12 United States Patent

US009684677B2

(10) Patent No.: US 9,684,677 B2

LaBerge 45) Date of Patent: *Jun. 20, 2017
(54) METHOD FOR RELIABLE AND EFFICIENT USPC ... 700/820, 821, 700; 707/820, 821, 700,
FILESYSTEM METADATA CONVERSION 707/999.002

(71) Applicant: Quantum Corporation, San Jose, CA
(US)

(72) Inventor: Tim LaBerge, St. Paul, MN (US)

(73) Assignee: Quantum Corporation, San Jose, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 13/971,368

(22) Filed: Aug. 20, 2013

(65) Prior Publication Data
US 2013/0339401 Al Dec. 19, 2013
Related U.S. Application Data

(63) Continuation of application No. 12/497,493, filed on
Jul. 2, 2009, now Pat. No. 8,190,655, and a
continuation of application No. 13/363,208, filed on

Jan. 31, 2012, now Pat. No. 8,577,939,

(51) Int. CL

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,611,272 A * 9/1986 Lomet
7,506,111 B1* 3/2009 Hamilton 711/156
7,743,038 Bl * 6/2010 Goldickcooeeei, 707/694
7,752,226 B1* 7/2010 Harmer et al. 707/796
8,046,333 B1* 10/2011 Wang etal. 707/646
8,117,244 B2* 2/2012 Marinov et al. 707/827
2002/0065810 Al* 5/2002 Bradleycoooovveeiiiininnnil. 707/2
2002/0083037 Al* 6/2002 Lewisetal.cceninil. 707/1
2005/0192974 Al1* 9/2005 DeLorme et al. 707/100
2006/0101036 Al1* 5/2006 Kawabe et al. 707/100
2006/0112151 A1* 5/2006 Manley et al. 707/201
2006/0277225 Al* 12/2006 Mark et al. 707/201
2007/0255921 Al* 11/2007 Goleetal. 711/170
2008/0040388 Al™* 2/2008 Petrietal. 707/104.1
2008/0189342 Al* 8/2008 Bhattacharya et al. 707/205

(Continued)

Primary Examiner — Mohammed R Uddin

(74) Attorney, Agent, or Firm — Roeder & Broder LLP;
James P. Broder

(57) ABSTRACT

A method for converting metadata 1n a hierarchical configu-
ration within a filesystem from a first format to a second
format includes reading metadata 1n the first format within
the hierarchical configuration; writing the metadata from the
hierarchical configuration mnto a flat file; and writing the

GOoF 17/30 (2006.01) metadata back into the hierarchical configuration, the meta-
(52) U.S. CL data being in the second format. The method can also
CPC .. GO6F 17/30292 (2013.01); GO6F 17/30076 include increasing the size of each of a first mnode and a
(2013.01) second 1node within a first inode chunk 1n the filesystem,
(58) Field of Classification Search assigning the first inode to the first inode chunk, and
CPC GO6F 17/3012; GO6F 17/30123; GOOF assigning the second inode to a second inode chunk.
17/30569; GO6F 17/30292; GO6F
17/30076 13 Claims, 3 Drawing Sheets
____ TAKEVIRTUALSNAPSHOTOF THEMETADATA =100
02
o

FRE-ALLOGCATE SPACE FOR NEW INOCDE CHUNKS 106

CONSTRUCT GLOBAL MAPPING SYSTEM FOR TRACKING INODE NUMBERS 108

READ EACH INODE CHUNK SEQUENTIALLY FROM DISK 110
WRITE DIRECTORY EXTENTS INTO FLAT FILE STRUCTURE Jm 112
INODE NUMBERS TO FLAT FILE
2
=

US 9,684,677 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2009/0043978 Al* 2/2009 Sawdon et al. 711/162
2009/0276593 Al* 11/2009 Jacobson et al. 711/162

* cited by examiner

U.S. Patent Jun. 20, 2017 Sheet 1 of 3 US 9,684,677 B2

Lo

ADATAAND THEN WRITE METADATA INTO FLAT FILE 102
BUILD LIST OF INODE CHUNKS SORTED BY DISK LOCATION B 104

108

___READ EACH INODE CHUNK SEQUENTIALLY FROMDISK w110

WRITE DIRECTORY EXTENTS INTO FLAT FILE STRUCTURE ~ Ie 112

™ WRITE CONVERTED INODE GHUNKS TO FLAT FILE 114

e 116

| READ EACH RANGE OF DIRECTORY EXTENTS INTO IN-MEMORY BUFFER Jem 118

WRITE RANGE OF DIRECTORY EXTENTS WITH CONVERTED

INODE NUMBERS TO FLAT FILE 120

 PERFORMANY REQUIRED FIX-UPS TO METADATA ~ jw=122

HERATE THROUGH FLAT FILE AND WRITE BACK TO DISK -] 24
RESTART THE FILESYSTEM 126

Fig. 1

U.S. Patent

L e T L e T e L T T T T T o T L L T L T T T T T e T T e L T T L e T T T T T o T e T e T T T T T T e L e L e e L L T L L L T T T o T e L T T T T T T L A

w1 m+
- .

e
- T

o
..r
I'.-|
-
"
i
o .
]
“
w

uoa oo

I
.

Jun. 20, 2017

T T T T

B P
LR

o
- . A
- N
' a
.~
3 K
", -
' -’
- L
-\..qt LT
ot
. LT
- _
- o’
- pat T
- .
"'.'-.._.‘ = ?
I T O
q‘lﬂ-
-|-II "
= .h
A L
.
.
. LY
1 L]
n
f N
n -
L
g 1
i B
- .,
.
. '
" *t
i .
- .
a "
M -
v
; LS
'|. L]
' *,
» e
. R
- - -
e LI -
- L o
., _+ o
"I W .
. X -H JJ' ? -
A
- . .
- . -
' . .
. L] *
g ., L
L] X g
S t] .
. b "
‘ . - '
.'I . . 1 1
. r .
. - Z
I.. L -
1 > A K
1 M LN
.
- . %
" - .
l,_\ . - .
4 JF - e
) 3 1." .
" . Il .
. I- ..h'r -
-»Ht T L
s . . r
. = -
“a - o= LT
- o et TR
Ll - 97
L L
ey "
- -]
s . \,
- - -
. -
W
'
L] r “
" € -
-
) : \
. - .y
L] L
" g
= o “.td
- 1
.] q.
i, n ;
" - '
N
- - L
r"] ‘_
7] e
-
- : "
T N L)
Ll . -

L
e
"
u
"

-

L I
ra "
arm T
'\‘-‘JJ.-.'
—m AT
e ma
L]
o
-
*
-
% 'u
1
a A u'

L
-
=
-
L]

4 oA oad
Fuap =
'
-

“ﬂ_.‘_lull'l-lllu.l-d-ll'lr"_

PR L N D
dor -
e L LU
“‘__r_-ri-i-l‘"l'l""""i Ew o, -
o

r 'l-'\.

r
[

-~

._'
AT

..
fatay o
-

T Al A o o A Al Al il al af ar a r ar a F F F ara aF o A A ol ok o K A F AR o o ol i ar aF N o o o N N o o A I R R o R N o o aF oo o b o aF B o o o o F b A o U A o A o o o o o A o o i ar AR R o AN AR aF o o aF aF aF o o Sl ol o o o B o I A ar ar aF A A Al o Al o A A Al A Al Al A Al o A A o A A Al o A F A o ol o aF AFAF o}
-
u

LY

N

TaTe A T e

AL e

-

E RN .

-

TR T .

[

-

-

P N I

L oamwt.

-
S

Sheet 2 of 3

LT 1w T,
o om kmauTa T oy

LI Y

-
L)
-l."'.\'

.' r'\"
.. .
. -
-e, LR
. -
l‘-."ll Ih-r-|+
e a's
L P
* r
L] <
N
]]
"
4 1
* 4
" \
L .
]]
! -
] L
" *
'. L}
1, k
r L
. =
1]
J -
.
- L
- v
L 1
. -
.
L
~ »
N]
. "
4 .
1
2 .
. 5
E '
Fi +
. h .
" L] -
" M
. -
e m L . .
1
- "u 2 N 4
-
.
-~ *.ka - N)]
") ' l"qh_ af
- - -
K 1 A W ?
. [
r Y L 1,
' B \]
=, =
. ‘ o
v
[
' 2 " x
] . .
. [Y
1 N]

{3
%
o
S

.
B N)
N .: .:
*
L. .
. . .
r » - :
" L
-1 [-
. - -
2 . j
g *
N ~ -
S :
.]
') 1 .
* " ‘.
L]
. L
. .
‘.-I i t
El
. ' -
r 4]
A .
.]
. .
. .
; L] .
] 4 ‘-
Ll 1 -
.] n
. \'
-
o "I -
v
H "‘_ "
- 1 -]
3 o]
- . .
' . -~
. ' 4
.
.‘\". n -
- S,
- - L o

s
M
_w
.
.
)
-
-
.
.
-
'
LN
.
n
r
.
.
4
.
Y
]
.
[
*
v
.
]
'
'
'
-
* o
.
oF
-
Fl
-
M
¥
2

[
".d'ld.

-,

1Tatata

a oy

A FmEa

LIy

L
-
'\-If“‘

wr
-'-\'

b
e S,
L -
*‘l. -|,|
qI.
-
H‘"‘a.ﬂ.‘
*a
r
.
r
b
*
'
. +
r
" "
-
) 1
L
b
A
L]
-
- . . WF
. "
.
=
s
I""
‘“.-\-"
-
— 'rl'“
R
. r
.
M
]
d
'
o
L]
"‘.
l‘I
"
.
r
r
a
L8
.\-
]
.
.".
"
<
r *_--..-..w..-.-,__:r-l‘
[L
, LIS
."‘ A, "
'-.- 4,
- .
-
-
F
-

D T

N R L S
-

-LJ
"r
! L
L] .
r
r -
- .
. .
L] T,
- -
' -
L 1
- L8
] r
a W
"]
2t .
2 .
R »
L] 1
.
EO I A T
-
-
.
-
.
-
] '
. r,
r 'l.l
-- [
- N L
' . N

-
.
- ¥ "
4 » |
L]] 1
. w -
n] .
>]]
Y R L]
.ﬂ' " .
- 1 .
[l
1 . :
i : :
' L "
' -
u, r o
1 B d
.
+ .
. !
2 0 K
2 L d
. 4
- ']
"
2 . ;
’ r W
4 .
L]] ‘
L] - ..-
. 1 »
. .
: " ’
L] -
: ., &
T ' .
M -
3 wt

US 9,684,677 B2

-

l'r_."'.r.-_rl-'

-
= -

r"__.__.-“'
e
o
g

ot b it il A e N A A o o o bt b Al A it i t alt w alt dt al wt d w wt t a w a t att F a t t t A t at a t a t ar aF af a d F al ab aF f a d a d

-‘--;‘---‘---;-r-----‘--.---;‘---‘--;‘---‘--;‘---‘--;‘--;‘--;‘---‘---‘---.-.---.-.---.-.---.-.---...---...-.--...-.--...-.--.-.-.--..-.--..-.--..-.--..-.---.-.---.-.---.-.---.-.---.-.---.-.---.-.---.-.---.-.---.-.---..-.---‘--;‘---‘--;‘--;‘--“-r-‘---‘---‘---‘--wﬂq-‘--‘---‘---‘---;‘-n-‘--;‘

rAfrrhrrfrry-vyrrre'roerrerrererrefrrreerrre e

M1, M2, M3, M4, M§, MB, M7, M8, M3, M10,

Fig. 2A

Fig. 2B

11, M, M13, Mi14, M15,, . MZY

o

i e R R R R e R e T R T e i e et R e e R T e e e R e e e e e R e e R R e R e e R e e R i e R R R e e R e i e e T e T i e e e i e T i T e e e i T e e T R e R i et e T R T e e R e e R e T R T R e e R et e R T R T R T B R R e R B i T R e i T T L R R T B T e R R R e B i T B B i S

e onl o horal e wd el h ok w o ok ow okl hraldd bk dd ke ol e w ke

U.S. Patent Jun. 20, 2017

Sheet 3 of 3

L T T T T T T T o T T T T T T o T T T o T T T T T T o T T T T T T T T T O O P WO PR PR Y TR Y RO N UL O TOO P M PR Py L T T T T T T e T T T o P o T T T T O T P T B T o T o T e T T T T P T T T P T T N PO O PR S PR Uy PR PR Y PR S TR O PR WY PR P

.. h

-

o T aT o

e

US 9,684,677 B2

1, 2, 3, 4, ..., 1022, 1023, 102

1,2, 3, 4, ..., 1022, 1023, 1024

R T R T R R B T

<
L
:
%
E
'k
\
o,

]
'k
&
*

FAFASAFAILIFAFTFFAIFASAFFI FAFIAFAFAFAS FA S

'
B “"-.._ - .
» W
a.l:l 1"
Ik I. L}
- .
| ; :
T » '
a 't ., 1
.I" T " E
v ' .
o i ¥ H""-.- e
roa - Al
el X - M, -
o i o -
S "k Far
i 't W oa
-r 1 .
'
- . .
+ '- WS . <
A [
) - . N
: -
A ¥, :
1 N 3
vl E x
. . e .
bl - ' o
A :'_ i} .,_t -
' X n
e 1:- .-E [
. . . L.
' N w W W "
v A : 3 -E '1. ? J? } .
. :
. 2o : - W 4 .
" £ v [L3
] - . i -
y - £ 4 Ll
L] ']
S ; .
& » : .: z
. : v 1 , o :
. . K : v M.
. -) k Wt . :
. '
y - L o - 1“. -
- " L - h" - k - " L]
r .) v - + 1 "
. M k * " v K
- . - " ! . . " - n
. n
i . :] l:' " .E £ : -
.] 3 1 a . n
: : 4 |) .
. Y € Il. " i': -.;) . ~ v " :
. . '
'y n L "y - W ~ k - '-"-.. o . -
n 1 L "y ' . M . S .t x
t - : L - b :E " = gyt x
. : v o . ek . -
L J L . . - ‘_': 1 -
* +) b = r 1 -
- . - o Ll . W L
r L] h--------------------r----r-r---r--r--------------------r--r---r-----r-------r-----------r----r-i------r-------|-r---r--r---------r----qi-h.'.--' ------r---------------r--------------r-r--;l---r--r-----r----------------------------r--r---r-------r------‘- -
]] I il .l"‘l._
1 . 1
r " - " \‘l‘. *e. .~‘
- 4 - Bl . L
. ; o " - !
. M r - r, LS
z - J a, N,
- " et o ' . n -
E v I » i n -.-\‘ .
v " ¥ v - u,
. _r PR 1 L
i - v . . 5, \,‘
! R Sl o o a e, .,
. : s . 2 .. . ",
N 4 A . o) . '
4 F £ = - ES s
y - o S i k e
' " r M q"'-.. T
]] I . e ' Ty] 4
- . d . = 9]
. . - \ ; ' . s .
. "] e L] “k\ = k" .
. 5 N o - . .-.“
. % ; ' " ' -
" n o 1 "‘L ' J"". '
-] A g . . A"
* . ' . LH - ' - .
" - . I‘ 1 -'r » .
_:'] find k - . 1 kY
-I_ : " S -'ll;"_ -\'h._' L
'
. . N - \ ., et
3 - W N ~ r .
0 4 0 1 - . "1
a - A - N .
- . . . 5 ' K,]
. . L] 1 .
: . N . "L “r % k"‘
: . K . R . .
L] " * N T *] .
] n 0 . “u) ' LY
- - .: - - r - .
" i * * " '\“ L .
N » = . ' .
:n. i, 11 .‘ k 'Hb- k8 LY
: 5 ; ; y \ .
¥ “r - 3 - 1
. 1 r - LN b . .
.- . 4 1 . . ! 1
- ‘.. . ; : "‘q_l. .: L
" . - - 4 -
y v - 1}
" " . . . " Y -
N L] L . 1 ' < '\lhl
N " - r ' . ., .
1] ' N b t\\. Y lr
L " ;‘ r r B - L,
:.-] - » L] '
- . L LS [. u,
§ . . 1 b " I'. !
- ! o+ i ' '
- .I L] - ' a :-
N .]] ., "] L
- 4 1 []
. . . . W . . “
1, ' L - K - N
. 1, : - r ~ . 4
"
™1 1 " 1 W 1 " 1
W ' I' - . " 5 .
] '\-] r |:' " K "
s n s . » .
N .
N * ‘ : ‘ ™, N '_
Rt L g - . = - ;
r . - . '» i v
- '~ . ' .
r . 1 .
: LY h : " 3,] y
s -
r - . i . L ; .
. LY r N 1] l)
1 . - n - X 2 “
kY d\\ L] ¥ "n] N
- r = 1, "y " Y
. . +] .
“ L . - . B 4 4
. _| . r a" 4 LI .
. . . .
: " i i v . : N
. . . P -, v - y
a . Ll L] L] A
1, - . L] -
. - L]] . .
1 . ' r,] ¥ - :
S - 2 . : . : :
1 1] r k]
: H. ™ 4 H I 3 "
" rh“q. :. * r_‘ : o 'E
u : . .
4
; - : " ; ; ; :
. ' L3 1 r .
"L r . ' - M o
- 1
‘ ‘. , . £ k K }
s q\'-.. 5" 1 " - n -
f . + . . . 2 ‘
. 1 . - c ‘: a4 .
1 3 ' o ' >~]
B ¥ " 4 - i -
|I ' . y F . [
- - LS w L 1 .
L r - - .
k . "“\I . “ ¢ ¥
4 ' . y 1 . N
N . . b =]
. . 1 - ' ™ 'y -
s 11r:1'1'1r1nnvvv-1-1n1v-'1vn-1r1n:1'1-1r1n31'1-ﬁ'1r1-r-|-1--|-1--|1r1-::|-r-|-1--|-1r-qr-u-q--v-r-v-r---u\::aw-r-r--ur-|r::-rl--r--r-ul--ur11--|-1--|-1--|-1|--|--:|-r-;-|--|-1r-|r:-u-rl--r--r-n.--qr-u-r:-rl--n-l--u|--|-::-|-r-|--|--|-1.'-|-1r-|-r-|--r-|-1--|-1r1-r:|1--|-1--1rnnnj‘:'vvnq:1-1131'1-1r1t:11111'1r1111'1-1r11*:'w-1'1r1n3711'1r1 N
N ™ 4 L ' y '
- b] r 1 . 1 N 1 r
Y : "'{h 1 ' * "u " F ‘ " 1. _'ﬂ "I r
1 5 * . . '
. - . Ok h . q_‘; 1 L 1, + " 1"\.
. " 4
L " -a - - -7 1 b s k, L ']
L] s - i 1. k] ¥ 1
i »] * 1 L, 1 :' "
LS w " 1 1, .? - 4
. 1 + L]
. . : ' : N ' - :
N . 1
. . T L. -
" : W W W " . i - noa . -
" ES 5 -) . .
! : 1 ¥ B \ : i : RN i : - * 3 ¥ -‘. !
- . .
* » ; : ; j T ¥ b b » [A % cr) I
: . L 1 ¥ i 1
1 * -_‘ n ; :'I'- . L]
: : I., : . 1 - T e, -‘_" 1_: :':. |'
" v ‘_.\,I-'-"‘\-u - " + -\.'I“ M : K Li_r r .: . :
" x ' R vt ", 2 ! b A \ .
K . - ‘:. “ 2 : 1 . . IR . -
" .] . .: > h] r . . L - r J
5 - . R b r - : : - l: l " f I‘: v
. - \ .
: 2 ; ’ T) ; ; | : St : i } ;
. - Y n ~ o L1 - : g £ v T "' ': ":. .
* - - .
. = . a* o B " 1 ., v - 1 e . ;
“u » “\.h _|_-|-:l 1 X . : ., l,;rr _"rl' : .:' s
% : *"". J"‘ : r":g "y » 1 ﬂ" e i =) - : . » v
. '] :
. M T et : ' EEEA 1 e j. n ;
L] L] -] . ' "
)) w .‘q.. 1 .- 1, *
L] - 1 . n " '
o L T .8 1 T N y .
‘:‘ :-.n.q-q‘.n.n.u-u“‘.nnnnqaq‘q-.n.n.q‘qmnunnan‘u‘q--.-.-.q...-.'_‘..-.-.-.-.-.-.-.-:_-.q.-_-.-.-.-.-.-.-.q.-.q.--.-.-.-.-.-.-.q.-.-.--.-.-.q.-.q.-.-.-.-.-.-.-.-.q.-.-.-.-.-.-.-.q.-.-.q.-_-.-.-.-.-.q...-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.q-.q-.-.--.-.-.q.-.-._i."-.-.-.-.-.-.-.-.-...-.q.-.'-.-.-.-.q.-q-.n.n-q‘qnnnnnaq‘q1.n.--n-;‘.n.u.uaq-.;.n.nau-q‘.} ™
* L] - a L 1 o L . N
r +, - 1] + 1
|: : - ‘b,\\..l b A - . 1-.
3 . . Lol 1 o . = .
% x - o 1 o i+ b \
. - i Axru i ¢ -
' - » 1 L ™ M
h L ! 1 : : ":. .
- -
Lk : 1 - - 1 By
LI . i - - 1 1 oa
1% oy - - 1 - ' . . e e :";
" - y i : . . m . il o il 1 £ 3 T i
. 3 1 , AR . ; . .)
' 1 1 o
- .
- 1 €L i |
Ll * . ’
1 1 1 W
wi .
"4 : 1 *+ '-b iy
. o 1 I I
PRI A QRS 1
= weT T > e " : -~ e I B v
: kK K ' - 7 j'\‘l'. i ..'- b“; v R . > \
L . n b : -."F 1 .y " K - e '.m :‘
w Lt & . " 1 | .) 2 ' 1 r
Yo ; . ; - " : : : : ; y ')
1 . ' 1] q - 1 1 Lr ar .
IS " N * - . b : . v ' . K "
by * L . . E 1 1 " i, k \ -
- " . . . : 1 hY ; 1 -_ ¥ 1
- q v + K 1 o L ! 'y -
- 1 . - LN L] L - 1, - L
* v - *] 1 " L x
- "
- - L= - T L W 1 M, L L - AT \:_
» o, gt . LR 1 T -k Iy A
. il - 1 * L. -
- .,, L] . + 4
n H 1 ' . e
P . 1 - 1 .
* * 1 r 1, i
T L R R T L R R R R T R R R T R R T R R T R T R R T R T R R R T R R R T R R T R T T R R R R,
-

3268

Fig. 3

- 332B

US 9,684,677 B2

1

METHOD FOR RELIABLE AND EFFICIENT
FILESYSTEM METADATA CONVERSION

RELATED APPLICATIONS

The present application 1s a continuation application and

claims the benefit under 35 U.S.C. 120 on co-pending U.S.
patent application Ser. No. 13/363,208, filed on Jan. 31,
2012. Additionally, U.S. patent application Ser. No. 13/363,

208 1s a continuation application that claims the benefit
under 35 U.S.C. 120 on U.S. patent application Ser. No.
12/497,4935, filed on Jul. 2, 2009, which 1s now U.S. Pat. No.
8,190,655 B2, 1ssued on May 29, 2012. To the extent
permitted, the contents of U.S. patent application Ser. No.
13/363,208 and U.S. Pat. No. 8,190,655 B2 are incorporated

herein by reference.

BACKGROUND

Metadata can generally be referred to as data that
describes other data. More specifically, filesystem metadata
may include descriptive information about the context,
quality, condition, and characteristics of data within a file-
system. A filesystem typically includes a hierarchy of direc-
tories (or a directory tree) that 1s used to organize files on a
computer. For example, within some filesystems, an 1tem of
metadata may describe an individual data point or content
item, or an item of metadata may describe a file or collection
of data, wherein the file or collection of data may include a
hierarchical structure which defines the relationship between
different data points within the file. In particular, metadata
may 1include information such as the name or ftitle, size,
length, ownership, location, etc. for any data point or
collection of data.

Within many filesystems, the metadata that describes the
various files and/or directories 1n the filesystem 1s stored in
a data structure or a series of data structures called 1nodes.
Each 1mode, which 1s assigned a unique mnode number within
that filesystem, 1s designed to store up to a certain amount
of information or metadata about the file. Further, an “inode
chunk” 1s a collection of a certain number of 1nodes stored
contiguously on disk. Additionally, the size of the inodes 1s
typically set when the filesystem 1s created.

Over time, new Ieatures may be implemented in the
filesystem software. These features may require changes or
additions to the metadata contained in the filesystem’s
inodes. Eventually, as more additions or changes are made,
there may be no space left in the mnode to support desired
new functionality. Therefore, 1n such situations, there i1s a
need to convert metadata contained in the inodes from the
existing format to another format.

Previous attempts to convert metadata have resulted 1n the
process being unreasonably time consuming, thereby caus-
ing excessive downtime of the filesystem, or, more 1mpor-
tantly, an 1inadequate uptime of the filesystem. Additionally,
the integrity of the metadata may be at risk due to the
possibility of failure during the conversion process.

When converting a filesystem with hundreds of gigabytes
of metadata, efliciency and reliability are of the upmost
importance. Filesystems can contain hundreds of millions of
inodes consuming hundreds of gigabytes of disk space.
Metadata storage can typically perform at most a few
hundred input/output (I/O) operations per second, so the
time to rapidly convert a large filesystem can become
unreasonable. Since metadata objects tend to be relatively
small and generally not contiguous on disk, an eflicient

10

15

20

25

30

35

40

45

50

55

60

65

2

scheme for converting metadata cannot rely on reading
items one by one from disk and chasing associating struc-
tures.

Another aspect of efliciency 1s the amount of storage
required. The conversion process should not require dispro-
portionate amounts of new storage nor render existing
storage unusable due to fragmentation.

Clearly, reliability 1n any metadata conversion process 1s
also 1mportant. A filesystem with hundreds of millions of
files has great value to the user. Large filesystems take longer
to convert, and the greater the conversion time, the greater
the risk for failure during the conversion process. Accord-
ingly, any viable scheme for converting metadata must allow
for recovery from any failures, for example, process and/or
node failures, during the conversion.

SUMMARY

The present mvention 1s directed to a method for con-
verting metadata 1n a hierarchical configuration within a
fillesystem from a first format to a second format. In certain
embodiments, the method comprises the steps of: reading
metadata that 1s 1n the first format within the hierarchical
configuration; writing the metadata from the hierarchical
configuration into a flat file; and writing the metadata back
into the hierarchical configuration, the metadata being in the
second format.

In one embodiment, the method further comprises the
steps of scanning the metadata to compile a list of mode
chunks and sorting the list of inode chunks based on their
location within the filesystem.

Additionally, 1n some embodiments, the method further
comprises the steps of increasing the size of each of a first
inode and a second mnode within a first inode chunk 1n the
fillesystem, assigning the first mode to the first mode chunk,
and assigning the second mode to a second mnode chunk. In
one such embodiment, the first inode includes an original
first inode number and the second 1node includes an original
second 1node number. Moreover, 1n one embodiment, the
method further comprises the steps of retaining the original
first inode number for the first mnode and assigning a new
second 1node number for the second 1node.

Further, 1n one embodiment, the method further com-
prises the step of writing the first inode chunk and the second
inode chunk from the hierarchical configuration to the flat
file. In such embodiment, the method further comprises the
step of writing the first inode chunk and the second mode
chunk from the flat file back into the hierarchical configu-
ration.

In some embodiments, the method further comprises the
steps of (1) writing a plurality of directory extents from a first
location within the filesystem to a second location, each
directory extent identifying a location and a length of a
contiguous range of directory blocks, and (11) generating an
arranged directory extent list so that the contiguous ranges
of directory blocks are listed 1n substantially the same order
as the directory extents were listed at the first location within
the filesystem. In one such embodiment, the method further
comprises the step of writing the arranged directory extent
list from the hierarchical configuration into the flat file.
Moreover, 1n such embodiment, the method further com-
prises the step of writing the arranged directory extent list
from the flat file back into the hierarchical configuration.

Additionally, the present invention is further directed to a
filesystem comprising a file and metadata that describes the
file. In one embodiment, the filesystem 1s adapted to convert

US 9,684,677 B2

3

the metadata from a {first format to a second format utilizing,
the method as described above.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the
invention itself, both as to its structure and its operation, will
be best understood from the accompanying drawings, taken
in conjunction with the accompanying description, in which
similar reference characters refer to similar parts, and 1n
which:

FIG. 1 1s a simplified flow chart 1llustrating one embodi-
ment of a method for converting metadata of a filesystem
from a first format to a second format according to the
present mvention;

FI1G. 2A 1s a stmplified schematic diagram of one embodi-
ment of a hierarchical configuration within a filesystem that
utilizes the metadata conversion method illustrated m FIG.
1

FI1G. 2B 1s a simplified schematic diagram of one embodi-
ment of a tlat file that 1s generated to store metadata from the
filesystem 1illustrated in FIG. 2A; and

FIG. 3 1s a simplified schematic diagram of one embodi-
ment of a plurality of unconverted mmode chunks i1n an
unconverted filesystem and a plurality of converted inode
chunks 1n a converted filesystem that utilized a method
disclosed herein.

DESCRIPTION

As an overview, the present mnvention describes a method
for converting metadata of a filesystem from a first format to
a second format. One example of such a conversion can
include increasing the capacity of each of the storage blocks,
¢.g., modes, of the metadata. The methods disclosed herein
can provide substantially improved efliciency 1n the amount
of time required to fully convert the metadata from the first
format (original capacity) to the second format (increased
capacity) and/or 1n the amount of storage space required to
complete the metadata conversion. Additionally or alterna-
tively, the methods disclosed herein can provide substan-
tially improved reliability, so that there can be a much
greater likelihood that the metadata does not get lost, dam-
aged, or otherwise compromised during the conversion
process.

The methods described in detail herein can be utilized
with similar success for a variety of different filesystems. In
one non-exclusive example, one or more of the methods
provided herein can be used with a hierarchical configura-
tion within a filesystem that scales to hundreds of millions
of files, hundreds of gigabytes of metadata, and petabytes of
user data. However, the methods described herein are
equally applicable to other types and sizes of filesystems.

FIG. 1 1s a simplified flow chart illustrating one embodi-
ment of a method for converting metadata of a filesystem
from a first format to a second format utilizing the teachings
as described 1n the present invention. As utilized herein,
metadata can include several different forms of data. For
example, 1n one embodiment, metadata can include one or
more inodes, one or more directory extents, one or more
superblocks, one or more allocation bitmaps, etc. 1n alter-
native embodiments, metadata can include additional forms
and/or can be found in different locations within the file-
system.

Additionally, 1n the embodiment described herein, the
filesystem 1ncludes a plurality of inodes that are allocated 1n
contiguous 512 KB mode chunks. In this embodiment, each

10

15

20

25

30

35

40

45

50

55

60

65

4

mode can have an initial storage capacity of 512 bytes and
cach mode chunk 1nitially contains 1,024 modes. Each mode
can be associated with one or more levels within the
filesystem. For example, in a hierarchical configuration
within a filesystem, 1nodes can be associated with one or
more directories, one or more subdirectories, one or more
files, etc. In alternative embodiments, the filesystem can
include 1nodes that have an initial storage capacity of greater
than or less than 512 bytes, can include mode chunks that
have a storage capacity of greater than or less than 512 KB,
and/or can include mode chunks that imitially encompass
greater than or less than 1024 1inodes. It 1s recognized that the
foregoing embodiment 1s provided as one representative
example for ease of understanding, and 1s not intended to
limit the scope of the invention in any manner.

Further, within the filesystem, each inode includes an
inode number that 1s embedded in various locations through-
out the metadata. The mnode number can encode the physical
location of the inode on disk. As utilized herein, disk 1s the
storage medium being utilized for storing the contents of the
filesystem, although other types of storage media for storing
the contents of the filesystem can be equally be used,
including tape, virtual tape, optical disk, etc. In some
embodiments, the inode number includes both the number of
the mmode chunk (which can be numbered *“1” through
however many 1node chunks are present within the filesys-
tem), and the number of the mnode within that inode chunk
(which would typically be numbered as “1” through “1024”
for the unconverted filesystem where there are 1,024 1nodes
within each inode chunk). By way of example, in one
embodiment, 1f a particular inode was mmode number 237
within inode chunk 1, then the full inode number would be
1,0237. In another example, 1f a particular inode was 1node
number 749 within 1node chunk 6, then the full inode
number would be 6,0749. It should be noted that the method
for generating the 1node numbers for the 1odes 1s stmply an
example ol how the mmode numbers can be generated, and 1s
not meant to be limiting 1n any way, as other numbering
methods are possible.

FIG. 1 provides one method for converting metadata from
a fllesystem from the first format to the second format. It 1s
recognized that in nonexclusive alternative embodiments,
the method can include additional steps other than those
specifically delineated herein or can omit certain of the steps
that are specifically delineated herein. Moreover, 1n some
embodiments, the order of the steps described below can be
modified without deviating from the spinit of the present
invention.

Initially, 1n step 100, operation of the filesystem can be
stopped and a virtual snapshot of metadata that 1s 1n the first
format within the filesystem, 1.¢., the metadata which has not
yet been converted from the first format to the second
format, 1s taken. In one embodiment, this virtual snapshot 1s
taken at the volume level. The virtual snapshot enables the
user to identity and 1solate the full volume of metadata that
1s present within the filesystem at any given time. In this
embodiment, the filesystem 1nitially appears as including a
hierarchical configuration within the filesystem that defines
the relationships of data and metadata within a hierarchy of
directories, subdirectories, files, etc., as explained in greater
detail relative to FIG. 2. Additionally, as noted above, the
metadata can include one or more 1nodes, one or more
directory extents, one or more superblocks, one or more
allocation bitmaps, eftc.

In step 102, the avocation bitmaps that are present on disk
are read from the disk and then written into a flat file format,
or a dump directory (i.e., a directory where the flat file 1s

US 9,684,677 B2

S

maintained). During this step, the filesystem uses a feature
that 1s designed to construct one or more “flat files” (also
sometimes referred to heren as a “metadump™) 1n a local
filesystem that will ultimately be utilized to contain all of the
allocation bitmaps, the inodes, the directory extents, the
superblocks and/or any other type of metadata. In certain
embodiments, the flat file can be a part of the filesystem that
contains the metadata that 1s 1n the first format. In alternative
embodiments, the flat file can be separate and distinct from
the filesystem that contains the metadata that 1s in the first
format.

As utilized herein, a flat file 1s essentially a long list of
objects that represents the metadata that 1s contained 1n the
filesystem. The objects encapsulate all of the internal struc-
ture and relationships present in the filesystem. The flat file
can be read start to finish and the data contained therein used
to restore the metadata to 1ts original state in the event of a
disaster. Alternatively, only a portion of the metadata can be
contained within the tlat file.

For example, the flat file format can provide certain
advantages in situations when the filesystem, such as a
RAID system 1n one non-exclusive embodiment, that con-
tains all the metadata fails or 1s physically destroyed or
otherwise prevents access to the metadata. In alternative
embodiments wherein the original filesystem does not
include or illustrate the various hierarchical relationships
between the data and metadata, step 102 can be omitted.

In step 104, a list of mode chunks i1s constructed and
sorted by disk location. For example, in one embodiment,
the metadata 1s scanned to build or compile a list of 1node
chunks, which are then sorted based on their physical
location on disk. As provided above, each 1node chunk
initially contains a predetermined number of 1nodes, such as
1,024. In certain embodiments, the inode chunks are linked
from one 1node chunk to the next. In such embodiments, a
single block from each mode chunk can be read to success-
tully identify the physical location of the inode chunk and
the location of the next inode chunk. The single block that
1s read from within the mnode chunk typically encompasses
one or more modes within the inode chunk. Stated another
way, this step involves reading just enough information from
cach 1node chunk so that the physical location of the inode
chunk can be 1dentified. Further, because the inode chunks
are linked sequentially, the location of the next inode chunk
can be determined. Moreover, the location of the inode
chunks can be identified regardless of where within the
inode chunk the block that 1s being read 1s positioned.

In step 106, space 1s pre-allocated for new inode chunks.
A determination 1s made as to whether there 1s suflicient
previously unused space in the filesystem to contain the
converted, 1.e., reformatted, inodes. If 1t 1s determined that
suflicient unused space 1s available in the filesystem, the
necessary space 1s pre-allocated for the reformatted inodes.
As noted above, 1in this embodiment, the 1nodes in the
filesystem are allocated 1n contiguous 512 KB chunks, each
containing 1,024 1modes of 512 bytes each. To maintain the
required organization of the metadata during the metadata
conversion process, the storage capacity of each imnode must
be increased. In the embodiment described herein, each
inode 1s expanded to hold 1,024 bytes of information instead
of the previous 512 bytes of information. If the number of
inodes per chunk 1s increased, the size of each mode chunk
must be increased. If the inode chunk size remains the same,
the number of modes per chunk must be reduced. Because
inode chunks are frequently not allocated right next to one
another on disk, it the 1node chunk size were increased from
512 KB to 1,024 KB, fragmentation would prevent the space

10

15

20

25

30

35

40

45

50

55

60

65

6

allocated to the existing inode chunks from being reused.
Therefore, 1n certain embodiments, for greater efliciency of
space usage and to avoid unwanted fragmentation, the mode
chunk size 1s kept at 512 KB and the number of 1nodes per
chunk 1s reduced to 512.

Accordingly, during the conversion process, the size or
storage capacity of each mode chunk remains at 512 KB, but
the 1nodes are 1increased to twice the size, so that each 1node
can store twice the previous amount of metadata. For
example, 1n one embodiment, each inode can now store
1,024 bytes of information instead of the previous 512 bytes.
Therefore, 1n this embodiment, with the chunk size remain-
ing the same, and with the inode capacity for each individual
inode doubling 1n size, each inode chunk now contains only
512 1nodes instead of the previous 1,024. In alternative
embodiments, the metadata conversion process can be
designed wherein the mnode chunk size 1s increased to 1,024
KB so that the inode chunk can now contain 1,024 of the
inodes with increased storage capacity.

Still alternatively, 1n certain embodiments, during the
conversion process, the size of the modes can be increased
by other than a factor of two. For example, in some
embodiments, the size of the 1nodes can be increased so that
three times or four times or some other multiple of the
previous amount of metadata can be stored in each inode.
Stated another way, in an embodiment wherein the size of
the mnodes 1s increased by a factor of three, each mnode would
be able to store three times the amount of information of the
original 1node, e.g., 1,536 bytes of information when each
inode previously held 312 bytes of information. Somewhat
similarly, 1n an embodiment wherein the size of the 1nodes
1s increased by a factor of four, each mmode would be able to
store four times the amount of information of the original
inode, e.g., 2.048 bytes of mmformation when each inode
previously held 512 bytes of information.

During step 106, for each inode chunk, the allocation
bitmaps are used to find a contiguous 512 KB chunk of
metadata space. Moreover, because the size of each mode
has increased to 1,024 bytes from the previous 312 bytes
without the overall inode chunk size increasing, a first subset
of the 1nodes 1n the original inode chunk can remain 1in the
original 1node chunk. Further, a second subset of the inodes
in the original mode chunk will move to a new predeter-
mined 1mode chunk. More particularly, in certain embodi-
ments, the first subset of the inodes and the second subset of
the 1nodes can include approximately the same number of
inodes. In one such embodiment, the first subset of 1nodes
and the second subset of 1nodes can include exactly the same
number of inodes. Stated another way, during the conversion
process, one hall of the modes 1n the original 1node chunk
are assigned back to the original inode chunk, and a second
half of the 1nodes 1n the original inode chunk are assigned to
the new predetermined mnode chunk. Pre-allocating the new
inode chunks allows for building of a global mapping
system from old inode numbers to new inode numbers and
determines whether there 1s enough previously unused space
to complete the conversion.

In alternative embodiments, when the size of the inodes 1s
increased by other than a factor of two, during the conver-
s1on process, one subset of modes 1n the original mode
chunk would be assigned back to the original inode chunk,
and additional subsets of mnodes would be assigned to new
predetermined inode chunks. Stated another way, a new
predetermined inode chunk would be used for each factor
that the size of each of the inodes 1s increased. For example,
in an alternative embodiment wherein the size of each node
1s 1ncreased by a factor of three, during the conversion

US 9,684,677 B2

7

process, one third of the inodes 1n the original inode chunk
would be assigned back to the original inode chunk, one
third of the inodes in the original mnode chunk would be
assigned to a second predetermined inode chunk, and one
third of the inodes in the original mode chunk would be
assigned to a third predetermined 1node chunk. Somewhat
similarly, in an embodiment wherein the size of each 1node
1s 1ncreased by a factor of four, during the conversion
process, one fourth of the inodes 1n the original inode chunk
would be assigned back to the original inode chunk, one
fourth of the modes in the original mode chunk would be
assigned to a second predetermined mnode chunk, one fourth
of the 1nodes 1n the original mnode chunk would be assigned
to a third predetermined mode chunk, and one fourth of the
inodes 1n the original 1node chunk would be assigned to a
fourth predetermined inode chunk.

In step 108, a global mapping system 1s constructed from
the physical location of the old inode chunk to the physical
location of the new 1node chunk. As noted above, within the
filesystem, each mnode includes an mmode number that is
embedded 1n various locations throughout the metadata. The
inode number encodes the physical location of the inode on
disk. The global mapping system, as provided herein, tracks
how to convert inode numbers 1n the previous, unconverted
filesystem to inode numbers 1n the new, converted filesys-
tem. In certain embodiments, the global mapping system can
allow 1node numbers to be converted without chasing or
tracking on disk structures. Further, the global mapping
system can allow reading, converting and writing to the
metadump {ile 1n a single pass. As such, substantial time can
be saved during this portion of the process by obwviating
additional passes through the filesystem.

In this embodiment, because each inode chunk now
contains only one-half of the original number of inodes, the
inode numbers must also be adjusted. In one embodiment,
one-half of the mnodes 1n the original immode chunk will
remain in the original inode chunk, and the second half of
the modes 1n the original inode chunk will move to a new
inode chunk. By way of example, an original inode chunk
can include mmode numbers of 1,0001 through 1,1024, where
the first “1” represents the chunk number and the remaining,
four digits represent the specific mnode within the chunk
from “1” to “1024”. When the size of each mode 1s changed
(1.e., doubled 1n size), the 1node chunk now only has space
available for 512 inodes. Theretfore, based on space avail-
ability, previous modes 1,0001 through 1,0512 will still
include the same inode number and will still be contained 1n
the same i1node chunk (e.g., 1node number 1,0005 will
remain 1n inode chunk “1” as imode number 1,0005). How-
ever, as sullicient space 1s no longer available within the old
inode chunks, previous inodes 1,0513 through 1,1024 will
now require a new inode number and will now be contained
in a new mode chunk. If the new chunk 1s, for example,
inode chunk “14”, the 1nodes that were previously numbered
in 1node chunk *“1” as 1,0513 through 1,1024 will now be
numbered as 14,0001 through 14,0512, respectively. It 1s
recognized that the foregoing numbering convention 1s one
representative example, and other number conventions
could alternatively be utilized.

For example, 1n one embodiment, once an inode 1s moved
from the previous inode chunk to the new inode chunk, to
determine the new inode number within that new 1node
chunk, 512 1s subtracted from the previous mode number
within the previous inode chunk. So, 1f the previous inode
number was 1,0748, and this 1node 1s being moved to new
inode chunk “14”, then the new 1node number for this inode

will be 14,0236, as 748 minus 512 equals 236. In another

10

15

20

25

30

35

40

45

50

55

60

65

8

example, 11 the previous mode was in mode chunk “6” and
had an inode number of 6,1010, and 1t this inode 1s being

moved to new 1node chunk “19”, then the new 1node number

for this 1node will be 19,0498, as 1010 minus 512 equals
498. In alternative embodiments, a different specific meth-
odology can be utilized to determine what the new 1node
number would or should be based on the old or previous
inode numbers, as long as the methodology provides a
consistent manner for the new 1node numbers to be deter-

mined and subsequently associated with the previous inode
numbers.

In step 110, each of the mnode chunks are read sequentially
from disk. For each inode chunk read from disk, two 512 KB
in-memory bulilers are populated with converted 1nodes. In
one embodiment, hall of the converted 1nodes will need to
be moved to new mode chunks and have new mode num-
bers. Thus, the global mapping system, as described 1n step
108, must be used to convert the embedded 1node numbers
for each of the mnodes that will be moved to the new 1node
chunks. Accordingly, a reliable and organized system has
been created so that related metadata within the related
inodes can be easily located within the converted filesystem.
Additionally, valuable time can be saved in converting the
inode numbers that are embedded at various locations
throughout the metadata.

As noted above, 1n addition to the allocation bitmaps and
the regular mnodes that are included within the metadata,
certain metadata within the filesystem includes directory
extents. Directory extents can be contained within what are
referred to herein as directory inodes. As with the regular
inodes, directory mnodes are also contained within the mnode
chunks. A directory typically includes a list of names and
inode numbers that are athiliated with the various files that
are contained within the directory. The list of names and
inode numbers 1s contained in directory blocks. The direc-
tory extents describe the location and length of a contiguous
range of directory blocks on disk. Stated another way, the
directory extents provide information that includes the loca-
tion and number of directory blocks that are included within
a contiguous range of directory blocks.

In step 112, the directory extents are read from the
filesystem and written 1nto a directory flat file data structure
(c.g., a tree) with a separate entry being inserted into the
directory flat file for each directory extent. In one embodi-
ment, the entry can include the physical location of the
directory extent on disk. In alternative embodiments, the
directory extents can be written into another suitable loca-
tion other than the directory {flat file.

In step 114, the two converted mmode chunks (for each
original mmode chunk as described above 1n step 110), along
with some descriptive header information, can be written
from the m-memory buflers to the metadump file.

In step 116, a sorted list of contiguous ranges of directory
extents 1s built. After all the inode chunks have been read.,
converted, and stored in the metadump file, the tree of
directory extent information, 1.e., the information on the
location and length of the contiguous range of directory
blocks that was generated 1n step 112, 1s iterated and the
ranges ol directory extents are arranged into an orderly
directory extent list so that the directory extents are listed
substantially in on-disk order. In one embodiment, the
directory extent list includes the directory extents being
listed precisely 1n on-disk order. For each range, this list
contains a starting disk offset (1.e., a physical location) and
a length. In this embodiment, the tree of directory extents
can include an important property of being easy and eflicient

US 9,684,677 B2

9

to iterate the objects 1t contains (1.e., the contiguous ranges
ol directory extents) in a logical order.

This metadata conversion method can improve the efli-
ciency ol certain I/O operations. The use and arranging of
directory extent trees as described herein helps the user 1n
achieving this goal by making the I/O operations that are
required to read and update all of the directory extents vastly
more ethcient by making them as sequential as possible.
Two ways to optimize the I/O operations to read the direc-
tory extents within the filesystem are (1) to conduct the 1I/O
operations in order, as 1s greatly enabled by bulding the
sorted list of contiguous ranges of directory extents, and (11)
to make the I/O operations as large as possible. For example,
if the tree of directory extents described the directory extents
in the ranges of [7,10], [11,25], [26,50], [61,67], and [68,
100], the ranges can be effectively chunked together so that
the ranges ol directory extents can be illustrated as [7,50]
and [61,100]. Accordingly, the tree of directory extents can
be iterated by conducting two larger 1/O operations instead
of the five smaller I/O operations as would have otherwise
been required. With this design, because directory extents
tend to be rather small and somewhat randomly distributed
on disk, at least a fivefold to tenfold reduction in the extent
processing time can be achieved.

In step 118, each range of directory extents 1s read from
disk mto an m-memory buller. This step continues by
walking through the bufler one directory at a time from
beginning to end, utilizing the sorted list of contiguous
ranges of directory extents that was created 1n step 116. It the
directory block contains directory entries, then the process
continues to 1terate through the directory entries. The global
mapping system 1s utilized to make any necessary conver-
sion of old inode numbers to new 1node numbers, as
described above 1n relation to step 108.

In step 120, the range of directory extents with converted
inode numbers 1s written from the in-memory bufler to the
metadump file.

In step 122, any required fixups, such as updates to inode

numbers in the superblocks, are performed. At this point, the
metadump {file has been established that contains the con-
verted filesystem data (i1.e., converted inodes, converted
directory extents, converted superblocks, etc.), as a result of
only one full pass through the filesystem. The metadump file
1s well organized 1n that the data in the metadump file 1s
sequential 1 substantially the same way that the data 1s
sequential on disk.
In step 124, the process includes iterating sequentially
through the flat, metadump file and writing 1ts data back to
the hierarchical configuration within the filesystem. At this
point, all of the metadata 1s now contained within the
filesystem 1n the newly converted second format. In the
event that any failures occurred during step 124, such as
possible process or node failures, only step 124 would need
to be restarted.

In step 126, the filesystem 1s restarted. If for some reason
the filesystem cannot be restarted, the volume snapshot
created 1n step 100 can be used to roll-back and restore the
filesystem back to its original state.

FIG. 2A 1s a simplified schematic diagram of one embodi-
ment of a hierarchical configuration within a filesystem 228
that can utilize the metadata conversion method as illus-
trated 1n FIG. 1. As illustrated, the filesystem can include
one or more directories (identified as D1 through D3), one
or more subdirectories (identified as SD1 through SD4), and
one or more liles (identified as F1 through F7/) that are
organized 1 a hierarchical relationship relative to each
other. Additionally, the filesystem 228 can further include a

5

10

15

20

25

30

35

40

45

50

55

60

65

10

volume of metadata (1dentified as M1 through M27) that 1s
contained within a plurality of inodes that are in turn
organized within a plurality of inode chunks. In one embodi-
ment, the filesystem 228 1s designed so that an amount of
metadata 1s associated with and utilized to describe the
contents of each of the one or more directories, the one or
more subdirectories, and/or the one or more files. The
number of directories, subdirectories, files and metadata
illustrated 1n FIG. 2A 1s provided for ease of discussion only
and 1s not mtended to be limiting 1n any manner.

FIG. 2B 1s a simplified schematic diagram of one embodi-
ment of a flat file 230 that could be created from the
filesystem 228 illustrated in FIG. 2A. As illustrated, the
metadata 1s all organized 1n the same level regardless of
whether the metadata 1s associated with and utilized to
describe the contents of each of the one or more directories,
the one or more subdirectories, and/or the one or more files.

FIG. 3 1s a simplified schematic diagram of one embodi-
ment of a plurality of unconverted inode chunks 332A 1n an
unconverted filesystem 328A and a plurality of converted
inode chunks 332B in a converted filesystem 328B, wherein
the conversion utilizes the method as disclosed 1n the present
invention. In this embodiment, the unconverted filesystem
328 A includes four unconverted mnode chunks 332A (labeled
as “1” through *“4”), with each unconverted mode chunk
including 1,024 mmodes. Alternatively, the unconverted file-
system 328A can include more than four or less than four
unconverted inode chunks 332A. Further, in this embodi-
ment, the converted filesystem 328B includes eight con-
verted mode chunks 332B (labeled as ““1” through “8”"), with
cach converted mmode chunk 332B including 512 inodes.
Alternatively, the converted filesystem 328B can include
more than eight or less than eight converted mode chunks
332B.

During the conversion of the unconverted mmode chunks
332 A to the converted 1node chunks 332B, half of the inodes
that were 1n the first unconverted inode chunk are assigned
to the first converted 1node chunk, and half of the inodes 1n
the first unconverted mode chunk are assigned to the fifth
converted mode chunk. Somewhat similarly, half of the
inodes that were 1n the second unconverted 1node chunk are
assigned to the second converted inode chunk, and half of
the mmodes in the second unconverted inode chunk are
assigned to the sixth converted inode chunk. Additionally,
half of the modes that were 1n the third unconverted mode
chunk are assigned to the third converted inode chunk, and
half of the 1nodes 1n the third unconverted mode chunk are
assigned to the seventh converted mnode chunk. Further, half
of the modes that were 1n the fourth unconverted inode
chunk are assigned to the fourth converted inode chunk, and
half of the inodes 1n the fourth unconverted inode chunk are
assigned to the eighth converted inode chunk.

While a number of exemplary aspects and embodiments
have been discussed above, those of skill in the art waill
recognize certain modifications, permutations, additions and
sub-combinations thereof. It 1s therefore intended that the
following appended claims and claims hereafter introduced
are 1terpreted to include all such modifications, permuta-
tions, additions and sub-combinations as are within their
true spirit and scope.

What 1s claimed 1s:

1. A method for converting metadata 1n a filesystem from
a first format to a second format, the method comprising the
steps of:

increasing the size of each of a first 1node and a second

inode within a first inode chunk 1n the filesystem;
assigning the first mnode to the first inode chunk; and

US 9,684,677 B2

11

assigning the second inode to a second 1mode chunk;
wherein the filesystem includes a hierarchical configura-
tion, and further comprising the steps of writing the first
inode chunk and the second i1node chunk from the
hierarchical configuration to a flat file within the file-
system, and writing the first 1node chunk and the

second 1mmode chunk from the flat file back ito the
hierarchical configuration.

2. The method of claim 1 wherein the step of increasing
includes the step of increasing the size of a plurality of
inodes within the first mnode chunk, and further comprising
the step of assigning each of two or more subsets of the
plurality of modes to one of a plurality of mnode chunks.

3. The method of claim 2 wherein the step of assigning

cach of two or more subsets includes an approximately equal
number of 1nodes being contained within each subset of the
plurality of modes.

4. The method of claim 1 further comprising the step of
constructing a global mapping system that relates the physi-
cal location of the first inode chunk to the physical location
of the second 1mode chunk.

5. The method of claim 1 wherein the step of increasing
includes the first inode having an original first inode number
and the second inode having an orniginal second inode
number, and further comprising the steps of retaining the
original first inode number for the first node and assigning
a new second 1node number for the second 1node.

6. A non-transitory storage medium that stores a filesys-
tem, the filesystem including a file and metadata that
describes the file, the filesystem converting the metadata
from a first format to a second format utilizing the method
of claim 1.

7. A method for converting metadata 1 a hierarchical
configuration within a filesystem from a first format to a
second format, the method comprising the steps of:

storing a plurality of directory extents within a first

directory mode and a second directory inode 1n a first
location within the filesystem, each directory extent

10

15

20

25

30

35

12

identifying a physical location and a length of a con-
tiguous range of directory blocks;

increasing the size of each of the first directory inode and
the second directory 1node 1n the first location within
the filesystem:;

writing the plurality of directory extents from the first
location within the filesystem to a second location; and

iterating the directory extents by arranging the directory
extents so that the contiguous ranges of directory
blocks are listed 1n substantially the same order as the

directory extents were listed at the first location within
the filesystem.

8. The method of claim 7 further comprising the step of
writing the arranged directory extent list from the hierarchi-
cal configuration into a flat file.

9. The method of claim 8 further comprising the step of
writing the arranged directory extent list from the flat file
back into the hierarchical configuration.

10. The method of claim 7 turther comprising the steps of
reading metadata that 1s 1 the first format within the
hierarchical configuration; writing the metadata ito a flat
file; and wrnting the metadata back into the hierarchical
configuration, the metadata being in the second format.

11. The method of claim 7 further comprising the steps of
(1) increasing the size of each of a first mnode and a second
inode within a first 1node chunk in the filesystem, (11)
assigning the first inode to the first inode chunk, and (111)
assigning the second inode to a second mode chunk.

12. The method of claim 11 further comprising the steps
of writing the first inode chunk and the second 1node chunk
from the hierarchical configuration to a flat file, and writing
the first inode chunk and the second 1node chunk from the
flat file back into the hierarchical configuration.

13. A non-transitory storage medium that stores a filesys-
tem, the filesystem including a file and metadata that
describes the file, the filesystem converting the metadata
from a first format to a second format utilizing the method
of claim 7.

	Front Page
	Drawings
	Specification
	Claims

