search and detection of the
indicator portion of the target pixel pattern may be per-
formed 1n a faster manner than search and detection of the
entire target pixel pattern, thereby increasing an efficiency of
the overall search and detection of the target pixel pattern.

In one embodiment, the augmentation logic 2000 1s
defined to monitor a game state of game logic 210 and be
responsive to the monitored game state. More specifically,
the augmentation logic 2000 can be directed to utilize a
specific target pixel pattern dependent on the monitored
game state and/or utilize a specific target search pattern
dependent on the monitored game state. The augmentation
logic 2000 can be defined to receive and operate 1n accor-
dance with game-specific augmentation program instruc-
tions that provide directives as to which target pixel pattern
and target search patterns are to be employed as a function
of monitored game state.

For example, with reference to FIG. 7, the augmentation
logic 2000 can be notified of the game state 1n which an
arrow 1mage 2103 may be encountering a target image 2105.
Based on notification of this game state, the augmentation
logic 2000 can be mstructed to use a particular target pixel
pattern as shown in FIG. 8, and use a target search pattern
that includes only the region of the video frame 1n which the
target image 2105 1s positioned, thereby focusing the efforts
of the key detection logic 2001.

Also, the game-specific augmentation program instruc-
tions can include mstructions as to how an overlay image 1s
to be generated and positioned within the video frame upon
detection of the target pixel pattern in the video frame. The
augmentation logic 2000 includes overlay generation logic
2003 defined to generate the overlay image in accordance
with 1nstructions received by the augmentation logic 2000.
The overlay generation logic 2003 1s defined to communi-
cate overlay construction data to the overlay logic 290. The
overlay construction data includes relevant overlay pixel
data and data to direct positioning of the overlay image 1n
the video frame. As described herein, the overlay logic 290
functions to insert an overlay image i a video frame by
moditying appropriate pixel data of the video frame to
render the overlay image. With the augmentation logic 2000

US 9,707,485 B2

17

in eflect, the overlay logic 290 1s defined to insert overlay
images 1n accordance with the overlay construction data
received from the augmentation logic 2000.

For example, FIG. 9 shows an overlay image 2107 to be
communicated in the form of overlay construction data from
the overlay generation logic 2003 to the overlay logic 290.
In one embodiment, the overlay generation logic 2003 for
cach game state 1s stored in the shared memory 240 and is
indexed to 1ts corresponding game state and target pixel
data, such that the overlay generation logic 2003 can retrieve
the required overlay construction data from the shared
memory 240 depending on the game state information
transmitted to the augmentation logic 2000, and transmit the
required overlay construction data to the shared memory
240. In one embodiment, the overlay construction data for
various overlay images can be obtained from a database to
which the augmentation logic 2000 has access. And, 1n one
embodiment, the overlay construction data to be used can be
dependent upon parameters external to the game state, such
as an 1dentily of the user playing the game or other data
related to the user playing the game, such as an expertise
level of the user playing the game.

Once the overlay construction logic 1s provided from the
overlay generation logic 2003 to the overlay logic 290, the
overlay logic 290 functions to apply/insert the correspond-
ing overlay image in the video frame. For example, FIG. 10
shows the video frame of FIG. 7 following insertion of the
overlay image 2107 1n response to the key detection logic
2001 detecting the presence of the target pixel pattern
corresponding to the key graphical image 2101 as shown 1n
FIG. 8. It should be understood that insertion of the overlay
image 2107 can be accomplished by overlaying (or replac-
ing) pixel data within the video frame with pixel data of the
overlay image 2107. It should be appreciated, that detection
of key graphical images within a video frame associated
with a specific game state and corresponding generation and
insertion of overlay 1mages, as provided by the augmenta-
tion logic 2000, provides a substantial ability to modity the
look and feel of a game without actually moditying the
underlying program instructions of the game. Additionally,
it should be appreciated that 1n some embodiments, the
insertion of overlay images can be used to convey/render
advertisement 1mages to a user/player of the game.

Moreover, 1t should be understood that overlay 1images, or
portions thereol, can be responsive to user supplied com-
mands by way of the input map as described with regard to
FIG. 4. In this manner, detection of key graphical images
within a video frame associated with a specific game state
and corresponding generation and insertion of overlay
images, as provided by the augmentation logic 2000, can be
used to actually modily the functionality of the game
without actually modifying the underlying program instruc-
tions of the game.

It should be understood that the key detection logic 2001
can be directed to search for and detect one or more target
pixel patterns, in accordance with one or more target search
patterns, 1n a given video frame. Also, 1t should be under-
stood that the overlay generation logic 2003 can be directed
to generate overlay construct data for one or more overlay
images for a given video frame. Thus, 1n some 1nstances, the
overlay logic 290 will receive overlay construct data for
multiple overlay images to be applied to a single video
frame. In this case, the multiple overlay images can be
related or unrelated and can be respectively positioned at
different locations in the video frame.

FIG. 11 shows a system for augmenting a remotely served
application, 1mn accordance with one embodiment of the

10

15

20

25

30

35

40

45

50

55

60

65

18

present invention. The system includes a first application
2121 executing on one or more computing systems. In one
embodiment, the one or more computing systems on which
the first application 2121 1s executing include one or more
virtual computing machines operating on a cloud computing
system. In one embodiment, the first application 2121 1s a
game application. The first application 2121 executes to
generate a series ol original frame pixel data sets 2123 for
rendering ol graphical images associated with the first
application execution. The series of original frame pixel data
sets 2123 corresponds to a video stream, and each original
frame pixel data set corresponds to a respective video frame.

The system of FIG. 11 also includes a second application
2125 executing on one or more computing systems to detect
one or more key graphical images present in the series of
original frame pixel data sets. In one embodiment, the one
or more computing systems on which the second application
2125 1s executing include one or more virtual computing
machines operating on a cloud computing system. In one
embodiment, the second application 2125 corresponds to the
augmentation logic 2000 discussed with regard to FIG. 6.
Also, the key graphical images can represent the status of
execution of first application 2121.

Upon detection of the one or more key graphical images
by the second application 2125, the second application
operates to direct replacement of a portion of pixel data 1n
the series of original frame pixel data sets 2123 with
substitute pixel data so as to generate a series of modified
frame pixel data sets 2127. The series of modified frame
pixel data sets 2127 1s provided for encoding and transmis-
s1on to a client computer system 2129 1n lieu of the series of
original frame pixel data sets 2123 for rendering 1n a visual
display of the client computer system 2129. In one embodi-
ment, the second application 2125 operates to provide
instructions to an overlay module, such as overlay logic 290,
to direct replacement of the portion of pixel data in the series
of original frame pixel data sets 2123 with substitute pixel
data.

FIG. 12 shows a method for augmenting a remotely
served application, in accordance with one embodiment of
the present invention. It should be understood that the
method of FIG. 12 can be implemented using the augmen-
tation logic 2000 discussed with regard to FIG. 6. The
method includes an operation 1601 for searching a video
frame generated by an application to detect a key graphical
image, where the key graphical image represents a user’s
level of achievement 1n execution of the application. The
method also includes an operation 1602 for detecting the key
graphical image 1n the video frame generated by the appli-
cation. In one embodiment, the application 1s a remotely
served game application executing on a virtual machine of
a cloud computing platform. The user’s level of achievement
may be rendered i an essentially limitless number of
different ways. However, depending on the application
being executed, an expected location 1n the video frame and
an expected pixel pattern of the key graphical image repre-
senting the user’s level of achievement can be known before
searching the video frame, thereby enabling a focused search
in operation 1601.

Once the key graphical image corresponding to the user’s
level of achievement 1s detected 1n the video frame gener-
ated by the application, the method proceeds with an opera-
tion 1603 to obtain an overlay 1mage representing a univer-
sal achievement status of the wuser. The umversal
achievement status of the user can represent the user’s level
of accomplishment 1n executing one or more applications,
e.g., games, of one or more types over a period of time. In

US 9,707,485 B2

19

one embodiment, the operation 1603 can include querying
ol a database of user information to determine the user’s
universal achievement status.

The method also includes an operation 1605 for correlat-
ing the user’s determined universal achievement status to
one or more of a number of predefined overlay images stored
on a data storage device. An operation 1607 1s then per-
formed to acquire overlay construction data from the data
storage device for at least one of the number of predefined
overlay images correlated to the user’s determined universal
achievement status. An operation 1609 is then performed to
supply the acquired overlay construction data to overlay
logic, e.g., overlay logic 290, for insertion of the at least one
of the predefined overlay images 1in the video frame to be
encoded and transmitted to the user’s computing system.
Within the context of a gaming universe, 1t should be
understood that the method of FIG. 12 allows a user’s
universal achievement status 1n playing a number of similar
and/or different games to be visually rendered 1n a unique
way 1n video stream of any game that the user 1s playing.
Also, by way of the key graphical image detection and
overlay process, the user’s universal achievement status can
be visually rendered 1n place of an image normally gener-
ated by a game to indicate the user’s level of achievement 1n
the game.

FIG. 13 shows a diagram of a cloud computing system
1300 for generation and execution of a remotely served
computer application, e.g., computer game, 1n accordance
with one embodiment of the present invention. The cloud
computing system 1300 includes various physical compo-
nents 1301, 1.e., computing hardware components, defined
to perform the operations necessary for computing activity.
The physical components 1301 can include a number of
computer processors 1301A, an amount of computer
memory 1301B, an amount of persistent data storage 1301C,
and a number of network interface cards/chips (NICs)
1301D. The various physical components 1301 mentioned
above may correspond to any such physical component 1301
known 1n the art. Also, 1t should be understood that the
various physical components 1301 mentioned above are
provided by way of example. Various embodiments of the
cloud computing system 1300 can include more or less
physical components 1301 than the examples mentioned
above, and can include physical components 1301 not
mentioned above, e.g., power supplies, cooling systems,
etc., so long as the integrated computing capabilities of the
physical components 1301 are adequate to ensure proper
performance of the cloud computing system 1300.

The cloud computing system 1300 also includes a hyper-
visor 1303, or similar control layer, that 1s defined to
generate and execute a number of virtual machines using the
various physical components 1301. Each virtual machine
that 1s generated and executed by the hypervisor 1303 1s
essentially a software emulation of a particular computing
architecture. Using the various physical components 1301,
the hypervisor 1303 can simultaneously generate and
execute multiple different virtual machines. A given virtual
machine can be directed to operate in accordance with one
or more of a number of operating systems 1305 correspond-
ing to the particular computing architecture emulated by the
given virtual machine. Examples of various types of oper-
ating systems include Windows, Mac OS X, Linux, Play
Station 1 (PS1), Play Station 2 (PS2), Play Station 3 (PS3),
among others. For example, with regard to FIG. 13, 11 the
operating system OS1 1s the PS3 operating system, then OS1
can be executed on a virtual machine generated by the
hypervisor 1303 to emulate the PS3 computing architecture.

10

15

20

25

30

35

40

45

50

55

60

65

20

Similarly, if the operating system OS5 1s a Mac OS X
operating system, then OS5 can be executed on a virtual
machine generated by the hypervisor 1303 to emulate a Mac
computing architecture.

In the manner described above, the hypervisor 1303 can
utilize the physical components 1301 to generate and
execute essentially any number of different types of virtual
machines for emulating essentially any number of different
types ol computing architectures upon which various cor-
responding operating systems can be executed. Therelore,
the cloud computing system 1300 can provide an instance of
essentially any computing system as defined by a particular
operating system executing on 1ts required computing archi-
tecture. While the example of FIG. 13, shows six operating
systems OS1-OS6 by way of example, 1t should be under-
stood that the cloud computing system 1300 1s not limited 1n
any way to a set number of operating systems. The hyper-
visor 1303 can be defined to generate a virtual machine for
essentially any computing architecture imaginable so as to
execute essentially any corresponding operating system
imaginable. Therefore, 1t should be understood that the
cloud computing system 1300 is scalable with regard to
physical components 1301, hypervisor 1303 capability (1.e.,
number and type of virtual machine emulation), and number
and type of operating system provision.

The cloud computing system 1300 also includes a number
of different computer applications 1307 defined for execu-
tion through one or more of the number of operating systems
1305. The various computer applications 1307 can be stored
in the storage 1301C of the cloud computing system 1300,
and can be loaded into memory 1301B for execution as
needed 1n conjunction with provision of a given instance of
a particular virtual machine and corresponding operating
system by the hypervisor 1303. It should be understood that
any computer application 1307 that exists for any operating
system 1305 can be executed by the cloud computing system
1300.

FIG. 13 also shows a number of hosts 1309 (Hostl-
HostN). The hosts 1309 represent an instance of a user
having accessed the cloud computing system 1300 to obtain
access to an mstance of a particular virtual machine and
corresponding operating system 1in order to execute a
selected application 1307. It should be understood that the
cloud computing system 1300 can be defined and managed
to provision virtual machines and operating systems 1n many
different ways. For example, in some cases, each user
accessing the cloud computing system 1300 can be provided
with a dedicated virtual machine and corresponding oper-
ating system upon which the user can execute a desired
application 1307. Also, 1n some cases, multiple users access-
ing the cloud computing system 1300 can be made to share
a virtual machine and corresponding operating system upon
which each user can execute their desired applications 1307.
Operation and management of the cloud computing system
1300 can be optimized to provide each user accessing the
cloud computing system 1300 with the best quality of
service possible given the available physical components
1301.

In various embodiments, the cloud computing system
1300 1s a cloud gaming system. In one embodiment, the
cloud gaming system is configured to detect the type of
client device associated with the user, and also a type of
controller available for the user to provide input to the
cloud-based video game. For example, in one embodiment,
when a user logs 1n to the cloud gaming system, they may
be presented with an option to designate the type of client
device with which they are accessing the cloud gaming

US 9,707,485 B2

21

system. In one embodiment, a series of client device options
are presented from which the user may select one corre-
sponding to their client device. The user may also be
presented with an option to designate the type of controller
device they will use to play a video game. In one embodi-
ment, a series ol controller options can be presented to the
user, from which the user may select to designate a control-
ler type corresponding to their controller hardware. In other
embodiments, the cloud gaming system can be configured to
automatically detect the client device type and/or the con-
troller device type.

For example, at the time of login, the client device may
send information to the cloud gaming server identifying
itself as well as a connected controller device (e.g. 1n
response to a request from the cloud gaming server). Based
on this information, the cloud gaming server may determine
an appropriate video game output configuration and 1nput
parameter configuration to provide a gaming experience
optimized for the user’s client device and controller device.
In one embodiment, a look-up table 1s employed to deter-
mine video game configuration and input parameter con-
figuration based on a detected client device and a detected
controller device.

It should be appreciated that a given video game may be
developed for a specific platform and a specific associated
controller device. However, when such a game 1s made
available via a cloud gaming system as presented herein, the
user may be accessing the video game with a different
controller device. For example, a game might have been
developed for a game console and 1ts associated controller,
whereas the user might be accessing a cloud-based version
of the game from a personal computer utilizing a keyboard
and mouse. In such a scenario, the input parameter configu-
ration can define a mapping from inputs which can be
generated by the user’s available controller device (in this
case, a keyboard and mouse) to mnputs which are acceptable
for the execution of the video game.

In another example, a user may access the cloud gaming
system via a tablet computing device, a touchscreen smart-
phone, or other touchscreen driven device. In this case, the
client device and the controller device are integrated
together 1n the same device, with inputs being provided by
way ol detected touchscreen inputs/gestures. For such a
device, the mput parameter configuration may define par-
ticular touchscreen 1puts corresponding to game inputs for
the video game. For example, buttons, a directional pad, or
other types ol mput elements might be displayed or over-
layed during running of the video game to indicate locations
on the touchscreen that the user can touch to generate a game
input. Gestures such as swipes 1n particular directions or
specific touch motions may also be detected as game 1nputs.
In one embodiment, a tutorial can be provided to the user
indicating how to provide imput via the touchscreen for
gameplay, e.g. prior to beginning gameplay of the video
game, so as to acclimate the user to the operation of the
controls on the touchscreen.

In some embodiments, the client device serves as the
connection point for a controller device. That 1s, the con-
troller device communicates via a wireless or wired con-
nection with the client device to transmit inputs from the
controller device to the client device. The client device may
in turn process these mputs and then transmit 1input data to
the cloud gaming server via a network (e.g. accessed via a
local networking device such as a router). However, 1n other
embodiments, the controller can itself be a networked
device, with the ability to communicate mputs directly via
the network to the cloud gaming server, without being

10

15

20

25

30

35

40

45

50

55

60

65

22

required to communicate such inputs through the client
device first. For example, the controller might connect to a
local networking device (such as the aforementioned router)
to send to and receive data from the cloud gaming server.
Thus, while the client device may still be required to receive
video output from the cloud-based video game and render 1t
on a local display, input latency can be reduced by allowing
the controller to send inputs directly over the network to the
cloud gaming server, bypassing the client device.

In one embodiment, a networked controller and client
device can be configured to send certain types of inputs
directly from the controller to the cloud gaming server, and
other types of inputs via the client device. For example,
inputs whose detection does not depend on any additional
hardware or processing apart from the controller itself can
be sent directly from the controller to the cloud gaming
server via the network, bypassing the client device. Such
inputs may include button 1nputs, joystick inputs, embedded
motion detection inputs (e.g. accelerometer, magnetometer,
gyroscope), etc. However, mputs that utilize additional
hardware or require processing by the client device can be
sent by the client device to the cloud gaming server. These
might include captured video or audio from the game
environment that may be processed by the client device
before sending to the cloud gaming server. Additionally,
inputs from motion detection hardware of the controller
might be processed by the client device 1n conjunction with
captured video to detect the position and motion of the
controller, which would subsequently be communicated by
the client device to the cloud gaming server. It should be
appreciated that the controller device 1n accordance with
vartous embodiments may also receive data (e.g. feedback
data) from the client device or directly from the cloud
gaming Server.

It should be understood that the cloud computing system
1300 by way of example, or similar computing system, can
provide a user with access to a remotely served computer
application for execution through the user’s computing
terminal, so long as the user’s computing terminal 1s capable
ol accessing the computing system 1300 through a network,
1.¢., through either a wired network, a wireless network, or
a combination thereof. In other words, the cloud computing
system 1300 allows a user to execute a computer application
of their choosing on the cloud computing system 1300
through the user’s terminal, with the underlying hardware,
operating system, and computer application provisioned by
the cloud computing system 1300.

Several embodiments are specifically illustrated and/or
described herein. However, 1t will be appreciated that modi-
fications and variations are covered by the above teachings
and within the scope of the appended claims without depart-
ing from the spirit and intended scope thereof. For example,
while the examples provided herein are directed to video
games, the systems and methods discussed can be applied to
other iteractive video systems. While the examples pro-
vided herein are primarily directed at the delivery of video,
the systems and method described herein can be applied to
the generation of audio frames and delivery of audio
streams. In some embodiments, audio and video streams are
generated and delivered together as part of an audio-video
stream.

The embodiments discussed herein are illustrative of the
present 1nvention. As these embodiments of the present
invention are described with reference to illustrations, vari-
ous modifications or adaptations of the methods and or
specific structures described herein may become apparent to
those skilled 1n the art. All such modifications, adaptations,

US 9,707,485 B2

23

or variations that rely upon the teachings of the present
invention, and through which these teachings have advanced
the art, are considered to be within the spirit and scope of the
present invention. Hence, the descriptions and drawings
provided herein should not be considered 1n a limiting sense,
as 1t 1s understood that the present invention 1s 1n no way
limited to only the embodiments 1llustrated herein.

Computing systems referred to herein can comprise an
integrated circuit, a microprocessor, a personal computer, a
server, a distributed computing system, a communication
device, a network device, or the like, and various combina-
tions of the same. A computing system may also comprise
volatile and/or non-volatile memory such as random access
memory (RAM), dynamic random access memory
(DRAM), static random access memory (SRAM), magnetic
media, optical media, nano-media, a hard drive, a compact
disk, a digital versatile disc (DVD), and/or other devices
configured for storing analog or digital information, such as
in a database. The various examples of logic noted above can
comprise hardware, firmware, or software stored on a com-
puter-readable medium, or combinations thereof. A com-
puter-readable medium, as used herein, expressly excludes
paper. Computer-implemented steps of the methods noted
herein can comprise a set of mstructions stored on a com-
puter-readable medium that when executed cause the com-
puting system to perform the steps.

A computing system programmed to perform particular
functions pursuant to instructions from program software 1s
a special purpose computing system for performing those
particular functions. Data that 1s manipulated by a special
purpose computing system while performing those particu-
lar functions 1s at least electronically saved 1n buflers of the
computing system, physically changing the special purpose
computing system from one state to the next with each
change to the stored data. The logic discussed herein may
include hardware, firmware and/or software stored on a
computer readable medium. This logic may be implemented
in an electronic device to produce a special purpose com-
puting system.

Embodiments of the present invention may be practiced
with various computer system configurations including
hand-held devices, microprocessor systems, miCcroproces-
sor-based or programmable consumer electronics, minicom-
puters, mainirame computers and the like. The mnvention can
also be practiced i distributed computing environments
where tasks are performed by remote processing devices that
are linked through a network.

With the above embodiments 1n mind, 1t should be under-
stood that the mmvention can employ various computer-
implemented operations involving data stored in computer
systems. These operations are those requiring physical
manipulation of physical quantities. Any of the operations
described herein that form part of the invention are useful
machine operations. The mvention also relates to a device or
an apparatus for performing these operations. The apparatus
may be specially constructed for the required purpose, such
as a special purpose computer. When defined as a special
purpose computer, the computer can also perform other
processing, program execution or routines that are not part
of the special purpose, while still being capable of operating
tor the special purpose. Alternatively, the operations may be
processed by a general purpose computer selectively acti-
vated or configured by one or more computer programs
stored 1n the computer memory, cache, or obtained over a
network. When data 1s obtaimned over a network the data
maybe processed by other computers on the network, e.g., a
cloud of computing resources.

10

15

20

25

30

35

40

45

50

55

60

65

24

The embodiments of the present invention can also be
defined as a machine that transforms data from one state to
another state. The transformed data can be saved to storage
and then manipulated by a processor. The processor thus
transforms the data from one thing to another. Still further,
the methods can be processed by one or more machines or
processors that can be connected over a network. Each
machine can transform data from one state or thing to
another, and can also process data, save data to storage,
transmit data over a network, display the result, or commu-
nicate the result to another machine.

The mvention can also be embodied as computer readable
code on a non-transitory computer readable medium. The
non-transitory computer readable medium 1s any data stor-
age device that can store data, which can be thereafter be
read by a computer system. Examples of the non-transitory
computer readable medium include hard drives, network
attached storage (NAS), read-only memory, random-access
memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes and
other optical and non-optical data storage devices. The
non-transitory computer readable medium can mnclude com-
puter readable tangible media distributed over a network-
coupled computer system so that the computer readable code
1s stored and executed 1n a distributed fashion.

Although the method operations were described 1 a
specific order, it should be understood that other housekeep-
ing operations may be performed 1n between operations, or
operations may be adjusted so that they occur at slightly
different times, or may be distributed 1n a system which
allows the occurrence of the processing operations at various
intervals associated with the processing, as long as the
processing ol the method operations are performed in the
desired way.

Although the foregoing invention has been described 1n
some detail for purposes of clarity of understanding, it will
be apparent that certain changes and modifications can be
practiced within the scope of the appended claims. Accord-
ingly, the present embodiments are to be considered as
illustrative and not restrictive, and the invention 1s not to be
limited to the details given herein, but may be modified
within the scope and equivalents of the appended claims.

What 1s claimed 1s:

1. A system for augmenting a remotely served computer
application, comprising;:

a Iframe augmentation module configured to intercept a
pixel data set of a display frame 1mage generated by a
remotely served computer application executing on a
first computing system for transmission over a network
for display by a second computing system,

the frame augmentation module configured to 1dentify a
target portion of the pixel data set of the display frame
image as mtercepted by the frame augmentation mod-
ule by searching the pixel data set for the target portion,
the target portion of the pixel data set corresponding to
visual content to be modified in the display frame
1mage,

the frame augmentation module configured to generate a
revised pixel data set for the display frame image 1n
which the target portion of the pixel data set 1s modi-
fled,

the frame augmentation module configured to provide the
revised pixel data set for transmission over the network
for display by the second computing system in place of
the pixel data set of the display frame image as inter-
cepted by the frame augmentation module,

wherein the frame augmentation module 1s configured
separate from the remotely served computer applica-

US 9,707,485 B2

25

tion executing on the first computing system, such that
the remotely served computer application executing on
the first computing system 1s not involved 1n operations
of the frame augmentation module including 1ntercep-
tion of the pixel data set of the display frame image,
identification of the target portion of the pixel data set,
generation of the revised pixel data set, and provision
of the revised pixel data set for transmission over the
network 1n place of the pixel data as intercepted.
2. The system for augmenting the remotely served com-
puter application as recited 1n claim 1, wherein searching the
pixel data set for the target portion 1s done in accordance
with a specified target search pattern.
3. The system for augmenting the remotely served com-
puter application as recited in claim 2, wherein the specified
target search pattern 1s a rasterized search pattern through
the display frame 1mage.
4. The system for augmenting the remotely served com-
puter application as recited in claim 2, wherein the specified
target search pattern includes multiple rasterized search
patterns through different regions of the display frame
image, the frame augmentation module configured to simul-
taneously search through the different regions of the display
frame 1mage in accordance with the multiple rasterized
search patterns.
5. The system for augmenting the remotely served com-
puter application as recited in claim 4, wherein the different
regions ol the display frame image do not overlap, and
wherein the different regions of the display frame image
together cover an entirety of the display frame 1mage.
6. The system for augmenting the remotely served com-
puter application as recited 1n claim 1, wherein searching the
pixel data set for the target portion 1s done by performing a
first search of the pixel data set to detect an indicator portion
of pixel data, and upon detecting the indicator portion of
pixel data performing a second search within a vicimity of
the detected indicator portion of pixel data for the target
portion of the pixel data set.
7. The system for augmenting the remotely served com-
puter application as recited in claim 6, wherein the indicator
portion of pixel data includes sharp contrast, distinctive
color, or a combination of sharp contrast and distinctive
color.
8. The system for augmenting the remotely served com-
puter application as recited 1n claim 1, wherein the pixel data
set of the display frame 1image defines a video frame of a
video stream generated by the remotely served computer
application executing on the first computing system.
9. The system for augmenting the remotely served com-
puter application as recited in claim 1, wherein the first
computing system includes one or more virtual computing
machines operating on a cloud computing system.
10. The system for augmenting the remotely served
computer application as recited in claim 9, wherein the
frame augmentation module 1s implemented within one or
more virtual computing machines operating on a cloud
computing system.
11. A method for augmenting a remotely served computer
application, comprising:
operating a processor to 1ntercept a pixel data set of a
display frame image generated by a remotely served
computer application executing on a first computing
system for transmission over a network for display by
a second computing system;

operating the processor to 1dentily a target portion of the
pixel data set of the display frame 1mage as intercepted
by the processor by searching the pixel data set for the

10

15

20

25

30

35

40

45

50

55

60

65

26

target portion, the target portion of the pixel data set
corresponding to visual content to be modified in the
display frame 1mage;

operating the processor to generate a revised pixel data set

for the display frame 1image 1n which the target portion
of the pixel data set 1s modified;
operating the processor to provide the revised pixel data
set for transmission over the network for display by the
second computing system 1n place of the pixel data set
of the display frame image as intercepted by the
Processor,

wherein the remotely served computer application execut-
ing on the first computing system 1s not involved 1n
interception of the pixel data set of the display frame
image, i1dentification of the target portion of the pixel
data set, generation of the revised pixel data set, and
provision of the revised pixel data set for transmission
over the network 1n place of the pixel data as inter-
cepted.

12. The method for augmenting the remotely served
computer application as recited in claim 11, wherein search-
ing the pixel data set for the target portion i1s done 1n
accordance with a specified target search pattern.

13. The method for augmenting the remotely served
computer application as recited in claim 12, wherein the
specified target search pattern 1s a rasterized search pattern
through the display frame 1mage.

14. The method for augmenting the remotely served
computer application as recited in claim 12, wherein the
specified target search pattern includes multiple rasterized
search patterns through diflerent regions of the display
frame 1mage, wherein the different regions of the display
frame 1mage are simultaneously searched 1n accordance with
the multiple rasterized search patterns.

15. The method for augmenting the remotely served
computer application as recited in claim 14, wherein the
different regions of the display frame image do not overlap,
and wherein the diflerent regions of the display frame 1image
together cover an entirety of the display frame 1mage.

16. The method for augmenting the remotely served
computer application as recited in claim 11, wherein search-
ing the pixel data set for the target portion includes per-
forming a first search of the pixel data set to detect an
indicator portion of pixel data, and upon detecting the
indicator portion of pixel data performing a second search
within a vicimty of the detected indicator portion of pixel
data for the target portion of the pixel data set.

17. The method for augmenting the remotely served
computer application as recited in claim 16, wherein the
indicator portion of pixel data includes sharp contrast,

distinctive color, or a combination of sharp contrast and
distinctive color.

18. The method for augmenting the remotely served
computer application as recited in claim 11, wherein the
pixel data set of the display frame image defines a video
frame of a video stream generated by the remotely served
computer application executing on the first computing sys-
tem.

19. The method for augmenting the remotely served
computer application as recited in claim 11, wherein the first
computing system includes one or more virtual computing
machines operating on a cloud computing system.

20. The method for augmenting the remotely served
computer application as recited in claim 11, wherein the
processor 1s 1ncluded in a frame augmentation module

US 9,707,485 B2
27

implemented within one or more virtual computing
machines operating on a cloud computing system.

¥ H H ¥ ¥

28

	Front Page
	Drawings
	Specification
	Claims

