US009703300B1

12 United States Patent

Korshunov et al.

US 9,703,800 B1
Jul. 11, 2017

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR (56) References Cited
CALCULATING CHANGES FOR A LARGE |
DATA SET U.S. PATENT DOCUMENTS
(71) Applicant: EMC Corporation, Hopkinton, MA 20050267945 ALT 1272005 Cohen .ovcvvrescci GO6;FO§/12/}(5)
(US) 2009/0138442 Al1* 5/2009 Ku .....cooovvviiviininnnnnn, G0O9B 5/00
2010/0106685 Al*  4/2010 Oftt ......ccoo......... GOGF 17/30176
(72) Inventors: Dmitrii Korshunov, Pleasanton, CA 707/611
(US); Shu-Shang Sam Wei, Danville, . _
CA (US); Linda Wong, Dublin, CA cited by examiner
(US)
(73) Assignee: EMC IP Holding Company LLC, Primary bLxaminer — lruong Vo _
Hopkinton, MA (US) (74) Attorney, Agent, or Firm — Dergosits & Noah LLP;
Todd A. Noah
( *) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 705 days. (57) ABSTRACT
(21) Appl. No.: 13/926,654 A method and system for sharing and synchronizing content
between a content repository and a file sharing service. A
(22) Filed: Jun. 25, 2013 connector engine 1s configured between the content reposi-
tory and the file sharing service. A new snapshot of the
(51) Int. CIL content repository is divided into smaller snapshots, and
Goot 17/00 (2006.01) each smaller snapshot 1s paired and compared with the prior
Gool 17/30 (2006.01) snapshot to 1dentily new and changed objects. Likewise, the
(52) US. ClL prior snapshot 1s divided into smaller snapshots, and each
CPC e, Go6l’ 17730174 (2013.01) smaller snapshot is paired and compared with the new
(58) Field of Classification Search snapshot to 1dentity deleted objects.
CPC ............. GO6F 11/1464; GO6F 2201/84; GO6F
17/30088; GO6F 9/45558; GO6F 11/1435
See application file for complete search history. 20 Claims, 11 Drawing Sheets
100

\

Sharing/Sync
Service

110

Sync Conner 130

Connector Engine 140

Connector Agent
142 NGIS

Repository

SharePoint
Repository

RESTTul

Services

Connector
Administrator 160

Repository Ul 170



LT N Aolisoday

US 9,703,800 B1

o

o

S -

S oT _mem_:_Eur
— 10]02UU0)

'

W

W

e

’»

-

o

—

gl f
1..? .
o

p

—

—

U.S. Patent

1 "Ol4

SIJIAIBS
INJ1S3Y

Alojisodoy
JulodaJeys

At0j1soday
SION

cel

WIOdaieys evl SIDN (Pl
JUI8Y 101I3UU0D) JUady J0123UU0)

O T 2uiduj J01D2UU0)

32IAIDS
JUAg/3urieys

TET

| X4

A10olisodoy
N LD

WN10d Tl
JU38Y 10103UU0)

0ST 10329UuU0) JUAS

001



US 9,703,800 B1

Sheet 2 of 11

Jul. 11, 2017

U.S. Patent

¢ 'Ol

salosodal
jueduwon

TCT
Aiojisodal

1apesy

1U38e J01D2uu0d
$paa4 WOy

W10

€ e J03eiN2Eed saduey)

€7 DBLIDIUL J0IODULIOD) 33RI0IS

4051

JUAS /Sulieys _.E 37 | _......., — e —

o o §yse) pue 3el{jtilelg SE€C | ove
sjyse)l Janjosay | saJeys
e Ev__wam_ 05¢ S13HU0D ‘syse|, | 10594 | | 1azhjeuy | O M 13|NPaYds
$403N23X3 Y Id Jueinpayos syset sguiddepy | ‘sSuiddepy | Piyuody 1 $0 351 -
057 122Z1IU0IYDUAG
v0sT
1ed SIRUS
DILLIDIUL JOTIDUUOT 93RI01S
‘SBL0I4
F4A 3
jUsde J0133UU0D
JuAg/aseys pP33] SM3N
i
r A Ay L ARRRARNRRS A RS L SRR L L L VRN N L R SN I L T L S o A N Ao L A L L L i iy e il L
vl AIAIDG
011 JuAg/Bulieys




U.S. Patent Jul. 11, 2017 Sheet 3 of 11 US 9,703,800 B1

pr ¥

Storage One ollision esolution

Content changed

torage Two
ontent changed

-
I | i
W
-
o3
-

2 Ancestor folder deleted / Content changed
Ancestor folder is no more |
in Shared folder -
Ancestor folder deleted / File/Folder moved inside
Ancestor folder is no more | the ancestor folder

in Shared folder

<
(D
7
o]
or
?

Delete ancestor folder
(ignore move because the
moved file/folder will be

deleted)

Ancestor folder deleted /
Ancestor folder is no more
in Shared folder
Ancestor folder deleted /
Ancestor folder is no more
in Shared folder
Ancestor folder deleted /

Ancestor folder is no more
in Shared folder

File/Folder moved outside perform the move first

the ancestor folder

Delete ancestor folder
(ignore rename]}

File/Folder renamed

Delete ancestor folder
(ignore delete)

File/Folder deleted

7 File/Folder deleted or is no | File/Folder moved Yes
more in Shared folder

8 | Folder deleted File moved-in or added | Y

- Folder moved File deleted
10 i

File/Folder deleted oris ng | File/Folder renamed
more in Shared folder
File/Folder deleted or is no
more in Shared folder

Need to use id to identify
file
D

o3
Yes T8

11 File/Folder deleted

No op {do we need to
delete from Syncplicity

recycle bin?)

-
12 File deleted or is no more Content changed Yes TBD
13 File moved to a different Content changed
14

File linked to a different Content changed

focation within Share {i.e,
create new mapping)

Apply each event to the
other side

A link on DCTM creates a
new instance on
Syncplicity side. Hence,
Syncplicity will have two
copies. Need to update
content first for
performance reason.
Apply each event to the
other side {assuming
Syncplicity will implement
Rename and Move)

File/Folder renamed File/Folder renamed
1

i
7 File/Folder moved to a File/Folder moved to a Yes TBD
different location different location

FIG.3

15 File renamed Content changed




U.S. Patent Jul. 11, 2017 Sheet 4 of 11 US 9,703,800 B1

e Taskid - a unigue task identifier

¢ Mapping id — identifier of object mapping

e Object type — File or Folder

e Operation — Add, Delete, Update, Rename, Move

¢ Source id — identifies the source storage of changes (e.g. DCTM or Syncplicity)

e Source object id — object identifier in the source storage

* Destination id — identifies the target storage (e.g. DCTM or Syncplicity)

¢ Destination object id — object identifier in the source storage, might be null for Add
operation

e Status —the current status of the task: Awaiting {not queued yet, for nested tasks),
Queued, InProgress, Completed

o Result —task execution result (Success, Failure, Collision)

» Depends on —task id which this task depends on, i.e. cannot be started before that task
is completed. For instance, task for adding a new document may depend on the task for
adding new parent folder; or, subsequent task for update file content will depend on
the previous task for adding the same file.

FIG. 4



U.S. Patent Jul. 11, 2017 Sheet 5 of 11 US 9,703,800 B1

Task operation

Task resuit
(Collision/Fail
ure/Success)

Destination object

[ ] =

File Update {Content Content changed Collision
changed)

File/Folder delete User doesn’t have Collision TBD
enough permissions
File/Folder create User doesn’t have Collision TBD
enough permissions
TBD ”

File/Folder rename User doesn’t have Collision
enough permissions

5 Jser doesn’t have ' Collision

enough permissions

FilefFolder move

. i ] ] ] ]

18D

6 File Update (Content User doesn’t have Collision

L ¥

changed} enough permissions

7 File Update {Content File is focked Collision TBD
changed)
8 File Delete/move (Content | File is locked Collision TBD .
deleted)
9 File Update (Content Ancestor folder Collision TBD
changed) deleted
10 File Upate (Content File deleted Collision T8D
changed) I

11 File Update (Content File renamed Success
changed)
' File/Folder create Ancestor folder Collision TBD
deleted

FEI&/FIder rename Success File/Folder deleted
File/Folder delete Success?
:

File/Folder delete File/Folder moved Success File/Folder deleted

12
13
14

Y
un

Folder delete Child file is locked Collision

WY

o

Y

Failed to apply changes | Failure Return and log error

for any other reason message. May retry
depending on the nature
of the action/failure

FIG.5



U.S. Patent

Jul. 11, 2017

Sheet 6 of 11

EMC_SYNC_MAPPINGS

I — I — — — — E— —
Name Type Comments
i S S
‘ mapping_id BIGINT IDENTITY Primary key ]

re po“og}“id

repo_obj path

repo_obj _name

varchar

varchar{2000)

varchar(512)

’L i " e

Repository object id. {i_chronicle id for
DCTM)

Reéository object path relative to the
shared folder.

Repository object name.

TP

| repo_“objumodstamﬁ

syncp obj id
syncp_obj_path

- varchar

BIGINT
varchar{2000}

syncp_obj _name

Repository object modification stamp.
(i_content_id for DCTM files; NULL for
folders???) [

Syncplicity object id
Syncplicity object virtual path

p———p

| \Erchar(snr

syncp_obj_n'icdstamp

parent _mapping_id

| BIGINT

l Syncpﬂlicit{/ objem?t name

Syncplicity’ LatestVersionld {64-bit) of
a file; 0 — for folder

FIG. 6A

rambj:_type o ] integer B E - folder, 2 - file -
syncpoint_id BIGINT Syncpoint id from
EMC_SYNC_SYNCPOINTS |
I R —— -+ —_———_‘m————————————l
excluded SMALLINT 0 - included in sync (default); 1 = |
excluded
BIGINT ‘Parent mapping.

US 9,703,800 B1



U.S. Patent Jul. 11, 2017 Sheet 7 of 11 US 9,703,800 B1

EMC_SYNC_SYNCPOINTS

Name Type Comments

syncpoint_id | BIGINT IDENTITY Primary key. The unique id of the sync
point

syncp;oia:\t_name varchar (256) The name of the Syncplicity Folder

mapping_id | BIGINT Mapping that represents shared folder
in repository and corresponding
Syncplicity root folder

re}aository__name varchar(256} | Repository name the shared folder
belongs to.

FIG. 6B

EMC_SYNC REPO SNAPSHOTS

Name Type Comments
“share id | BIGINT | The unigue id of the shared folder.

obf:id | | varchar Repositor;;bject id. {i_chronicle_id for |
DCTM)

obj name | varchar{512) Reposito'ry object name. l

obj_modstamp | varchar | Repository object modification stamp. |
(i content id for DCTM files; NULL for
folders???)

Vi Wbpjririe'iplpbpininiriy

obj parents varchar List of object parents répresented Eyh
their ids
| obj type Integer 1 - folder, 2 - file
FIG. 6C

" EMC_SYNC_SYNCPLICITY_NEWS_FEEDS

Name Type Comments
syncpoint_id BIGINT The unique id of the sync point.
news feed date DATE | The time when news feed were read.

FIG. 6D



US 9,703,800 B1

Sheet 8 of 11

Jul. 11, 2017

U.S. Patent

A
U )se1 91naax
U099t 7 .
U sey
uz9s¢ §59020.10-1504
¥sey
guissanoud
Uyge YSiui4

UoSe

0S¢

Ajuoud
3S3Y38iY yum

S)s€] U o)

V09t

V{se

V9t

0s1
gd
o -
T JjjsE] a1nduX]
| A 14
$$920.4d-150d
AE]
guissanoud
Ysiuidg
V0OSE
0L
0sT
gd
S —

o1t

bic

(LE

Ottt

80t

90¢
5177012

Aiolisodal
W4}
sadueys 199

20t

3ieys ay3 4o

SYSPY 151519

$3Se1 MIU

$S920.4d-344

SA8UBYD
Ajdde 0}
| $(Se1 VNP

S1911JU03
BNOSOY

sagdueys

azAleuy

ssuiddews
auisixe
wiosy ydesd

spalqo piing

3J.YS

JU1 9[npayas

dui1ssad0.d ysiui4

A ipdouAg
W04y
S28Ueyd 120

ey0t

00¢



US 9,703,800 B1

Sheet 9 of 11

Jul. 11, 2017

U.S. Patent

WAL T A i M TN AT TN TN TN TR TN T TN T AT T AT TIT T AT TR TR TR R Ep B N EE M MR EE- WR Ak WE Al i ek e el e ki Al el A b Ak ek i oy e bl He e A e ok s mh

Find deleted objects

7 185QNS SNOINS.I4

oysdeus jusiann

 Joysdeug Juaimn)

Sﬁamcm:m:a?mi

1
A

Z 135qnS JuasIny

104sdeus snoiaalg

T 195QnS UL

1%
ff!{lnl.l,, »
19s saBuey) w m_ nw
9747
“____| Ji3onpay

19jpg |9 welqo| | sepq |4 199040 192 | 3199190 || =3epdn ﬁ%ﬂe anoy |7 1931q0 W | g 19lg0 ppY |V 13lq0| |
] -
S -
e P S
DEY (ezhjeue) OSt (szAjeue) S 11 (szAjeue) 0E Y (azAjeue) . D
Nt JoddeN | J2ddeN o N Jadde N | Joddey rﬁmm
. T s 2
] &
cov O1v 19V Ott L 09t AN Q9t [N A 7 o
) S D D N o D "™ 4

R OME W NT AR SR NF R NE SR M AT N ONF S PF W N N AR SR T ew R R WE W W PN T MR T W o TR N T MR A WE ST LR OH A W i i R p v e e N W T M R ar T T Rt et e b e A i mt ore Pr Tt e rh T chith e e e o A i e e G b da R U P M R W WE o M T R e ok ok R g b e e o

T 1954nS SnojAald

09t

Oiv

=z

jousdeus uasn,

joysdeus snoIndiy




U.S. Patent Jul. 11, 2017 Sheet 10 of 11 US 9,703,800 B1

500
k Take New Snapshot N 502
Retrieve Prior Snapshot P 504
Divide N into subsets
N,, N, etc. 506
Divide P into subsets
] P, P, etc.
Fig. 9 L 2 508
Pair N subsets with P
510
Pair P subsets with N 512
Analyze Pairs 514
Map Objects to
Change Type 516
Combine/Reduce Pairs 518
Store in Hash Table 590



U.S. Patent

514

Jul. 11, 2017

540

Yes

Sheet 11 of 11

Change type = ADD

Change type = UPDATE

Change type = MOVE

No
544
Yes
Different name?
No
548
Different
ancestors?
Yes
550
No
Add ancestor?
Yes
554
Yes
Remove ancestor?
No

Change type = MOVE

Change type = LINK

Fig. 10

US 9,703,800 B1

542

546

552

556

558



US 9,703,800 Bl

1

METHOD AND SYSTEM FOR
CALCULATING CHANGES FOR A LARGE
DATA SE'T

CROSS-REFERENCE TO RELATED
APPLICATIONS

This disclosure relates to U.S. application Ser. No.
13/799,075, filed Mar. 13, 2013, entitled Method and Sys-

tem for Connecting a Content Repository to a File Sharing
Service, the entire disclosure of which 1s incorporated by
reference herein.

TECHNICAL FIELD

This disclosure relates generally to the field of content
sharing and synchronization, and more particularly, to sys-
tems and methods for synchronizing content shared among
multiple computing devices using parallel threading and
queueing of data.

BACKGROUND

Content repositories and enterprise content management
(“ECM”) systems, such as the Documentum® content man-
agement platform, are multi-user environments, where many
users are able to access the same repository at the same time.
In contrast, file sharing and synchromization services, such
as the Syncplicity® platiform, are single-user systems, where
a single user may have multiple computing devices all
sharing the same content, as managed by the file service.
This disparity can create complexities when trying to map
content from a repository to a file sharing service. For
example, since multiple users are able to create/update/
rename/delete files and folders at the same time 1n an ECM
system, keeping track of changes and synchronizing content
in such an environment 1s diflicult and processing intensive.
It would thus be desirable to provide an eflicient mechanism
for keeping track of changes and synchronizing content
when file sharing and synchromization services are inte-
grated with repository services.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s block diagram of an integrated system for
content sharing and synchronization between a single-user
content sharing and synchronization service and a multi-user
content management service.

FI1G. 2 1s a block diagram 1illustrating the connector engine
component of the system of FIG. 1 1n more detail.

FIG. 3 1s a table 1llustrating all possible combinations of
changes to content.

FIG. 4 1s a block diagram 1llustrating the information that
1s tracked by the task scheduler component of FIG. 2.

FIG. 5 1s a table illustrating the failures/collisions that
may occur when executing a task.

FIG. 6A illustrates objects used to identily mappings.

FIG. 6B illustrates objects used to identily syncpoints.

FIG. 6C illustrates objects used to identily snapshots.

FIG. 6D 1llustrates objects used to 1dentily news feeds.

FIG. 7 1s a block diagram illustrating a synchromzation
process.

FIG. 8 1s a block diagram 1llustrating mapping details of
the synchronization process of FIG. 7.

FIG. 9 1s a flow chart illustrating the mapping details

shown in FIG. 8.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 10 1s a flow chart illustrating turther details of the
flow chart shown in FIG. 9.

DETAILED DESCRIPTION

1. Overview

This disclosure describes a connector that 1s configured to
enable sharing and synchronization of content between a
data repository, such as the Documentum® content man-
agement platform, and a file sharing/synchronization ser-
vice, such as the Syncplicity® service. The connector allows
content 1n the repository to be shared and synchronized with
all computing devices that are linked through the file sharing
and synchronization service. Further, changes to content 1n
the repository may be 1dentified and analyzed by comparing
a new snapshot to the prior snapshot. The new snapshot 1s
divided 1nto smaller snapshots, and each smaller snapshot 1s
paired with the prior snapshot to find new and changed
objects. Sumilarly, the prior snapshot 1s divided into smaller
snapshots, and each smaller snapshot 1s paired with the new
snapshot to find deleted objects.

2. Terminology

The following terminology 1s used in this disclosure:

“Syncplicity” 1s a Cloud-based service for synchronizing
and sharing files among computers and mobile devices.

“Orchestration Layer” 1s the computing layer provided by
the Syncplicity service to handle content synchronization
among all sync points and corresponding endpoints.

“Syncplicity Syncpoint”—abbreviated as Syncpoint—is a
virtual root directory where the synchronization process
between the Syncplicity service and other computer devices
starts.

“Syncplicity Endpoint”™—abbreviated as Endpoint—is a
computing device, €.g., a personal computer or a mobile
device.

“Documentum”—abbreviated as DCTM or DCIM
repository—is an enterprise content management platform.

“Connector Engine”—abbreviated as CE—is a platform-
independent framework that 1s the primary processing inter-
face between the DCTM repository and the Syncplicity
service.

“Connector Agent for Documentum”™—abbreviated as
DCTM connector—is a component running inside an Appli-
cation Server configured to publish contents stored 1n Docu-
mentum repositories to the Syncplicity service, and to pro-
vide access to content stored 1n the Documentum repository
in order to coordinate synchronization of content by the
Connector Engine for all computing devices associated with
the same sync point.

“DCTM Publish Folder’—abbreviated as Publish
Folder—is a folder in the Documentum repository whose
contents (directly and indirectly underneath the folder) get
pushed only from the Documentum repository to the Syn-
cplicity service, and not 1n the other direction.

“DCTM Collaboration Folder”—abbreviated as Collabo-
ration Folder—is a folder whose contents (directly and
indirectly underneath the folder) are synchronized from both
directions.

“Shared folder” 1s a folder within a repository selected for
either publishing or collaboration.

“Connector Installer” 1s an installer which deploys the
DCTM connector to an Application Server, associates the
DCTM connector with a DCTM repository, and records the
Syncplicity Administrator account as a service account.

“Connector Administrator” 1s a graphic user interface
(“GUI”) tool which allows the administrator to share a

Publish Folder or a Collaboration Folder in the DCTM

b

b




US 9,703,800 Bl

3

repository, and to populate the recipients list to the respec-
tive Syncpoint. The GUI also sets rules for uploading and
downloading contents.

3. Integrating Synchronization with Content Management

Referring to FIG. 1, an embodiment of a networked
environment 100 1s illustrated that includes a file sharing/
synchronization service 110 (“sharing/sync service™), mul-
tiple content repositories 121, 122, 123, and a connector 130
that provides an interface between the sharing/sync service
and the content repositories. The connector 130 listens for
changes to content on the sharing/sync service 110 or any of
the repositories 121, 122, 123, and coordinates downloads to
the repositories and uploads to the sharing/sync service to
provide synchronized content.

Although three content repositories 121, 122, 123 are
shown, the example 1s merely illustrative as there could be
more or fewer repositories actually coupled to the connector
130. For example, the sharing/sync service 110 may be a
single user web-based service, such as the Syncplicity file
sharing and synchronization service, that allows folders and
files to be identified, shared and synchronized among all
computing devices of the user, without moving the files.
Likewise, the repositories may be any repository service,
such as the Documentum content management platform; the
Sharepoint content management platform; a Next Genera-
tion Information Server (“NGIS™) platform; or a Network
Attached Storage (“NAS”) platform, such as Atmos and
Isilon. The examples described below are based on connect-
ing the Documentum repository platform with the Syncplic-
ity service. However, 1t should be recognized that other
plattorms can be similarly integrated through suitable
instruction programming. Fach repository 121, 122, 123 1s
coupled to the connector 130 via a respective communica-
tions link 131, 132, 133, and the file sharing service 110 1s
coupled to the connector via communication link 111.

The components shown in FIG. 1 may be implemented
with conventional computing devices configured mm well
known manner, e.g., by providing executable 1nstructions to
the computing devices for performing their respective func-
tional operations and for communicating and interacting
with each other.

The connector 130 1s preferably implemented as an
instance of an application server running between the file
sharing service 110 and the repositories 121, 122, 123. The
connector 130 therelfore 1s preferably programmed with
executable mstructions designed to achieve two main objec-
tives: (1) to publish content from the repositories to the file
sharing service so that other computing devices connected to
the file sharing service can share the content; and (11) to
coordinate changes made to content at either the file sharing
service or the repository in order to synchronize the con-
tents.

The connector 130 may be configured through a generic
user interface (UI) 160, or 1in an alternative embodiment, via
a repository-specific UI 170, as further described below. The
connector 130 1s preferably configured through UI 160,
which acts as a connector administrator for configuring
content sharing between the repositories 121, 122, 123 and
the file sharing service 110. The UI 160 i1s configured to
allow users, such as a system administrator, to (1) create
profiles which define the credential mapping from repository
users or groups to a file sharing service login account and
filtering rules (based on object type, format, file size, and so
on) for deciding what kinds of content to synchronize 1n and
out; (1) share a folder with an associated profile; and (i11)
change the password for a credential 1n a file sharing service
account, repository admin account, etc. Since the UI 160 1s

10

15

20

25

30

35

40

45

50

55

60

65

4

mainly driven by administrators based on company policy,
operating in this mode 1s referred to herein as Auto Sharing
or Implicit Sharing.

The connector 130 may also be configured through alter-
native Ul 170, which 1s adapted for a particular reposﬂory
plattorm and 1s suitable to configure the folders in that
repository for sharing. For example, Ul 170 may be a feature
of the Documentum platiorm, e.g., D2 ver. 4.1 and/or xCP
ver. 2.0. Such a client Ul 1s driven by end users based on
their own needs, and thus, operating in this mode 1s referred
to herein as Manual Sharing or Explicit Sharing.

The connector 130 1s configured to include a connector
engine (CE) 140, which 1s a generic, platform-independent
framework that serves as a bridge between the file sharing
service 110 and the repository platforms 121, 122, 123. For
example, CE 140 1s programmed with executable instruc-
tions to (1) upload content from the repository to the file
sharing service; (1) store the synchronization status of each
uploaded file and folder in a persistent store 150; (i11)
monitor content changes on the file sharing service, and (1v)
download changes from the file sharing service to the
repository. The persistent store 150 may be the Apache
Derby relational database management system, which 1s
shipped with the DCTM platiform, or another external data-
base configured by users (such as Oracle or SQL Server, via
setting a proper JDBC driver, URL and credential). The
connector engine 130 1s illustrated in more detail 1n FIG. 2,
described below.

The connector 130 also includes connector agents 141,
142, 143, which are platform-specific modules used by the
CE 140 to communicate with the corresponding repository
plattorms 121, 122, 123 regarding traversing {folders,
retrieving or saving content, monitoring changes, etc. For
example, connector agent 141 may be programmed with
executable mstructions to (1) navigate the folder structure on
the repository platform; (11) upload content from the reposi-
tory to the CE 140; (111) download content from the CE to the
repository; and (1v) record the synchronization status of each
uploaded file and folder in the repository. The synchroniza-
tion status may be used by clients to mark or decorate the
corresponding object on the user interface.

FIG. 2 1llustrates the connector engine 140 1n more detail.
Database functions are typically provided by a centrally-
located, integrated database structure that may be imple-
mented using one or more dedicated processor-based serv-
ers, such as the Derby database, and are used for storing and
retrieving relevant mformation including internal informa-
tion required for synchronmization. For example, 1n FIG. 1,
the database 150 1s shown schematically as being located
internal to the connector 130, but it may also be located
externally, or a combination thereof, depending upon needs
and server allocation. In FIG. 2, the database 150 1s shown
logically as a number of different database functional units
150A-150D, which may be implemented in the single data-
base 150, or in a combination of different databases.

Database functional unit 150A stores profiles which
include connectivity information for the sharing/sync ser-
vice 110 and rules for content publishing. Database func-
tional unit 150A also stores ““shares” which encapsulate a
shared folder 1n one of the content repositories 121, 122, 123
and the corresponding folder 1n the sharing/sync service 110,
as well as the corresponding profiles used to share the
repository folders. Database functional unit 150B stores (1)
mappings, which are pairs of objects from a repository and
the sharing/sync service 110 that are synchronized by the
connector engine 140; (11) conflicts that describe collisions
found by the sharing/sync service when analyzing changes;




US 9,703,800 Bl

S

and (111) tasks which represent changes to be applied by the
connector engine. Database functional unit 150C stores
snapshots of repository objects of each shared folder used to
calculate changes that occur 1n a repository. Database func-
tional unit 150D stores the latest time when the news feeds
were read from the sharing/sync service for each syncpoint.

A key component of the connector engine 140 1s the
synchronizer module 230, which analyzes changes that
occur 1 the repositories 121, 122, 123 (although only
repository 121 1s shown in FIG. 2) and/or the sharing/sync
service 110, and produces a list of synchronization tasks
which describe the changes that the connector engine 140
has to apply.

The synchronizer 230 includes at least three sub-compo-
nents. A graph builder module 234 1s configured to build a
graph of objects from existing mappings stored in the
database 150B. An analyzer module 235 1s configured to
analyze the changes coming from the repositories 121, 122,
123 and/or the sharing/sync service 110 and to process the
changes, and to i1dentily any contlicts. A conflict resolver
module 236 1s configured to resolve the conflicts, if any, and
to persist the unresolved contlicts into the database 203.

The changes that occur 1n the sharing/sync service 110 are
retrieved into the synchronizer 230 via a connector agent
112 and a first unified storage connector interface 231. The
changes that occur 1n the repository 121 are retrieved nto
the synchronizer 230 via a connector agent 141, a changes
calculator 233, and a second unified storage connector
interface 232.

The connector agent 112 for the sharing/sync service 110
provides the interface 231 for the sharing/sync service which
allows objects to be manipulated 1n the cloud, and also
retrieves the list of changes that occurred at a particular
syncpoint. The connector agent 141 for the Documentum
repository 121 provides the mterface 232 that allows users
to (a) retrieve the list of children objects recursively from a
shared folder for calculating changes; (b) evaluate profile
rules for publishing content; and (¢) provide basic operations
for manipulating of objects including creating/deleting/mov-
ing/renaming files and folders, and setting/getting file con-
tent. The changes calculator 233 1s repository-agnostic com-
ponent that can calculate changes that occur 1n a repository
based on the list of objects, that 1s, a comparison of snap-
shots.

The analyzer module 235 accepts sets of changes from the
repositories and/or the sharing/sync service. Each set of
changes describes objects that are added, deleted and/or
updated. The data structure used to describe a single change
should preferably have (1) an object type (file or folder); (11)
a change type (add, delete, update); (111) the source 1D (to
identify the source of changes, e.g., a unique string like
“Syncplicity” or “Documentum” or “NGIS™); (1v) an object
ID; and (v) a parent object ID; and (vi1) a relative or virtual
path.

The table shown on FIG. 3 describes all possible combi-
nations of changes which may occur in shared storage
systems during a graph analysis. Some of the changes may
lead to conflicts (collisions) which the system must be
programmed to resolve.

The shares scheduler module 240 1s responsible for sched-
uling synchromization for each shared folder. The number of
shared folders that the connector engine 140 can process
simultaneously 1s configurable.

The tasks scheduler module 250 schedules and dispatches
tasks across a plurality of executor modules 260 (parallel
tasks), and analyzes the result of task execution. For
instance, if a task was completed successtully, all dependent

10

15

20

25

30

35

40

45

50

55

60

65

6

tasks must be updated so they also can be picked up for
execution, and therefore, the task scheduler 250 tracks each
task execution for completion. The table shown in FIG. 4
represents and describes a typical data structure used to keep
information about each task.

Finally, the executor modules 260 fulfill each task by
applying changes to either the appropriate repository or the
sharing/sync service. FIG. 5 illustrates a number of failures
or collisions that can occur during task execution, for which
a resolution may be programmed. The executor modules 260
also update mapping information and remove completed
tasks from the database.

FIGS. 6A-6D illustrate defined objects used for sharing
and synchronizing contents between the Documentum plat-
form and the Syncplicity sharing/sync service. For example,
FIG. 6A shows objects used to store mappings; FIG. 6B
shows objects used to store syncpoints; FIG. 6C shows
objects used to store snapshots of the repository; and FIG.
6D shows objects used to store news feeds from the Sync-
plicity service.

4. Synchronization Process

FIG. 7 represents a high level illustration of a synchro-
nization process having two distinct sub-processes 300 and
350. In step 302, each share 1s scheduled for synchroniza-
tion. Each share 1s a pair of objects representing a repository
folder and a syncpoint scheduled for synchronization at
some defined frequency. The same share cannot be pro-
cessed by multiple threads simultaneously. Thus, the pro-
cessing ol changes for a share, e.g., change analysis and
generation of tasks, must be completed prior to the start of
the next synchronization cycle for that same share.

Step 304 includes three steps for calculating changes that
can be executed in parallel. In step 304aq, changes are
retrieved from the sharing/sync service. In step 304c,
changes are retrieved from the repository. In step 304H, an
objects graph 1s built from existing mappings stored in the
database.

In step 306, the changes are analyzed by applying the
changes from both the repository and the sharing/sync
service to the objects graph. This will show any conflicts
between changes 1n the corresponding storage locations. IT
collisions are detected, then they are resolved 1n step 308.
Preferably, automatic resolution can be programmed for
most contlicts. I automatic resolution cannot be accom-
plished, then the contlict 1s persisted into the database. Also,
objects that belong to this share should be checked to see 1f
they have resolved collisions, and therefore are ready to be
synchronized 1n this cycle.

In step 310, for each object change which 1s not in
contlict, a synchromization task for applying changes will be
generated and assigned a priority. Some tasks may be
dependent on other tasks. For instance, when adding a new
folder with content, the folder must be synchronized first
before any child object can be synched. In the case where a
non-empty folder i1s deleted, 1t 1s enough to delete only
parent folder object.

In step 312, new tasks are pre-processed. Thus, i1t 1s
determined whether existing uncompleted tasks and new
tasks refer the same objects. If so, then a check for possible
conflicts between the tasks 1s performed or dependencies are
set up between the tasks. If conflicts are found but cannot be
auto-resolved, they are persisted into the database, and all
queued and new tasks having contlicts are deleted. In step
314, pending tasks are persisted into the database 150. In
step 316, the processing of the share via process 300 1s
completed, and the share can be picked up for processing
again once tasks assigned to process 350 are completed.




US 9,703,800 Bl

7

Process 350 1s comprised of a number of parallel threads
350A to 350% for handling task execution 1n parallel. In step
352, individual tasks are retrieved from the database 150 in
priority order and assigned to a thread. Thus, the first or
highest priority task can be assigned to thread 350A, the
second or next highest priority task can be assigned to thread

350B (not shown), and so forth, up to n threads. Each thread
performs 1dentical processing for its assigned task. For

example, 1n thread 350A, steps 360A, 362A and 364A are
performed. In step 360A, the first task in thread 350A 1s
executed. In step 362A, post-processing of the first task
includes evaluating the result of task execution, which may
allect execution of dependent tasks, or 1n the case of failure,
the task may be re-executed. In the final processing step
364A, the synchronization task 1s removed from the table of

uncompleted tasks and 1ts information 1s recorded 1n an audit
trail table.

Other threads are processed 1n the 1dentical manner, e.g.,
tor thread 3507, steps 3607, 3627 and 364~ are performed 1n
the manner just described.

5. Calculating and Analyzing Changes

The calculation of changes that occur 1 a particular
shared folder of a specific repository 1s based on a compari-
son of the previous snapshot P taken in the previous syn-
chronization cycle with the new snapshot N taken in the
current synchronization cycle. A snapshot 1s the set of all
children of a shared repository folder taken recursively. The
connector agent for the repository holds the snapshot of all
chuldren objects 1n two hash tables with the unique object
ID, one for files and one for folders. After the comparison,
the new snapshot N will replace the previous snapshot P.

The data stored for each object includes:

1. Object 1d;

2. Object name;

3. List of object parents;

4. Object modification stamp; and

5. Object type (file or folder).

In order to make the comparison ol snapshots more
ellicient, a MapReduce programming model will be applied
(separately for files and folders) to process the large amount
of data 1n parallel. More specifically, a Map( ) procedure 1s
run to perform filtering and sorting operations, then a
Reduce( ) procedure 1s run to perform a summary operation.
The application of the MapReduce model 1s illustrated 1n the
block diagram of FIG. 8 as well as by process 500 1n the flow
chart of FIG. 9.

In step 302, a new snapshot N of the repository 1s taken
and placed mto temporary storage 410. In step 504, the
previous snapshot P 1s retrieved from the database and
placed into temporary storage 460.

In step 506, the new snapshot N 1n storage 410 1s mapped
or divided into a number of smaller snapshots N,, N, .. . N,
using a map function 420, each smaller snapshot having a
subset of objects. For example, 1f the original snapshot has
1000 files, 1t may be mapped into 10 snapshots having 100
objects 1n each. Thus, in FIG. 8, smaller snapshot N, 1s
placed mto storage 411, smaller snapshot N, 1s placed into
storage 412, and so on. Likewise, in step 308, the previous
snapshot P 1s mapped or divided into a number of smaller
snapshots P,, P, . . . P, using the map function 420, each
smaller snapshot having a subset of objects. For example, 1n
FIG. 8, smaller snapshot P, 1s placed into storage 461,
smaller snapshot P, i1s placed into storage 462, and so on.

In step 510, each smaller subset of the new snapshot N,
N, etc., 1s patred with the previous snapshot P to form a first

set of pairs (N, P), (N,, P) ... (N,, P). Similarly, 1in step 512,

10

15

20

25

30

35

40

45

50

55

60

65

8

cach smaller subset of the previous snapshot P,, P,, etc., 1s
paired with the new snapshot N to form a second set of pairs
(P,, N), (P,, N) ... (P, N).

In step 514, each snapshot pair 1s analyzed for changes 1n
parallel using a map function 430. In step 516, after deter-
mining the change to each object 1n the analysis step 514, the
map function 430 generates a data pair having the object and
the change type applied to that object. For example, as
shown 1 FIG. 8, the map function 430 determines that
Object A was added, Object B was linked, Object C was
moved, Object D was updated, and Objects E, F and G were
deleted.

In step 518, a reducer tunction 440 1s applied to the
object/change type pairs to combine or reduce all such pairs
into a single hash table 450 that represents the set of
changes, where the object ID 1s a key to the hash table and
a l1st of changes 1s the value corresponding to the key. In step
520, the hash table 450 1s stored into the database.

Referring to FIG. 10, the analysis step 514 1s 1llustrated 1n
more detail. The analysis step 514 produces pairs that
identify the object and its change type. In general, all of the
first set of pairs (N, P), (N,, P) ... (N,, P) are processed to
find new and changed objects, whereas all of the second set
of pairs (P,, N), (P,, N) . .. (P,, N) are processed to find
deleted objects. There can be multiple pairs of changes
generated for a single object. For instance, an object might
be renamed and then moved to another location.

In step 540, 1t an object tfrom subset N, 1s not found 1n the
previous snapshot P based on the object ID, then 1n step 542,
it 1s 1dentified as a new object and the change type 1s ADD.

If an object from subset N, 1s found in the previous
snapshot P 1n step 540, and 1t has a different name 1n step 544
as compared to the same object 1 snapshot P, then the
change type 1s identified as UPDATE 1n step 346. 11 the
object does not have a diflerent name 1n step 344, then
consider whether the object has one or more different
ancestors 1n step 348. If so, then consider whether an
ancestor has been added 1n step 350. If not, then the change
type 1s 1dentified as MOVE 1n step 532. If an ancestor has
not been added in step 550, then consider whether an
ancestor has been removed 1n step 554. If so, then the change
type 1s identified as MOVE 1n step 556. If not, then the
change type 1s identified as LINK 1n step 558.

The process to find deleted objects from the second set of
pairs (P,, N), (P,, N) ... (P, N)i1s simple—if an object from
subset P, 1s not found in snapshot N based on 1ts object 1D,
then the object was deleted.

The calculation of changes in the file sharing and syn-
chronization system 1s simple when using the Syncplicity
plattorm. The connector agent returns a news feed which
describes events that occurred after the specified date and
recorded during the latest synchronization cycle. Since mul-
tiple events may happen with the same object, they need to
be filtered as follows: (1) if the first event for the object was
added, leave only the added event; (11) 1f the latest event for
the object was deleted, leave only deleted event; (111) 1f an
object was edited multiple times, leave only the latest edited
event; and (1v) 1f an object was modified with any two of the
following three actions—move, edit, rename and edit—both
cvents must be processed. The result 1s a set of added,
deleted, updated, moved and renamed events that need to be
synchronized from the sharing/sync service.

If a repository object 1s mapped to multiple objects within
the same shared folder 1n the sharing/sync service, then the
changes made 1n the sharing/sync service to one of the
object’s representations will be synched back to all other
representations during the next synchronization cycle.




US 9,703,800 Bl

9

After analyzing and calculating changes, they will be
applied to the objects graph with the following exceptions:
(1) If object to be deleted 1s not 1n the graph, i1gnore the
change; (11) If object to be added 1s already 1n the graph,
ignore the change; (111) If object to be updated has the same
content version as in the database, ignore the change.
However, since the same repository object may be mapped
onto multiple instances in the sharing/sync service within
the same Share (1.e., that object 1s linked to multiple loca-
tions 1n repository), all mappings need to be checked
because some of them might not be updated (for 1nstance,
one of object instances was changed in the sharing/sync
service but other mstances were not updated since from the
perspective of the sharing/sync service they are diflerent
objects); (1v) If the object to be updated has the same
ancestors, 1gnore the change; and (v) If the object to be
updated has the same name, 1gnore the change.

There are two primary reasons for the above exceptions:
(1) an object was updated in the repository during the
previous sync cycle, but i the next sync cycle, during the
comparison of snapshots, that change would be discovered
and returned as a new change; however, 1t does not need to
be synched back to the original storage; and (2) 1n the case
where the snapshot or news feed date 1s not saved, in the
next synch cycle, the same events will be returned again but
should not be re-synched.

The subject matter described herein may be computer-
implemented 1n a suitable system by providing computer-
executable mstructions stored on a non-transitory computer-
readable medium. A computer-readable medium may
include any medium that participates 1n providing instruc-
tions to one or more processors for execution. Such a
medium may take many forms including, but not limited to,
nonvolatile, volatile, and transmission media. Nonvolatile
media includes, for example, flash memory, or optical or
magnetic disks. Volatile media includes static or dynamic
memory, such as cache memory or RAM. Transmission
media includes coaxial cables, copper wire, fiber optic lines,
and wires arranged 1n a bus. Transmission media can also
take the form of electromagnetic energy, radio frequency
signals, acoustic or light waves, such as those generated
during radio wave and infrared data communications.

Computer software products may be written 1 any of

various suitable programming languages, such as C, C++,
C#, Pascal, Fortran, Perl, Matlab (from MathWorks), SAS,

SPSS, JavaScript, AJAX, Java, SQL, and XQuery. A com-
puter soitware product may be an independent application
with data mput and data display modules. Alternatively,
computer software products may be classes that are nstan-
tiated as distributed objects, or component software such as
Java Beans or Enterprise Java Beans (both by Oracle Cor-
poration). In one embodiment, the subject matter described
herein 1s embodied as a computer program product which
stores 1nstructions, such as computer code, that when
executed by a computer cause the computer to perform the
processes and/or techniques described below.

While one or more implementations have been described
by way of example and 1n terms of the specific embodi-
ments, 1t 1s to be understood that one or more 1implementa-
tions are not limited to the disclosed embodiments. To the
contrary, 1t 1s intended to cover various modifications and
similar arrangements as would be apparent to those skilled
in the art. Therefore, the scope of the appended claims
should be accorded the broadest interpretation so as to
encompass all such modifications and similar arrangements.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

What 1s claimed 1s:

1. A method for sharing and synchronizing changed
content between a content repository and a single-user file
sharing service, comprising;:

identifying, with a connector agent coupled between a

content repository and a single-user file sharing service,
a plurality of mappings corresponding to a plurality of
objects that are synchronized between the content
repository and the single-user file sharing service, each
of the plurality of mappings representing a pairing of an
object from the content repository with a corresponding
object from the single-user file sharing service;
analyzing, with the connector agent in a plurality of
parallel threads, changes to at least some of the plural-
ity of objects shared between the content repository and
the single-user file sharing service;
generating a plurality of tasks for synchronizing changes
to the at least some of the plurality of objects shared
between the content repository and the single-user file
sharing service; and

executing the plurality of tasks 1n parallel in a plurality of

task engines.

2. The method of claim 1, wherein analyzing changes to
at least some of the plurality of objects shared between the
content repository and the single-user file sharing service
COmMprises:

comparing, with the connector agent, a new snapshot of

the content repository to a prior snapshot of the content
repository; and

identifying, with the connector agent, based on the com-

paring step, the at least some of the plurality of objects
that are changed and a corresponding type of change
for each changed object.

3. The method of claim 2, wherein comparing the new
snapshot of the content repository to the prior snapshot of
the content repository comprises:

dividing the new snapshot into a plurality of smaller new

snapshots;

pairing each of the plurality of smaller new snapshots

with the prior snapshot;

comparing the pairs of smaller new snapshots with the

prior snapshot to identify new and changed objects;
dividing the prior snapshot into a plurality of smaller prior
snapshots;

pairing e¢ach of the plurality of smaller prior snapshots

with the new snapshot; and

comparing the pairs of smaller prior snapshots with the

new snapshot to identify deleted objects.

4. The method of claim 3, wherein comparing the pairs of
smaller new snapshots with the prior snapshot comprises:
identifying a corresponding change type as adding an object
if the object 1s absent from the prior snapshot.

5. The method of claim 3, wherein comparing the pairs of
smaller new snapshots with the prior snapshot comprises:
identifving a corresponding change type as updating an
object 11 the object 1s 1n the prior snapshot and has a difierent
object name 1n the prior snapshot from the corresponding
object name 1n a smaller new snapshot.

6. The method of claim 3, wherein comparing the pairs of
smaller new snapshots with the prior snapshot comprises:
identifying a corresponding change type as moving an object
if the object has an ancestor 1n a smaller new snapshot that
the object lacks in the prior snapshot without the ancestor
being added in the new smaller snapshot.

7. The method of claim 3, wherein comparing the pairs of
smaller new snapshots with the prior snapshot comprises:




US 9,703,800 Bl

11

identifying a corresponding change type as linking an object
if the object 1s 1 the prior snapshot and has added an
ancestor.

8. The method of claim 3, wherein comparing the pairs of
smaller new snapshots with the prior snapshot comprises:
identifying a corresponding change type as deleting an
object 1f the object 1s 1n a smaller prior snapshot and absent
from the new snapshot.

9. A computer program product, comprising a non-tran-
sitory computer-readable storage medium encoded with
executable 1nstructions for sharing and synchronizing
changed content between a content repository and a single-
user file sharing service, the mstructions comprising:

identifying, with a connector agent coupled between a

content repository and a single-user file sharing service,

a plurality of mappings corresponding to a plurality of
objects that are synchronized between the content
repository and the single-user file sharing service, each
of the plurality of mappings representing a pairing of an
object from the content repository with a corresponding
object from the single-user file sharing service;

analyzing, with the connector agent i a plurality of
parallel threads, changes to at least some of the plural-
ity of objects shared between the content repository and
the single-user file sharing service;

generating a plurality of tasks for synchronizing changes

to the at least some of the plurality of objects shared
between the content repository and the single-user file
sharing service; and

executing the plurality of tasks in parallel 1n a plurality of

task engines.

10. The computer program product of claim 9, wherein
analyzing changes to at least some of the plurality of objects
shared between the content repository and the single-user
file sharing service comprises:

comparing, with the connector agent, a new snapshot of

the content repository to a prior snapshot of the content
repository; and

identifying, with the connector agent, based on the com-

paring step, the at least some of the plurality of objects
that are changed and a corresponding type of change
for each changed object.

11. The computer program product of claim 10, wherein
comparing the new snapshot of the content repository to the
prior snapshot of the content repository comprises:

dividing the new snapshot into a plurality of smaller new

snapshots;

pairing each of the plurality of smaller new snapshots

with the prior snapshot;

comparing the pairs of smaller new snapshots with the

prior snapshot to identity new and changed objects;
dividing the prior snapshot into a plurality of smaller prior
snapshots;

pairing each of the plurality of smaller prior snapshots

with the new snapshot; and

comparing the pairs of smaller prior snapshots with the

new snapshot to identify deleted objects.

12. The computer program product of claim 11, wherein
comparing the pairs of smaller new snapshots with the prior
snapshot comprises: identilying a corresponding change
type as adding an object 1f the object 1s absent from the prior
snapshot.

13. The computer program product of claim 11, wherein
comparing the pairs of smaller new snapshots with the prior
snapshot comprises: identifying a corresponding change
type as updating an object 1f the object 1s 1 the prior

5

10

15

20

25

30

35

40

45

50

55

60

65

12

snapshot and has a diflerent object name in the prior
snapshot from the corresponding object name 1n a smaller
new snapshot.

14. The computer program product of claim 11, wherein
comparing the pairs of smaller new snapshots with the prior
snapshot comprises: 1dentifying a corresponding change
type as moving an object 1f the object has an ancestor 1n a
smaller new snapshot that the object lacks in the prior
snapshot without the ancestor being added in the new
smaller snapshot.

15. The computer program product of claim 11, wherein
comparing the pairs of smaller new snapshots with the prior
snapshot comprises: 1dentifying a corresponding change
type as linking an object 11 the object 1s 1n the prior snapshot
and has added an ancestor.

16. The computer program product of claim 11, wherein
comparing the pairs of smaller new snapshots with the prior
snapshot comprises: 1dentifying a corresponding change
type as deleting an object 1f the object 1s 1n the smaller prior
snapshot and absent from the new snapshot.

17. A system for sharing and synchromizing changed
content between a content repository and a single-user file
sharing service, the system comprising:

a processor-based application executed on a computer and

configured to:

identily, with a connector agent coupled between a
content repository and a single-user file sharing
service, a plurality of mappings corresponding to a
plurality of objects that are synchronized between
the content repository and the single-user file sharing
service, each of the plurality of mappings represent-
ing a pairing ol an object from the content repository
with a corresponding object from the single-user file
sharing service;

analyze, with the connector agent in a plurality of
parallel threads, changes to at least some of the
plurality of objects shared between the content
repository and the single-user file sharing service;

generate a plurality of tasks for synchronizing changes
to the at least some of the plurality of objects shared
between the content repository and the single-user
file sharing service; and

execute the plurality of tasks in parallel 1n a plurality of
task engines.

18. The system of claim 17, wherein analyzing changes to
at least some of the plurality of objects shared between the
content repository and the single-user file sharing service
COmprises:

comparing a new snapshot of the content repository to a

prior snapshot of the content repository; and
identitying, based on the comparing step, the at least some

of the plurality of objects that are changed and a

corresponding type of change for each changed object.

19. The system of claim 17, wherein comparing the new
snapshot of the content repository to the prior snapshot of
the content repository comprises:

dividing the new snapshot into a plurality of smaller new

snapshots;

pairing each of the plurality of smaller new snapshots

with the prior snapshot;

comparing the pairs of smaller new snapshots with the

prior snapshot to identily new and changed objects;
dividing the prior snapshot into a plurality of smaller prior
snapshots;

pair each of the plurality of smaller prior snapshots with

the new snapshot; and




US 9,703,800 Bl

13

comparing the pairs of smaller prior snapshots with the
new snapshot to identify deleted objects.

20. The system of claim 17, wherein the processor-based

application 1s further configured to:

save the at least some of the plurality of objects and a
corresponding change type for each changed object into
a hash table; and

synchronize the at least some of the plurality of objects 1n
at least one of the content repository and the single-user
file sharing service.

¥ o # ¥ ¥

10

14



	Front Page
	Drawings
	Specification
	Claims

