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GRAPH-BASED APPLICATION
PROGRAMMING INTERFACE
ARCHITECTURES WITH NODE-BASED
DESTINATION-SOURCE MAPPING FOR
ENHANCED IMAGE PROCESSING
PARALLELISM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit under 35 U.S.C. Sec.
119(e) of U.S. provisional application 62/104,226 titled
“Graph-based Application Programming Interface Architec-
tures and Optimization Engines For Enhanced Image Pro-

cessing Parallelism,” filed Jan. 16, 2013.

BACKGROUND

Computer vision processing (e.g., face/body/gesture
tracking, object and scene detection/reconstruction, auto-
mated visual mspection, etc.) 1s becoming an increasingly
important capability of computing device platforms. Accel-
erated visual processing optimized for performance and/or
power 1s particularly important for real time, mobile, and/or
embedded device applications. Increasingly powertul pro-
cessors and 1mage sensors are enabling computing platiorms
with greater visual intelligence. However, distributing com-
plex vision processing algorithms across device platform
processors best suited to the application remains a dithicult
problem.

A typical image processing application performs several
successive operations on 1mages with the output of one
operation used as the mput ol another operation (e.g.,
pipeline stages). A graph-based image processing implemen-
tation optimization API provides a usetul level of abstraction
for vision processing execution and memory models, and
provides a formal description of an operation sequence as a
directed acyclic graph (DAG). The DAG 1s a collection of
nodes that describe the 1mage processing tasks by means of
connections between them. Nodes of a graph correspond to
source and destination data (e.g., 1mages) or to operations on
images. Edges of a graph define data flow 1n a task. A
connection between nodes means that the result of one
operation (“output”) 1s used as the input for another opera-
tion. Each node may be associated with one or more
hardware resource where the node 1s to be executed.

The OpenVX 1.0 specification released October 2014 by
the Khronos Group, 1s one example of a graph-based image
processing implementation optimization API providing a
framework for managing and executing graphs. With such
an API, an application developer may define image process-
ing tasks by building a graph of the image processing
functions and rely on the API framework for implementation
over a wide array of platforms. An implementer provides a
graph compiler and graph executor that 1s compatible with
the graph-based implementation API and 1s configured to
most efliciently execute image processing tasks for a given
implementation by passing image data through the graph
nodes.

It 1s advantageous for a graph-based image processing
implementation API to provide implementers with the infor-
mation needed to make task/work assignments and sched-
uling decisions that may, for example, improve etliciency

through parallelism.

BRIEF DESCRIPTION OF THE DRAWINGS

The material described herein is illustrated by way of
example and not by way of limitation 1n the accompanying
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2

figures. For simplicity and clarity of illustration, elements
illustrated 1n the figures are not necessarily drawn to scale.

For example, the dimensions of some elements may be
exaggerated relative to other elements for clanty. Further,
where considered appropriate, reference labels have been
repeated among the figures to indicate corresponding or
analogous elements. In the figures:

FIG. 1A 1illustrates nodes to be included in an 1mage
processing graph, 1in accordance with some embodiments;

FIG. 1B illustrates connecting nodes into an 1image pro-
cessing graph, in accordance with some embodiments;

FIG. 1C illustrates execution of an 1mage processing
graph, 1 accordance with some embodiments;

FIG. 2A 1illustrates graph-based optimization through
task-based decomposition, i1n accordance with some
embodiments;

FIG. 2B 1llustrates graph-based optimization through spa-
tial decomposition, in accordance with some embodiments;

FIG. 2C illustrates a graph-based optimization entailing
both spatial and task decomposition;

FIG. 2D illustrates both spatial and task decomposition
over heterogeneous hardware resources, i accordance with
some embodiments;

FIG. 3A 1s a flow diagram illustrating an 1mage graph
node mapping method, 1n accordance with some embodi-
ments;

FIG. 3B 1s a flow diagram illustrating an image graph
compile method, 1n accordance with some embodiments;

FIG. 3C 1s a flow diagram illustrating an image graph
execution method, 1n accordance with some embodiments;

FIG. 4A 1s a functional block diagram 1llustrating a graph
node-level input/output data block mapping function, in
accordance with some embodiments;

FIG. 4B 1s a functional block diagram 1llustrating a graph
node-level output/output data block mapping function, in
accordance with some embodiments;

FIG. 4C 1s a functional block diagram illustrating a graph
compiler calling a node-level data block mapping function,
in accordance with some embodiments;

FIG. 4D 1s a functional block diagram illustrating suc-
cessive compiler calls to node-level data block mapping
functions, 1n accordance with some embodiments;

FIG. 5 illustrates an exemplary implementation of node-
defined data block dependency mapping 1n accordance with
some embodiments;

FIG. 6 1s a functional block diagram depicting an 1image
processing pipeline implementation including node-defined
data block dependency mapping optimizations, 1 accor-
dance with some embodiments;

FIG. 7 1s a functional block diagram of a data processing
system, 1n accordance with some embodiments;

FIG. 8 1s a diagram of an exemplary ultra-low power
system 1ncluding a processor with node defined data block
based scheduling logic, in accordance with some embodi-
ments; and

FIG. 9 1s a diagram of an exemplary mobile handset
platform, arranged in accordance with some embodiments.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

One or more embodiments are described with reference to
the enclosed figures. While specific configurations and
arrangements are depicted and discussed in detail, 1t should
be understood that this 1s done for 1llustrative purposes only.
Persons skilled 1n the relevant art will recognize that other
configurations and arrangements are possible without
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departing from the spirit and scope of the description. It will
be apparent to those skilled 1n the relevant art that techniques
and/or arrangements described herein may be employed 1n a
variety of other systems and applications beyond what 1s
described 1n detail herein.

Reference 1s made 1n the following detailed description to
the accompanying drawings, which form a part hereof and
illustrate exemplary embodiments. Further, 1t 1s to be under-
stood that other embodiments may be utilized and structural
and/or logical changes may be made without departing from
the scope of claimed subject matter. Therefore, the following,
detailed description 1s not to be taken in a limiting sense and
the scope of claimed subject matter 1s defined solely by the
appended claims and their equivalents.

In the following description, numerous details are set
torth, however, 1t will be apparent to one skilled 1n the art,
that embodiments may be practiced without these specific
details. Well-known methods and devices are shown 1n
block diagram form, rather than 1n detail, to avoid obscuring,
more significant aspects. References throughout this speci-
fication to “an embodiment” or “one embodiment” mean
that a particular feature, structure, function, or characteristic
described in connection with the embodiment 1s included 1n
at least one embodiment. Thus, the appearances of the
phrase “in an embodiment” or “in one embodiment” in
various places throughout this specification are not neces-
sarily referring to the same embodiment. Furthermore, the
particular features, structures, functions, or characteristics
described 1n the context of an embodiment may be combined
in any suitable manner 1 one or more embodiments. For
example, a first embodiment may be combined with a
second embodiment anywhere the particular features, struc-
tures, functions, or characteristics associated with the two
embodiments are not mutually exclusive.

As used 1n the description of the exemplary embodiments
and 1n the appended claims, the singular forms “a”,

, “‘an” and
“the” are imntended to include the plural forms as well, unless
the context clearly indicates otherwise. It will also be
understood that the term “and/or” as used herein refers to
and encompasses any and all possible combinations of one
or more of the associated listed items.

As used throughout the description, and 1n the claims, a
list of 1tems joined by the term “at least one of” or “one or
more of”” can mean any combination of the listed terms. For
example, the phrase “at least one of A, B or C” can mean A;
B: C;Aand B; Aand C; B and C; or A, B and C.

The terms “coupled” and “connected,” along with their
derivatives, may be used herein to describe functional or
structural relationships between components. It should be
understood that these terms are not intended as synonyms
for each other. Rather, in particular embodiments, *“con-
nected” may be used to indicate that two or more elements
are 1n direct physical, optical, or electrical contact with each
other. “Coupled” may be used to indicated that two or more
clements are in either direct or indirect (with other inter-
vening elements between them) physical, optical, or elec-
trical contact with each other, and/or that the two or more
clements co-operate or interact with each other (e.g., as 1n a
cause an ellect relationship).

Some portions of the detailed descriptions provide herein
are presented 1n terms ol algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. Unless specifically stated otherwise, as apparent
from the following discussion, it 1s appreciated that through-
out the description, discussions utilizing terms such as
“calculating,” “computing,” “determining’ “estimating”
“storing” “collecting” “displaying,” “recerving,” “consoli-
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4

dating,” “generating,” “updating,” or the like, refer to the
action and processes of a computer system, or similar
clectronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s circuitry including registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or
registers or other such information storage, transmission or
display devices.

While the following description sets forth embodiments
that may be manifested in architectures, such system-on-a-
chip (SoC) architectures for example, implementation of the
techniques and/or arrangements described herein are not
restricted to particular architectures and/or computing sys-
tems, and may be implemented by any architecture and/or
computing system for similar purposes. Various architec-
tures employing, for example, multiple integrated circuit
(IC) chips and/or packages, and/or various computing
devices and/or consumer electronic (CE) devices such as
set-top boxes, smartphones, etc., may implement the tech-
niques and/or arrangements described herein. Further, while
the following description may set forth numerous specific
details such as logic implementations, types and interrela-
tionships of system components, logic partitioning/integra-
tion choices, etc., claimed subject matter may be practiced
without such specific details. Furthermore, some material
such as, for example, control structures and full software
instruction sequences, may not be shown in detail in order
not to obscure the material disclosed herein.

Certain portions of the maternal disclosed herein may be
implemented in hardware, for example as logic circuitry 1n
a central processor core. Certain other portions may be
implemented in hardware, firmware, software, or any com-
bination thereof. At least some of the material disclosed
herein may also be implemented as instructions stored on a
machine-readable medium, which may be read and executed
by one or more programmable processors (graphics proces-
sors and/or central processors). A machine-readable medium
may include any medium and/or mechanism for storing or
transmitting information in a form readable by a machine
(e.g., a computing device). For example, a machine-readable
medium may include read only memory (ROM); random
access memory (RAM); magnetic disk storage media; opti-
cal storage media; flash memory devices; electrical, optical,
acoustical, or other similarly non-transitory, tangible media.

One or more system, apparatus, method, and computer
readable media 1s described below for extracting parallelism
in an 1mage graph processing. Techniques and architectures
described below for exemplary image processing embodi-
ments can be applied to many other data blocks generalized
to technologies such as, but not limited to, signal processing
and audio/video coding. In some embodiments, a flexible
representation of destination-source data block dependency
1s included 1n a graph-based 1mage processing implementa-
tion API to provide a graph node developer with a mecha-
nism to communicate limits of scheduling constraints
imposed by a graph’s node connections. In some embodi-
ments, an 1mage graph compiler and/or 1image graph execu-
tor employ destination-source data block dependency
defined through the graph-based image processing 1mple-
mentation API to schedule work tasks on hardware resources
in a more eflicient manner (e.g., with parallelism at the data
block level).

In some embodiments, an engine for executing a set or
series of 1maging operations 1s expressed by an 1mage
processing soltware developer as a graph or series of func-
tion calls. A graph 1s a class of objects that contain all

=R 4 4 = 4 4
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information to organize calculations among nodes in the
graph. A graph class interface of a graph API enables adding
nodes to a graph and connecting their input and output ports.
Nodes of an image processing graph correspond to source
and destination data and operations to be performed on
images (image data blocks). FIG. 1A illustrates a set opera-
tions with each operation contained in a compute node (e.g.,
node 120, node 130, node 140) or source/destination node.
Source node 110 and destination node 1350 are each a data
array or data stream entered into the graph explicitly.

Each operation of a compute node may be selected, for
example, from a library of many hundreds/thousands of
functions. Any low level compute library or API (e.g., an
OpenCL compliant library) may be enlisted within each
node. In some embodiments, the compute note functions are
designed for whole image processing. The image graph
implementation API provides function(s) for creating/add-
ing nodes, for example:

/{/ Create Nodes

SrcNode::Params srclParams( );

Node *inl=nflA.CreateNode(SrcNode::NodeUniqueName( ),
&srclParams);

SimpleNode_ 2 1::Params simplelParams(idmAdd);
Node *add=nilA.CreateNode(SumpleNode 2 1::NodeUniqueName( ),
&simplel Params);

Node objects contain information about node connectivity
(number of input and output ports) and the main parameters
for the function associated with the node. Objects of deriva-
tive classes can contain other parameters, depending on the
node function. FIG. 1B illustrates a connection of nodes to
create 1mage processing tasks. The graph edges 111, 112,

113, 114 are provided by the image processing software
developer to define the flow of the data array/data stream
from source node 110 through the compute nodes 120, 130,
140, to destination node 150. The graph-based implemen-
tation API provides function(s) for connecting an image
graph, for example:

// Connect Graph
g->Link(in11d,0, addId,0);

Numbers of objects and ports are used by the Link method
to connect the output port of one object with the mput port
ol another object.

In some embodiments, the image graph 1s then trans-
tormed, or compiled, by a graph compiler 1nto a sequence of
image processing function calls that are applied to data
blocks or small parts of the mput image data referred to
herein as a tiles. Tiles include slices having the whole width
ol an 1mage, as well as rectangles of arbitrary dimension and
orientation within an 1mage. A compile member function of
a class compiles the graph object. During compile, the graph
1s veriflied for absence of cycles, absence of 1solated nodes,
correspondence of data types and number of channels
between nodes. In embodiments, the compile function 1s
turther responsible for determining an optimal tile size
according to an available cache size. During 1mage graph
execution, the passage of a data block through compute
nodes between source node 110 and destination node 1350
constitutes a series ol 1image processing tasks. As 1llustrated
in FIG. 1C, execution of the image graph may be concep-
tualized with temporary buflers 125, 135 inserted between
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6

compute nodes 120, 130 and 130, 140, respectively used for
retaining the results of each task.

In some embodiments, a graph optimization engine per-
forms a graph-based optimization entailing a task-based
decomposition. For task-based decomposition, the output of
one operation (e.g., in node 120) used as the input of another
operation (e.g., 1n node 130). An example of a graph-based
optimization through task-based decomposition 1s 1llustrated
in FI1G. 2A, where separate processor cores or compute units
are assigned diflerent tasks. For example, a processor core
221 1s responsible for a filter 220, processor core 222 1is
responsible for a resize 230, and processor core 222 1s
responsible for an n” task. Many image processing appli-
cations utilize very large images (e.g., several megapixels),
and the total memory used for image processing may exceed
the size of a local bufler (e.g., a second-level cache of a
processor). In these conditions the bottleneck becomes
memory access, so source 1mage 210 1s decomposed 1nto
data blocks associated with sections of source image 210.
These image fragments (e.g., source tiles 211, 212, 213) are
then processed by processor cores 221, 222, 223 to generate
destination tiles 251, 252, 253 of destination 1image 250.

In some embodiments, a graph optimization engine per-
forms a graph-based optimization entailing a tile-based, or
spatial, decomposition. As 1illustrated in FIG. 2B, each
processor core 221, 222, 222 is responsible for performing
the filter 220, resize 230, and the n” task 240 for one source
tile 211, 212, 213, respectwely As an example, one efli-
ciency possﬂ:)le Wlth tile-based decomposition 1s the reten-
tion of a data block (e g., corresponding to one tile) within
a local memory bufler (e.g., a level-two cache associated
with a processor core) as successive tasks are performed on
the data block.

In some embodiments, a graph optimization engine per-
forms a graph-based optimization entailing both spatial and
task decomposition. As depicted in FIG. 2C, processor core
221 1s responsible for filter 220, which may be computa-
tionally expensive relative to resize 230 and n” task 240.
Processor cores 222 and 223 may be assigned the resize 230
and n” task 240 to output a separate destination tile 251, 252
from one source tile 211, 212. Processor core 221 processes
both source tiles 211, 212 to complete filter task 220.

In some embodiments, a graph optimization engine per-
forms a graph-based optimization entailing either or both
spatial and task decomposition over heterogencous hard-
ware resources. FIG. 2D illustrates both spatial and task
decomposition over heterogeneous hardware resources
including a hardware accelerator 260 1n addition to multiple
cores of a processor. In the depicted example, accelerator
260 handles filter task 220 for all source tiles 211, 212, and
213. One processor core 221, 222, 223 1s responsible for
performing both resize task 230 and n” task 240 on a filtered
data block corresponding to one source tile 211, 212, 213,
respectively.

Explicitly splitting a source image into fragments and
performing the required operation on these fragments 1s
particularly diflicult if an operation requires data outside an
image Ifragment, or the processing operations require a
change 1n the fragment size. Furthermore, i the above
embodiments, parallelization of the calculation sequence
may be advantageous. For example, the processing of one
image fragment, then another, need not be scheduled such
that all fragments are processed through a first task by one
hardware resource before any fragment 1s processed through
another task by another hardware resource. Greater process-
ing efliciency may be had where processing of a fragment
through one task 1s mstead predicated only on that fragment




US 9,684,944 B2

7

having been first processed through a preceding task, regard-
less of the status of any other fragment processing.

In some embodiments, a graph node includes one or more
descriptor of dependency of a source data block (1.e., a
producer tile) on a destination data block (1.e., consumer
tile). Input-output data block mappings defined at the node
level supplement the node-based interconnections defined at
the graph level. While node-based interconnections facilitate
task decompositions, without data dependency information,
a graph compiler 1s limited to interpreting the node inter-
dependencies as absolute (1.e., all source data must pass
through a first node before any source data may pass through
a second node). An mput-output data block mapping at the
node level however enables a graph compiler to determine
the limits of the node interdependencies so that parallelism
may be extracted, for example through a function call.

In some embodiments, a graph-based image processing
implementation API provides a framework for defining a
source data block-to-destination data block mapping at the
graph node level. FIG. 3A illustrates a node mapping
method 301. Method 301 may, for example, be performed by
an 1mage processing soitware application. Method 301
begins with receiving a specification of an 1mage processing,
graph node at operation 305. At operation 310, an 1mage
processing function 1s associated with the node, defining a
compute node such as any of nodes 120, 130, 140 1llustrated
in FIG. 1A. At operation 315, a source data block that 1s to
be operated upon with the 1image graph node processing
function 1s associated with a destination data block to be
output from the graph node. The source data block-to-
destination data block mapping may be any mapping func-
tion (method) that parameterizes source and destination
blocks 1n a form that enables a graph compiler to determine
data block dependency information for the node.

In an exemplary embodiment further illustrated 1in FIG.
4A, the data block mapping 1s expressed as a node-level
mapping function Map( ). The node-level mapping function
Map( ) takes an output tile of data and returns an input tile
of data on which 1t depends. A mapping function may, for
example, parameterize a tile with one or more of a width,
height, origin, orientation, etc. As illustrated 1n FIG. 4A, a
mapping function 1n node 420 1s to recerve a parameteriza-
tion of destination tile 426 corresponding to a data block
location 1n temporary butler 4235 and return a parameteriza-
tion of source tile 411 corresponding to a data block location
in source 410. Hence, the mapping function Map( ) provides
a general mechanism to describe the dependencies between
input and output data for each operation node. The mapping
function thereby provides a framework for externalizing
data flow management whereas a graph-based implementa-
tion API lacking such a mapping function internalizes data
flow management within each node. A node developer may
readily define node-level or “node-based” mapping in con-
junction with defining the compute function(s) to be called
during node execution. In some embodiments, the node level
input/output data mapping 1s defined as either a public
member function of the graph-based implementation API or
as an overridden public member function. For example:

virtual i dmStatus ( IppiRect * producer,
DMIP::Node::GetProducerRect
const IppiRect consumer,
&
int in__port,
int out__port

the GetProducerRect( ) data block mapping function outputs
producer pointer to a rectangle in the source 1image based on
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input parameters consumer (parameterization of a particular
consumer rectangle 1n the output/destination 1mage), 1n_port
(specilying a source port number), and out_port (speciiying
a destination port number). A call to the GetProducer
Rect( ) mapping function by the graph compiler yields a
description of the dependency from destination rectangle
(consumer) to source rectangle (producer).

In further reference to FIG. 3A, 1n some embodiments
operations 305, 310, and 3135 are iterated to specily an
input/output data mapping function for each of a plurality of
graph nodes. In some exemplary embodiments, each com-
pute node 1 an 1mage graph includes a specification of a
source-to-destination data block mapping. The node-level
mappings may then provide a complete dependency chain
extending through all nodes of a graph. The most robust
extraction of parallelism 1s possible for exemplary embodi-
ments where each and every compute node created and/or
added to an 1image graph includes a consumer-producer data
block mapping function. For a graph-based image process-
ing implementation API lacking a node-level input/output
source mapping function, such parallelism could be
extracted only 1 a graph compiler relies on an 1mplicit
assumption that each node of a graph has the same data
block dependency with any deviations from that default then
having to be handled uniquely as special cases. Following
the paradigm introduced here however, data block depen-
dency may be varied across any and all graph nodes. In one
example where a graph node 1s to perform a 90° i1mage

rotation, the consumer rectangle depends on a producer
rectangle that 1s rotated by 90°. Such a node may include the
following compute function to determine the source rect-
angle srcRect within a region of interest (ROI):

static inline void Rotate90CalculateSrcRech(IppiRect& srcRect, double
angle, IppiSize srcRoi, IppiSize dstRoi, IppiRect dstRect)

1

double xCenterSrc = (srcRor.width — 1) * 0.3;
double yCenterSrc = (srcRoi.height — 1) * 0.5;
double xCenterDst = (dstRoi.width — 1) * 0.5;
doub
C

ouble yCenterDst = (dstRoi.height — 1) * 0.5;

ouble xShift = 0, yShift = 0;
ipp1GetRotateShift(xCenterDst, yCenterDst, —angle, &xShift, &yShift);
xShift —= xCenterDst — xCenterSrc;

yShift —= yCenterDst — yCenterSrc;

double bound[2][2];

ipp1GetRotateBound(dstRect, bound, —angle, xShift, yShift);
srcRect.x = bound[0][0];

srcRect.y = bound[0][1];

srcRect.width = bound[1][0] - srcRect.x + 1;
srcRect.height = bound[1][1] - srcRect.y + 1;

h

The GetProducerRect( ) data block mapping function
included in the node may then be provided as:

idmStatus Rotate90Node::GetProducerRect(IppiRect® producer rc, const
IppiRect& consumer__rc, it 1n__port, int out__port)

{

assert(in__port == 0 && out__port == 0);
Rotate90CalculateSrcRect(*producer_ rc, params.angle,

InputData(0).size, OutputData(0).s1ze, consumer__1rc);
return 1dmOK;
h

As a further example of method 301, in another 1teration of
operations 310-315 where an 1mage filter node 1s created/
added, the GetProducerRect( ) data block mapping function
included in a node may be provide as:
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idmStatus BaseFilterNode::GetProducerRect(IppiRect™ producer_ rc, const
IppiRect& consumer_ rc, int in_ port, mmt out_ port)

{

*producer rc = consumer_ rc;

int top, bottom, left, right;

// get the total size of the kernel
m__kernel->GetBorders(&top, &bottom, &left, &right);
producer_ rc->width += left+right;

producer_ rc->height += top+bottom;

return 1dmOK;

In some embodiments, a graph-based implementation API
provides a framework for defining internal data block depen-
dency at the graph node level. Internal data block depen-
dency specifies one or more data blocks 1n a destination
image that should be calculated before a particular data

block 1n the destination 1mage. With such an image process-
ing graph architecture, a graph compiler can optimize par-
allelism over many data blocks for one graph node even
where an 1mage processing function of the node requires a
serialization at the data block level. For example, an error
diffusion function may carry over error associated with
processing a first source (producer) data block into a first
destination (consumer) data block for further application of
the error 1n the processing of a second source data block 1nto
a second destination data block. Hence, an internal tile
dependency exists at the error diffusion node where the
second source data block should not be processed until the
first source data block has passed through the error diffusion
node.

In an exemplary embodiment further illustrated 1in FIG.
4B, an internal tile mapping function i1s expressed as an
output/output dependency mapping function InternalTileDe-
pendency( ). The internal mapping function indicates a
dependency of output tile 427 on output tile 426. Depen-
dency for each of the output tiles 426, 427 on mput tiles 411,
412 1s further characterized through mapping function
Map( ). In some embodiments, the node level output/output
data mapping 1s defined as either a public member function
of the graph-based implementation API or as an overridden
public member function. For example:

virtual 1 dmStatus ( std::list<
DMIP::Node::InternalTileDependency Tile > * tiles,
const
Tile tile,
&

int out__port

A list of predecessor outputs tiles 1s returned for an input
(dependent) tile for a specified destination port out_port. A
compiler may be informed to call this method based on flag,
etc. For the specific example of an error diflusion node, the
InternalTileDependency( ) output/output mapping function
characterizing internal tile dependency for the node may be
structured as:

idmStatus ErrorDiffusionNode::InternalTileDependency(std::list<Tile>*
tiles, const Tile& tile, int out_ port)

1

if (!m__useSlices)
{
if (tile.y > 0)
tiles->push_ back(Tile(tile.x + 1, tile.y — 1));
/f TODO Is dependency 1s needed? tiles->push_ back(Tile(tile.x, tile.y —
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-continued

1));
if (tile.x > 0)
tiles->push__back(Tile(tile.x — 1, tile.y));

)

else

1

if (tile.y > 0)
tiles->push__back(Tile(tile.x, tile.y — 1));

h

return 1dmOK;

h

Upon creating all graph nodes, method 301 1s then com-
pleted with linking the nodes into a connected graph at
operation 320 for example using any conventional tech-
niques. The image graph 1s then ready for graph compilation.

FIG. 3B illustrates a graph compile and/or execution
method 302, at least a portion of which may be performed,
for example, as part of a JIT compilation process. In
embodiments, the graph compiler splits mput 1mages into
fragments (tiles) containing several successive rows, allo-
cates memory for intermediate builers, and defines what
operations are to be performed on the tiles. In some embodi-
ments, a graph compiler and/or graph executor calls one or
more mapping functions within a node to determine an
input/output data block dependency for the node. In some
embodiments, a graph compiler and/or graph executor calls
one or more mapping functions within a node to determine
an output/output data block dependency for the node. In
further embodiments, the graph compiler makes successive
calls to one or more mapping function in each of successive
nodes 1 a graph to determine data block dependency
information as the data blocks pass through stages of the
image graph during graph execution.

Method 302 begins at operation 330 where a graph
specilying a pipeline of image processing tasks 1s received.
At operation 335, a source data block upon which a desti-
nation data block depends 1s determined from corresponding
nodes 1n the graph. At operation 340, data block dependency
information 1s generated based on the source-to-destination
(input/output) data block mapping determined from the
nodes. In further embodiments, data block dependency
information 1s generated further based on the internal des-
tination-to-destination (output/output) data block mapping
determined from the nodes.

In the exemplary embodiment illustrated in FIG. 4C,
when a mapping function in node 420 1s called by graph
compiler 402 with a parameterization of destination tile 426
(F1G. 4A) corresponding to a data block 1n temporary builer
4235, the mapping function Map( ) returns a parameterization
of source tile 411 corresponding to a data block 1n source
410. In further embodiments, graph compiler 402 makes
successive calls to successive nodes 1n a graph to determine
data dependency information for the graph. In some embodi-
ments, data dependency information 1s explicitly stored as a
dependency tree that might have thousands of entries. In
alternative embodiments, data dependency information
determined from the mapping function calls 1s 1mplicitly
employed in the scheduling of work tasks/assignment of
tasks to hardware resources without storing a dependency
tree data structure to memory.

In an exemplary embodiment further illustrated in FIG.
4D, graph compiler 402 makes a first map function call to a
(last) node outputting to a destination 450. The first map
function call specifies a first destination tile 451 correspond-
ing to a block of data to be stored 1n a destination image 450.
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In response to the first call, an input/output data mapping
function of the last node returns a specification of a source
tile 426 corresponding to a block of data to be stored in
temporary bufler 425. Graph compiler 402 i1ssues a second
map function call to an immediately preceding node defined
in an 1mage graph as outputting to the first node. The second
map function call 1ssues the specification of a source tile
426. In response to the second map function call, an mput/
output data mapping function of the preceding node returns
a specification of the source tile 411 corresponding to a
block of data 1n a source image 410. The graph compiler
then has data block dependency information relating desti-
nation tile 451 with tiles 411 and 426. An additional
sequence of map function calls may be 1ssued to acquire

dependency information relating destination tile 4352 with
tiles 412 and 427. Parameterization of the tiles 411, 412,

426, 4277, 451 and 452 may then be utilized for scheduling
the tasks associated with passing each tile through the graph
nodes with optimal parallelism.

FIG. 3C 1llustrates a graph execution method 303, which
in some embodiments 1s performed by an image graph
execution engine (i1.e., image graph executor). In method
303 image processing tasks are scheduled at operation 370
based on both node dependency information receirved at
operation 360 and data block dependency information
received at operation 365. The node dependency informa-
tion may originate from an image graph by a graph compiler
tollowing any known technique. The data block dependency
information may originate from the graph nodes by a graph
compiler following the techmiques described above. For
example, as 1illustrated in FIG. 4D because of overlap
between tiles 411 and 412, the associated imaging tasks are
to be scheduled as predecessors to tasks generating desti-
nation tiles 451, 452. However, the tasks generating desti-
nation tiles 451, 452 may be scheduled for parallel execution
dependent only on availability of their corresponding source
tiles 426, 427. In further embodiments where internal tile
dependencies are present, task scheduling 1s further predi-
cated on the completion of predecessor tasks associated to
ensure predecessor output tiles are prioritized over internally
dependent tiles.

Scheduling operation 370 may be implemented 1in any
manner, as embodiments are not limited 1n this respect. In
some exemplary embodiments, scheduling operation 370 1s
implemented with threading building blocks (TBB) employ-
ing any known architecture(s) and technique(s) to dynami-
cally allocate imaging operations to individual processor
cores 1n a manner based on the data block dependency as
well as node dependency.

FIG. 5 1llustrates an exemplary implementation 500 with
node-defined data block dependency mapping 1n accordance
with embodiments. Platform 500 includes an implementer
software layer 501 that enlists a graph-based image process-
ing implementation API 510 providing a framework for
mapping data block dependencies at the node level. In some
embodiments, platform 500 employs additional graph and
optimization frameworks such as may be provided by an
OpenVX API 505 (e.g., OpenVX API v1.0). In alternative
embodiments, a standardize API, such as OpenVX may
provide the framework for mapping data block dependencies
at the node level substantially as described elsewhere herein.
In other words, the API’s 5035 and 510 may be separately
maintained or merged as an implementation optimization
interface having the data block mapping functionality
described herein. As further illustrated in FIG. 5, implemen-
tation 500 turther includes an 1mage graph compiler 5320 and
a work distributor 5235, each of which may comprise libraries
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of data structures and algorithms for transforming an 1image
graph defined 1n upper layers (e.g., API 510) into function
calls that generate work tasks that are scheduled on hard-
ware resources. As further illustrated 1in FIG. 5, implemen-
tation 500 has hardware resources including a system-on-

chip (SOC) 550 and hardware accelerator 590. SOC 550

turther includes a central processing unit (CPU) 560, image
processing unit (IPU) 570, and graphics processing unit
(GPU) 580. CPU 560 1includes a plurality of processing
cores 361, 562, 563, 564 interfacing with level-two caches
565, 566. IPU 570 includes a vector processing unit 571.
GPU 3580 includes a plurality of execution units 581, 582,

583, 584.
In embodiments, image graph compiler 520 1s instantiated

and/or executed by CPU 560. In further embodiments, work
distributor 525 1s also istantiated and/or executed by CPU
560 resulting 1n 1mage processing work tasks being sched-
uled on one or more of CPU cores 561-564, VU 571, EU

581-584, and accelerator 590. In advantageous embodi-
ments, image graph compiler 520 and work distributor 525
implement node defined data block-based scheduling logic.

FIG. 6 1s a functional block diagram depicting an 1image
processing pipeline implementation including node-defined
data block dependency mapping optimizations. Not all
depicted operations need be performed by a single imple-
mentation or contemporaneously. For example, graph cre-
ation operations 610, 615 may be performed during 1image
pipeline develop time 1n advance of graph compile and/or
execution operations 620, 630 performed during image
pipeline runtime. In FIG. 6, vertical dash lines demark the
functional elements enlisted 1n performance of the depicted
operations. API 510 1s employed to add and link graph nodes
having a data block mapping function at operations 610,
615. Graph compiler 520 1ssues calls to node mapping
function at operation 620 and determines data block depen-
dency at operation 630. Work scheduler 525 schedules
tasks/threads based on node dependency and data block
dependency at operation 640. Task/thread execution unit 604
(e.g., a CPU core, GPU EU, IPU VU, etc.) executes sched-
uled tasks/threads at operation 650, reading source tiles 660
from an electronic memory and/or cache 605, and writing
destination tiles 670 to memory and/or cache 605.

FIG. 7 1s a functional block diagram of a data processing,
system 700 that may be utilized to perform graph processing
with node defined data block based scheduling 1n accor-
dance with some embodiments. Data processing system 700
includes one or more processors 702 and one or more
graphics processors 708, and may be a single processor
mobile device or desktop device, a multiprocessor worksta-
tion, or a server system having a large number of processors
702 or processor cores 707. In on embodiment, the data
processing system 700 1s a system-on-a-chip (SoC) inte-
grated circuit for use in mobile, handheld, or embedded
devices.

An embodiment of data processing system 700 can
include, or be incorporated within a server-based gaming
platiorm, a game console, including a game and media
console, a mobile gaming console, a handheld game con-
sole, or an online game console. In some embodiments, data
processing system 700 1s a mobile phone, smart phone,
tablet computing device or mobile Internet device. Data
processing system 700 can also include, couple with, or be
integrated within a wearable device, such as a smart watch
wearable device, smart eyewear device, augmented reality
device, or virtual reality device. In some embodiments, data
processing system 700 1s a television or set top box device
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having one or more processors 702 and a graphical interface
generated by one or more graphics processors 708.

In some embodiments, the one or more processors 702
cach include one or more processor cores 707 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 707 1s configured to process a
specific mstruction set 709. In some embodiments, instruc-
tion set 709 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 707 may each process a different
istruction set 709, which may include instructions to facili-
tate the emulation of other instruction sets. Processor core
707 may also include other processing devices, such a
Digital Signal Processor (DSP).

In some embodiments, the processor 702 includes cache
memory 704. Depending on the architecture, the processor
702 can have a single mternal cache or multiple levels of
internal cache. In some embodiments, the cache memory 1s
shared among various components ol the processor 702. In
some embodiments, the processor 702 also uses an external
cache (e.g., a Level-3 (L3) cache or Last Level Cache
(LLC)) (not shown), which may be shared among processor
cores 707 using known cache coherency techniques. A
register file 706 1s additionally included 1n processor 702
which may include different types of registers for storing
different types of data (e.g., integer registers, floating point
registers, status registers, and an instruction pointer regis-
ter). Some registers may be general-purpose registers, while
other registers may be specific to the design of the processor
702.

In some embodiments, processor 702 1s coupled to a
processor bus 710 to transmit data signals between processor
702 and other components in system 700. System 700 has a
‘hub’ system architecture, including a memory controller
hub 716 and an mput output (I/O) controller hub 730.
Memory controller hub 716 {facilitates communication
between a memory device and other components of system
700, while I/O Controller Hub (ICH) 730 provides connec-
tions to I/0O devices via a local 1/0 bus.

Memory device 720 can be a dynamic random access
memory (DRAM) device, a static random access memory
(SRAM) device, flash memory device, or some other
memory device having suitable performance to serve as
process memory. Memory 720 can store data 722 and
istructions 721 for use when processor 702 executes a
process. Memory controller hub 716 also couples with an
optional external hardware accelerator 712, which may
communicate with the one or more graphics processors 708
in processors 702 to perform graphics and media operations.

In some embodiments, ICH 730 enables peripherals to
connect to memory 720 and processor 702 via a high-speed
I/0 bus. The I/O peripherals include an audio controller 746,
a firmware interface 728, a wireless transceiver 726 (e.g.,
Wi-Fi, Bluetooth), a data storage device 724 (e.g., hard disk
drive, flash memory, etc.), and a legacy I/O controller for
coupling legacy (e.g., Personal System 2 (PS/2)) devices to
the system. One or more Universal Serial Bus (USB) con-
trollers 742 connect mput devices, such as keyboard and
mouse 744 combinations. A network controller 734 may also
couple to ICH 730. In some embodiments, a high-perfor-
mance network controller (not shown) couples to processor
bus 710.

FIG. 8 1s a diagram of an exemplary ultra-low power
system 800 employing a node defined data block based
scheduling module, 1n accordance with one or more embodi-
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ment. System 800 may be a mobile device although system
800 1s not lmmited to this context. System 800 may be
incorporated into a wearable computing device, laptop com-
puter, tablet, touch pad, handheld computer, palmtop com-
puter, cellular telephone, smart device (e.g., smart phone,
smart tablet or mobile television), mobile internet device
(MID), messaging device, data communication device, and
so forth. System 800 may also be an infrastructure device.
For example, system 800 may be incorporated into a large
format television, set-top box, desktop computer, or other
home or commercial network device.

System 800 includes a device platform 802 that may
implement all or a subset of the various node data block
mapping methods described above 1in the context of FIG.
1A-FIG. 6. In embodiments, components of platform 802
are further implemented following the architecture of system
700 (FIG. 7). In various exemplary embodiments, central
processor 815 executes node defined data block based
scheduling logic 850, for example including a graph com-
piler and/or work scheduler configured to determine and
account for data block dependencies, for example as
described elsewhere herein. Graphics processor 815
includes logic circuitry implementing an 1mage graph com-
piler configured to make data mapping function calls one or
more 1mage graph nodes, for example as described else-
where herein. In some embodiments, one or more computer
readable media may store instructions, which when executed
by CPU 8135 and/or graphics processor 810, cause the
processor(s) to execute one or more node-defined data block
based scheduling operations.

In embodiments, device platform 802 1s coupled to a
human 1nterface device (HID) 820. Platform 802 may collect
raw 1mage data with a camera module (CM) 811, which 1s
processed and output to HID 820. A navigation controller
850 including one or more navigation features may be used
to interact with, for example, device platiorm 802 and/or
HID 820. In embodiments, HID 820 may include any
monitor or display coupled to platform 802 via radio 818
and/or network 860. HID 820 may include, for example, a
computer display screen, touch screen display, video moni-
tor, television-like device, and/or a television.

In embodiments, device platform 802 may include any
combination of CM 811, chipset 805, processors 810, 815,
memory/storage 812, accelerator 813, applications 816, and/
or radio 818. Chipset 805 may provide intercommunication
among processors 810, 815, memory 812, accelerator 813,
applications 816, or radio 818.

One or more of processors 810, 815 may be implemented
as one or more Complex Instruction Set Computer (CISC) or
Reduced Instruction Set Computer (RISC) processors; x86
instruction set compatible processors, multi-core, or any
other microprocessor or central processing unit (CPU).

Memory 812 may be implemented as a volatile memory
device such as, but not limited to, a Random Access Memory
(RAM), Dynamic Random Access Memory (DRAM), or
Static RAM (SRAM). Memory 812 may also be imple-
mented as a non-volatile storage device such as, but not
limited to flash memory, battery backed-up SDRAM (syn-
chronous DRAM), magnetic memory, phase change
memory, and the like.

Radio 818 may include one or more radios capable of
transmitting and receiving signals using various suitable
wireless communications techniques. Such techniques may
involve communications across one or more wireless net-
works. Example wireless networks include (but are not
limited to) wireless local area networks (WL ANSs), wireless
personal area networks (WPANs), wireless metropolitan
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arca network (WMANSs), cellular networks, and satellite
networks. In communicating across such networks, radio
818 may operate 1n accordance with one or more applicable
standards 1n any version.

In embodiments, system 800 may be implemented as a
wireless system, a wired system, or a combination of both.
When mmplemented as a wireless system, system 800 may
include components and interfaces suitable for communi-
cating over a wireless shared media, such as one or more
antennas, transmitters, receivers, transceivers, amplifiers,
filters, control logic, and so forth. An example of wireless
shared media may include portions of a wireless spectrum,
such as the RF spectrum and so forth. When implemented as
a wired system, system 800 may include components and
interfaces suitable for communicating over wired commu-
nications media, such as mput/output (I/O) adapters, physi-
cal connectors to connect the I/O adapter with a correspond-
ing wired communications medium, a network interface
card (NIC), disc controller, video controller, audio control-
ler, and the like. Examples of wired communications media
may include a wire, cable, metal leads, printed circuit board
(PCB), backplane, switch fabric, semiconductor material,
twisted-pair wire, co-axial cable, fiber optics, and so forth.

The node-level data block mapping functions and func-
tion calls comporting with exemplary embodiments
described herein may be implemented 1n various hardware
architectures, cell designs, or “IP cores.”

As described above, system 800 may be embodied 1n
varying physical styles or form factors. FIG. 9 further
illustrates embodiments of a mobile handset device 900 1n
which platform 802, system 700, implementation 600 and/or
implementation 500 may be embodied. In embodiments, for
example, device 900 may be a mobile computing handset
device having wireless and 1mage processing capabilities.
As shown 1n FIG. 9, mobile handset device 900 may include
a housing with a front 901 and back 902. Device 900
includes a display 904, an input/output (I/0) device 906, and
an integrated antenna 908. Device 900 also may include
navigation features 912. Display 904 may include any
suitable display unit for displaying information appropriate
for a mobile computing device. I/O device 906 may include
any suitable I/O device for entering information into a
mobile computing device. Examples for I/O device 906 may
include an alphanumeric keyboard, a numeric keypad, a
touch pad, mput keys, buttons, switches, microphones,
speakers, voice recognition device and soltware, and so
forth. Information also may be entered into device 900 by
way ol microphone (not shown), or may be digitized by a
voice recognition device. Embodiments are not limited in
this context. Integrated into at least the back 902 1s camera
905 (e.g., mcluding a lens, an aperture, and an 1maging
sensor), which may be components of one or more CM
through which image data 1s exposed and output to graph
optimized 1imaging pipeline, for example as described else-
where herein.

As exemplified above, embodiments described herein
may be implemented using hardware elements, software
clements, or a combination of both. Examples of hardware
clements or modules include: processors, microprocessors,
circuitry, circuit elements (e.g., transistors, resistors, capaci-
tors, inductors, and so forth), mntegrated circuits, application
specific integrated circuits (ASIC), programmable logic
devices (PLD), digital signal processors (DSP), field pro-
grammable gate array (FPGA), logic gates, registers, semi-
conductor device, chips, microchips, chip sets, and so forth.
Examples of software elements or modules include: appli-
cations, computer programs, application programs, system
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programs, machine programs, operating system soltware,
middleware, firmware, routines, subroutines, functions,
methods, procedures, software interfaces, application pro-
gramming 1nterfaces (API), instruction sets, computing
code, computer code, code segments, computer code seg-
ments, data words, values, symbols, or any combination
thereof. Determining whether an embodiment 1s 1mple-
mented using hardware elements and/or software elements
may vary 1n accordance with any number of factors consid-
ered for the choice of design, such as, but not limited to:
desired computational rate, power levels, heat tolerances,
processing cycle budget, input data rates, output data rates,
memory resources, data bus speeds and other design or
performance constraints.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable storage medium. Such instructions may
reside, completely or at least partially, within a main
memory and/or within a processor during execution thereof
by the machine, the main memory and the processor portions
storing the instructions then also constituting a machine-
readable storage media. Programmable logic circuitry may
have registers, state machines, etc. configured by the pro-
cessor 1mplementing the computer readable media. Such
logic circuitry, as programmed, may then be understood as
physically transtormed into a system falling within the scope
of the embodiments described herein. Instructions represent-
ing various logic within the processor, which when read by
a machine may also cause the machine to fabricate logic
adhering to the architectures described herein and/or to
perform the techniques described herein. Such representa-
tions, known as cell designs, or IP cores, may be stored on
a tangible, machine-readable medium and supplied to vari-
ous customers or manufacturing facilities to load into the
tabrication machines that actually make the logic or proces-
SOF.

While certain features set forth heremn have been
described with reference to embodiments, this description 1s
not intended to be construed 1mn a limiting sense. Hence,
vartous modifications of the implementations described
herein, as well as other implementations, which are apparent
to persons skilled 1n the art to which the present disclosure
pertains are deemed to be within the spint and scope of the
present disclosure.

The following paragraphs brietly describe some exem-
plary embodiments.

In one or more first embodiments, an apparatus, com-
prises an 1mage graph compiler to receive an 1image graph
specilying a pipeline of 1mage processing operations. The
graph compiler 1s further to determine, from a node 1n the
graph, a source data block upon which a destination data
block output by the node depends, and generate data block
dependency information indicative of the destination data
block dependency determined for the source data block.

In furtherance of the first embodiments, the 1image graph
compiler 1s to determine the source data block upon which
the destination data block depends by 1ssuing a call to a
mapping function associated with the node.

In furtherance of the first embodiments, the 1image graph
compiler 1s to generate data block dependency information
indicative of a destination-source data block dependence
determined for each of a plurality of nodes by traversing the
graph and successively 1ssuing a plurality of calls to a
mapping function associated with each traversed node.

In furtherance of the first embodiments, the apparatus
turther comprises a work scheduler to schedule execution of
image processing tasks based, at least in part, on the data




US 9,684,944 B2

17

block dependency information, one or more hardware
resource to execute image processing tasks scheduled by the
work scheduler, and an electronic memory to store one or
more of the source and destination data block.

In furtherance of the first embodiments, the apparatus
turther comprises a graph-based implementation application
programming interface (API) configured to associate a plu-
rality of 1image processing operations 1nto an 1mage process-
ing pipeline based on a graph of nodes, wherein the API
includes a framework for defimng dependency of a desti-
nation data block to be output by a node on a source data
block to be input the node.

In furtherance of the embodiment immediately above, the
API framework includes a data block mapping function to
define the dependency at the graph node level.

In furtherance of the embodiment immediately above, the
mapping function 1s to receive a parameterization of a
destination tile corresponding to a first data block memory
location and 1s to return a parameterization of a source tile
corresponding to a second data block memory location.

In furtherance of the first embodiments, the apparatus
turther comprises a graph-based implementation application
programming interface (API) configured to associate a plu-
rality of image processing operations 1nto an 1mage process-
ing pipeline based on a graph of nodes, wherein the API
includes a framework for defining dependency between a
first destination data block to be output by a node and a
second destination data block to be output by the node.

In furtherance of the embodiment immediately above, the
framework comprises node-level mapping function to
receive a parameterization of a first destination tile corre-
sponding to a first data block memory location and 1s to
return a parameterization of a second destination tile corre-
sponding to a second data block memory location.

In one or more second embodiments, a computer 1mple-
mented 1mage processing method comprises receiving an
image graph specifying a pipeline of image processing
operations, determining, from a node in the graph, a source
data block upon which a destination data block output by the
node depends, and generating data block dependency infor-
mation indicative of the destination data block dependency
determined for the source data block.

In furtherance of the second embodiments, the method
turther comprises determining the source data block upon
which the destination data block depends by 1ssuing a call to
a mapping function associated with the node.

In furtherance of the second embodiments, the method
turther comprises generating data block dependency infor-
mation indicative of a destination-source data block depen-
dence for each of a plurality of nodes by traversing the graph
and successively 1ssuing a plurality of calls to a mapping
function associated with each traversed node.

In furtherance of the second embodiments, the method
turther comprises scheduling execution of 1mage processing
tasks based, at least in part, on the data block dependency
information, executing image processing tasks scheduled by
the work scheduler, and storing one or more of the source
and destination data block.

In furtherance of the second embodiments, the method
turther comprises associating a plurality of image processing

operations 1nto an i1mage processing pipeline based on a
graph ol nodes by defining dependency of a destination data
block to be output by a node on a source data block to be
input the node.
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In furtherance of the second embodiments, the method
further comprises calling data block mapping function the
defines the source-destination dependency at the graph node
level.

In furtherance of the embodiment immediately above, the
method further comprises providing to the mapping func-
tion, a parameterization of a destination tile corresponding
to a first data block memory location, and receiving from the
mapping function a parameterization of a source tile corre-
sponding to a second data block memory location.

In furtherance of the second embodiments, the method
further comprises determining a dependency between a first
destination data block to be output by a node and a second
destination data block to be output by the node.

In furtherance of the embodiment immediately above,
determining the dependency between a first destination data
block to be output by a node and a second destination data
block to be output by the node further comprises providing
to a node-level mapping function a parameterization of a
first destination tile corresponding to a first data block
memory location, and receiving from the mapping function
a parameterization ol a second destination tile corresponding
to a second data block memory location.

In one or more third embodiments, one or more computer-
readable storage media includes instructions stored thereon,
which when executed by a processor, cause the processor to
perform any of the second embodiments.

In one or more fourth embodiments, one or more com-
puter-readable storage media includes instructions stored
thereon, which when executed by a processor, cause the
processor to perform a method comprising determining,
from a node in an i1mage graph specitying a pipeline of
image processing operations, a source data block upon
which a destination data block output by the node depends,
and generating data block dependency information indica-
tive of the destination data block dependency determined for
the source data block.

In one or more {ifth embodiments, an apparatus comprises
means to perform any one of the second embodiments.

It will be recognized that the embodiments are not limited
to the exemplary embodiments so described, but can be
practiced with modification and alteration without departing
from the scope of the appended claims. For example, the
above embodiments may include specific combination of
features. However, the above embodiments are not limited in
this regard and, 1n embodiments, the above embodiments
may 1include undertaking only a subset of such features,
undertaking a different order of such features, undertaking a
different combination of such features, and/or undertaking
additional features than those features explicitly listed.
Scope should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What 1s claimed 1s:

1. An 1mage processing apparatus, comprising:

one or more processors to:

receive a plurality of source data blocks, wherein
individual source data blocks are each associated
with a fragment of a source image to be processed
into a destination 1mage;

receive an 1mage graph specilying a pipeline compris-
ing a plurality of 1image processing operations to be
performed on each of the source data blocks to
generate corresponding fragments of the destination
1mage;

determine, from one or more mapping functions asso-
ciated with each node in the graph, data block




US 9,684,944 B2

19

dependency information indicative of a first data
block upon which a second data block output by the
corresponding node depends, wherein each of the
first and second data blocks 1s associated with an
image fragment;

schedule execution of the 1image processing operations
based, at least 1n part, on the data block dependency
information; and

execute the 1mage processing operations as scheduled;
and

an electronic memory to store the first data blocks and

second data blocks as they are consumed and produced
by the processors.

2. The apparatus of claim 1, wherein the processor 1s to
determine the first data block upon which the second data
block depends for each node by 1ssuing a call to the one or
more mapping functions associated with the corresponding
node.

3. The apparatus of claim 1, wherein the processor 1s to
generate data block dependency information indicative of a
second-first data block dependence determined for each of
the nodes by traversing the graph and successively 1ssuing a
call to the one or more mapping functions associated with
cach traversed node.

4. The apparatus of claim 1,

wherein the processor 1s to execute a graph-based imple-

mentation application programming interface (API)
configured to associate a plurality of image processing
operations into an 1image processing pipeline based on
a graph of nodes, wherein the API includes a frame-
work for defining dependency of the second data block
to be output by one of the nodes on the first data block
to be input the node.

5. The apparatus of claim 4, wherein the API framework
includes a parameterization of the one or more mapping
functions to define the dependency at the graph node level.

6. The apparatus of claim 3, wherein the mapping function
1s to receive a parameterization of the image fragment
corresponding to the second data block stored at a first
memory location and 1s to return a parameterization of the
image fragment corresponding to the first data block stored
at a second memory location.

7. The apparatus of claim 1, further comprising:

wherein the processor 1s to execute a graph-based 1mple-

mentation application programming interface (API)
configured to associate a plurality of image processing
operations 1to an 1mage processing pipeline based on
a graph of nodes, wherein the API includes a frame-
work for defining dependency between two or more
second data blocks to be output by one of the nodes.

8. The apparatus of claim 7, wherein the framework
comprises node-level mapping function to receive a param-
eterization of a first image fragment corresponding to one of
the second data blocks stored at a first memory location and
1s to return a parameterization of a second 1mage fragment
corresponding to another of the second data blocks stored at
a second memory location.

9. A computer implemented 1mage processing method
comprising;

receiving a plurality of source data blocks, wherein 1ndi-

vidual source data blocks are each associated with a
fragment of a source image to be processed into a
destination image;

receiving an 1mage graph specilying a pipeline compris-

ing a plurality of image processing operations to be
performed on each of the source data blocks to generate
corresponding fragments of the destination 1mage;
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determiming, from one or more mapping functions asso-
ciated with each node 1n the graph, data block depen-
dency mformation indicative of a first data block upon
which a second data block output by the corresponding
node depends, wherein each of the first and second data
blocks 1s associated with an 1mage fragment;

scheduling execution of the 1image processing operations
based, at least in part, on the data block dependency
information;

executing the 1mage processing operations as scheduled;

and

storing, to an electronic memory, the first data blocks and

second data blocks as they are consumed and produced.

10. The method of claim 9, further comprising determin-
ing the first data block upon which the second data block
depends for each node by 1ssuing a call to the one or more
mapping functions associated with the corresponding node.

11. The method of claim 9, further comprising:

generating data block dependency imnformation indicative

of a second-first data block dependence for each of the
nodes by traversing the graph

and successively 1ssuing a call to the one or more mapping,

functions associated with each traversed node.

12. The method of claim 9, further comprising:

providing to the mapping functions, a parameterization of

the 1image fragment corresponding to the second data
block stored at a first memory location; and

receiving from the mapping functions a parameterization

of the 1image fragment corresponding to the first data
block stored at a second memory location.

13. The method of claim 9, further comprising determin-
ing a dependency between two or more second data blocks
to be output by one of the nodes.

14. The method of claim 13, wherein determining the
dependency between two or more second data blocks to be
output by one of the nodes further comprises:

providing to a node-level mapping function a parameter-

1zation of a first image fragment corresponding to one
of the second data blocks stored at a first memory
location; and

recetving ifrom the mapping function a parameterization

ol a second 1image fragment corresponding to another
of the second data blocks stored at a second memory
location.

15. One or more non-transitory computer-readable stor-
age media, with instructions stored thereon, which when
executed by a processor, cause the processor to perform a
method comprising:

recerving a plurality of source data blocks, wherein 1ndi-

vidual source data blocks are each associated with a
fragment of a source i1mage to be processed mto a
destination 1mage;
recerving an image graph specitying a pipeline compris-
ing a plurality of image processing operations to be
performed on each of the source data blocks to generate
corresponding fragments of the destination image;

determining, from one or more mapping functions asso-
ciated with each node 1n the graph, data block depen-
dency mformation indicative of a first data block upon
which a second data block output by the corresponding
node depends, wherein each of the first and second data
blocks 1s associated with an 1mage fragment;

scheduling execution of the 1image processing operations
based, at least in part, on the data block dependency
information;

executing the 1mage processing operations as scheduled;

and
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storing, to an electronic memory, the first data blocks and

second data blocks as they are consumed and produced.

16. The media of claim 15, further including instructions

stored thereon, which when executed by a processor, cause
the processor to perform the method further comprising:

generating data block dependency information indicative
of a second-first data block dependence for each of the

nodes by traversing the graph and successively 1ssuing
a call to the one or more mapping functions associated

with each traversed node.

¥ o # ¥ ¥

10

22



	Front Page
	Drawings
	Specification
	Claims

