US009703582B1

12 United States Patent 10) Patent No.: US 9,703,582 B1

Chigurapati et al. 45) Date of Patent: Jul. 11, 2017
(54) SHARE ACCESS OF ALLOCATED STORAGE 7,539,841 B2* 5/2009 Rawson, III GOGF 1/3275
SPACE VIA IN-MEMORY FILE SYSTEM 709/205
BETWEEN VIRTUAL MACHINES 7,716,446 B1* 5/2010 Chen GO6F 9/5016
711/170
(75) Inventors: Chakravarthi S. Chigurapati, Palo 7,886,115 B2* 2/2011 Sanvido GUOF i’fﬁ i gi
Alto, CA (US); Praveen Madhay, San 8,627,112 B2* 1/2014 Chaturvedi GOGF 21/53
Jose, CA (US); Sebastian Sapa, 713/193
Vancouver (CA); Anirban Sinha, 8,631,066 B2* 1/2014 Lim .oovooveeece... GOGF 9/5077
Vancouver (CA); Travis Frederick 709/203
Brown, New Westminister (CA); 8,826,278 B2* 9/2014 Chenc............ GOGF 9/5016
Duncan Stuart Ritchie, Bowen Island 718/1
(CA) 8,949,295 B2* 2/2015 McDougall GO6F 12/023
707/813
(73) Assignee: Tellabs Operations, Inc., Naperville, 9,229,757 B2* 1/2016 Ben-Yehuda GOOF 12/0802
IL (US) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PURI ICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 718 days. 1 Hu, Dirk Cordel and Christoph Meinel; Virtual Machine Man-

(21) Appl. No.: 13/607,218 agement for Tele-Lab “I'T-Security” Server; IEEE 2005; 6 pages.™
ppl. No.: .

Primary Examiner — Benjamin Wu

(22) Filed: Sep. 7, 2012 (74) Attorney, Agent, or Firm — James M. Wu; JW

(Under 37 CFR 1.47)

Lawgroup
(51) Int. CL
GOGF 9/455 (2006.01) (57) ABSTRACT
(52) U.S. CL A method or network system able to efliciently redistribute
CPC ... GO6F 9/45533 (2013.01); GOOF 9/45558 information, data, and/or context between virtual machines
(2013.01); GOOF 2009/45579 (2013.01) (“VMs”) using an m-memory file system (“IMFS”) 1s dis-
(58) Field of Classification Search closed. After requesting memory access by an application
CPC GO6F 9/45533; GO6F 9/4558; GO6F program, a process of VM using IMES 1s able to forward the
2009/45579 memory allocation request from a VM kernel operating
See application file for complete search history. under a VM environment to an emulator. The emulator,
which operates between the VM kernel and the hypervisor,
(56) References Cited again redirects the memory allocation request to the hyper-

visor for storage allocation. The hypervisor subsequently

J.5. PALENT DOCUMENTS allocates at least a portion of storage space 1n the IMFS 1n

6,496,847 B1* 12/2002 Bugnion et al 718/1 accordance with the memory allocation request.
; ! R SRR
7,500,048 B1* 3/2009 Venkitachalam GO6F 12/109
711/147 17 Claims, 7 Drawing Sheets
400 ..
.
202 | § 06
Application program ' Application program |
304 ¢ e O gy DR s
T fREQE T i REQ IS
TR e R T Y
S VFS o ~1 1 VFS '
212 i VM E 216 i .____E____. VM
. Kernst oy . Kemel v
E 312 | 412
: E __-;l.___l : " R [: E ____1___
c LT NI S 418 1. T
| | RRM | 5 ! xJ:RRMi
| Emuiator ; | v bmuiator i
222 1 | ST 226 | X
- : 320 1 S 420 ¢
o T A
_____ v 36~y Hypervisor :
oo LBH0cRIOr - Mem s .
124 5 Comgmt e
LT oy
7 oo Addr 230 Hardware
330 220

e o = e = e e o e e e e = e = = = o = e o = e o e e e e = e o = = = = = = e = = = =

US 9,703,582 Bl

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
9,501,394 B2* 11/2016 Koh GO6F 12/023
2009/0019437 Al1* 1/2009 Fengetal.coooooeveinnnin. 718/1
2009/0144510 Al1* 6/2009 Wibling et al. 711/147
2010/0217916 Al* 8/2010 Gaooeeevvenneee, GO6F 12/109
711/6
2010/0250908 Al1* 9/2010 Amann etal. 713/1
2010/0274947 Al1* 10/2010 Ohta GO6F 9/45558
711/6
2010/0306771 Al1* 12/2010 Kamay GO6F 9/45558
718/1
2011/0061045 Al* 3/2011 Phillips GO6F 9/45541
717/173
2011/0119669 Al1* 5/2011 McRae GOO6F 9/45558
718/1
2011/0246767 Al* 10/2011 Chaturved: et al. 713/164
2012/0017209 Al1* 1/2012 Ben-Yehuda GO6F 9/45558
718/1
2012/0323552 Al1* 12/2012 Lau GO6F 9/45504
703/26
2013/0326179 Al1* 12/2013 Tswurkin et al. 711/163
2013/0326508 Al1* 12/2013 Tsukinoooeeeeinel. GO6F 9/455
718/1

* cited by examiner

US 9,703,582 B1

: - > .
- r -
- -
. T . .
- -
w = Lo ma . .
L m e o a, L T -~)
e - . " ..
P . LT o 7 - .
- - " . L
L] 1 . -
ot n .-__... -
. - - .
M L .

T - . - - Fl r.._. u..;.
. - ¢ . . . B 2
.- L . ., - -
.,..... . - . N .
- -.r..r_.r..r_.r..r_.r..r_.r..r_.r..r_.r..r_.r..r_.r..r_.r.u ... _... o v e ...
. ‘ “ r . d “ 1 1
) i 1 . r) 1 :
Iy ' !
! i . ‘ 1 ! i
\ i . . p : RS . . 1 .
F] - i - Ll 1 N
1 -] .
‘ “ o . i . ..__... 1 -y . ’ — " !
1 = R] ") r
r] - 1
- - < 1 i . 1 ‘e
..__.. ' “ 1 ' ._.__ 1 " = ‘.
. l.l.l.l.l.l.l.-l.l.l.l.l.l....l.l.l.l.l.l.__ ”_. —— r . r...|
. . L .
._.._. k.-_.\\ ..- ..‘ .1.1.1 ..._.._r .
R . o = T e - *
.. [. "_-....... it
:) .) : . - '
; - , - W - :
' d n o~ 1] |
. ._a._... o . v by e L
1 q.q q1.11...r1 R U U U P X L T T E T - - [} !
i 1. . [] § P L |] - 3 L]
H.l.-..l.-..-..-..l.-..l.-..-..l.-..-..-..l.-..l.-.._ | . 1 . r . p . N
! 1 _ ' ; ™, H 1 i b 1
. " . .
" q “ ' 1 . tla .." { _”..._f i e _ n
. . . fl I - [} i v i i] .- .
et e .- . .= . === . : ! t " t : LHE k., k Tu -
- MOD-d .l S A P PPN N .
i] r . i ' i T, 1 ._...._._.
" L] “. -;.. .‘ ..-_-_. ". i nu..l..l..l.l—.- ..-...luJ..l. " - -
. 1 | LY ; . v A _ b .
' q-...-...-...-...-...-....-...-...-...-...-...-...-...-...-...-...-...-...-.- \ - F - | I Il e g o Iy | r -
R | 1 y h.__ 4 B Y I | - ".
U . i I - : k - 1
R i e : , k
i) ! LY ; y - A ...
. . i % ‘ k . . .
: \ - : , i , v INYIN J
,_ T -, T I -_... .__ » ._
- ¥ .JJ... T _| g . k 4 ’ :
; A § . 1 L A » . 1
E _..... _r. ._. T __"._ N » r
: __.. R T .'JJJIJJJJLIJJIJJJJJI_. \ . . 1 :
L] » I 1 L] r
H 4 - .
. "] .] 3 e i .
-_ .J [} . “' 3 b .-.-....
.] . . b . F ot
.... LY] . . . ke e e e e e e . .. H t . __..
P ' . . b : b r 1
.._.__ n] . ”' . ' 4 ..._.
., \ ! ' ' r . ¢
. i 1] .r F -._
I ._._ . ___ —-———— e __ —— e — w._......u.ln.. L
1 ... L] .._.,....r ! _.
. . L . .
oo L " "~ 2 "
a b T " L
L] L 3 .__. - .
...__ - - . L . ’ 1
t LY o ! .__. h .
P - - ___.
o . r "

-- - - - -
.... - .-_..n - A
L L] l.}.lf
]] .
.JJ '—_ e
L
b]
._,.“. _-_
" ﬂ_
kL]
L] 1

Sheet 1 of 7

ks
i
o

._.__ ..‘ ..“.
. -] -
R U U U U : : . L w !) 1Ty
R TR A & x R
R Er e a s e ' ! Vo
B o i N ! T
| S | i]
0 K i ; .
! ‘ .
b M " f \
W Ly ot ! i
] | i '
"r | " ...p] __
]
H
]

r
1
'
1
'
1
'
1
'
1
'
1
'
1
'
1
'
1
'
1
'
1
'
1
'
1
'
V=
- -
LS
-
-

i

L
R A

b

n
1
n

POl W Y

A EE————

SEUEEEREREN

-.-I'1-|-|-|-|-|1

-

-.-I'-|-|-|-|-|1

T R e m A A =

Jul. 11, 2017
=
3

U.S. Patent

H —m A AR A owET

ﬂ. ...
-_..q.__.f__.. n

.
k]
bt
a
& T

. P e ——
By iy P

3 TR AR
r - . l..!.ll.. P N uh
. - H L :i.... o .T
L - -y

.‘.._....l.. r ._.-“.rh.-..h...qL-“._.H'F..L."
LR IE AN e T

K b .—.-.n_.....-.l.__.l_f........l—._.r

. s U L%
te .“__..“..L-U_“._r ...nL-“_._.'

e oa a a

P

?""""""l"'"""'""

-

LR Ol RO

1 T = r

-- Ll
-...(. - J—. -.W.
- \
™ - - l.‘..lllllllllllllllll__ .__... ._.._._.r
.....,_.. lir j : , ...__ .
5 1 i e b " N
........ ! H . ' .,.; 1"
n LA - H .-IIII.“I.IIII .r...“r.F
l-..-. ..-1. _| - . ' .l_-l.l.“. ' o l..‘
Y ; . ._“ - “' LT .“ 1
) . i ' r . ' "
-.._r . i » i .__. 1 .1
- o i . . X * - i = ¥
. i H = : i} '
. . ; ' : E.2 . T i e .
... . i ol | S 1 .
. H . R . .
- . L e ; “ S
R ! i oA o
: - - i il b
el Cmy L et i "__ ﬂ.ll....lﬂ..v...._ .
: - - . - i -... .1I.1|.1|.1._.-
. - i i Hi
I I R e =" i ; i
I NP i " i
LS b "
Cmea -

U.S. Patent Jul. 11, 2017 Sheet 2 of 7 US 9,703,582 B1

-
+
*
+*
*
+
+*
*
*
+*
*
+
+*
*
+
+*
+
*
+*
*
+
+*
*
*
+*
+
*
+*
*
+
+*
+
*
+*

L]
+
+*
*
+
+*
+
*
+*
*
+
+*
+
*
+*
+
*
+*
*
+
+*
+
*
+*
*
+
+*
*
*
+*
+
*
+*
*

L R N

- Application
- program n
' 206
GGuest
Kernel n

Application | Application
program | | program ||
202 204

Guest Guest

Kemel | . i Kernel |l

+ b+
I N e R e I N N I

o

I I I I T N I N
- E EEE EEEEEEErEEEErr e EEEEEEEEE T

R N R R R I o I I N R I I N I B N I)

]
l
|

Emulator i
- 224

Emulator |
222

- Emulator n

T W WO EC S W W W WC W W W W W W W W WE W WG W OWE W W WS W W W W W W W WE W W W W W W W W W W W W W W W wr wr wr o wr owr
M OEr N B B B B - B B - B B - B B B B B B B B B B B - B B B B B B B B B B B B B B B B B B mr B mr o mr o mr o mr o mr o mr o mr dh B Er mr B B B B B B B B B B B B B B B B mr e a o owr w8

HAE A
N R R R N N R R R N Ry
S

L}
e e e e e e e e T T T T N
4

L3] .]
t, ' b
t, i 1 I
L3 1]]
t,] -]
t, 1 I
t 1 1 I
t, i . : n b
L] M]
t, 1 : I
t, ' 1 b
t, i . I
L3] "]
t, 1 b
t, ' 1 I
t, 1 . I
t,] .]
t, : 1 I
t, 1 1 I
t, 1 b
1‘. . ."- mr. ' W m- A ™ = . l
t, - . . I
t,] ']
t, 1 . I
t . - iyl gl . '
t, r ' b
t, ' ' I
t, i . I
t,]]
t, . I
t, 1 ' I
t, i b
-+ -+ -+ +++f++++++L+++++++++++++++++-I--I--I-+-I--I-+-I--I--I--I--I-+-I--I--I--I--I--I--I--I--I--I-+-I-++++++++++++++++++++++++++++ £ I S O T T O S S S T S O T S O T T T]
t, + . . 1 I
l"- ' * 1 . . . 1 i
t, 1 + . i] - 1 I
+. b * 1 l
t, : + . — 1, b
t ' + 1 I
. ' e e ol ¢ ¢ N N e N N ¢ e N e e N e e B e e M e e M e e M e e M e e M e e M e e M e e M e e M e e M e e M e e M e e M e e M e e N e e M e e M e e M e e M e e M e e M e e M e e M e e M M M M e M M e e e b
+: . ' b
t, - . I
t, 1 ' I
t, 1 . b
t, . . I
t r I
t, 1 : b
t, 1 K i T I
t, . : e I : : b
l"- " [] . . i
t, 1 ' ; . I
t, 1 Sriviriviviririvi I
t, . . b
t . I
+ B e A
+: 1 b
t, | I
t 1]
. '

t, 1 b
t, b I
t,) I
t, - b
t, h, I
t, I
+ "'.,]
1 iy b
- E E E E EEEEEEEE R EE R EE R EE R EE R EEEEEEEEEEEEEmdEE®EE®EE®EEEmESmmEmm=-

210 VIMFS

U.S. Patent Jul. 11, 2017 Sheet 3 of 7 US 9,703,582 B1

eale e S U U e R e S R S S S S S S S S S S S R S S S

+] -
X : e
L : : : :- :
T * : ; . 4 :
T --: | - - Application
Lo rmmmmsmmmpmemmmmmes _) : ’ :
. - 1 ' ' :
* ' 1 1 1 ‘
1. v v ' ' :
* ') 1 1 ; p
*- : '- ' . programn
* ' i 1 [.
' " i . i . . ; .
; -. : :
" + k 1 1 -
e 1, ’. ' i . 0
Y i bl bl ol Y . ' ' E (;
-+ . b v . : T
+ k. k L 1 1
v K b I 1 1
" " b I ' '
+ : H ' i

e T W
318 | — Y EE - Kernel n

1] 1
1 * i 1 .
| ¥ i 1 1 ‘
L] + 1 1 ' i
. . i + ' . '
: : : : - . _ : ;
' ! L e ——————— ' ' . : . : : |
222 ; '] - BEmulatorn
: : : : 3:2 : : :
A i) !5. . i ' : . :

.'l L] +) { 1 '

" 1 b | S S ' A iy

L L]] 1 1

=1 + ! !

1 + 1 1

1 + 1

324 - mgmt | 230

L : _
:'--.--d-. d - i-r-
R . o ; ! .
J'-'."'r : . -I: .E : x | .

Pagll B R, | ™ rdwar
.-'III' : : __'-_-u-.__ -“._._.--I'j.' L *********************************** . . ; .
' : N |

i . h |
| | 1 . h B
) L]
L]
L]
| ingringtingtingtingsimgtingst
L]

U.S. Patent Jul. 11, 2017 Sheet 4 of 7 US 9,703,582 B1

OB B B B BN N B BN B BN BN BN BN BN BN BN BN BN BN BN B BN BN M B B B B B M B B B B B B B NN m

. m ek e E LR W edomoam .
e - =

-

Emulator | | Emulator

- alloctOr | Mem e

"""

U.S. Patent Jul. 11, 2017 Sheet 5 of 7 US 9,703,582 B1

S
" -y
'\-\.‘H
-
b
.
1\' -
o T o e o e e e o e e e e o e e o e e o e e e o o e e e e e e e e o e e o e e e e -
1, .
L]
1
L]
. . 1
L]
1]
------ .
et —om e e e e 1 ¥
- . - .
R o " 'I'
- - .
L] : 1 L] 3
L] .'_ﬂ'
LY
- L] -l"f
" l-'-""'--a. ;.—-—"---‘..) L
- At e m S r s E - - - A A A= 1 __."
et 1 L
T [-
1 -
-
1 -
L]
1

{
e e i e P P B P
3
)
1
b
1
1
|
!
'
L]
b
%
|...i

: '
1 1,
'.
:]
1
. 1.
..
. 1,
L]
. .
: . : '
. ' 1
] 1 f' LI
1 ' ’ 1,
. . ‘ I '.
T ! / 1
. q l 1 _l' ..
. 4 1 : o - :
: : :
: 1 L]
\ : : ' '
L] i EEEEEEEEEEEEE R EE.E EE R E mm mm omom mm meoml 1
At ! v
" 1 .
“H._ '] :
..__‘_-.*:_ h\‘* 1:
. 1
. ", 1.
1 L LI
1 \\\ 1,
'.
. X v
1
' .
] ""\.“\‘ :
q .
1
. n v
q o 1
‘ l\I\.-' .u
4 T, 1.
L | H-.. '
1 1
i L :
1 x, 1.
: ~ :
I-' LY LI
i * 1.
- []
i .
- [, S . 1
i it e o T o o o o o e . .
I-. ‘ :. .. 50 6
i 1 . 1
.
i 1 : ' -
i 1 . 1 |
e T M Er Er B B Er B B B B B B B Er B B B B Er B B Er Er B - o o = L] []
i ' > v o
:- : m :) /
I: : . . e m :. :.) ‘.‘l‘.
p 3 L I
i et bbb bt A . g
1 [v - .a-...
1] - .
i 1 m e m r 1.
2‘2 2. I:: ‘ “ . : :.
. 1) b 'y
iy - 1 1 '
i b m e s s e s s s s s s sy s *. :
i .
- i (5
[i by -
. i N
L | ;
2 A "
i .
Nk v
. i .
. - 1
‘-.-;- "
i 1
e L]
i '
.. . L]
:—-- 5ﬁ'--'---
et 1
i ’
- 1
i
e 1
i asmmmsmasmssssmmsssmbEamsssssmmm=n -
- + 1
‘ ~ 3 ! . -
- * 1
: 508 -nem yiervisor -
1 + . . . 1
i . . . ' ¥ .
- * 1
: ,-, : ' :
i . * 1 !
) 1 + 1
i 1 . 1
- + n‘] n'] 1
I-' L * 1 1 1
- + 1
i \““5__& Himmm ' '
. - bt l‘. . 1
:- “ FEemem : .
r + 1
: 4 b . ' '
- + 1
i CE 1
r + 1
i L. . 3
1 . - - - 1
i . 1
- + 1
i . 1 T .
r *, 1
=' : Phy—mem ’ 230 =
i . 1
r + 1
:' . i # !
et 1
i
.. 1
i
e 1
T i :
T [
' R ’ ;
t —— ——— .
t Ea " .
T M
t t Rl S =T)
t ! B s L M T i '
: |I 1 .) ..
t I|] . 5 LI
T :: . i . . . :
e y-mem | -'
A t I| i L
i ') i [
.': t :: i 1. :
‘ ! | . ! L J
t ! et ke TR 1 .
: | o T Ly Wittt v
. T Il: - i ;
. T i ..
T el . ——— '
1‘ +-‘--- - -.*..-.-:-:-:-. *.-.- - - ..
T [
T '
T [
t '
! '
“““ A

U.S. Patent Jul. 11, 2017 Sheet 6 of 7 US 9,703,582 B1

600 a ________ L ‘H“‘:_
Start
R — 602
. S o

- Receive a memory allocation request from an application |

program to a VM kernel
E B 604
e Yy)

Redirect memory allocation request from VM kernel to an
: emulator

- 608
... \ 2N A
Allocate a portion of storage space in a memory by |
hypervisor in accordance with memory allocation
request
N /
S, SR |
End
', /}

bb

FIG 6

U.S. Patent Jul. 11, 2017 Sheet 7 of 7 US 9,703,582 B1

. R AR R EREREEREENREREEEREEEE R EIEEEEEEEEEIREIREIEEEEE LR RJE ' -
X A el -~
- F
x

e 702
Issue a system command of mmap() requesting
application memory
Y T T T T T e T T T T T T T T T T T T T T T T e e R R e ’/ :
U A _

Forward mmap() from emulator to hypervisor for
mapping application memory to an in-memory file
storage

(senerate a resuldt memory address associated with |
mapped application memory and returning it to
emulator

\.. :

FIG 7

US 9,703,582 Bl

1

SHARE ACCESS OF ALLOCATED STORAGE
SPACE VIA IN-MEMORY FILE SYSTEM
BETWEEN VIRTUAL MACHINES

FIELD

The exemplary embodiment(s) of the present imnvention
relates to communications network. More specifically, the
exemplary embodiment(s) of the present invention relates to
virtualization network devices using mn-memory file systems
and the near-instantancous transier of those file systems
from one virtual machine to another virtual machine as part
ol an 1n-service soiftware upgrade or downgrade process.

BACKGROUND

With rapid growth of mmformation and/or data transier
over a high-speed communication network such as 3G or 4G
cellular services, managing and controlling such data trans-
ter become increasingly diflicult and complicated. To handle
large amount of network traflic, a conventional network
layout employs one or more communications networks such
as Internet, LAN (local area network), and/or wireless
networks having various network devices such as access
switches, routers, and bridges to facilitate data delivery from
source to destination.

A large number of network communication devices such
as switches and routers typically contain one or more
processors, microprocessors, central processing units
(“CPUs™), network processors (“INPs”), processing engines
(“PEs”), and the like. A function of a processor 1s to execute
instruction based on 1ts hardware design as well as loaded or
installed software. A problem associated with network
devices 1s that network devices may go down for various
reasons, such as, but not limited to, system maintenance,
system failures, system overloading, system upgrades, and
the like.

A drawback, however, associated with conventional soft-
ware upgrade or modification on a network device 1s that 1t
typically requires the device to stop operation and then
upgrade its software. After upgrading or reinstalling new
soltware, system or device rebooting 1s generally required.
During system reinstallation and/or reboot, the device typi-
cally cannot provide network service whereby rendering
network outage. Such network outage relating to a network
system or device can negatively aflect overall network
performance.

To mmprove network performance, a technique of in-
service software upgrade using virtual machines (“VMs™) 1s
introduced. For example, while one VM 1s configured to
continue providing normal network services, another VM 1s
upgraded with the new code. A virtual machine (“VM”), by
its nature, typically performs well within 1ts own “sandbox”™
environment. The performance of VM, however, typically

degrades when the VM requires communicating with other
VMs.

SUMMARY

One embodiment of the present invention discloses a
method and/or network router able to efliciently redistribute
data and/or context between virtual machines (“VMs”™) via
an mm-memory file system (“IMFS”). After requesting
memory access by an application program, a process of VM
using IMES 1s able to forward the memory allocation request
from a VM Kkernel operating under a VM environment to an
emulator. The emulator, which operates between the VM

10

15

20

25

30

35

40

45

50

55

60

65

2

kernel and the hypervisor, again redirects the memory
allocation request to the hypervisor for storage allocation.
The hypervisor subsequently allocates at least a portion of
storage space in the IMFS 1n accordance with the memory
allocation request.

In one embodiment of the present invention, a fault-
tolerant storage mechanism 1s used to store program state(s)
running in the context of a VM. For example, 1f a program
dies unexpectedly, the state remains accessible upon pro-
gram restart. Also, if a VM dies unexpectedly, the state
remains accessible upon VM restart. In an alternative
embodiment, the state of a program can be transierred from
one VM to another. For instance, an in-memory {ile system
holding program state i1s constructed 1n the context of one
VM. In one aspect, such in-memory file systems are allowed
to be transferred to another VM, thereby “virtualizing™ that
file system. It should be noted that the virtualization 1is
accomplished by propagating the file system metadata (such
as mnode mformation and memory mappings) into the hyper-
visor and allowing the second VM to reconstruct the file
system from the hypervisor on an on-demand basis.

Additional features and benefits of the exemplary embodi-
ment(s) of the present invention will become apparent from
the detailed description, figures and claims set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The exemplary embodiment(s) of the present invention
will be understood more tully from the detailed description
given below and from the accompanying drawings of vari-
ous embodiments of the invention, which, however, should
not be taken to limit the mvention to the specific embodi-
ments, but are for explanation and understanding only.

FIG. 1 1s a block diagram illustrating a network configu-
ration having network nodes able to perform an in-service
soltware upgrade using in-memory file system (“IMFS”) 1n
a virtual machine (“VM™) environment 1n accordance with
one embodiment of the present invention;

FIG. 2 1s a block diagram 1llustrating an exemplary VM
network device employing a virtualized imm-memory file
system (“VIMFS”) 1n accordance with one embodiment of
the present invention;

FIG. 3 1s a block diagram illustrating a VM network
device using VIMFS and IMFS in accordance with one
embodiment of the present invention;

FIG. 4 1s a block diagram illustrating a VM network
device capable of transferring a state of one VM to another
VM 1n accordance with one embodiment of the present
invention;

FIG. 5 1s a block diagram 500 illustrating memory man-
agement using multiple in-memory databases in the virtu-
alized IMFS 1n accordance with one embodiment of the
present invention; and

FIGS. 6-7 are flowcharts 1llustrating exemplary processes
of memory allocation via virtualized IMFS 1n a VM envi-
ronment 1n accordance with one embodiment of the present
invention.

DETAILED DESCRIPTION

Exemplary embodiment(s) of the present invention 1s
described herein i1n the context of a method, device, and/or
apparatus using system virtualization with in-memory file
system to improve overall network performance.

Those of ordinary skills 1n the art will realize that the
tollowing detailed description of the exemplary embodiment
(s) 1s 1llustrative only and 1s not intended to be 1n any way

US 9,703,582 Bl

3

limiting. Other embodiments will readily suggest them-
selves to such skilled persons having the benefit of this
disclosure. Reference will now be made 1n detail to imple-
mentations of the exemplary embodiment(s) as illustrated in
the accompanying drawings. The same reference indicators
will be used throughout the drawings and the following
detailed description to refer to the same or like parts.

In the interest of clarity, not all of the routine features of
the implementations described herein are shown and
described. It will, of course, be understood that in the
development of any such actual implementation, numerous
implementation-specific decisions may be made in order to
achieve the developer’s specific goals, such as compliance
with application- and business-related constraints, and that
these specific goals will vary from one implementation to
another and from one developer to another. Moreover, 1t will
be understood that such a development eflort might be
complex and time-consuming, but would nevertheless be a
routine undertaking of engineering for those of ordinary
skills 1n the art having the benefit of embodiment(s) of this
disclosure.

Various embodiments of the present invention illustrated
in the drawings may not be drawn to scale. Rather, the
dimensions of the various features may be expanded or
reduced for clarity. In addition, some of the drawings may be
simplified for clarity. Thus, the drawings may not depict all
of the components of a given apparatus (e.g., device) or
method.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skills 1n the art to
which the exemplary embodiment(s) belongs. It will be
further understood that terms, such as those defined in
commonly used dictionaries, should be interpreted as having
a meaning that 1s consistent with theirr meaning 1n the
context of the relevant art and this exemplary embodiment
(s) of the disclosure.

As used herein, the singular forms “a”, “an” and “the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further under-
stood that the terms “comprises”™ and/or “comprising,” when
used 1n this specification, specily the presence of stated
features, integers, steps, operations, elements, and/or com-
ponents, but do not preclude the presence or addition of one
or more other features, integers, steps, operations, elements,
components, and/or groups thereol. The term “and/or”
includes any and all combinations of one or more of the
associated listed items.

The term “system” 1s used generically herein to describe
any number of components, elements, sub-systems, devices,
packet switch elements, packet switches, access switches,
routers, networks, computer and/or communication devices
or mechanisms, or combinations of components thereof. The
term “‘computer”’ includes a processor, memory, and buses
capable of executing 1nstruction wherein the computer refers
to one or a cluster of computers, personal computers,
workstations, mainirames, or combinations of computers
thereof.

I[P communication network, IP network, or communica-
tion network means any type of network having an access
network that 1s able to transmit data 1n a form of packets or
cells, such as ATM (Asynchronous Transfer Mode) type, on
a transport medium, for example, the TCP/IP or UDP/IP
type. ATM cells are the result of decomposition (or segmen-
tation) of packets of data, IP type, and those packets (here IP
packets) comprise an IP header, a header specific to the
transport medium (for example UDP or TCP) and payload

5

10

15

20

25

30

35

40

45

50

55

60

65

4

data. The IP network may also include a satellite network, a
DVB-RCS (Digital Video Broadcasting-Return Channel
System) network, providing Internet access via satellite, or
an SDMB (Satellite Digital Multimedia Broadcast) network,
a terrestrial network, a cable (xDSL) network or a mobile or
cellular network (GPRS/EDGE, or UMTS (where applicable
of the MBMS (Multimedia Broadcast/Multicast Services)
type, or the evolution of the UMTS known as LTE (Long
Term Evolution), or DVB-H (Digital Video Broadcasting-
Handhelds)), or a hybrid (satellite and terrestrial) network.

Information pertaining to the transfer of packet(s) through
a network 1s embedded within the packet itself. Each packet
traveling through one or more communications networks
such as Internet and/or Ethernet can be handled indepen-
dently from other packets 1n a packet stream or traflic. For
example, each router, which may include routing, switching,
and/or bridging engines, processes mcoming packets and
determines where the packet(s) should be forwarded.

One embodiment of the presently claimed mvention dis-
closes a network device or node having one or more routers
and/or switches able to redistribute information, system
states, and/or context between virtual machines (“VMs”) via
information or data stored in a virtualized mm-memory file
system (“VIMFES”). To implement data transfer between
VMs, the VIMFS manages and facilitates memory alloca-
tion via hypervisor. For example, VIMFES 1s able to pass the
memory allocation request from kernel to emulator upon
receipt of the request from an application program. The
memory allocation request 1s again forwarded from the
emulator to the hypervisor for storage allocation. The hyper-
visor subsequently allocates at least a portion of storage
space 1n the actual IMFS 1n hypervisor in accordance with
the memory allocation request.

FIG. 1 1s a block diagram illustrating a network configu-
ration having network nodes able to enhance network per-
formance using the VIMFS 1n a VM environment in accor-
dance with one embodiment of the present invention.
Diagram 100 includes a cell site 102, a switching network
104, a central oflice (*CO”) 116, and Internet 150. Internet
150 1s further coupled with a user 108, a content provider
110 such as a website, and a wireless computer 126. CO 116
provides various network managements including system
virtualization and software updates to various network

devices. In one embodiment, CO 116 and/or network
devices 1 network 104 employ a VIMFES such as VIMFS

164-166. VIMFS 164 or 166, which can reside 1n any
devices in network 104, 1s able to facilitate and provide
nearly instantaneous data transfer of IMFES from one VM to
another, without substantial performance penalty, data loss,
s1ze restrictions, and/or marshaling. It should be noted that
the underlying concept of the exemplary embodiment(s) of
the present mvention would not change i one or more
blocks (or devices) were added to or removed from diagram
100.

Cell site 102 15 used to communicate with mobile devices
such as cellular phone 120 and handheld device 124 via
radio or cell tower 112. It should be noted that cell site 102
may include additional radio towers as well as other land
based switching circuitry. Cell site 102, which 1s also known
as base station and/or cell station, can be configured to
support wireless communications as well as wired commu-
nications. For example, network communication between
users such as nodes 106-108 1s managed and facilitated via
CO 116, switching network 104, Internet 150, and cell site
102.

Switching network 104 receives and/or routes informa-
tion, such as packet streams and packet tlows between users

US 9,703,582 Bl

S

and/or providers connected to the network. Network 104
includes communication devices or network elements

(“NEs”) 130-140 which are also known as nodes, switches,

bridges, and/or routers. A node, as a logical network entity,
1s able to manage one or more physical network devices. The
physical network devices include routers, modems, hubs,
bridges, servers, switches, et cetera. NEs 130-140 are inter-
connected via connections 170-176 and are used for routing
information and/or data packets to and from network clients
and/or hosts. Network client 1n one example may include
one or more routers, switches, hosts, users, base stations, and
the like. For example, switching network 104 uses NEs

130-134 to route a packet stream from users 106 to 108 via
cell site 102 and Internet 150.

NEs 130-140, in one aspect, can be routers, switches,
bridges, or a combination of routers, switches, and bridges.
The total number of NEs used in switching network 104 may
increase or decrease over time depending on the demand of
network services. For example, with increasing demand of
video streaming, the number of NEs as 1llustrated 1n diagram
100 can grow to meet such demand. One aspect of network
growth 1s to add additional NEs 1nto an existing pool of NEs
to expand processing and/or service capacity. For instance,
NE 140 1s recently added to the pool of NEs 130-136 for
enhancing routing or processing capacities. The number of
NEs can grow into hundreds or thousands depending on the
network service demand. Dotted lines 192-196 illustrate
connecting lines that recently added or will be added.

Referring back to FI1G. 1, diagram 100 further includes an
evolved packet core (“EPC”) network 105 including various
network nodes, such as SGSN 141, GGSN 142, S-GW 143,
P-GW 144, and MME 145. EPC network 105 can be
implemented 1n network 104 or a portion of EPC network
105 1s implemented 1n network 104. The tratlic, in one
example, can also be routed through EPC network to reach
Internet 150.

SGSN (serving GPRS (general packet radio service)
support node) 141 1s configured to authenticate portable
wireless user equipments, registering mobile devices, col-

lecting network usage information for billing, et cetera.
While SGSN 141 tracks and/or controls mobile communi-
cation, GGSN (gateway GPRS support node) 142 inspects
and routes information and/or packet tratlic between mobile
terminal(s) and intended destination(s). MME (mobaility
management entity) 142, in one aspect, 1s used to facilitate
data transfer between 3G and LTE or between 2G and LTE
(or 4G). In LTE (or 4G) network environment, MME 142
performs various controlling/managing functions, such as
UE (user equipment) idle mode for tracking, paging, and
retransmitting activities. MME 142 also provides network
security management as well as resource allocations. S-GW
(service gateway) 143 and P-GW (PDN gateway) 144 are
responsible for transporting packets between mobiles and
destinations via one or more networks such as Internet and
LLAN.

During an exemplary operation, when user 106 sends a
packet to user 108, the packet travels from cell site 102 to
routers 130-134 via connections 170-174. After the packet
enters Internet 150 via connection 180, it 1s subsequently
received by user 108. To route and facilitate data tratlic
ciiciently, NEs 130-140 in switching network 104 are
required to be managed and monitored. To monitor network
performance, CO 116, in one embodiment, deploys a net-
work management system (“NMS”) 152 or other perfor-
mance monitoring system to monitor status of switching
network 104 based on statistics generated by NEs.

10

15

20

25

30

35

40

45

50

55

60

65

6

NEs 130-140 and network nodes 141-145 are communi-
cation devices containing one or more processors such as

CPU(s) and/or NP(s). Some of NEs 130-140 and/or nodes

141-145 may be formed as processing cards and/or line
cards arranged or housed 1n a chassis having multiple slots
for housing various cards. In one aspect, NEs 130-140

and/or network nodes 141-145 are managed or controlled by
CO 116. CO 116 includes NMS 152, computers or servers

156-158, and network administrator 162. NMS 152, 1n one

example, manages network traflic by monitoring and man-
aging every communication device.

To provide software upgrade/downgrade while the system
1s 1n service, NEs 130-140 and/or network nodes 141-145, in
one embodiment, are virtualized. For example, NE 130 or

NMS 152 includes VIMES 164 or 166. VIMES 164 or 166

1s configured to manage and allocate memory via IMFS for
VMs whereby data copying and context switching are
reduced after memory mapping 1s established.

A wvirtualized network device such a device having
VIMES 166 1s able to reduce service degradation and service
unavailability during system maintenance such as software
upgrades. For instance, to achieve in-service upgrade/down-
grade to a targeted version of code, program or system states
(or status) stored or recorded 1n checkpoint, for example, are
passed to the new VM when the execution control 1s
transierred to new version of code.

VIMFS 166 or 164 i1s able to transfer from a VM to
another VM 1nstantaneously without substantial perfor-
mance penalty or data loss. A benefit of using VIMFES 1s to
provide a fault-tolerant storage mechanism for maintaining
and recovering data, such as program states, checkpoints,
VM contexts, and the like. For example, 1 a program dies
unexpectedly, the state remains accessible upon program
restarts or recovers. Also, if a VM dies, the state remains
accessible upon VM recovers or restarts.

VIMES 1s capable of transferring VM execution state(s)
to another VM via IMFS. Note that the IMFS resides at
hypervisor level and 1s able to hold program state and/or VM
context after the program or VM dies. It should be noted that
such file system or IMFS 1s accessible and alive in the
context of VM. In one example, IMFS may be established
with file system technology such as ramis (RAM file sys-
tem) or tmpls (temporary file system). It should be noted that
the virtualization 1s accomplished by propagating the file
system metadata (such as 1node information and memory
mappings) into the hypervisor and allowing the second VM
to reconstruct the file system from the hypervisor on an
on-demand basis.

An advantage of using VIMEFS 1s that 1t 1s backward
compatible with existing program code as well as such
storage virtualization can be expanded and/or reduced
dynamically based on needs.

FIG. 2 1s a block diagram 1illustrating an exemplary VM
network device 200 employing a VIMFES 1n accordance with
one embodiment of the present imvention. Device 200
includes a hardware layer 2350, a hypervisor layer 230,
emulators 222-226, VM kernels 212-216, and application
programs 202-206 which reside on the top of the VM
kernels. To provide a VM environment, device 200, in one
embodiment, employs a VIMFS 210 and IMFS, not shown
in FIG. 2, to control, redistribute, and access the finite
hardware resource such as memory capacity. It should be
noted that the underlying concept of the exemplary embodi-
ment(s) of the present invention would not change if one or
more layers (or sub-layers) were added to or removed from
diagram 200.

US 9,703,582 Bl

7

Hardware layer 250 includes hardware resources and/or
circuitry, such as memory(s) 240, microprocessor(s), regis-
ters, power circuitry, buses, and the like. Hardware layer 250
1s configured to provide a VM environment allowing mul-
tiple virtual machines running concurrently with each virtual
machine running multiple processes. Memory(s) or memory
sub-layer 240, 1n one aspect, 1s organized in file systems
capable of implementing IMFS wherein some data such as
program execution states or VM context can be retained or
maintained after programs or VMs are unexpectedly termi-
nated.

A file system or memory file system 1s a data structure
containing digital information that can be stored, retrieved,
and/or updated. Depending on the applications, a file system
can be configured to survive the termination of the program
or process that creates the file system. Some file systems
allow multiple programs to update the same file at nearly the
same time. A memory-mapped file, in a VM environment, 1s
a storage space correlation between local VM files and
physical storage on a chip or a disk. After memory alloca-
tion, the correlation between the file and memory space
allows application programs to access the mapped memory
as their primary local memories.

Hypervisor 230, which may also be referred to as an
abstraction layer of VM manager or virtualization layer, 1s a
solftware or firmware enftity that controls access to the
underlying hardware and provides an abstraction layer for
multiple virtual machine emulators to co-exist and one
in-memory file storage location. In one aspect, VIMFS 210
1s at least a part of hypervisor 230 configured to create
persistent storage arcas for VMs. For example, hypervisor
230 15 able to present allocated storage location in IMFES or
memory to an application program as 1ts local memory and
allows 1t to access a memory-mapped filed system. Hyper-
visor 230 maintains program execution state in IMFES for a
predefined period of time aifter the application program
terminates or dies. Alternatively, hypervisor 230 can be
configured to maintain VM context for a predefined period
of time after the associated emulator 1s down or crashes.
Hypervisor 230 can also transier states and/or context of a
first VM 1n the IMFS to a second VM {or certain system
operations such as in-service software upgrade.

Emulators 222-226, 1n one aspect, are software entities
residing and running on top of hypervisor 230 and provide
VM environment(s) for various virtual guests. Emulators,
for example, are able to emulate independent systems
capable of supporting operating systems or VM kernels
running concurrently. Each emulator, in one embodiment,
turther includes a request redirect module (“RRM”’) which 1s
used to forward any storage or memory location request
from a VM kernel such as VM kernel 212 to hypervisor 230.

Kernels 212-216, also known as VM Kkernels, may be
viewed as operating systems running within VMs operable
to interface between application programs 202-206 and
hardware layer 250. A function of kernel includes allocating,
or distributing system’s resources such as memory alloca-
tions. It should be noted that different operating systems may
require different kernels depending on the operating sys-
tems’ requirements and applications.

Kernels or VM kernels 212-216, 1n one aspect, are con-
figured to run over emulators 222-224 for managing system
and/or router resources using IMES for VMs. Each of VM
kernels 212-216, for example, includes a virtual file system
(“VFS”) module used to redirect a storage request {from an

application program to one of the emulators. It should be
noted that RRMs or VFS modules may be part of VIMFS

210.

10

15

20

25

30

35

40

45

50

55

60

65

8

Applications 202-206, also known as application pro-
grams, programmers, and/or users, are configured to run
within control of VM kernels 212-214, and are able to access
the m-memory file storage. Application programs 202-206
provide various networking related operations, such as rout-
ing, switching, resourcing management, billing, metering,
packet traflic monitoring, and the like. Application programs
202-206 may also include admainistrators, network manag-
ers, and/or network providers. VIMFES 210, in one aspect,
assists hypervisor to dynamically allocate and map local
application memories to physical storages viaIMFS ina VM
environment.

An advantage of employing VIMFS 210 in accordance
with one embodiment of the invention 1s that 1t reduces data
copying and context switching. Once the memory mappings
are set, application programs can access the storage location
directly and effectively with mimimal overheads.

Another advantage of using VIMFS 210 over a conven-
tional fixed-sized shared memory model 1s that it reduces or
climinates predetermined dedicated fixed size persistent
storage allocation for each VM. Note that fixed-sized shared
memory model 1s a memory allocation scheme that a fixed
amount of memory space 1s automatically allocated to each
VM regardless of its application(s). VIMFS, 1n one aspect,
1s able to dynamically allocate storage memory as needed
using IMFS, and de-allocate the storage memory when the
storage memory 1s no longer needed. In one example, the
existing memory-mapped file to a storage memory 1s pre-
served whereby no additional management and/or synchro-
nization techniques are needed.

FIG. 3 1s a block diagram illustrating a VM network
device 300 using VIMFES and IMFS 1n accordance with one
embodiment of the present invention. Device 300, which 1s
similar to device 200 as illustrated 1n FIG. 2, includes a
hardware layer 250, a hypervisor layer 230, emulators
222-226, VM kernels 212-216, and application programs
202-206. While application program 202-206 run on the top
of VM kernels 212-216, VM kernels 212-216 are supported
and facilitated by emulators 222-226. To provide a VM
environment, device 300, in one embodiment, employs a
VIMES to control, redistribute, and access the finite hard-
ware resource such as persistent memory storage. It should
be noted that the underlying concept of the exemplary
embodiment(s) of the present invention would not change 1f
one or more layers (or sub-layers) were added to or removed
from diagram 300.

Application program 202, 1n one embodiment, 1s running
on top of VM kemel 212, and VM kernel 212 1s supported
by or running on top of emulator 222. Emulator 222 1s
turther supported by hypervisor layer 230 which could also
be viewed as an abstraction layer over hardware layer 2350
for VMs. Upon activating application program 202, an
application memory request 304 i1s generated by application
program 202, and 1s subsequently forwarded to VM kernel
212. When request 304 arrives at VM kemnel 212, VES
module 310 receives and processes request 304, and redi-
rects 1t to emulator 222. After arriving at emulator 222, RRM
318 again forwards request 304 to hypervisor 230. Once
reaching to hypervisor 230, allocator 324 of hypervisor 230
allocates a portion of physical memory 330 1n hardware
layer 250 1n response to request 304 as a dedicated memory
space for application program 202. It should be noted that
the size or capacity of memory 330 may be dynamically
adjustable depending on the applications.

Physical memory 330, in one aspect, can be a memory {ile
organized in IMFS and 1s addressed or referenced by address
332. When memory manager 326 1n hypervisor 230 recerves

US 9,703,582 Bl

9

address 332 associated with request 304, memory manager
326 sends address 332 to emulator 222 which records
address 332 at emulator memory storage 320 before for-
warding 1t to VM kernel 212. After storing or saving address
332 at kernel memory storage 312, address 332 1s again sent
to application program 202. Once address 332 arrives at
application program 202, local application memory 306
which 1s mapped to physical memory 330 pointed by
address 332 becomes visible and accessible to application
program 202.

The process of allocating and mapping a local memory to
physical memory under a virtualization environment using,
IMFES, 1n one example, can be managed and controlled by
VIMES. It should be noted that VIMFS may be situated in
hypervisor, hardware, emulator, kernel, or a combination of
hardware hypervisor, emulator, kernel, and application. Fur-
thermore, VIMFS may be implemented by software, hard-
ware, firmware, or a combination of software, hardware, and
firmware.

During an operation, device 300 which can be a router or
switch can be started by activating hypervisor 230. Hyper-
visor 230 creates a persistent storage area using an existing,
unmodified, memory backed file system. For example,
memory allocation commend(s) such as Linux® tmpis or
ramis can be used to allocate memory space for file system
(s). In-memory file storage can be made available to an
application program 1n a way that 1t hides the fact that the
storage resides 1n the hypervisor. To the application, the
storage appears as 1f 1t 1s local and thus can access it using
the standard memory-mapped file system technique. To
accomplish this transparency, VIMFS manages and instructs
both VM kernel 212 and emulator 222 to redirect all
memory requests through hypervisor 230.

At VM kernel 212, a virtual file system (VFS) module
which may also be called vramis 1s established. The VFS
module, for example, can be implemented via Linux®
command(s). When the VM kernel operates, 1t configures
the vramis module to advertise storage at a certain location
within the local file system hierarchy. It should be noted that
the vramis module redirects storage requests from applica-
tion programs to RRM in emulator instead of directly
allocating the storage. RRM 1s configured to further redirect
the storage request to hypervisor 230. Hypervisor 230 sub-
sequently executes the storage request and returns the appro-
priate result codes such as address 332 back to emulator 222.
Emulator 222 then passes the result codes to the vramifs
module 1n VM kernel 212. Finally, the vramis module will
pass the result codes to the originating application program.

Most of the file system storage access commands are
handled wvia this redirection mechamism managed by
VIMFS. However, some special system commands such as
mmap() may be handled differently. It should be noted that
mmap() 1s an existing system command provided by the
kernel whose purpose 1s to make a data entity visible through
virtual memory. When the data entity becomes visible, the
processor can access the data directly rather than using
explicit (and/or expensive) mput/output commands through
the kernel. Note that memory mapping allows the kernel to
store data 1nto 1ts local memory and then memory maps to
a physical memory location which 1s still visible to the
application.

For example, mmap() may be initiated by an application
program requesting local memory or visible memory 1n the
in-memory lile storage. Since memory allocation 1s executed
by hypervisor 230, the application memory 1s not immedi-
ately visible to a VM kernel such as VM kernel 212. As such,

the mmap() 1s redirected to emulator 222 and emulator 222

10

15

20

25

30

35

40

45

50

55

60

65

10

turther redirects the mmap() to hypervisor 230. Hypervisor
230 1s configured to map the requested im-memory file
storage 1nto emulator 222. Emulator 222 subsequently takes
the newly visible memory and attaches 1t to the runming VM.
Control 1s then passed back to the VM kernel vramis
module, wherein the newly attached memory 1s mserted into
the VM kernel with the requested application memory
mappings. Finally, the control returns to the application and
the resulting memory address can be used to directly access
the 1n-memory storage located in hypervisor 230.

FIG. 4 1s a block diagram illustrating a VM network
device 400 capable of transierring a state of one VM to
another VM 1n accordance with one embodiment of the
present mvention. Device 400, similar to device 300 1llus-
trated 1n FI1G. 3, includes a hardware layer 250, a hypervisor
layer 230, emulators 222-226, VM kernels 212-216, and
application programs 202-206 which are running on top of
VM kemels. To provide a VM environment, device 400, in
one embodiment, employs a VIMEFES to control, redistribute,
and access the finite hardware resource such as memory
resources. It should be noted that the underlying concept of
the exemplary embodiment(s) of the present invention
would not change 11 one or more layers (or sub-layers) were
added to or removed from diagram 400.

During a device maintenance procedure such as software
upgrade, device 400 determines that a new VM 1s needed to
maintain the current routing while allowing the current VM
to be upgraded. Application program 206 1s activated to be
the new VM and 1t takes over the routing tasks while
application program 202 1s being upgraded. To establish a
new VM such as application 206 having the same states and
data as the old VM such as application 202, application 206
needs to have the exact copy of the data, states, and/or
context of application 202.

To obtain the exact current states, data, and/or context,
VIMES allows application program 206 to request for
accessing physical memory 330 which should contain the
current states, data, and context of application program 202.
When request 404 reaches VEFS module 410 1n VM kemel
216, module 410 forwards request 404 to emulator 226
instead of trying to allocate the memory. Upon receipt of
request 404 from RRM 418, hypervisor 230 allows memory
manager 326 to provide memory address 332 to application
program 206. After returning of address 332 to local appli-
cation memory 406 via emulator transparent memory 420
and VM kernel transparent memory 412, the contents stored
at physical memory 330 pointed by address 332 becomes
visible to application program 206. As such, the state of
application program 202 1s effectively transferred to appli-
cation program 206.

FIG. 5 1s a block diagram 300 illustrating a VIMFES
process of memory management using multiple databases or
tables to track memory allocations 1n connection to IMFES 1n
accordance with one embodiment of the present invention.
Diagram 500 includes a hardware layer 250, a hypervisor
layer 230, emulator 222, VM kernel 212, and application
program 202 which 1s running on top of VM kernel 212. To
provide a VM environment, the device, 1n one embodiment,
employs a VIMES to control, redistribute, and manage the
finite hardware resource such as memory space.

After memory allocation, local memory (“L-mem”) 502
becomes visible to application program 202. L-mem 502 can
also be referred to as local application memory allowing
application program 202 to store and/or retrieve data to and
from LL.-mem 502. Kernel 212, in one embodiment, includes
a table 504 containing a kernel memory address (“K-mem”
which 1s used to reference and/or associate with L-mem.

US 9,703,582 Bl

11

Similarly, emulator 222 has a table 506 containing an
emulator memory address (“E-mem”) which 1s associated
with K-mem and L-mem. Hypervisor 230 also includes a
table 508 which contains a physical memory address (“Phy-
mem”) and it 1s associated with E-mem, K-mem, and
L-mem. The Phy-mem addresses physical memory 330.
During an operation, 1f application program 202, kernel
212, and/or emulator 222 i1s unexpectedly terminated or
down, hypervisor 230 1s able to maintain the data and states
associated with the down or failed application, kernel, or
emulator 1n physical memory 330 and table 508, and sub-

sequently restores the last state(s) after application program
202, kernel 212, and/or emulator 222 recovers. Since IMFS
can survive the termination of a program, kernel, and/or
emulator, the state and/or context can be restored by hyper-
visor 230 using table 508 or the like.

The exemplary aspect of the present mvention includes
various processing steps, which will be described below.
The steps of the aspect may be embodied 1n machine, router,
or computer executable instructions. The nstructions can be
used to cause a general purpose or special purpose system,
which 1s programmed with the instructions, to perform the
steps ol the exemplary aspect of the present invention.
Alternatively, the steps of the exemplary aspect of the
present invention may be performed by specific hardware
components that contain hard-wired logic for performing the
steps, or by any combination of programmed computer
components and custom hardware components.

FIG. 6 1s a flowchart illustrating an exemplary process of
allocating memory space via IMFS 1n accordance with one
embodiment of the present invention. At block 602, a
process of allocating hardware resource for a network sys-
tem 1 a VM environment recerves a memory allocation
request sent from an application program to a VM kernel.

At block 604, instead of executing the request, the kernel
redirects the request to an emulator which operates between
the abstraction layer of the VM kernel and the abstraction
layer of hypervisor emulating and supporting VMs. At block
606, upon receipt of the request, the emulator again forwards
the request to the hypervisor for execution.

At block 608, a portion of storage space 1s allocated 1n a
memory or physical memory disk organized in the IMFS
configuration by the hypervisor according to the request. In
one example, after execution of memory allocation, a result
memory addresses or result codes associated with the allo-
cated storage space 1s returned to the emulator. After receipt
of the result memory addresses, the emulator passes the
result memory addresses to the VFS module in the VM
kernel. When the result memory addresses are forwarded to
the application program, the application memory addressed
by the result memory addresses becomes visible to the
application program whereby it can store and/or retrieve
information to and from the portion of allocated storage
space as 1ts local in-memory file storage.

In one aspect, the hypervisor creates a persistent storage
areca utilizing memory backed file system or IMFS. To
access lfile system, the hypervisor can activate system com-
mands such as Linux® tmpifs or ramis to establish in-
memory file system. The data stored in the portion of storage
space 1s maintained by the hypervisor when the application
program 1s crashed. Alternatively, the information stored in
the portion of storage space 1s kept or maintained by the
hypervisor for a predefined period of time when the emu-
lator 1s down. It should be noted that the predefined period
of time may be set during the system initialization or
pProvisioning process.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 7 1s a flowchart illustrating an exemplary process of
handling a system command via IMFS using virtualization
technology in accordance with one embodiment of the
present. At block 702, a process for memory allocation 1n a
VM environment 1ssues a system command requesting
application memory mapping for a VM by a VM kemel
relating to memory access by an application program. In one
aspect, the system command 1s mmap() which 1s a UNIX
system call for memory mapping.

At block 704, after redirecting the system command from
a VM kernel to an emulator, mmap(), at block 706, i1s again
torwarded to hypervisor for mapping application memory to
an mm-memory file storage. At block 708, a result memory
address which 1s associated with mapped application
memory 1s generated. The result memory address 1s subse-
quently retuned to emulator. After attaching the result
memory address to the VM for memory visibility, the result
memory address 1s inserted in the VM kernel for memory
access. The process, in one embodiment, 1s capable of
allowing the application program to use the result memory
address to access the mm-memory storage located and man-
aged by the hypervisor.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
of ordinary skills 1n the art that based upon the teachings
herein, changes and modifications may be made without
departing from this exemplary embodiment(s) of the present
invention and its broader aspects. Therefore, the appended
claims are mtended to encompass within their scope all such
changes and modifications as are within the true spirit and
scope of this exemplary embodiment(s) of the present inven-
tion.

What 1s claimed 1s:

1. A method for allocating resource for a virtual machine
(“VM”) 1n a network system, comprising:

recerving an initial request for memory allocation sent

from a first application program to a first VM kemnel
controlling the first application program;

redirecting the 1mitial request from the first VM kernel to

an emulator which operates in an abstraction layer
situated between the first VM kernel and hypervisor for
emulating a VM environment;

forwarding the immitial request from the emulator to the

hypervisor situated between the emulator and hardware
for storage allocation;

allocating a portion of storage space 1n an in-memory file

system (“IMFS”) in the hardware by the hypervisor n

accordance with the initial request by:

executing the memory allocation request and returning
a memory addresses associated with the portion of
storage space ndicating a memory mapped location
to the emulator;

passing the memory address from the emulator to a
virtual file system (“VFS”) module 1in the VM ker-
nel;

forwarding the memory address from the VFS module
to the first application program and allowing the first
application program to access the portion of storage
space as 1ts local memory mapped 1n IMFS;

presenting the portion of storage space 1n the IMES by the

hypervisor to a second application program for memory

access via a second VM kernel; and

maintaining the portion of storage space by the hypervisor

when the first application program 1s terminated.

2. The method of claim 1, further comprising facilitating
hypervisor to create a persistent storage area utilizing
memory backed file system.

US 9,703,582 Bl

13

3. The method of claim 2, wherein facilitating hypervisor
to create a persistent storage area utilizing memory backed
file system includes activating Linux tmpis or ramis to
establish application memories within the IMFS.

4. A method for allocating resource for a virtual machine
(“VM”) 1n a network system, comprising:

receiving an initial request for memory allocation sent

from a first application program to a first VM kernel
controlling the first application program;

redirecting the i1nitial request from the first VM kernel to

an emulator which operates in an abstraction layer
situated between the first VM kernel and hypervisor for
emulating a VM environment;

forwarding the i1mitial request from the emulator to the

hypervisor situated between the emulator and hardware

for storage allocation;
allocating a portion of storage space 1n an mn-memory file
system (“IMFS”) in the hardware by the hypervisor 1n
accordance with the initial request by:
executing the memory allocation request and returning
a memory addresses associated with the portion of
storage space 1indicating a memory mapped location
to the emulator;

passing the memory address from the emulator to a
virtual file system (“VFS”) module in the VM ker-
nel;

forwarding the memory address from the VFS module
to the application program and allowing the appli-
cation program to access the portion of storage space
as 1ts local memory mapped in IMFS;

presenting the portion of storage space in the IMFES by the
hypervisor to a second application program for memory
access via a second VM kernel; and

maintaiming the portion of storage space by the hypervisor
for a predefined period of time when the emulator 1s
down.

5. The method of claim 4, further comprising facilitating
hypervisor to create a persistent storage area utilizing
memory backed file system.

6. The method of claim 5, wherein facilitating hypervisor
to create a persistent storage area utilizing memory backed
file system 1includes activating Linux tmpis or ramis to
establish application memories within the IMFES.

7. A network apparatus able to provide a virtual machine
(“VM”) environment, the network apparatus containing a
microprocessor and memory, and configured to couple to a
communications network, comprising:

a virtualized in-memory file system (“VIMFS”) config-
ured to control access of hardware resource and pass a
memory allocation request from kernel to emulator;

a plurality of emulators running on top of VIMFS and
operable to support multiple operating systems running
concurrently;

a plurality of VM kernels running over at least a portion
of the plurality of emulators able to manage and
distribute system resources as operating systems for a
plurality of VMs;

a plurality of application programs running within control
of at least a portion of the plurality of kernels config-
ured to access in-memory file storage (“IMFS”) which
1s managed and controlled by the VIMFS; and

a hypervisor coupled to the hardware resource and con-
figured to {facilitate presenting a portion ol storage
space 1n the IMFS assigned to a first application
program running over a first VM to a second applica-
tion program running over a second VM.,

10

15

20

25

30

35

40

45

50

55

60

65

14

wherein the VIMFS 1s configured to generate a memory
addresses associated with the portion of storage space
indicating a memory mapped location to the emulator
in accordance with the memory allocation request and
pass the memory address from the emulator to a virtual

file system (“VFS”) module, the VFS module config-

ured to forward the memory address to the application
program for accessing the portion of storage space as
its local memory mapped in IMFS, wherein the hyper-
visor maintains the portion of storage space when the
first application program 1s terminated.

8. The network apparatus of claim 7, wherein the VIMFES
1s hypervisor configured to create persistent storage areas for
multiple VMs to access in-memory file systems.

9. The network apparatus of claim 8, wherein each of the
plurality of VM kernels includes a wvirtual file system
(“VFS”) module configured to redirect a storage request
from the application program to one of the plurality of
emulators.

10. The network apparatus of claim 9, wherein each of the
plurality of emulators includes a request redirect module
configured to forward the storage request to the hypervisor.

11. The network apparatus of claim 8, the hypervisor
maintains program execution state for a predefined period of
time after the application program or entire VM terminates.

12. The network apparatus of claim 8, the hypervisor
maintains VM context for a predefined period of time after
the associated emulator 1s down.

13. The network apparatus of claim 8, the hypervisor 1s
configured to transier context of a first VM stored in IMFS
to a second VM {for facilitating in-service software upgrade.

14. The network apparatus of claim 7, wherein the hyper-
visor 1s able to present allocated storage 1n the IMFES to the
application program in the VM as 1ts local memory and
allows the application program to implement memory-
mapped filed system to the allocated storage.

15. A method for memory allocation for a virtual machine
(“VM”) of a network system, comprising:

1ssuing a first system command requesting application

memory mapping for the first VM by a first VM kernel
in response to a memory access by a first application
program,
redirecting the first system command to an emulator
emulating a VM environment between an abstraction of
the first VM kernel and an abstraction of hypervisor
situated between the emulator and hardware;:

forwarding the first system command from the emulator
to hypervisor for mapping application memory to an
in-memory file storage (“IMFS”) 1n the hardware 1n
response to the first system command;

generating a result memory address associated with

mapped application memory and returning the result
memory address to the emulator;
allowing the first application program to access a portion
of storage space as its local memory mapped 1n IMFS
via the result memory address received from a virtual
file system (“VFS”) module 1n the first VM kernel;

presenting the application memory in the IMFS by the
hypervisor to a second application program for memory
access via a second VM; and

maintaining the portion of storage space by the hypervisor

for a predefined period of time when the emulator 1s
down.

16. The method of claim 15, wherein 1ssuing a system
command requesting application memory mapping for the
VM 1ncludes providing mmap() system command.

US 9,703,582 Bl

15

17. The method of claim 16, further comprising;

attaching the result memory address to the first VM for
memory visibility;

inserting the result memory address to the first VM kernel
for memory access; and 5

allowing the first application program utilizing the result
memory address to access the in-memory storage
located in the hypervisor.

G x e Gx o

16

	Front Page
	Drawings
	Specification
	Claims

