12 United States Patent

US009692854B2

(10) Patent No.: US 9.,692.854 B2

Steinberg et al. 45) Date of Patent: Jun. 27, 2017
(54) COMMUNICATION BETWEEN A 2008/0194276 Al* 82008 Linetal.ccccooe...... 455/466
WEB-BASED APPLICATION AND A 2008/0222628 Al* 9/2008 Batracocovvovernn.. GOG6F 8/60
DESKTOP APPLICATION 717/171
2009/0013310 Al* 1/2009 Armercooccoeeveene... GO6F 8/38
: : 717/120
(71) Applicant: Facebook, Inc., Menlo Park, CA (US) 2010/0162274 Al* 6/2010 Gangadharappa GOGF 9/445
. . 719/328
(72) Inventors: Arieh Steinberg, Menlo Park, CA 2010/0306668 Al* 122010 Will; I 04T 9/37
(US); Jack O’Conner, Kirkland, WA PHATIS, B0 e 715/741
(US) 2010/0313199 Al* 12/2010 Chen ... GO6F 9/5055
717/177
(73) Assignee: Facebook, Inc., Menlo Park, CA (US) 2011/0173294 A1* 7/2011 Jackson 709/217
2012/0158842 Al* 6/2012 Brenner HO4L 67/02
(*) Notice: Subject to any disclaimer, the term of this 709/204
paten‘[iS extended or adjusted under 35 2012/0191845 Al™* 7/2012 wvan de Burgt HO41. 43/0888
U.S.C. 154(b) by 90 days. | 709/224
2012/0220263 Al* 8/2012 Smith HO04W 4/003
: 455/410
(21) Appl. No.: 13/748,333 2013/0086146 Al* 4/2013 Addala et al.ccooo...... 709/203
2014/0047016 Al* 2/2014 Raocoooevvviiininnn, HO04L 67/22
(22) Filed: Jan. 23, 2013) 00703
2015/0067030 Al* 3/2015 Smith HO4W 4/18
(65) Prior Publication Data 709/203
US 2014/0207863 Al Jul. 24, 2014 * cited by examiner
(51) Int. Cl. Primary Examiner — Bnan I Gillis
(52) IJ‘):LCZI 9708 (2006.01) Assistant Examiner — Javier O Guzman
U 74) Att Agent, or Firm — Fenwick & West LLP
CPC oo HO4L 67/34 (2013.01): Ho4L 6702) Attorney, Agent, or Firm — Fenwic -
(2013.01) (57 ABSTRACT
(58) Field of Classification Search _ _ o
CPC oo, HO4L 67/34; HO4L 67/02 ~ New functionality to be added to a web-based application
USPC oo, 709/203, 217 and a desktop application is expressed as declarative and/or
See application file for complete search history. procedural code that a conventional rendering engine of the
web-based application and the desktop application can use
(56) References Cited to directly update the state of the applications. Users need
y up Y

U.S. PATENT DOCUMENTS

7,490,141 B1* 2/2009 Cammarata HO4L 63/08
709/219
2007/0208638 Al* 9/2007 Brown G06Q 40/02
705/35

Client 100

Browser 111

Rendering
engine 112

Web-

based app
113

Plug-in

Desktop app 115

Rendering
engine 116

Ul 117

118 fg;«;rk\
N

not update client-side components—such as the desktop

application and/or any plug-ins used by the browser hosting
the web-based application—+to take advantage of new types
of functionality.

18 Claims, 2 Drawing Sheets

Server 120

U.S. Patent Jun. 27, 2017 Sheet 1 of 2 US 9,692,854 B2

Client 100

Browser 111

Rendering
engine 112

Web-

pbased app
113

Plug-in
118 Server 120

Desktop app 115

Rendering
engine 116

‘ Ul 117

FIG. 1

U.S. Patent Jun. 27, 2017 Sheet 2 of 2 US 9,692,854 B2

Desktop
application 115 Browser 111 Server 120
Provide application 205
| Renader 210
Run 211
1o

| Update 220
| Check source 230

Provide state update 235

-}
| | Render 240

FIG. 2

US 9,692,854 B2

1

COMMUNICATION BETWEEN A
WEB-BASED APPLICATION AND A
DESKTOP APPLICATION

BACKGROUND

The present mvention generally relates to the field of
web-based applications, and more specifically, to commu-
nication between a web-based application and a desktop
application.

In some cases, the creators of a web-based application
may also wish to provide users with a desktop application
for viewing part or all of the information from the web-based
application. For example, a particular orgamization might
provide users with a web-based social networking applica-
tion using their web application servers. Additionally, the
company might provide users with a desktop application—
1.¢., an application written using an API of the underlying
operating system that does not run within a web browser—
that provides functionality specifically tailored to a specific
aspect of the social networking application, such as chat.
(Given that a user may concurrently execute both the web-
based application and the desktop application, it 1s desirable
for changes 1n the state of the social networking applica-
tion—such as substantive changes to the user interface
layout—to be reflected in the desktop application, and
vice-versa.

Using conventional communication techmques, however,
any time that the provider of the web-based application
wishes to add a new type of functionality, such as support for
a new type of user interface change, the provider must
update both the web-based application and the desktop
application so that both can properly interpret the meaning
of, and implement, the new functionality. For example, if the
provider wishes to allow the web-based application to send
a message to the desktop application that instructs the
desktop application to make a particular user interface
change, the web-based application must be updated to send
the message and the desktop application must be updated to
accept, interpret, and implement the message. Such updates
may be inconvenient for a user who uses the social net-
working application, leading the user not to update the

applications, with the result that the applications become
outdated, not supporting the new functionality.

SUMMARY

Embodiments of the mnvention express new functionality
to be added to a web-based application and a desktop
application as declarative and/or procedural code that a
conventional rendering engine of the web-based application
and the desktop application can use to directly update the
state of the applications. Thus, the web-based application
need not have knowledge of some extrinsic meaning ol an
update message sent between the web-based application and
the desktop application; rather, the meaning of the commu-
nication 1s implicit in the code itself. Accordingly, users need
not update client-side components—such as the desktop
application and/or any plug-ins used by the browser hosting
the web-based application—to take advantage of the new
functionality.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a high-level block diagram of a computing
environment, according to one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 illustrates interactions of a browser, a desktop
application, and a server when synchronizing the desktop

application with a web-based application running in the
browser, according to one embodiment.

The figures depict embodiments of the present invention
for purposes of illustration only. One skilled 1n the art will
readily recognize from the following description that alter-
native embodiments of the structures and methods 1llustrated
herein may be employed without departing from the prin-
ciples of the invention described herein.

DETAILED DESCRIPTION

System Architecture

FIG. 1 1s a high-level block diagram of a computing
environment according to one embodiment. FIG. 1 1llus-
trates a server 120 and a client device 100 connected by a
network 170. A user uses the client device 100 to interact
with the server 120, the server 120 providing a web-based
application 113 that executes within a browser 111 of the
client. The client device 100, or another separate device,
additionally executes a desktop application 113 that 1s kept
in sync with the web-based application 113. These compo-
nents are now described 1n more detail.

The client device 100 1s a computing device that executes
client software, e.g., a browser 111 or other application, for
performing actions such as interacting with social network-
ing services or other applications provided by the server 120.
The client device 100 might be, for example, a desktop
computer; an ultrabook or other laptop computer; a smart
phone or tablet computer using the 10S, ANDROID, or
WINDOWS PHONE operating systems; or a personal digi-
tal assistant, for example.

The client device 100 has a browser 111 that hosts a
web-based application 113 provided by the server 120.
The browser 111 comprises a rendering engine 112 that
interprets or otherwise processes declarative and/or proce-
dural code (e.g., HITML and JavaScript) that make up the
web-based application 113, generating a user interface that
the user can use to interact with the web-based application,
as well as reacting to events triggered by the user, the server
120, or others. For example, the user interface may be
generated by a rendering engine 112 such as WEBKIT based
on HITML code provided by the server 120 1n response to a
user using the browser 111 to visit a URL associated the
web-based application 113.

In some embodiments 1n which the browser 111 and a
desktop application 113 both execute on the same client 100,
interactions between the browser and the desktop applica-
tion are carried out using a plug-in 118 of the browser 111.
The plug-in 118 1s software that conforms to a plug-in API
of the browser 111 that permits 1t to interact with the
browser, and may be written using any of a variety of
different programming languages or technologies. The plug-
in 118 1s provided by the same organization that provides the
web-based application 113 via the server 120 and that
provides the desktop application 115. Unlike the web-based
application 113, the plug-in 118 does not run within the
browser 111, but rather 1s eflectively part of the browser, and
hence the plug-1n 1s not subject to the same security restric-
tions that the browser imposes on the web-based application.
Thus, the plug-1n 118 1s well-suited to handle the 1nterpro-
cess communications that may be used by the web-based
application 113 to commumnicate with the desktop applica-
tion 115.

Additionally, the plug-in 118 can provide the web-based

application 113 with information about the status of the

US 9,692,854 B2

3

desktop application 115, such as whether the desktop appli-
cation 1s running, or what user 1s logged in to the desktop
application. The web-based application 113 can use such
status 1nformation to customize i1ts own appearance oOr
actions. For example, the web-based application 113 can
enable or disable user interface elements that refer to the
desktop application based on whether the desktop applica-
tion 115 1s running (e.g., graying out or otherwise disabling
certain user interface elements 11 the desktop application 1s
not running). As another example, the web-based application
113 can show or hide certain communications based on
whether the desktop application 115 1s running and hence
will handle the communications (e.g., suppressing popup
windows for chat messages that will instead be handled by
the running desktop application).

In one embodiment, the client device 100 further com-
prises the desktop application 115, which provides an alter-
native or complementary view of the same underlying data
displayed by the web-based application 113. For example, 1n
one embodiment both the web-based application 113 and the
desktop application 1135 display information associated with
a user’s account on a social networking system, such as
FACEBOOK. For instance, the web-based application 113
might display a typical website-oriented view of the social
networking system functionality as a whole, while the
desktop application 115 might provide an alternate view,
such as a view of the user’s current chat sessions only.

The desktop application 1135 1s a standalone application
not hosted by the browser 111. For example, the desktop
application 115 may be written using a user interface API
provided by the underlying operating system, such as the
user interface API for MICROSOFT WINDOWS. In one

embodiment, some or all of the user interface 117 1s gen-
erated using a rendering engine 116 that takes as input the
same type of declarative and/or procedural code (e.g.,
HTML and JavaScript) as the rendering engine 112 used to
produce the user interface 114 for the web-based application
113. In some embodiments, the desktop application 115
defines a number of 1interfaces for use by the procedural code
that 1t loads. For example, the desktop application 115 may

define a window management interface that JavaScript
loaded by the desktop application can use to manipulate the
various windows of the desktop application, such as docking
them.

In one embodiment, the desktop application 115 loads the
declarative and/or procedural code only from some set of
fixed URLs (e.g., defining default user interfaces), rather
than allowing navigation to arbitrary URLs.

In other embodiments, the desktop application 115 need
not execute on the client device 100, but rather may addi-
tionally and/or alternatively execute on another device
accessible over the network 170. For example, the desktop
application 115 might execute on a particular user’s home
computer, while the web-based application 113 might
execute on the user’s work computer (client device 100).

The server 120 provides at least the web-based applica-
tion 113 to the client(s) 100 and, 1n some embodiments, may
help to keep the web-based application 113 and the desktop
application 115 1n sync.

Different events may take place that necessitate keeping
the desktop application 115 in sync with the web-based
application 113. For example, when an event occurs within
the web-based application 113, the web-based application
(e.g., using its plug-in 118) will send state data correspond-
ing to a state that reflects the event to the desktop application

10

15

20

25

30

35

40

45

50

55

60

65

4

115. The desktop application 115 will then apply 1ts render-
ing engine 116 to the received state data to update the user
interface 117.

As one example of an event necessitating keeping the
desktop application 115 1n sync with the web-based appli-
cation, the user using the web-based application 113 may
perform a user interface action that significantly changes the
user interface of the web-based application 113, and this
change may need to be retlected in the user interface 117 of
the desktop application 115. For example, the web-based
application 113 might include a particular tab or other user
interface region that the user can move to user interface 117
ol the desktop application 115. For mstance, the web-based
application 113 might include a chat message tab for dis-
playing and specifying the user’s chat sessions within the
web-based application, and the user might specily via a user
interface of the web-based application that the chat message
tab should instead be displayed within a desktop application
115 onented to chat. Accordingly, logic within the web-
based application (e.g., JavaScript code) will remove the
chat message tab from the user interface of the web-based
application 113 and will commumnicate to the desktop appli-
cation 115 state data causing the chat message tab to be
displayed within 1ts user interface, e.g., HITML representing
the chat message tab’s appearance and location. The ren-
dering engine 116 of the desktop application 115 will
accordingly render that state data, thereby supplementing
the existing user interface 117 with the chat message tab.

Similarly, the web-based application 113 and the desktop
application 115 might need to be kept 1n sync following an
action performed by some other user that provides additional
data that may be displayed within the web-based application
113. For instance, referring to the earlier example, another
user may send a chat message that should appear 1n the chat
message tab displayed within the desktop application 115.
The data corresponding to this chat message would arrive at
the server 120, atter which the browser 111 would obtain 1t
(e.g., 1 response to polling the server 120 for new infor-
mation to refresh the current page, or in response to the
server allirmatively pushing the information to the client
100). Logic in the web-based application 113 would then
provide the corresponding update to the desktop application
(e.g., using the plug-in 118). The web-based application 113
may provide the desktop application 115 with just the new
data (e.g., the new chat message), or with a larger portion of
the user interface state (e.g., all the HI'ML and JavaScript
used to render the chat message tab and 1ts messages, or to
render the entire user interface of the web-based applica-
tion).

In one embodiment, the browser 111 performs a security
check to determine the source of the web-based application
113 before 1t passes a state change from the web-based
application to the desktop application 115. For example,
when the server 120 provides mformation about newly-
received chat messages to the web-based application 113,
the web-based application 113 may delegate the state change
information corresponding to the newly-received chat mes-
sages to the plug-in 118 for conveyance to the desktop
application 115. In this case, the plug-in 118 may check the
source from which the information was received, such as the
source IP address or the domain name of the source URL
from which the web-based application 113 was loaded, and
verily that 1t corresponds to the proper server 120. For
example, the plug-in may require that the URL of the
web-based application be from a particular domain, or one
or more particular sub-domains of that domain. This pre-
vents a malicious server injecting unwanted content into the

US 9,692,854 B2

S

desktop application 115, such as a rogue web-based appli-
cation 113 attempting to inject spurious chat messages into
a desktop application oriented towards chat, for example.

Note that using these techniques, a new type of user
interface action (e.g., moving the chat message tab between
applications 113, 115) or other action can be added without
the client 100 needing to be updated. That 1s, because the
web-based application 113 and the state data that constitutes
the user interface 117 of the desktop application 115 are both
provided by the server 120 and are made up of code (e.g.,
HTML and JavaScript) that can be interpreted by the ren-
dering engines 112, 116 without any knowledge extrinsic to
the code 1tself, the server can introduce new functionality
simply by sending new web-based applications to the
client(s) 100, and the existing rendering engines of the
client(s) can implement 1it.

It 1s appreciated that although the web-based application
113 has been described as notifying the desktop application
115 of changes, the process could work in the other direc-
tion, as well, with the desktop application notifying the
web-based application of changes via corresponding state
data, which the rendering engine 112 of the browser 112
would then render to update the user interface of the
web-based application.

Process for Inter-Application Communication

FI1G. 2 illustrates interactions of a browser 111, a desktop
application 115, and a server 120 when keeping the desktop
application 1 sync with a web-based application 113 run-
ning 1n the browser, according to one embodiment.

Initially, the server 120 provides 205 the web-based
application 113 to the client 100. That is, the server 120
provides 205 the declarative and/or procedural code (e.g.,
HTML and JavaScript) that, when interpreted by the
browser 111, constitutes the web-based application 113.
Accordingly, the browser 111 receives the code, interprets 1t,
and renders 210 the web-based application 113 as a result of
the interpretation. For example, the browser’s rendering
engine 112 may lay out the user interface of the web-based
application 113 based on received HTML code, and may
respond to events in that user interface, or take other more
complex actions, based upon received JavaScript code.

The browser 111 may then run 211 the desktop application
115 11 1t 1s not running already. In one embodiment, for
example, the web-based application 113 includes procedural
code that causes the desktop application 115 to begin
execution (e.g., JavaScript calls to the plug-in 118, which 1n
turn runs the desktop application). The browser 111 may
cause the desktop application 115 to run 1n response to the
web-based application 113 itself beginning to run, or in
response to some asynchronous event occurring within the
web-based application, such as the user taking an action that
requires the desktop application. In some embodiments, the
desktop application may automatically be run at system
startup or user login, or the user may manually run the
application.

At some point an event occurs within the web-based
application 113 that causes a change that requires the
desktop application 115 to be synchronized with the web-
based application. As noted above, examples of such events

include the user making a particular substantive change to
the user interface that should be reflected in the desktop
application 115 (e.g., requesting that a given panel of the
user 1nterface be displayed in the desktop application), or a
new message arriving and being displayed within the web-
based application 113.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In response, the web-based application 113 additionally
updates 220 itself as needed based on the event, such as
updating the user interface of the web-based application in
accordance with the event.

The browser 111 may optionally check that the source of
any information provided by a server (e.g., a new chat
message) came from the expected server 120, as described
above. For example, the plug-in 118 of the browser 111 may
verily the IP address or source domain name, refraining from
providing a state update to the desktop application 115 if
verification fails.

To keep the desktop application 113 1n sync with the
web-based application 113, the web-based application pro-
vides 235—e¢.g., via the plug-in 118—an update to the state
of the desktop application 115. As described earlier, the state
update 1s 1n the form of declarative and/or procedural code
that 1s mterpretable by the standard rendering engine 116 of
the desktop application, as opposed to particular commands
or codes with a meaning specific to the web-based applica-
tion 113 and/or the desktop application 115. For example, in
one embodiment the state update includes the HTML and
JavaScript code that define the user interface 117.

The desktop application 115 renders the state update,
incorporating 1t into the user interface 117. For example,
HTML/JavaScript code of the state update could supplement
or replace HITML/JavaScript code defining the state of the
desktop application 113 prior to receipt of the state update.

The foregoing description of the embodiments of the
invention has been presented for the purpose of illustration;
it 1s not intended to be exhaustive or to limit the mnvention
to the precise forms disclosed. Persons skilled 1n the relevant
art can appreciate that many modifications and variations are
possible 1 light of the above disclosure.

Some portions of this description describe the embodi-
ments of the invention in terms of algorithms and symbolic
representations of operations on information. These algo-
rithmic descriptions and representations are commonly used
by those skilled in the data processing arts to convey the
substance of their work effectively to others skilled 1n the
art. These operations, while described functionally, compu-
tationally, or logically, are understood to be implemented by
computer programs or equivalent electrical circuits, micro-
code, or the like. Furthermore, 1t has also proven convenient
at times, to refer to these arrangements of operations as
modules, without loss of generality. The described opera-
tions and their associated modules may be embodied in
soltware, firmware, hardware, or any combinations thereof.

Any of the steps, operations, or processes described
herein may be performed or implemented with one or more
hardware or software modules, alone or 1n combination with
other devices. In one embodiment, a software module 1s
implemented with a computer program product comprising
a computer-readable medium containing computer program
code, which can be executed by a computer processor for
performing any or all of the steps, operations, or processes
described.

Embodiments of the mvention may also relate to an
apparatus for performing the operations herein. This appa-
ratus may be specially constructed for the required purposes,
and/or 1t may comprise a general-purpose computing device
selectively activated or reconfigured by a computer program
stored 1n the computer. Such a computer program may be
stored 1n a non-transitory, tangible computer readable stor-
age medium, or any type of media suitable for storing
clectronic instructions, which may be coupled to a computer
system bus. Furthermore, any computing systems referred to
in the specification may include a single processor or may be

US 9,692,854 B2

7

architectures employing multiple processor designs for
increased computing capability.

Embodiments of the invention may also relate to a prod-
uct that 1s produced by a computing process described
herein. Such a product may comprise information resulting
from a computing process, where the information 1s stored
on a non-transitory, tangible computer readable storage
medium and may include any embodiment of a computer
program product or other data combination described herein.

Finally, the language used 1n the specification has been
principally selected for readability and instructional pur-
poses, and it may not have been selected to delineate or
circumscribe the inventive subject matter. It 1s therefore
intended that the scope of the invention be limited not by this
detailed description, but rather by any claims that 1ssue on
an application based hereon. Accordingly, the disclosure of
the embodiments of the mmvention 1s mntended to be illustra-
tive, but not limiting, of the scope of the invention, which 1s
set forth in the following claims.

What 1s claimed 1s:

1. A computer-implemented method comprising:

receiving, from a remote application server by a browser

on a client device, code for a web-based application;
running, by the browser, the web-based application using
the received code:

identifying, by the web-based application, a change to a

state of the web-based application, the change to the
state of the web-based application comprising a transier
of a message from a message display area of the
web-based application to a message display area of
desktop application run on an operating system of the
client device, the transier comprising removal of the
message from the message display area of the web-
based application and addition of the message to the
message display area of the desktop application, the
desktop application being run concurrently with the
web-based application by a user of the client device and
not hosted by the browser;

generating, by the web-based application, state data code

reflecting the change;
communicating, by the web-based application to the
desktop application, the state data code; and

implementing, by the desktop application, the change to
the state of the web-based application by rendering the
state data code to display the message.

2. The computer-implemented method of claim 1,
wherein the change to the state of the web-based application
1s 1nitiated by an interaction of the user with the user
interface of the web-based application.

3. The computer-implemented method of claim 1,
wherein the browser communicates the state code data code
to the desktop application using a browser plug-in.

4. The computer-implemented method of claim 1,
wherein:

the change to the state of the web-based application 1s

recetved from a remote server; and

the web-based application communicates the state data

code to the desktop application only 1n response to the
browser veriiying that the remote server 1s the remote
application server.

5. A non-transitory computer-readable storage medium
comprising;

instructions for recerving, ifrom a remote application

server by a browser on a client device, code for a
web-based application;

instructions for running, by the browser, the web-based

application using the received code;

10

15

20

25

30

35

40

45

50

55

60

65

8

instructions for identifying, by the web-based application,
a change to a state of the web-based application, a
change to a state ol the web-based application, the
change to the state of the web-based application com-
prising a transier of a message from a message display
area of the web-based application to a message display
arca of a desktop application run on an operating
system of the client device, the transfer comprising
removal of the message from the message display area
of the web-based application and addition of the mes-
sage to the message display area of the desktop appli-
cation, the desktop application being run concurrently
with the web-based application by a user of the client
device and not hosted by the browser;

instructions for generating, by the web-based application,

state data code retlecting the change;
instructions for communicating, by the web-based appli-

cation to the desktop application, the state data code;

and

instructions for implementing, by the desktop application,
the change to the state of the web-based application by
rendering the state data code.

6. The non-transitory computer-readable storage medium
of claim 3§, wherein the change to the state of the web-based
application 1s mitiated by an interaction of the user with the
user interface of the web-based application.

7. The non-transitory computer-readable storage medium
of claim 5, wherein the browser communicates the state code
data code to the desktop application using a browser plug-in.

8. The non-transitory computer-readable storage medium
of claim 5, wherein:

the change to the state of the web-based application 1s

recerved from a remote server; and

the web-based application communicates the state data

code to the desktop application only 1n response to the
browser veritying that the remote server 1s the remote
application server.

9. A computer system comprising:

a processor; and

a computer program executable by the computer proces-

sor, the computer program comprising;

instructions for receiving, from a remote application
server by a browser on a client device, code for a
web-based application;

istructions for running, by the browser, the web-based
application using the received code;

istructions for identifying, by the web-based applica-
tion, a change to a state of the web-based application,
a change to a state of the web-based application, the
change to the state of the web-based application
comprising a transier of a message from a message
display area of the web-based application to a mes-
sage display area of a desktop application run on an
operating system of the client device, the transier
comprising removal of the message from the mes-
sage display area of the web-based application and
addition of the message to the message display area
of the desktop application, the desktop application
being run concurrently with the web-based applica-
tion by a user of the client device and not hosted by
the browser:

istructions for generating, by the web-based applica-
tion, state data code retlecting the change;

instructions for communicating, by the web-based
application to the desktop application, the state data
code; and

US 9,692,854 B2

9

instructions for implementing, by the desktop applica-
tion, the change to the state of the web-based appli-
cation by rendering the state data code.

10. The computer system of claim 9, wherein the change
to the state of the web-based application 1s initiated by an
interaction of the user with the user interface of the web-
based application.

11. The computer system of claim 9, wherein the browser

communicates the state code data code to the desktop
application using a browser plug-in.

12. The computer system of claim 9, wherein:

the change to the state of the web-based application 1s
recetved from a remote server; and

the web-based application communicates the state data
code to the desktop application only 1n response to the
browser veritying that the remote server 1s the remote
application server.

10

15

10

13. The method of claim 1, wherein the web-based
application causes the desktop application to run.

14. The method of claim 1, wherein implementing the
change to the state of the web-based application comprises
visually rendering the state data code.

15. The non-transitory computer-readable storage
medium of claim 5, wherein the web-based application
causes the desktop application to run.

16. The non-transitory computer-readable storage
medium of claim 5, wherein implementing the change to the
state of the web-based application comprises visually ren-
dering the state data code.

17. The computer system of claim 9, wherein the web-
based application causes the desktop application to run.

18. The computer system of claim 9, wherein implement-

ing the change to the state of the web-based application
comprises visually rendering the state data code.

¥ ¥ # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 1 9.092.854 B2 Page 1 of 1
APPLICATION NO. : 13/748333

DATED cJune 27, 2017

INVENTOR(S) . Arich Steinberg et al.

It is certified that error appears In the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 7, Line 30, after “display area of” insert -- a --.

Column 7, Line 51, atfter “state” delete “code”.

Column 8, Line 2, after “web-based application,” delete “a” and mnsert -- the --.

Column 8, Line 3, after “change to” insert -- the -- and delete "a”.

Column 8, Line 29, after “state” delete “code”.

Column 8, Line 41, after “the” delete “computer’.

Column 8, Line 48, after “application,” delete “a change to a state of the web-based application,”.
Column 9, Line 9, after “state” delete “code™.

Signed and Sealed this
Sixteenth Day of April, 2019

Andrei lancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

