US009696692B2

12 United States Patent 10) Patent No.: US 9.696.,692 B2

Chouinard 45) Date of Patent: Jul. 4, 2017
(54) INDUSTRIAL AUTOMATION CONTROL (58) Field of Classification Search
SYSTEM CPC ... GO5B 11/01; GO5B 23/0286; GO5B 9/03

See application file for complete search history.
(71) Applicant: ROCKWELL AUTOMATION
TECHNOLOGIES, INC., Mayfield (56) References Cited

Heights. OH (US '
eights, (US) U.S. PATENT DOCUMENTS

(72) Inventor: Julien Chouinard, Quebec (CA)

6,061,600 A * 5/2000 Yingooovviveiiiiiiiinniiinnnnn, 700/3

_ _ _ 6,567,709 B1* 5/2003 Malmetal. 700/21

(73) Assignee: Rockwell Automation Technologies, 2009/0072986 Al* 3/2009 Bussert et al. 340/679
Inc., Mayfield Heights, OH (US) 2010/0287421 Al* 11/2010 Golowner et al. 714/55

2012/0036493 Al1l* 2/2012 Moosmann et al. 717/105

(%) Notice: Subject to any disclaimer, the term of this 2Oi‘2/0095573 A__h : 4/2Oi‘2 Moosmannc.ceeeeeeunnn. 700/7
patent ‘s extended or adjusted under 35 2013/0007505 Al 1/2013 Spear GOﬁF;ﬁ;/Qf%i

U.S.C. 154(b) by 734 days.
* cited by examiner

(21) Appl. No.: 13/830,533

Primary Examiner — Christopher E Everett
(22) Filed: Mar. 14, 2013

(37) ABSTRACT
(65) Prior Publication Data One or more non-transitory computer-readable storage
US 2013/0274901 A1 Oct. 17. 2013 media having program instructions stored thereon ifor

enhancing an automation environment 1s provided. When
executed by a processor, the program instructions direct the

Related U.S. Application Data processor to at least 1dentily at Ieast a primary data verifl-
cation value generated by a primary control process that
(60) Provisional application No. 61/624,128, filed on Apr. provides confrol in an industrial automation environment,
13, 2012. and to identify at least a secondary data verification value
generated by a secondary control process associated with the
(51) Int. Cl. primary control process. The program instructions also
G055 11/01 (2006.01) direct the processor to compare the primary data verification
G055 9/03 (2006.01) value with at least the secondary data verification value to
G055 23/02 (2006.01) determine 1f an error has occurred with respect to the

(52) U.S. CL primary control process.

CPC ..., G05B 11/01 (2013.01); GO5B 9/03
(2013.01); GO5B 23/0286 (2013.01) 18 Claims, 9 Drawing Sheets

CONTROL SYSTEM 100

| I
| I
I |
| I
| I
I |
I |
: ELEMENT ELEMENT ELEMENT :
I |
| I
| |
I |
| I
| I

l
- »
I I
o PRIMARY SECONDARY |1 |
|
o CONTROL | 41, 05| CONTROL !
I PROCESS PROCESS |
I | | I
o 101 104 L
I
- -
|
| OUTPUT L
L 103 PROCESS 106)
|
| I | |
I | I
B 17 I
| I | |
e 1 I
| 108 |
|
|
| (NETWORK 109 O |
| |
' :
I e D I
| 110 |
I
| + + |
| l
| INDUSTRIAL INDUSTRIAL INDUSTRIAL |
| |
| |
|
' :
| I
| |
| |
| I
| |

S — — — — — — — — — —— — —— — — —— — —— — —— — —— — — — — — — — — ol

U.S. Patent

Jul. 4, 2017

Sheet 1 of 9

US 9,696,692 B2

PRIMARY
CONTROL
PROCESS

INDUSTRIAL
ELEMENT

11

102

105

OUTPUT
PROCESS

107

INDUSTRIAL

11

INDUSTRIAL AUTOMATION_ENVIRONMENT 10

SECONDARY
CONTROL
PROCESS

104

INDUSTRIAL

11

SOF TWAR

202

MEMORY 201

PROCESSOR 203

Figure 2

U.S. Patent Jul. 4, 2017 Sheet 2 of 9 US 9,696,692 B2

IDENTIFY AT LEAST A PRIMARY DATA VERIFICATION
VALUE GENERATED BY A PRIMARY CONTROL
PROCESS THAT PROVIDES CONTROL IN AN
INDUSTRIAL AUTOMATION ENVIRONMENT

00

IDENTIFY AT LEAST A SECONDARY DATA
VERIFICATION VALUE GENERATED BY A SECONDARY
CONTROL PROCESS ASSOCIATED WITH THE
PRIMARY CONTROL PROCESS

02

COMPARE THE PRIMARY DATA VERIFICATION VALUE
WITH AT LEAST THE SECONDARY DATA
VERIFICATION VALUE TO DETERMINE IF AN ERROR
HAS OCCURRED WITH RESPECT TO THE PRIMARY

CONTROL PROCESS 204

IN RESPONSE TO DETERMINING THAT THE ERROR
HAS OCCURRED, MODIFY THE CONTROL PROVIDED
BY THE PRIMARY CONTROL PROCESS

06

Figure 3

US 9,696,692 B2

Sheet 3 of 9

Jul. 4, 2017

U.S. Patent

G 2inbi4

00S NILSAS TOHINOD

80%

Sd0IAId
1Nd1No

909

d0SS300dd S30IA3A
1NdNI

v0S

— NTLSAS AV 1dSId

JOVHOLS

c0G

JOV 443 1NI
"NNOD

dVML40S

_‘ OF

INJWNIT 13 INJWNI 13
VIFLSNANI VIHLSNANI

INJWI 13
VIHLSNANI

|
20V 90y |
NILSAS (3AON)
TOHLNOD FNIL-NAY
IIIIIIII J

0cv

INJWNOHIANT TOHLINOD

r ~—

’ GO¥ L13IANM3IH13

Z0v

3Svav.ivd
13drodd

dIALTS

e0v T0F

JOV4dddLNI
ANIHOVIN
“NVINNH

HONJGXHOM

00F WHOA41V 1d LNJWJOTIATA

US 9,696,692 B2

Sheet 4 of 9

Jul. 4, 2017

U.S. Patent

0 aJnbi4
|] |
_ J1VY1S 34VS 1INY3IN aN3 J1V1S 34YS 1INY I |
_ |
_ |
| J1DAD NNY TINY I NAMOALNHS 34VSIX31d MOOHYIN VS |
_ |
|
_ — ovaws - _
|
| _ _
|

| v.1vad JNILNNY a¥YOT | |
| o _ JIOAD NNY TINYIM |
| - _ _
(ynosLun) _ |

| (A3AAITDTY Y1vA — — — — —
dNLYVLS J4VSIXT1d MOOHHUINM VS |
| | _
| V1va JNILNNY LIV | v1vad JNILNNY avo _
_ S
| (NNY LSV ENNY LSV |
_ O 17NY4d M O 11Nv4d M |
_ |
_ |
_ Y dNL1YVLS TINYIA dNLYVLS TANYIA 1 |
|
_I 009 13aNYIM AUVYWIYLd |

US 9,696,692 B2

Sheet 5 of 9

Jul. 4, 2017

U.S. Patent

neq V.IVA ONAS LIV 14V1S S1NdNI dv3dd TCE

0S54 TdNd3IM OILSONODVIA 04 "1dNHIM AAVINIE

J 8Inbi4
| 4 -
, JIVLS T4VS 1aNY3IA AN3 J1V1LS 34VS 1IN 3IA
|
|
|
| JAINY -d3I3M,. AN3S
| SO A
| JIne4
| NINOD SSID0Nd
|
|
| s YD AN3S — — S1Nd1NO ILIHM
| |
|
| 24D JAITD3IY - —f - - -
, ine . DHOMDIHD FAVYSIXT1d YOOHHIM VS|
| 3002 211 3LNDIAXI
| MOV AN3S —
| — — — — -
VIVADINAS T4VSIXIT4d MOOHHIN VS
| V.1VA DNAS IJAITD3IY — — —
|
|
|
|

U.S. Patent Jul. 4, 2017 Sheet 6 of 9 US 9,696,692 B2

CONTROLLER1 801
CONTROLLER BOARD 802

CPU2 804

CPU1 803

WORKBENCH 800 PRIMARY SECONDARY
KERNEL KERNEL
805 806
— 1

KERNEL COMM. PATH
/O COMM. PATH

REMOTE /O

MAINTENANCE COMM. PATH

Figure 8A

CONTROLLER1 811
BOARD1 812

CPU1 814

WORKBENCH 81 PRIMARY SECONDARY

KERNEL KERNEL
817

KERNEL COMM. PATH
/O COMM. PATH

REMOTE 1/O
MAINTENANCE COMM. PATH

Figure 8B

U.S. Patent Jul. 4, 2017 Sheet 7 of 9 US 9,696,692 B2

CONTROLLER1 821
CONTROLLER BOARD 822

DUAL CORE CPU 823

WORKBENCH 82 PRIMARY SECONDARY
KERNEL KERNEL
824 825

- KERNEL COMM. PATH

/O COMM. PATH

REMOTE /0

MAINTENANCE COMM. PATH

Figure 8C

CONTROLLER1 831

BOARD1 833

CONTROLLERZ 832
BOARDZ2 83

PRIMARY
KERNEL
837

SECONDARY

KERNEL
838

KERNEL COMM. PATH
/O COMM. PATH
REMOTE /O
MAINTENANCE COMM. PATH

Figure 8D

U.S. Patent

SENSOR
211

SENSOR
931

Jul. 4, 2017 Sheet 8 of 9

REMOTE /O 90

|
weor | [SEY | [oureun
DRIVER 912 LOGIC 913 DRIVER 914

weur | [SAEY] [oureur
DRIVER 932 LOGIC 933 DRIVER 934

INPUT OTHER OUTPUT
DRIVER 942 LOGIC 943 DRIVER 944 | |
|
|
OTHER |
LOGIC 946 |
)

Figure 9B

US 9,696,692 B2

ACTUATOR
215

ACTUATOR
239

ACTUATOR
249

US 9,696,692 B2

Sheet 9 of 9

Jul. 4, 2017

U.S. Patent

0l @4nbi4

0v0lF LINY3IHL3

0€01L

—n— THRE T _n_

_ _
| |
| |
| |
| N |
| I vzor | Szor cror | vrotr |
| €20 4013 | 514 | Gon aent | aoia | EFOF 4013 _
| — |
N 2200 Z101 E—
“ b0} X SONIANIE SONIANIE L0} X _
| |
| |
| |

020l T13INH3IXY I4VS-NON 001l T3N3 34VS

/ 0001 d3 T104d1NOD,

US 9,696,692 B2

1

INDUSTRIAL AUTOMATION CONTROL
SYSTEM

RELATED APPLICATIONS

This application hereby claims the benefit of and priority
to U.S. Provisional Patent Application No. 61/624,128, titled
“INDUSTRIAL AUTOMATION CONTROL SYSTEM
PROGRAMMING ENVIRONMENT?”, filed on Apr. 13,
2012 and which i1s hereby incorporated by reference 1n 1ts
entirety.

TECHNICAL BACKGROUND

In many industrial environments the quantity and com-
plexity of the equipment used requires automation 1n order
to make productive use of the equipment. Unfortunately,
when problems occur with automated equipment, the error
may not be immediately detected and corrected by human
operators of the equipment, resulting 1n defective products,
spills, breakage, or other dangerous situations.

Some equipment, either by its mode of operation or the
material it processes, may be dangerous or fatal to nearby
personnel 11 an error occurs 1n the control of the equipment.
Therefore, 1n an industrial automation environment, it 1s
vital to detect and correct error conditions on automated
equipment as quickly and safely as possible.

OVERVIEW

In an embodiment, one or more non-transitory computer-
readable storage media having program instructions stored
thereon for enhancing an automation environment 1s pro-
vided. When executed by a processor, the program instruc-
tions direct the processor to at least i1dentify at least a
primary data vernfication value generated by a primary
control process that provides control in an industrial auto-
mation environment, and to identify at least a secondary data
verification value generated by a secondary control process
associated with the primary control process. The program
instructions also direct the processor to compare the primary
data verification value with at least the secondary data
verification value to determine 11 an error has occurred with
respect to the primary control process.

In another embodiment, a control system for an industrial
automation environment 1s provided. The control system
includes a memory configured to store soitware instructions,
and a processor coupled to the memory, and configured to
execute the software instructions. The solftware istructions
direct the processor to at least identily at least a primary data
verification value generated by a primary control process
that provides control 1n an industrial automation environ-
ment, and to i1dentify at least a secondary data verification
value generated by a secondary control process associated
with the primary control process.

The software instructions also direct the processor to
compare the primary data verification value with at least the
secondary data verification value to determine 11 an error has
occurred with respect to the primary control process.

In a further embodiment, a method for operating a control
system 1n an industrial automation environment 1s provided.
The method includes i1dentifying at least a primary data
verification value generated by a primary control process
that provides control 1n an industrial automation environ-
ment, and 1dentifying at least a secondary data verification
value generated by a secondary control process associated
with the primary control process.

10

15

20

25

30

35

40

45

50

55

60

65

2

The method also includes comparing the primary data
verification value with at least the secondary data verifica-
tion value to determine 11 an error has occurred with respect
to the primary control process.

This overview 1s provided to introduce a selection of
concepts 1 a simplified form that are further described
below 1n the Technical Disclosure. It should be understood
that this Overview 1s not intended to 1dentity key features or
essential features of the claimed subject matter, nor 1s 1t
intended to be used to limait the scope of the claimed subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates a block diagram of an industrial auto-
mation environment.

FIG. 2 illustrates a block diagram of a control system
within an industrial automation environment.

FIG. 3 illustrates a flow diagram of a method for operating,
a control system within an industrial automation environ-
ment.

FIG. 4 1llustrates a block diagram of an industrial auto-
mation control system environment.

FIG. S illustrates a block diagram of a computer system
configured to operate as a control system within an industrial
automation control system environment.

FIG. 6 illustrates a flow diagram of a kernel start-up
sequence for both a primary and a secondary kermel within
an industrial automation control system.

FIG. 7 1llustrates a flow diagram of a kernel execution for
both a primary and a secondary kernel within an industrial
automation control system.

FIGS. 8A-8D illustrate block diagrams of possible archi-
tectures using both a primary and a secondary kernel within
an industrial automation control system.

FIG. 9A 1illustrates a block diagram of a controller mixing
sale and non-sate logic on the same kernel within an
industrial automation control system.

FIG. 9B illustrates a block diagram of a controller mixing
safe and non-safe logic on separate kernels within an indus-
trial automation control system.

FIG. 10 1illustrates a block diagram of a controller
exchanging data between a safe kernel and a non-safe kernel
within an mdustrial automation control system.

DETAILED DESCRIPTION

The following description and associated drawings teach
the best mode of the invention. For the purpose of teaching
inventive principles, some conventional aspects of the best
mode may be simplified or omitted. The following claims
specily the scope of the invention. Some aspects of the best
mode may not fall within the scope of the mvention as
specified by the claims. Thus, those skilled in the art waill
appreciate vanations from the best mode that fall within the
scope of the invention. Those skilled 1n the art will appre-
ciate that the features described below can be combined 1n
various ways to form multiple vanations of the invention. As
a result, the invention 1s not limited to the specific examples
described below, but only by claims and their equivalents.

FIG. 1 1llustrates a block diagram of an industrial auto-
mation environment 10. An example embodiment of an
industrial automation environment 10 includes control sys-
tem 100, network 109, and industrial elements 111, 112, and
113 which are controlled by control system 100 through
network 109. Network 109 may be any network capable of
exchanging electronic signals and data between control

US 9,696,692 B2

3

system 100 and industrial elements 111, 112, and 113. For
example, network 109 may include an Ethernet network, a
hardware bus, a backplane, a Wi-F1 network, or the like.

Control system 100 includes primary control process 101,
secondary control process 104, and output process 107. 5
Control system 100 may be implemented within a program-
mable automation controller, a programmable logic control-
ler, a microcontroller, or the like.

Primary control process 101 and secondary control pro-
cess 104 are configured to run one or more control programs 10
in parallel, operating in lockstep. During normal operation
output process 107 1s configured to direct primary control
process 101 to control industrial elements 111, 112, and 113
through the use of control and data signals 103, received
from primary control process 101, which are then transmit- 15
ted to network 109 through connections 108 and 110.

Secondary control process 104 operates 1n lockstep with
primary control process 101 and periodically generates a
secondary data verification value 105, while primary control
process 101 periodically generates a primary data verifica- 20
tion value 102. Output process 107 compares these two data
verification values to detect errors within primary control
process 101.

Data verification values 102 and 105 are representations
of the current state of control processes 101 and 104 25
respectively. These representations are much more compact
(in terms of number of bits and bytes) than simply exam-
ining the mputs, outputs, and storage node (such as registers)
contents of the control processes. Data verification values
102 and 105 may be generated by processing the inputs, 30
outputs, and storage node contents of the control processes
by methods such as compression, sampling, and the like,
resulting 1n compact values that may be quickly compared to
determine 11 the current state of control processes 101 and
104 match. 35

In some embodiments primary data verification value 102
and secondary data verification value 103 are cyclic redun-
dancy check (CRC) values. If the CRCs do not match, there
likely 1s a failure 1n primary control process 101, and output
process 107 then may switch control of industrial elements 40
111, 112, and 113 to secondary control process 104 or may
take other desired actions such as an emergency shutdown of
industnal elements 111, 112, and 113.

In some embodiments, each control process generates two
64-bit CRCs. These two CRCs may be generated by differ- 45
ent CRC algorithms, with each algorithm generating one
64-bit CRC value for comparison by output process 107.

In other embodiments, multiple secondary control pro-
cesses may be used allowing the primary control process to
be compared to two or more secondary control processes. 50
For example, in an embodiment with two secondary control
processes, the three data verification values may be com-
pared, and 11 two match, the third value indicates the control
process with the error condition and control may be trans-
ferred to one of the other control processes. 55

Note that multiple control processes may be run by
primary control process 101 and secondary control process
104 concurrently. These control processes may operate at
different speeds depending on the requirements of the mndus-
trial elements they are controlling. For example, if both 60
primary control process 101 and secondary control process
104 are running three control processes each, output process
107, by comparing data verification values 102 and 105,
may determine that one of the processes 1 primary control
process 101 1s 1 an error condition. 65

At that point 1n time, output process 107 may transfer
control of that single process to secondary control process

4

104, while allowing primary control process 101 to continue
control of the other two processes. In other embodiments,
output process 107 may transier control of all three pro-
cesses to secondary control process 104, may shutdown the
process 1n error, or may shutdown all three processes,
depending upon the requirements of the industrial environ-
ment.

Since output process 107 1s comparing data verification
values (such as CRCs) between the two control processes
instead of comparing images of the programs and their data,
output process 107 1s able to transfer control between
control processes within a single cycle, thus allowing for
smooth transfer of control as soon as an error 1s detected
without an interruption of the control data and instructions
being exchanged with industrial elements 111, 112, and 113.

FIG. 2 1llustrates a block diagram of a control system 200
within an industrial automation environment. This block
diagram 1illustrates the physical hardware used by control
system 200 1n providing failsate control of industrial ele-
ments within an industrial automation environment.

Control system 200 includes memory 201 and processor
203. Memory 201 1s configured to store soltware instruc-
tions 202 which direct processor 203 to provide failsafe
control of industrial elements within an industrial automa-
tion environment. Processor 203 may be a programmable
automation controller, a programmable logic controller, a
microcontroller, or the like.

The software instructions direct the processor to at least
identify at least a primary data verification value generated
by a primary control process that provides control 1n an
industrial automation environment, and to 1dentily at least a
secondary data venfication value generated by a secondary
control process associated with the primary control process.

The software instructions also direct the processor to
compare the primary data verification value with at least the
secondary data verification value to determine 1f an error has
occurred with respect to the primary control process.

In other embodiments, the software instruction direct the
processor to react 1n response to determining that the error
has occurred, by modifying the control provided by the
primary control process. This modification of the control
provided by the primary control process may include pro-
hibiting the control of the industrial automation environment
by the primary control process.

The modification may also include transferring the control
from the primary control process to the secondary control
process, or by performing an emergency shutdown of the
industrial automation environment.

In other example embodiments, in response to determin-
ing that the error has occurred, the processor may modily
additional control provided by an additional control process
that provides the additional control 1n the industrial auto-
mation environment, as in the example of three control
processes discussed above with respect to FIG. 1.

In some embodiments, the data verification values com-
prise cyclic redundancy check values, and these CRC values
may be two 64-bit CRC values 1n these embodiments.

FIG. 3 illustrates a flow diagram of a method for operating
a control system 100 within an industrial automation envi-
ronment 10. In this example embodiment of a method for
operating a control system 100 within an industrial automa-
tion environment 10, the control system 100 identifies at
least a primary data verification value 102 generated by a
primary control process 101 that provides control in an
industrial automation environment (industrial elements 111,

112, and 113), operation 300.

US 9,696,692 B2

S

The control system 100 also identifies at least a secondary
data verification value 105 generated by a secondary control
process 104 associated with the primary control process 101,
operation 302. The control system 100 compares the primary
data venfication value 102 with at least the secondary data
verification value 105 to determine 1f an error has occurred
with respect to the primary control process 101, operation
304.

In response to determining that the error has occurred, the
control system 100 modifies the control provided by the
primary control process 101, operation 306. This modifica-
tion may include removing control from the primary control
process 101, transferring control to the secondary control
process 102, performing an emergency shutdown of the
industrial automation environment, or the like.

FIG. 4 1llustrates a block diagram of an idustrial auto-
mation control system programming environment. This
environment provides for the computer-aided development
of control applications. The control applications are made up
of resources (1.e., virtual machines at run time). The appli-
cations are made up of I/O points and variables, and control
logic 1n any of the IEC 61131-3 languages and the IEC
61499 distribution method.

This embodiment of an industrial automation control
system programming environment includes development
platiorm 400 and control environment 420 which commu-
nicate through Ethernet 405. Development platform 400
includes workbench 401, project database 402, human-
machine intertface 403, and server 404. Control environment
420 1ncludes run-time (node) 406 including control system
407, and industrial elements 408, 409, and 410 within an
industrial automation environment.

In this example embodiment, development platiorm 400
and control environment 420 communicate through Ethernet
405, however other embodiments may communicate
through other systems such as a hardware bus, a backplane,
a Wi1-F1 network, or any other system capable of interchang-
ing electronic data between development platform 400 and
control environment 420.

Industrial elements 408, 409, and 410 may include any
type of element found 1n an industrial automation environ-
ment, including, but not limited to, machines, drives, pumps,
sensors, human-machine interfaces, and the like.

Once resources are developed, they may be downloaded
to control systems such as element 407 through Ethernet
405. Resources are made up of variables and Input/Output
(I/0) points as well as programs developed using any of the
five languages (SFC: Sequential Function Chart (or
Grafcet), ST: Structured Text, IL: Instruction List, FBD:
Function Block Diagram, and LD: Ladder Diagram) of the
IEC 61131-3 standard or Flow Chart. One can also use the
IEC 61499 language, 1.e. distribution method, where indi-
vidual IEC 61499 function blocks belonging to IEC 61499
programs are distributed across multiple resources.

Resources can share variables using internal bindings or
external bindings. Internal bindings are between resources
within the same project. External bindings are between
resources belonging to different projects. When developing
IEC 61499 programs, bindings are automatically created
between function blocks declared in different resources. At
run time, from the workbench, one can monitor the state of
virtual machines running on their target nodes. One can also
choose to run an application in simulation mode.

A screen builder enables creating screens, 1.e., graphical
user interfaces consisting of pages with a Java application,
from which one can monitor or run control processes. These
screens are linked with control projects created in the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

workbench. An application can consist of several screens
linked together using hot link buttons. The PRDK enables
the setting up of run-time modules for the available target
platforms (Windows NT, VxWorks, QNX, Linux, and RTX)
or the development of custom modules for other target
platforms.

A control system, running 1n a control environment using
a real-time operating system, 1s the link to the physical field
equipment. This module executes the instructions contained
in resources, downloaded from the workbench. The control
system holds the virtual machine. Control system 407, a
programmable logic controller (PLC), or any other similar
controller, reads variables and I/O points, executes the
process control application, and writes to variables and 1/O
points 1 a cyclic loop.

A PIO enables the addition of 1/0 devices to the kernel as
well as the development of “C” functions, function blocks,
and conversion functions. It also enables the development of
IXL clients such as the OPC DA server, HiBeam data server,
and workbench for the currently ported target platiorms.

A Target Definition Builder utility enables the definition
of custom items in the workbench, corresponding to items
developed with the PRDK and PIO. One can receive noti-
fication of run-time system events from target nodes (run-
time modules) using a logger and viewer.

FIG. S illustrates a block diagram of a computer system
configured to operate as a control system 500 within an
industrial automation control system environment. An
industrial automation control system programming environ-
ment as illustrated in FIG. 4 1s implemented on one or more
control systems 500, as shown 1n FIG. 5. Control system 500
includes communication interface 502, display 504, mput
devices 506, output devices 308, processor 510, and storage
system 312. Processor 510 1s linked to communication
interface 502, display 504, input devices 506, output devices
508, and storage system 512. Storage system 312 includes a
non-transitory computer-readable storage media that stores
operating software 514.

Communication mterface 502 includes components that
communicate over communication links, such as network
cards, ports, RF transceivers, processing circuitry and sofit-
ware, or some other communication devices. Communica-
tion 1nterface 502 may be configured to communicate over
metallic, wireless, or optical links. Communication interface
502 may be configured to use TDM, IP, Ethernet, optical
networking, wireless protocols, communication signaling,
or some other communication format—including combina-
tions thereof.

Communication interface 502 may also be configured to
receive and transmit transitory computer-readable commu-
nication media which may then be stored in storage system
512 as non-transitory computer-readable storage media.

Display 504 may be any type of display capable of
presenting information to a user. Displays may include touch
screens 1n some embodiments. Input devices 506 include
any device capable of capturing user inputs and transferring
them to control system 500. Input devices 506 may include
a keyboard, mouse, touch pad, or some other user input
apparatus. Output devices 508 include any device capable of
transferring outputs from control system 500 to a user.
Output devices 508 may include printers, projectors, dis-
plays, or some other user output apparatus. Display 504,
iput devices 506, and output devices 508 may be external
to computer aided design system 300 or omitted 1n some
examples.

Processor 510 includes a microprocessor and other cir-
cuitry that retrieves and executes operating software 514

US 9,696,692 B2

7

from storage system 3512. Storage system 512 includes a disk
drive, flash dnive, data storage circuitry, or some other
non-transitory memory apparatus. Operating software 514
includes computer programs, firmware, or some other form
of machine-readable processing mstructions. Operating soit-
ware 514 may include an operating system, utilities, drivers,
network interfaces, applications, or some other type of
soltware. When executed by processing circuitry, operating
software 514 directs processor 310 to operate control system
500 as an 1ndustrial automation control system environment
as 1llustrated 1n FIG. 4.

In this example, control system 500 executes a number of
methods stored as software 514 within storage system 512.
The results of these graphical element modifications are
displayed to a user via display 504, or output devices 508.
Input devices 506 allows users to mput a variety of data
required by the computer aided design system.

FIG. 6 1llustrates a flow diagram of a kernel start-up
sequence for both a primary 600 and a secondary 650 kernel
within an industrial automation control system. It 1s required
to be able to download an application on the primary kernel
600 which will, in turn, transier this application to the
secondary kernel 650 since they must execute the same
application.

FIG. 6 shows the kernel start-up sequence of both the
primary 600 and the secondary 650 kernels. Both kernels
will execute the same resource but the resource will only be
downloaded on the first kernel. It will thus be the respon-
sibility of the first kernel to transmit the application to the
secondary kernel, through the kernel communication path.
This will be done in the start-up/download sequence
described 1n this section. Note that 1f, upon start-up, the
secondary kernel also has an application loaded with the
same resource number, then the primary will not download
it agaimn if the CRC of the application runmng on the
secondary kernel matches the CRC of the application run-
ning on the first kernel. This CRC checking mechanism will
take 1to account the online modifications as well, if any.

Note that this start-up sequence must also be done after a
download, since the application 1s changed during the down-
load and thus needs to be sent to the secondary kernel.

The primary 600 and secondary 650 kernels thus need to
communicate at different stages of the start-up sequence and
of the execution sequence (illustrated 1n FIG. 7). In order to
simplity the communication mechanism and avoid any
deadlocks 1n the communication between the primary and
secondary kernels, communication will always be 1nitiated
by the primary kernel and will always be synchronous 1.¢.
blocking. Note that the IXL interface supports communica-
tion timeouts. The kernel communication path timeout value
1s configurable through the extended resource OEM param-
cters, where the address of the secondary kernel 1s also
specified.

Upon start-up, each kernel needs to know 1f 1t 1s the
primary 600 or the secondary 650 kernel. Since both kernels
will execute the same application (resource), they will both
use the same data and nothing 1n this data can distinguish
which kernel 1s primary and which 1s secondary. A start-up
parameter 1s used on the mono-task kernel to specity if it 1s
the primary or the secondary. A kernel 1s currently started
with the {following command line which specifies the
resource number:

“Isa-s=X""
where X 1s the resource number expressed in decimal
format.

Extra optional start-up parameters are added to specity 1t
the kernel 1s primary or secondary. In the absence of these

10

15

20

25

30

35

40

45

50

55

60

65

8

new parameters, the kerel will neither be primary or
secondary and will behave like the standard mono-task
kernel, without any Flexisale features.

The primary kernel will be started with the new -PR
parameter as follows:

“Isa-s=X -PR”

The secondary kernel will be started with the new -SE
parameter as follows:

“Isa-s=X -SE”

Note that start-up parameters can also be specified through
an INI file or through environment variables, depending on
the type of porting used in the PRDK.

From FIG. 6, the primary kernel needs to perform these
new tasks:

detect the presence of the secondary kernel through the

kernel communication path;

synchronize the resource application data with the sec-

ondary kernel;

wait for the secondary kermnel to be ready (ACK); and

g0 to a sale state 1n case of a problem.

From FIG. 6, the secondary kernel needs to perform these
new tasks:

wait for the resource application data from the primary

kernel;

signal readiness to the primary kernel (ACK);

send “keepalive” message to the remote output driver; and

g0 to a sale state 1n case of a problem.

All communications between the primary 600 and sec-
ondary 6350 kernels will be mitiated by the primary kernel
600. This will avoid any chance of a deadlock while
simplifying the communication mechanism.

Secondary kernel 6350 will thus be a server and primary
kernel 600 will be its client and the existing IXL. mechanism
1s re-used to communicate, as well as TCP sockets. Primary
kernel 600 will thus use the IXL mechanism to send com-
mands to secondary kernel 650 while the TCP sockets will
be used during the kernel execution cycle, for performance
reasons, as explaimed in reference to FIG. 7.

New IXL server commands will be created and primary
kernel 600 will establish a blocking IXL. connection with
secondary kernel 650. Primary kernel 600 needs to deter-
mine which IXL driver to use, as well as the communication
parameters. This will be done through the use of extended
resource OEM parameters.

OEM parameters are defined 1n the target defimition {file
(TDB) which 1s imported into the project database. The
compiler then produces binary data which 1s downloaded
and mapped by the kernel. Extra resource OEM parameters
are added to identily the communication driver and param-
cters of the kernel communication path. This approach 1s
suitable for a mono-task implementation but not for a
multi-task 1mplementation since all the resources of the
multi-task 1mplementation would have to share the same
OEM parameters. In that case, 1t would be more appropriate
to use network OEM parameters instead of resource OEM
parameters. This approach will allow the primary kernel to
have access to the kernel communication path parameters
without making any changes to the compiler or to the GUI.

The mono-task kernel, on which the Flexisaie concept 1s
based, does not have IXL client functions but does have an
IXL server. The IXL server of the mono-task implementa-
tion does not support the HSD protocol however, since it 1s
a local protocol and since there can only be one mono-task
running at a time. Note that a Flexisale environment will
most likely be based on distinct CPU/memory for the

US 9,696,692 B2

9

primary and secondary kernels so it seems pointless to make
an effort to support the HSD protocol in the mono-task
implementation.

Note that even though there are more recent versions of
the mono-task implementation on which the HSD protocol
1s supported on the server side, we would still have 1ssues
related to the naming of the shared memory since both the
primary and secondary kernels would have the same
resource number. These 1ssues could be resolved in the
future, however, by possibly using a different resource
number for the secondary kernel.

However, it 1s still necessary to support IXL client com-
munication on the mono-task kernel. The IXL server of the
mono-task kernel 1s periodically activated to execute the
connection polling function of each of the registered IXL
drivers, excluding the HSD dniver.

In the multi-task implementation, the IXL client interface
requires the presence of an external process (ETCP,
IsaRSI . ..) to handle the communication and the IXL client
program uses message queues to communicate with the
external process. In the mono-task implementation there 1s
no message queue implementation since there is only one
process.

The quickest and easiest way to support IXL client
communication on the mono-task kernel 1s to implement
message queues 1n the mono-task system layer to be able to
communicate with the (already existing) external process
(ETCP. ISaRSI . . .), taken from the multi-task implemen-
tation. Implementing message queues requires implement-
ing shared memory 1n the system layer, at least in the
Windows implementation. Thus, multi-task features are
introduced 1nto the mono-task 1mplementation. This does
not pose a problem as long as a multi-task operating system
(such as Windows) 1s used for the Flexisale kernel, i1 this
kernel 1s to use the existing ETCP or ISaRSI drivers for the
kernel communication path.

Note that 1f a designer wishes to create a new IXL driver,
then this could be done without the use of message queues
and not even on a multi-tasking OS. Of course, this would
require the IXL driver to be embedded within the kernel
code. The drivers used by the client portion of the IXL
interface register their internal functions with the IXL API.
These internal functions are used to establish remote con-
nections, send/receive messages etc. In the case of the
existing ETCP and ISaRSI drivers, these internal functions
consist ol a message queue mechanism (IPC) to convey
commands between the IXL client process and the ETCP/
ISaRSI process. Using the ETCP or ISaRSI driver for the
client (mono-task kernel communication path) thus also
requires the usage of a multi-task OS, since we have distinct
processes. However, if 1t 1s necessary to create a new custom
IXL driver to be used by the mono-task kernel on a mono-
task OS, then nothing prevents the embedding of this new
IXL driver within the mono-task kernel and thus avoiding
using any IPC mechanism.

As mentioned above, the IXL client API needs to be
integrated back into the mono-task implementation. First
only keep the basic API functions to imitialize the API,
register drivers, define a connection and establish 1t. Then
add/implement the required functions to support the loading,
synchronization and diagnostics between the primary 600
and secondary kernels 630.

The sending of the runtime data by the primary 600 during
start-up could be implemented in the form of the usual
oflline download. Thus, 1t 1s necessary to integrate the
corresponding IXL client functions into the mono-task ker-
nel. The remaiming functions to synchronize the data and

5

10

15

20

25

30

35

40

45

50

55

60

65

10

check the CRCs at each cycle will be implemented as new
user-defined server commands, as described 1n the next
section. However, since 1t 1s also required to support online
changes, the use of the download mechanism would be
inadequate since 1t only supports the “offline” download.
Thus, a different and simpler approach is used based on the
transier of the binary files. The primary 600 will use the IXL
interface to send the ofiline downloaded files as well as the
online modifications to the secondary before starting 1t. We
thus assume that the primary 600 will always save the
downloaded code during the oflline download and during the
online change download.

FIG. 7 illustrates a flow diagram of a kernel execution for
both a primary 700 and a secondary 750 kernel within an
industrial automation control system. It 1s required that the
secondary kernel 750 monitors the execution of the primary
kernel 700, synchronize data and compare CRCs at each
execution cycle.

From FIG. 7, primary kernel 700 needs to perform these
new tasks:

send a synchronization message to the secondary kernel;

wait for acknowledgement from the secondary kernel;

calculate a data CRC;

send a data CRC to the secondary kernel;

recerve a data CRC from the secondary kernel; and

compare both CRCs and go to a safe state 1f they do not

match.

From FIG. 7, secondary kernel 750 needs to perform these
new tasks:

wait for a synchromization message from the primary

kernel;

acknowledge the synchronization message from the pri-

mary kernel;

calculate a data CRC:;

recerve a data CRC from the primary kernel;

send calculated data CRC to the primary kernel; and

compare both CRCs and go to a safe state 1f they do not

match.

A new function will be added to the existing 10 driver
functions. The source code for the OEM implemented 10
driver functions 1s generated by the TDBUILD application.
This application produces empty “C” functions for each
device 1n the project. Each device 1s associated to a driver,
which can be seen as a group of devices. Each driver has its
assoclated Init/Exit functions, which are called at resource
Init/Exit. Each device (input or output) has its associated
Open/Close functions, which are also called at resource
Init/Exit. Each mput device has 1ts Read function, which 1s
called at the beginning of the kernel cycle and each output
device has its Write function, which 1s called at the end of
the kernel cycle. The Read function updates the input
variables while the Write function updates the output vari-
ables.

Secondary kernel 750 will not read or write the 10s but
will instead send a “keep alive” message to the 10 driver, at
end of the cycle, instead of writing outputs. Each 10 dniver
will thus now have 1ts own Keepalive function, in addition
to the existing Init/Exit functions.

The CRC calculation performed on the data at each cycle
must not be time consuming and must also not mvolve
variables which are based on the true system time, since the
clocks on the primary and secondary controllers will never
be 1dentical.

The local system time 1s read by the “dsysTimeRead”
function of the system layer.

The “dsysTimeRead” function 1s used by the kernel at the
beginning and at the end of 1ts cycle to calculate the cycle

US 9,696,692 B2

11

time and update some internal and system variables. These
variables are used by the SFC engine to update the activity
time of the active steps and by some standard function
blocks to calculate the elapsed time. SFC program steps are
represented by global structural variables at the beginning of
the variable map but SFC function block steps are embedded

within the mstances and thus require more processing to be
found.

The “dsysTimeRead” function 1s used to detect 1f a POU

has been executing for longer than a specified time, when a
“rump” TIC 1s detected.

The “dsysTimeRead” function 1s used by a random gen-
erator function (standard function: “Rand”).

It seems that the simplest way to make sure both the
primary and secondary kernels use the same time reference
at the beginning of each cycle 1s to eliminate the call to the
“dsysTimeRead” tunction by the secondary kernel and let 1t
use the value transterred by the primary kernel. This would
solve all the SFC and standard function block 1ssues but not
the case of the random generator standard function
(“Rand”). It thus seems that the “Rand” standard function
should be eliminated from the safety kernel, as well as the
“CurrentlsaDate” standard function, for the same reason.
Concerning the function used to determine if a POU has
been executing for longer than a certain time, this function
(tcyEnd) will continue to use the local system time to
perform its checks since the time 1s only used internally and
not a part of the resource data involved m the checksum
calculation.

Regarding the calculation of the checksum, one could
either do a checksum on the whole data space, at the end of
the cycle, or update the checksum only with the values
modified by the TIC or used as conditions by the TIC. Doing,
a checksum on the whole data space will take a lot of time
if the application has a lot of data and will also require
processing to avoid including pointers in the calculation.
Note that there are pointers in all the SFC step/transition
control variables. It thus seems more eflicient to calculate
the CRC on a TIC per TIC basis. This approach also has the
advantage of validating the TIC execution sequence since
CRC calculation 1s sequence dependent.

Previously, 1t was determined, how the CRC will be
calculated on the data, as the TIC code modifies 1t 1.e. on a
TIC per TIC basis. However, before starting to execute the
TIC, the data must be the same for both the primary and the
secondary kernels.

As can be seen from FIG. 7, only primary kernel 700
reads inputs and writes outputs. This means that the 10 input
variables, which are also part of the data, and on which the
CRC 1s calculated are never read by secondary kernel 750.
They thus need to be transterred by primary kernel 700 at the
beginning of each cycle. It does not seem necessary to
synchronize the whole data space but only the IO input
channel variables and the system time variable. This will
save a considerable amount of time. Also note that, for
performance reasons, TCP sockets will be used instead of
IXL to transier the synchronization data, as well as compare
CRCs.

Note that one will also have to synchronize the values
written on the primary kernel through the maintenance
communication path. Primary kernel 700 will do this by
performing an IXL write on the secondary through the IXL
connection of the kernel commumnication path.

Note that one will also have to synchronize online
changes since 1t 1s required to support online changes. This
means that all online related IXL messages will be handled

5

10

15

20

25

30

35

40

45

50

55

60

65

12

as usual by the primary (1n maintenance mode only) and then
relayed to the secondary on a synchronous basis.

Both the primary 700 and secondary 750 kernels can
detect a fault and put the system in a FAILSAFE state.

FIGS. 8A-8D illustrate block diagrams of possible archi-
tectures using both a primary and a secondary kernel within
an industrial automation control system.

Standalone architecture 1s when both primary and sec-

ondary kernels are mounted on the same physical controller
board (FIG. 8A) or on distinct physical boards within the
same controller module (FIG. 8B). It 1s also possible to use
a dual-core (FIG. 8C), 1n which case the Integrator must
tulfil the requirements of Annex E of IEC61508-2. In this
architecture, I/Os are still considered as remote since they
can be local to the controller or at a remote location. The I/O
communication path 1s how the Kernel I/O dniver gets to
reach the remote I/O. The Kernel communication path needs
to be customized by the integrator as the means of commu-
nications between both CPUs 1s hardware specific. This 1s
the recommended FlexiSafe architecture as 1t oflers all
diagnostics within the same controller board and allows the
hardware system designer to use this in their own safety
architecture.
The distributed architecture is when the primary and
secondary kernels are located on two distinct controller
modules (FIG. 8D). The secondary kernel 1s intended to be
used on hardware with the same specifications as the one
running the primary kernel.

FIG. 9A 1llustrates a block diagram of a controller mixing
safe and non-safe logic on the same kernel within an
industrial automation control system. FIG. 9A shows how
safe and non-safe logic can be mixed for a safe kernel. It 1s
the responsability of the end-user to prove that the non-safe
logic does not aflect the safe logic.

FIG. 9B illustrates a block diagram of a controller mixing
sate and non-safe logic on separate kernels within an indus-
trial automation control system. It can also be possible to run
a non-safety runtime on the same CPU/OS that 1s running a
safe runtime. In such case, 1t 1s the responsability of the
Integrator to prove (following the selected OS’s safety
manual), to ensure that the OS i1s capable of preventing
non-satety tasks to aflect the safety tasks. If the OS 1s not
certified, other measures (diverse CPUs, Hypervisors, etc.)
may also be used by the OEM to provide such separation.

FIG. 10 1llustrates a block diagram of a controller 1000
exchanging data between a safe kernel 1010 and a non-safe
kernel 1020 within an industrial automation control system.
Binding mechanisms 1012 and 1022 are used to exchange
data between kernels 1010 and 1020, using IXL protocol
blocks 1011 and 1021, and will only be enabled for SIL2
applications. On the same controller, HSD 10135 and 1024
(shared memory 1030) 1s used. Between controllers, ETCP
1013, 1014, 1023 and 1024 1s used. Typically, there will be
one Safety kernel and one or more non-safety kernel on the
same controller. In eitther case, 1 the OEM wishes to
exchange data between a safe and non-safe kernel, they must
provide safety measures to ensure that the non-safe kernel
will not impact the safe kernel. This can either be determined
by the OS being used (for shared memory) or through the
transport layer implemented for the communication path.

The above description and associated figures teach the
best mode of the invention. The following claims specity the
scope of the invention. Note that some aspects of the best
mode may not fall within the scope of the mvention as
specified by the claims. Those skilled 1n the art will appre-
ciate that the features described above can be combined 1n
various ways to form multiple variations of the invention. As

US 9,696,692 B2

13

a result, the mvention i1s not limited to the specific embodi-
ments described above, but only by the following claims and
their equivalents.

What 1s claimed 1s:

1. One or more non-transitory computer-readable storage
media having program instructions stored thereon for
enhancing an automation environment that, when executed
by a processor, direct the processor to at least:

identify at least a primary data verification value gener-
ated by a primary control process that provides control
in an industrial automation environment, wherein the
primary control process 1s configured to run the plu-
rality of control processes:

identify at least a secondary data verification value gen-
crated by a secondary control process associated with
the primary control process, wherein the secondary
control process 1s configured to run the plurality of
control processes:

compare the primary data verification value with at least
the secondary data verification value to determine 11 an
error has occurred with respect to a first control of the
plurality of control processes of the primary control
process; and

in response to determining that the error has occurred:
modily the control provided by the primary control

process to prohibit the control of the industrial
automation environment by the first control of the
primary control process and to allow the control of
the industrial automation environment by a remain-
der of the plurality of control processes of the
primary control process.

2. The one or more non-transitory computer-readable
storage media of claim 1, wherein the program instructions
turther direct the processor to at least:

transfer the control of the industrial automation environ-
ment by the first control from the primary control
process to the secondary control process.

3. The one or more non-transitory computer-readable
storage media of claim 1, wherein the program instructions
turther direct the processor to at least:

perform an emergency shutdown of the idustrial auto-
mation environment.

4. The one or more non-transitory computer-readable
storage media of claim 1, wherein the program instructions
turther direct the processor to at least:

in response to determining that the error has occurred,
modily additional control provided by an additional
control process that provides the additional control 1n
the industrial automation environment.

5. The one or more non-transitory computer-readable
storage media of claam 1, wherein the data verification
values comprise cyclic redundancy check values.

6. The one or more non-transitory computer-readable
storage media of claim 1, wherein the processor 1s of a type
from the group comprising: a programmable automation
controller, a programmable logic controller, and a micro-
controller.

7. A control system for an industrial automation environ-
ment, the control system comprising:

a memory configured to store software instructions;

a processor coupled to the memory, and configured to
execute the software instructions directing the proces-
sor to at least:
identify at least a primary data verification value gen-

erated by a first process of a primary control process
that provides control 1n an industrial automation
environment;

10

15

20

25

30

35

40

45

50

55

60

65

14

identily at least a secondary data verification value
generated by a first process of a secondary control
process associated with the first process of the pri-
mary control process;

identify a third data verification value generated by a
second process of the primary control process;

identify a fourth data vernification value generated by a
second process ol the secondary control process
associated with the second process of the primary
control process;

compare the primary data venfication value with at
least the secondary data verification value to deter-
mine 11 an error has occurred with respect to the first
process of the primary control process;

compare the third data verification value with the fourth
data verification value to determine 1f an error has
occurred with respect to the second process of the
primary control process; and

in response to determining that the error has only
occurred 1n the first process, transfer the control of

the first process from the primary control process to

the secondary control process while leaving control

of the second process with the primary control
process.

8. The control system of claim 7, wherein the processor 1s
turther configured to at least:

prohibit the control of the industrial automation environ-

ment by the primary control process.

9. The control system of claim 8, wherein the processor 1s
turther configured to at least:

perform an emergency shutdown of the industrial auto-

mation environment.

10. The control system of claim 7, wherein the processor
1s Turther configured to at least:

modity additional control provided by an additional con-

trol process that provides the additional control 1n the
industrial automation environment.

11. The control system of claim 7, wherein the data
verification values comprise cyclic redundancy check val-
ues.

12. The control system of claim 7, wherein the processor
1s of a type from the group comprising: a programmable
automation controller, a programmable logic controller, and
a microcontroller.

13. A method for operating a control system 1n an ndus-
trial automation environment, the method comprising:

identifying at least a primary data verification value

generated by a primary control process configured to
run a first primary control process and a second primary
control process that provide control in an industrial
automation environment;

identifying at least a secondary data verification value

generated by a secondary control process associated
with the primary control process;

comparing the primary data verification value with at least

the secondary data verification value to determine if an
error has occurred with respect to the first primary
control process of the primary control process; and

in response to determining that the error has occurred,

moditying the control provided by the primary control
process to prohibit the control of the industrial auto-
mation environment by the first primary control process
and to allow the control of the industrial automation
environment by the second primary control process of
the primary control process.

US 9,696,692 B2

15

14. The method of claim 13, further comprising;
moditying the control provided by the primary control
process within a single cycle.

15. The method of claim 13, further comprising;
transferring the control of the industrial automation envi- 5
ronment by the first primary control process from the
primary control process to the secondary control pro-

CESS.

16. The method of claim 13, further comprising:

performing an emergency shutdown of the industrial 10
automation environment.

17. The method of claim 13, further comprising:

in response to determining that the error has occurred,
modifying additional control provided by an additional
control process that provides the additional control 1n 15
the 1ndustrial automation environment.

18. The method of claim 13, wherein the data verification

values comprise cyclic redundancy check values.

G e x Gx ex

	Front Page
	Drawings
	Specification
	Claims

