12 United States Patent

US009684570B1

(10) Patent No.: US 9,684,570 B1

Wilding 45) Date of Patent: Jun. 20, 2017
(54) SYSTEMS, METHODS, AND APPARATUSES (56) References Cited
FOR FIXING LOGICAL OR PHYSICAL |
CORRUPTION IN DATABASES USING U.S. PATENT DOCUMENTS
IMMUTABLE LSM TREES
8,977,898 B1* 3/2015 Veeraswamy GO6F 17/30227
: : +1 3¢ 714/15
(71) Appllcant' Mark Wlldlng?‘ Issaquah3 WA (US) 2012/0011106 Al 2 1/2012 Reld. “““““““““““““ GO6F 9/‘466
(72) Inventor: Mark Wilding, Issaquah, WA (US) 707/693
(73) Assignee: salesforce.com, inc., San Francisco, CA OTHER PUBLICATIONS
US
(US) O’Nell et al., “The Log-Structured Merge-Tree (LSM-Tree)”, 1996,
(*) Notice: Subject to any disclaimer, the term of this pp. 1-32.%
patent 1s extended or adjusted under 35 % cited by examiner
U.S.C. 154(b) by 0 days. J
_ Primary Examiner — Michael Maskulinski
(21) Appl. No.: 14/135,564 (74) Attorney, Agent, or Firm — Blakely Sokolofl Taylor
(22) Filed: Dec. 19, 2013 & Zatman LLP
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 61/739,109, filed on Dec. In accordance with disclosed embodiments, there are pro-
19, 2012. vided methods, systems, and apparatuses for fixing logical
or physical corruption 1n databases using immutable LSM
phy P g
(51) Int. CL trees 1including, for example, means for storing records in a
GO6F 11/00 (2006.01) LSM database at the host organizfaﬁon; processing. transac-
GOGF 11/14 (2006.01) tions to the LSM database by writing the transactions 1nto
HO4T. 20/08 (2006.01) immutable extents for .subsequent merge 1nto the LSM
H database; recording a history of the transactions 1n a log;
GO6F 17/30 (2006.01) . o >
) US. Cl identifying corruption 1n at least one of the records of the
(52) US. Cl. | LLSM database represented within the immutable extents
CPC GOOF 11/1471 (2013.01); GO6F 11/1474 prior to merge of the immutable extents to the LSM data-
(2013.01); GO6F 17/30371 (2013.01); HOAL base; and correcting the 1dentified corruption to the at least
67/10 (2013.01); G061 2201/80 (2013.01); one of the records of the LSM database based at least 1n part
G061 2201/805 (2013.01) on the recorded history of the transactions 1n the log during
(58) Field of Classification Search live operation of the LSM database. Other related embodi-

CPC GO6F 11/1471; GO6F 11/14°74; GO6F
17/30286; GO6F 17/30371
See application file for complete search history.

ments are disclosed.

23 Claims, 11 Drawing Sheets

Mult--tenant Database System 130

Execution Hardware, v

software, and logic
120 Historical Record
v Viewer S
LSM \ /
120 Databases Compensaing ~~ | Corruption Ul d
255 Transaction Data 187
120
Stored Records 256

Log(s) 257

Corruption Editor

T Extent(s) 258

s

_
Corrected /

Y,
Replacement Extent @'

w—
" Compensating

Transaction

US 9,684,570 B1

| - —— N —
| e @ ||| 390"
— IJlAa(] Ju=lD
_ 181 ~~ 0cl |
[}
||| In uopdniiod SaSEqeIeq O _
| L 174} |
_ a1bo| _ —
_ / PUE ‘SIEM0S | GO} uoneziuebiQ Jewoisn)
| | P ‘2JeMpIBH _
v— _ Bl - uonnoexXJ _
“ | || Jomaip pioosy | ¢ ,,_ |
= BOLO)S|
s | |L_poo . | 1 T wass sseqseq ueuar NN T
~l _ - - o / — _ - : !
>] %Iﬂmum\tﬂc_ 097 seziwndo | || 7T aoepau] | “
m\nu _ suibug f1onD AenpD | gsenbey |
_ ﬂ.&_mci , = ST |
“ ~_ _7 jopeonueyny | | 18MBS-GAM | | 960} uogeziuebiQ Jawojsny
” _ 11} JUSWUGIIAUT UONInpold “
= ettt
3 011 uoneziuebiO 1SoH
Py V90l
3 | | | 8vlAeq sl
=
=
VGO uoneziuebip) Jawoysn
0L ©~ T~—0W

U.S. Patent

US 9,684,570 B1

Sheet 2 of 11

Jun. 20, 2017

U.S. Patent

18]

IN uondn.uon

8GZ (shusp T \

981
JOMBIA

[NOISY [EOUOISIH

alepdn pioooy (d
(T 9G¢ SPJ00aY paI0IS
— vl
aBiop Juanbasgng mmmmmmumn_ -
WST

‘SIEMPIBH UOQNIBX3

| =
9160] pue ‘aIemyos

OC 1 Wa)sSAS aseqge)e(Jueusl-liny

¢ Ol

US 9,684,570 B1

Sheet 3 of 11

Jun. 20, 2017

U.S. Patent

]33
Jo)p3 uopdnuo)

uonoesuel |
Bunesusdwon

=

181
1N uondnuo)

=

EJR(] uonoesuel |
~ Bunesusdwon

JOMBIA
PJ023Y [BOLIO)SIH

-E JUS)X3 JusWwaoe|day
>~ / PR8I0

8¢ (shuspx3 T

9G¢ SpJodsy paln)s

(174
SoSEqEIe(

WS

—

< >

0ct
2160] pue ‘alemyos
‘9JEMDIBH UOnNOax3

0C 1 WaISAQ aseqeIe(Jueud)-niIny

00 ~ T~—nW

¢ Ol

U.S. Patent

Record Editor 484

N

Changed Records

81

425

Jun. 20, 2017

Touch Interface
(e.g., mobile display)

405

Sheet 4 of 11

US 9,684,570 B1

5 Allied Inc.

Opportunity Name: Allied Services

Account Name Amount ($)

Close Date

Primary Contact:
Melissa
555-555-5555
email@email.com

Ownher

Value Proposmon | Allied Inc. || 25,000 || 8/31/13. Saturday || Kim |

Ca ncel

OPPORTUNITY
NAME & STATE

\
Opportunity Stage
Q;

More V

ACCOUNT NAME

Preview how the changes impact other records?

Undo Delete (restcre)

Comm|t Edits

AMOUNT

CLOSE
DATE

UndD Insert (delete)

OWNER | ACTIVITY

Allied Computers
Value
IIEI Proposition

Allied Services
‘ F: ‘Value
=1 1 Proposition

Allied Technologies

Value
IIEI Proposition

Allied Inc.
3 active opportunities
(7 total)

Allied Inc.
3 active opportunities
(7 total)

Allied Inc.
3 active opportunities
(7 total)

$52,500

$15,000

8/31/2013
20 days
left

8/31/2013
20 days
left

8/31/2013
20 days
left

& | [

Samanthal (7 total)

Buy Best

Value
IIEI Proposition

Buy Best Inc.
1 active opportunities
(2 total)

$17,000

8/31/2013
20 days
left

Data Mart
Value
Proposition

Data Soft
Value
Proposition

Smartphone or Tablet
Computing Device 401

Data Corp.
Z active opportunities
(2 total)

Data Corp.
2 active opportunities
(2 total)

$12,500

FIG. 4

3/31/2013
20 days
left

8/31/2013
20 days
left

(7 total)

Corruption Ul 480

Historical Record Viewer 402

US 9,684,570 Bl

—
Sy
&
\r
D
@ 0G J0Ss820.d
7 pajelbau|
c0S
- (Keydsip ajiqow 68
< aoel8IuI yono| 90IAS(]
S bupndwo) 1s(qe]
p L0S
-
-

U.S. Patent

auoydyews
PI9Y-PUEH
¢0S

QG J0ssa00.d
pajelbau|

O

c0G
(Aeydsip sjiqow “69)
8oBJ81ul yono|

4%
JOV44d3 LN
AV1dSId

US 9,684,570 B1

0€9
NFLSASENS AV1dSId

e

e

f ——

,,w 0vS

- H3TI0HLNOD O/
5

i

P,

I~

y—

~

gl

m., 028

D AILSASANS OlaNY
=

U.S. Patent

039
INJWIDVYNVYIN 43MOd

01G
H0SS3004d

089
SNOILOINNOO 1Vd3HdId4d

099
NILSASENS AJONIN

.G
SSI13dIM

LG
dviniiao

0.G

ALIAILOINNOD

U.S. Patent Jun. 20, 2017 Sheet 7 of 11 US 9,684,570 B1

Storing records in a LSM database at a host organization.
009

Processing transactions to the LSM database by writing the
transactions into immutable extents for subsequent merge into

the LSM datahase.
61

Recording a history of the transactions in a log.

ldentifying corruption in at least one of the records of the LSM
database represented within the immutable extents prior to

merge of the iImmutable extents to the LSM database.
62

Correcting the identified corruption to the at least one of the
records of the LSM database based at least in part on the
recorded history of the transactions in the log during live

operation of the LSM database. 695

End

U.S. Patent Jun. 20, 2017 Sheet 8 of 11 US 9,684,570 B1

<™

System
Data
Storage 724

V’

Processor
System 717 Process Space

Application
Platform 718

Environment 798
UserSystem | User System
{12 12

FIG. 7A

U.S. Patent Jun. 20, 2017 Sheet 9 of 11 US 9,684,570 B1

Tenant Data Storage (Tenant DB) 722

System Data
Storage 724

Tenant Data 723

Tenant Storage Space 727

Tenant Data 729

Application MetaData 731

System
Data 725

Application Server 7004
Application Platform 718

Application Setup Tenant Management System
Mechanism 738 Process Process
Save Routines 10 102

736
PL/SOQL
734

AP| 732 Ul 730

Application Application
Server | Server
Environment 799 7004 700

User System 712

Processor Memory
System 712A System 712B

System
716

Tt
-

|-~4
—
N
]
—
N

Input System Output
712C System 712D

U.S. Patent Jun. 20, 2017 Sheet 10 of 11
802
PROCESSOR — 836
PROCESSING| [25 |
LOGIC § _| PERIPHERAL
o DEVICE
MAIN MEMORY
812
N \ -~
HISTORICAL | | 824 “NPUT DEVICE.
INPUT DEVICE
RECORD " URsOR
VIEWER ENGINE /{ CONTROL DEVICE
814
810
corrUPTION | | 52
Ul ENGINE ~+—| USER INTERFACE
)
—
895 830
CORRUPTION 816
EDITOR
B INTEGRATED
SPEAKER
808
NETWORK
INTERTS% CARD ———» SECONDARY MEMORY
MACHINE-ACCESSIBLE
STORAGE MEDIUM
o
SOFTWARE

US 9,684,570 B1

800

818

831

822

US 9,684,570 B1

Sheet 11 of 11

Jun. 20, 2017

U.S. Patent

(s)uonoesuel |

6 Ol

16
Jojip3 uondnuon

0€6

J0)e207 uondnuon

(&) @

goeLsju| Assnp

(¥4
(Jonuas-gam “Ha)
aoBJI)U| 1S8nbay

Gl6
SNd

GZ6
auibug aoea)U|
1as uondnuon

TG6 (shusxg
g|qejnuiw]

0¢6
suibug Jamaip

PI023) [BDLIO)SIH

666 ()60

866
SPJ0ISY PAI0IQ

966
suonanJsul Jo
21607 Bunuswsaidw

066
oseqeleq NS’

066
(S)10SS820.14

AIOWS

006 WesAs

US 9,684,570 Bl

1

SYSTEMS, METHODS, AND APPARATUSES
FOR FIXING LOGICAL OR PHYSICAL

CORRUPTION IN DATABASES USING
IMMUTABLE LSM TREES

CLAIM OF PRIORITY

This application i1s related to, and claims priority to, the

provisional utility application entitled “FIXING LOGICAL
OR PHYSICAL CORRUPTION WITH IMMUTABLE

LSM TREES,” filed on Dec. 19, 2012, having an application
No. of 61/739,109, the entire contents of which are incor-
porated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as 1t appears in the Patent and Trademark Oflice
patent file or records, but otherwise reserves all copyright
rights whatsoever.

TECHNICAL FIELD

Embodiments of the invention relate generally to the field
of computing, and more particularly, to systems, methods,
and apparatuses for fixing logical or physical corruption 1n
databases using immutable LSM trees.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned 1n the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter 1n the background section merely repre-
sents different approaches, which in and of themselves may
also correspond to embodiments of the claimed inventions.

A single a multi-tenant database system operates to store
data on behalf of a multitude of paying subscribers, each
being a “tenant” of the database system, hence the term
multi-tenant database system.

Within such an operational environment, computational
clliciency, system responsiveness, and data integrity are all
of paramount concern both to the provider of the multi-
tenant database system and to the subscribers or tenants of
such a system. Moreover, with on-demand technologies
having multiple distinct clients simultaneously utilizing the
system and relying upon its availability 1t 1s critical to avoid
service outages which can create frustration on behall of
users, create bad press coverage for the host organization,
and damage the credibility of the host organization which 1n
turn creates a negative business environment making 1t more
difficult to acquire new customers and retain existing cus-
tomers.

Within conventional database systems, data corruption
detected by the database engine soltware 1s considered a
catastrophic event, as 1t should be, causing the database to
very often “crash” rather than risk serving corrupted data in
reply to queries. Some enterprise level databases do not
crash and perform special 1solation techniques instead. Nev-
ertheless, a crashed database may be acceptable 1n a single
tenant environment where one entity hosts their data on the

10

15

20

25

30

35

40

45

50

55

60

65

2

database and 1s responsible for maintaining their own data-
base internal to an organization because a catastrophic
failure and database crash will result 1n only that particular
tenant’s users being aflected.

However, consider the environment in which a multi-
tenant database system operates as an on-demand or cloud
based subscription service providing database services to
tens of thousands of customers. A catastrophic failure in
such an environment due to data corruption will affect a
large number of customer organizations, their business
operations, their users, customers of those businesses, and so
forth. Even 1f a catastrophic failure i1s limited within a
multi-tenant database system to a single server pod or some
logical subset, the failure will still affect hundreds or thou-
sands of customers having data on such a sub-set rather than
only a single entity as would occur 1mn a single-tenant
database system. In addition to the bad press and loss of
credibility, such a database crash can directly lead to mil-
lions of dollars per hour of lost revenue for the duration of
the outage. Further still, a single tenant of a multi-tenant
database system cannot be permitted to trigger a database
outage that could affect potentially thousands of other ten-
ants of the same multi-tenant database system, each of
whom are running their own businesses. It would be grossly
unfair for a single tenant to detrimentally impact so many
others 1n such a way.

Rectifying database corruption 1s additionally notoriously
difficult and requires skilled database experts and techni-
cians, which in turn leads to further cost and delay 1n the
recovery of database services. At the same time, corruption
in a database 1s a critical problem and cannot simply be
ignored as returning corrupted data in reply to queries could
have even more damaging results than returning no data at
all due to a service outage.

The present state of the art may therefore benefit from the
systems, methods, and apparatuses for fixing logical or
physical corruption in databases using immutable LSM trees
as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are 1llustrated by way of example, and not
by way of limitation, and will be more fully understood with
reference to the following detailed description when con-
sidered 1n connection with the figures 1n which:

FIG. 1 depicts an exemplary architecture in accordance
with described embodiments;

FIG. 2 depicts another exemplary architecture 1n accor-
dance with described embodiments;

FIG. 3 depicts another exemplary architecture 1n accor-
dance with described embodiments;

FIG. 4 depicts an exemplary graphical interface operating,
at a mobile, smartphone, or tablet computing device 1n
accordance with the embodiments;

FIG. SA depicts a tablet computing device and a hand-
held smartphone each having a circuitry integrated therein as
described 1n accordance with the embodiments;

FIG. 5B 1s a block diagram of an embodiment of tablet
computing device, a smart phone, or other mobile device 1n
which touchscreen interface connectors are used; and

FIG. 6 1s a flow diagram 1llustrating a method for fixing
logical or physical corruption 1n databases using immutable
[LSM trees 1in accordance with disclosed embodiments;

FIG. 7A illustrates a block diagram of an environment 1n
which an on-demand database service may operate 1n accor-
dance with the described embodiments:

US 9,684,570 Bl

3

FIG. 7B 1llustrates another block diagram of an embodi-
ment of elements of FIG. 7A and various possible intercon-

nections between such elements 1n accordance with the
described embodiments;

FIG. 8 illustrates a diagrammatic representation of a
machine 1n the exemplary form of a computer system, in
accordance with one embodiment; and

FIG. 9 shows a diagrammatic representation of a system
in accordance with which embodiments may operate, be
installed, itegrated, or configured.

DETAILED DESCRIPTION

Described herein are systems, methods, and apparatuses
for fixing logical or physical corruption in databases using
immutable LSM trees 1n an on-demand service environment.
Such systems, devices, and methods may include, for
example, means for: storing records in a LSM database at
the host organization; processing transactions to the LSM
database by writing the transactions mto immutable extents
for subsequent merge 1nto the LSM database; recording a
history of the transactions in a log; identifying corruption in
at least one of the records of the LSM database represented
within the immutable extents prior to merge of the immu-
table extents to the LSM database; and correcting the
identified corruption to the at least one of the records of the
LLSM database based at least 1n part on the recorded history
of the transactions 1n the log during live operation of the
[LSM database.

The described methodologies for fixing logical or physi-
cal corruption 1n databases using immutable LSM trees are
work and 1s specifically designed for corruptions in extents
that are found at any time. The extents may periodically go
through a merge process to create new extents. According to
the described embodiments, suflicient redundancy in the
L.SM database 1s maintained so as to re-merge and therefore
create any data extent at any time necessary. According to
certain embodiments, suflicient log data 1s additionally
maintained for both tenant corruption above the API/SQL
interface as well as to recreate data extents higher in the
LLSM tree during live operation of the database. That 1s to
say, the corruption 1s fixed without taking down or crashing
the database.

In the following description, numerous specific details are
set forth such as examples of specific systems, languages,
components, etc., in order to provide a thorough understand-
ing ol the various embodiments. It will be apparent, how-
ever, to one skilled 1n the art that these specific details need
not be employed to practice the embodiments disclosed
herein. In other instances, well known materials or methods
have not been described 1n detail in order to avoid unnec-
essarily obscuring the disclosed embodiments.

In addition to various hardware components depicted in
the figures and described herein, embodiments further
include various operations which are described below. The
operations described 1n accordance with such embodiments
may be performed by hardware components or may be
embodied 1n machine-executable instructions, which may be
used to cause a general-purpose or special-purpose proces-
sor programmed with the istructions to perform the opera-
tions. Alternatively, the operations may be performed by a
combination of hardware and software.

Embodiments also relate to an apparatus for performing
the operations disclosed heremn. This apparatus may be
specially constructed for the required purposes, or 1t may be
a general purpose computer selectively activated or recon-
figured by a computer program stored in the computer. Such

10

15

20

25

30

35

40

45

50

55

60

65

4

a computer program may be stored in a computer readable
storage medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMSs, magnetic
or optical cards, or any type of media suitable for storing
clectronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs 1n accordance with the teachings herein, or 1t may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear as set forth 1n the
description below. In addition, embodiments are not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the embodiments as described herein.

Embodiments may be provided as a computer program
product, or soltware, that may include a machine-readable
medium having stored thereon instructions, which may be
used to program a computer system (or other electronic
devices) to perform a process according to the disclosed
embodiments. A machine-readable medium includes any
mechanism for storing or transmitting information 1n a form
readable by a machine (e.g., a computer). For example, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM”), random access
memory (“RAM™), magnetic disk storage media, optical
storage media, flash memory devices, etc.), a machine (e.g.,
computer) readable transmission medium (electrical, opti-
cal, acoustical), etc.

Any of the disclosed embodiments may be used alone or
together with one another 1n any combination. Although
various embodiments may have been partially motivated by
deficiencies with conventional techniques and approaches,
some of which are described or alluded to within the
specification, the embodiments need not necessarily address
or solve any of these deficiencies, but rather, may address
only some of the deficiencies, address none of the deficien-
cies, or be directed toward diflerent deficiencies and prob-
lems where are not directly discussed.

FIG. 1 depicts an exemplary architecture 100 1n accor-
dance with described embodiments. In one embodiment, a
production environment 111 1s communicably interfaced
with a plurality of client devices 106 A-C (e.g., such as
mobile devices, smart phones, tablets, PCs, etc.) through
host organization 110. In one embodiment, a multi-tenant
database system 130 includes databases 155, for example, to
store tables, datasets, and underlying database records with
user data on behall of customer organizations 105A-C or
users.

Multi-tenant database system 130 includes a plurality of
underlying hardware, software, and logic elements 120 that
implement database functionality and a code execution
environment within the host orgamization 110. In accordance
with one embodiment, multi-tenant database system 130
further implements databases 1355 to service database que-
ries and other data interactions with the databases 155. The
hardware, software, and logic elements 120 of the multi-
tenant database system 130 are separate and distinct from a
plurality of customer organizations (105A, 1058, and 105C)
which utilize the services provided by the host orgamization
110 by communicably interfacing to the host organization

US 9,684,570 Bl

S

110 via network 125. In such a way, host organization 110
may implement on-demand database services or cloud com-

puting services to subscribing customer organizations 105 A -
C.

Host organization 110 receives mput and other requests
115 from a plurality of customer organizations 105A-C via
network 125 (such as a public Internet). For example,
incoming database queries, API requests, iteractions with
displayed graphical user interfaces and displays at the client
devices 106 A-C, or other mputs may be recerved from the
customer organizations 105A-C to be processed against the
multi-tenant database system 130, including queries to read,
write, and update data stored within the databases 155.

In one embodiment, each customer organization 105A-C
1s an entity selected from the group consisting of: a separate
and distinct remote organization, an organizational group
within the host organization 110, a business partner of the
host orgamization 110, or a customer organization 105A-C
that subscribes to cloud computing services provided by the
host orgamization 110.

In one embodiment, requests 115 are recerved at, or
submitted to, a web-server 175 within host organization 110.
Host organization 110 may receive a variety of requests for
processing by the host organization 110 and 1ts multi-tenant
database system 130. Incoming requests 115 received at
web-server 175 may specily which services from the host
organization 110 are to be provided, such as query requests,
search request, status requests, database transactions,
graphical user interface requests and interactions, processing
requests to retrieve, update, or store data on behalf of one of
the customer organizations 1035A-C, code execution
requests, and so forth. Web-server 175 may be responsible
for receiving requests 115 from various customer organiza-
tions 105A-C via network 125 and provide a web-based
interface or other graphical displays to an end-user client
device 106 A-C or machine originating such data requests
115.

Authenticator 140 operates on behalf of the host organi-
zation to verily, authenticate, and otherwise credential users
attempting to gain access to the host organization.

Query 1nterface 180 provides functionality to pass queries
from web-server 175 into the multi-tenant database system
130 for execution against the databases 155 or other data
stores of the host organization’s production environment
111. In one embodiment, the query interface 180 implements
an Application Programming Interface (API) through which
queries may be executed against the databases 155 or other
data stores. Query optimizer 160 performs query translation
and optimization, for instance, on behall of other function-
ality such as functionality of a graphical interface which
possesses sullicient information to architect a query vyet
lacks the necessary logic to actually construct the appropri-
ate query syntax. In other instances, query optimizer 160
modifies a submitted query to optimize its execution within
the host organization without affecting the resulting dataset
returned responsive to such an optimized query. Analysis
engine 1835 operates on behalf of functionality within the
host organization to perform additional data evaluation
where necessary.

Host organization 110 may implement a request interface
176 via web-server 175 or as a stand-alone interface to
receive requests packets or other requests 115 from the client
devices 106 A-C. Request interface 176 further supports the
return of response packets or other replies and responses 116
in an outgoing direction from host organization 110 to the

client devices 106A-C.

10

15

20

25

30

35

40

45

50

55

60

65

6

Historical record viewer 186 and corruption user interface
(corruption UI) 187 are further depicted as interacting with
the databases 155. The historical record viewer 186 enables
users to view past transactions at the databases as well as the
past or historical state of data reflected by their database
records. Corruption Ul 187 enables users to select past
transactions to the databases to revert or modily, as well as
view what impact upon other records their proposed changes
may cause and then to confirm compensating database
transactions to correct logical corruption as will be described
in additional detail below. Changes available for view by
any particular database tenant or user are restricted to their
view of the data in the database as controlled by conven-
tional access restrictions, ownership, and responsibility for
such data. Thus, one tenant cannot see the data of another
tenant unless they are given access rights to view such data.
Thus, according to certain embodiments, both OrglD and
UserID are included within the transactions logs to correctly
align access rights to the view granted to any user via the
historical record viewer 186 and the corruption user inter-
face 187.

FIG. 2 depicts another exemplary architecture 200 1n
accordance with described embodiments. Depicted here the
execution hardware, software, and logic 120 of the multi-
tenant database system 130, but additionally depicted are
LLSM databases 2535 operating as data stores for the multi-
tenant database system 130. The historical record viewer
186 1s again depicted which interacts with the logs 257 of the
L.SM database 255 and further interacts with the corruption
user interface 187.

According to the described embodiments, the LSM data-
bases 255 contain stored records 256 and operate utilizing
L.SM database logs 257 and immutable LSM trees contain-

ing database transactions that are intended to be merged into
the stored records 256 of the LSM databases 255. Database

records are stored within database blocks. Database blocks
in turn are contained within database extents. Extents are
groups ol blocks that contain groups of rows. The records
are the changes to the database including inserted rows,
updated rows and deleted rows.

LLSM databases 255 queue up these pending transactions
rather than immediately writing them 1into their permanent
location 1n the database and subsequent processing merges
the extents 258 into the stored records 256 of the LSM
databases 235, for instance, by collapsing updates and
modifications to rows, eflecting new row insertions, and
permanently eflecting row deletions. For instance, as
depicted, a record update 223 1s shown being written to the
extent 258 of the LSM databases 255 and a subsequent
merge 224 causes the record update 223 to be eflected
permanently into the stored records 256 of the LSM data-
base 2355, likely with many other pending/queued transac-
tions, be they insertions, modifications, or deletions.

Many conventional databases operate utilizing an update-
in-place methodology 1n which any changes to the database
requires the database engine to read out an affected record,
update the record, and write the updated record back mto the
database at the correct location. With an update-in-place
database the database blocks are not immutable, that 1s, they
can be changed. Tables are a logical construct on top of the
database blocks but the records have to be written to
database blocks thus changing an existing block to a new
version within an update-in-place database. Records and
rows are written to a block and will typically remain in that
block until changed or until the update-in-place database 1s
reorganized. LSMs databases on the other hand defer place-
ment of the records and subsequently move records as part

US 9,684,570 Bl

7

of merge processing. Record inserts to such update-in-place
databases must be written 1nto the correct location 1n the
correct block at the time of insertion, changing the version
of the block, and similarly, record deletions must remove the
correct record from the correct block at the time of deletion,
again changing the version of the block.

Logging exists for such conventional update-in-place
database systems with enough information to repeat the
entire operation 1 the direct write to the block gets inter-
rupted mid-way through (e.g., by a system crash) via an
operation called “replaying” the log, thus requiring that each
transaction in an update-in-place database be written to disk
twice: once to the log, and once 1nto the permanent location
within the correct database block of the update-in-place
database. Notwithstanding the logging by update-in-place
databases, the transactions are eflected into the database at
the exact and permanent location at the time that the
transaction occurs.

If a block becomes corrupted 1n such an update-in-place
database the entire database will often crash to prevent the
corruption from spreading, although as noted above, some
enterprise level databases implement database block 1sola-
tion schemes to prevent crashing. Such enterprise level
databases can sustain corruptions and even seli-repair them-
selves under certain circumstances, although such technol-
ogy 1s extremely expensive to implement. Oracle™ for
example requires a second such enterprise system with a
tully redundant set of data that 1s synchronized and available
at all times such that the redundant set can be used to repair
corruption. Certain mainframe databases also will sustain
corruption without crashing such as those systems support
financial transactions, but again, the technology 1s extremely
expensive to implement. For instance, banks and stock
markets operate such mainframe databases.

An 1nteresting case may occur in an update-in-place
database where a database block 1s damaged then because of
the damage, 1t 1s unknown which of the thousands of tenants
having data stored on the database may be aflected by such
damage. Such a problem 1s especially true for an update-
in-place database where the tenants are inter-mixed, poten-
tially without ordering. Consider therefore performing a
scanning query for “where tenant=<tenantID>" and encoun-
tering a corrupted block. Without knowing which tenants are
in the block, the scan must fail to avoid returning an
incorrect SQL statement result which could then propagate
logical corruption throughout the update-in-place database.

Conversely, with an LSM database where the extents and
blocks have ordered blocks with ordered tenant data within
them 1t 1s at least knowable which tenants may be associated
with and thus aflected by a corrupted block and thus, it can
then be decided whether or not the scan should continue or
error out based on whether the particular tenant running the
scan 1s one of those that would be aflected by the corruption
to that block. Even if the block 1s corrupted or entirely lost
it 1s still possible to determine whether a tenant executing the
can will be affected by the corruption because the scan logic
can look to immediately adjacent blocks within the extent to
see the ordering of tenants and the range of tenants could
potentially be aflected by the lost or corrupted block. In such
a situation, scanning can therefore continue without error
where 1t 1s determined that a tenant executing the scan does
not fall within the range of potentially aflected tenants, or
error out when appropriate should the tenant unfortunately
tall within the range. If tenants do fall within the range then
the corruption can at least be 1dentified and trigger corrup-
tion rectification procedures be that a replay, compensating,
transaction, extent replacement, etc.

10

15

20

25

30

35

40

45

50

55

60

65

8

In accordance with certain embodiments therefore, the
LLSM database orders records 1n blocks by tenant and within
extents. In such an embodiment, scans will naturally skip
over blocks that are not needed, made possible by the
ordering which not only greatly improves scan performance
but additionally permits tenants having no association with
a block to benefit from scans that continue successiully
scanning as long as they are orthogonal to the corrupted
block data, notwithstanding the presence of corrupted blocks
in the ordered LSM database. In such a way, the LSM
database continues to operate in a live production state
capable of transacting on behalf of tenants whose blocks are
not afilicted with such corruption.

The ability for the LSM database to continue 1n a live
operational state notwithstanding the presence of corrupted
blocks 1s critical to the nature of the multi-tenant database
system environment which services tends of thousands of
diverse customers concurrently. Consider for example a
massive database within the multi-tenant database system
having an exemplary 30 TB of data hosted on behalf of 1000
tenants. The particular corruption issue may reside within a
block that affects just a single one of the 1000 tenants or
perhaps a dozen or so of the tenants, yet with conventional
update-in-place databases, the corrupted block will trigger
the entire database to crash (assuming 1t 1s not a corruption
resilient enterprise database) thus taking all 1000 tenants
oflline for a problem that approximately ~99% of the tenants
do not care about and for which such tenants may never be
directly affected by the corruption because they are i no
way aililiated with the data block found to be corrupted.

Consider further a database supporting millions of finan-
cial customers simultaneously, such as within a banking and
finance environments. Crashing the database for corruption
at a single block would be flatly unacceptable as doing so
could cause disastrous financial repercussions for the bank
or even the larger economy depending on the scope and
nature of the financial transactions supported by the system.
For instance, consider the havoc should Visa and Master-
Card’s entire transaction processing system crash or worse
yet, damage to financial markets should a stock exchange
crash. Therefore, an update-in-place database in such an
environment may maintain the system’s availability rather
than crashing upon the detection of a corrupted block and
instead attempt to 1solate the corruption from non-affected
customers during the database’s operational runtime so that
the single corrupted block, and the few customers aflected,
can be remedied without triggering a full-blown service
outage.

Unfortunately, resolving corruption in such a situation 1s
enormously complex due to the nature of the update-in-place
database’s propensity to be constantly changing the blocks
within which records are stored as the database transactions
are processed. While the update-in-place database continues
operating, transactions are constantly updating the perma-
nent location of data 1n the database this making it very risky
and technically complex to rectity corrupted blocks without
taking the database ofiline.

In order to fix the corruption it necessary to obtain or
reconstruct the correct version of a database block. Recon-
structing the incorrect version will introduce dithicult to
detect logical corruption which 1s 1n of itself a disastrous
consequence to the data integrity of the database, yet to
make matters worse, the logical corruption resulting from
reconstructing the wrong version of the corrupted block will
then logically propagate across the database 1n a manner that
1s extremely diflicult to predict and potentially impossible to
subsequently detect rendering the full impact of the corrup-

US 9,684,570 Bl

9

tion potentially unknowable. For instance, block reads are
not logged or tracked and as such, there would be no record
of those transactions having pulled data from the logically
corrupted block, used that data in some way within an
application layer separate from the database, and then writ-
ten data back into the database having been indirectly
allected and corrupted by the erroneous block version recon-
struction. For instance, 1f perhaps a person’s salary record 1s
corrupted, and then a manual update to fix the corruption
enters mcorrect data, the erroneous block version update will
logically corrupt that block but render 1t physically valid,
appearing as though the corruption 1s fixed, yet could
unknowingly give somebody a raise or reduction in salary,
or remove their salary completely, or allocate their salary to
another person, etc.

For these reasons, correcting corruption on a live opera-
tional update-in-place database, while possible, 1s a dithcult
and dangerous proposition that typically requires very
skilled and expensive experts as well as support from the
database vendor all while risking the introduction of new

logical corruption into the database.
[LLSM database 255 technology 1s fundamentally different

than update-in-place database technology. A LSM or LSM-
tree type database 1s a “Log-Structured Merge-tree” type
database and does not write updates, deletions, or insertions
directly mto the permanent database location at the time of
the transaction as 1s done with an update-in-place database.
Instead of writing the database transactions into the perma-
nent location 1n the database and writing the entry into a log
also as 1s done with an update-in-place database, an LSM
database 255 simply writes the database transaction (e.g.,
such as record update 223) to the end of a queue, referred to
as an extent, and 1s then finished with processing for that
given database transaction for the time being. The LSM
database additionally writes checkpoints to disk periodically
which describe the state of the file system at that point in
time providing organization to the queued transactions
stored 1n the extents 258 so as to make the data associated
with pending updates more eflicient to find. An extent 258
1s one or more blocks of data (“blocks” are sometimes also
referred to as pages or fragments). If the LSM database 255
were to use only blocks then there would be millions of
blocks to track and data would become increasingly dithicult
to find with orgamizational overhead costs increasing dra-
matically. By placing blocks into extents 258, each having,
for example, 300 to 300 blocks, then the computational
performance of organization and indexing to find data 1s
improved dramatically. This 1s necessary because notwith-
standing the fact that record updates 223 and other transac-
tions are written to the extents 258 belfore subsequent merge
operations, follow-on queries to the stored records 256 of the
L.SM database 255 must accurately reflect the state of the
data stored within them, regardless of whether the latest
version of the record exists as a merged and thus permanent
stored record 256 or exists as a pre-merge queued database
transaction within one of the extents 258.

The LSM database system engine can be thought of as a
lazy accountant. Rather than locating the exact row 1n a
table, reading 1t out, updating it, and writing it back into the
proper and permanent location at the time of the transaction,
as 1s required by the update-in-place database, the LSM
database’s lazy accountant istead logs and queues all the
transactions with the intention of getting around to them
later. This results in many small “extents” 258 which include
database transactions (e.g., such as the record update 223)
that need to subsequently be inserted or updated into the

10

15

20

25

30

35

40

45

50

55

60

65

10

LLSM database’s permanent location at a later time, through
a process called merging 224.

Therefore, 1t a transaction for an LSM database deletes a
record from the database, the deletion will be logged and
immutably recorded into the extent 258 at the time of the
transaction, however, the record still remains at 1ts perma-
nent location within the stored records 256 of the LSM
database 255, until such time that the extent and its trans-
actions are processed or merged 224 into the LSM databases
255 at which point 1n time the record deletion 1s made
cllective or permanent within the stored records 256 of the
LSM database 2535. Once made eflective or permanent
through merging 2224, the extent 258 1s no longer required
and 1s therefore deleted or marked for deletion. However,
transactions may nevertheless be logged or the extents
themselves may be kept as logs for redundancy and future
reference, for example, for use by the historical record
viewer 186 and corruption user interface 187.

FIG. 3 depicts another exemplary architecture 300 1n
accordance with described embodiments. As before, there
remains the execution hardware, software, and logic 120 of
the multi-tenant database system 130 and the LSM databases
255, 1ts stored records 2356, logs 257, and extents 258.
Additionally depicted 1s the corruption editor 330 which
interacts with the corruption user interfaced 187 and the
historical record viewer 186.

With the LSM database 255, any changes subsequent to a
checkpoint can be recovered by replaying a relatively small
number of log 257 entries following the checkpoint. Suili-
ciently large logs 257 permit a view 1nto the past to see what
transactions occurred and thus enabling those past transac-
tions to be replayed or undone via compensating transac-
tions 334. Larger logs 257 thus equate to a longer available
history of transactions that may be referenced, viewed, or
displayed to a user via the historical record viewer 186.
While it may be infeasible to store all transactions 1n the logs
257 indefinitely, 1t 1s practical to store several days worth of
transactional logs, thus permitting replay or review and
correction for any transaction during that past period of time
as reflected by the available transaction logs. In such a way
the transaction logs provide for data redundancy within the
system enabling a variety of mechanisms to fix corruption in
an LSM type database, as described herein.

As depicted here, the corruption editor 330 enables a user
(e.g., via the corruption UI 187 and historical record viewer
186) to view and retrieve compensating transaction data 333
from either the stored records 256 or the logs 257, or both,
and then via the corruption editor 330 a compensating
transaction 334 can be generated and 1ssued to the LSM
databases 255 to correct or counteract corruption.

As noted previously, the queued up database transactions
of an LSM database 235 are kept within the immutable
extents 238 representing the logged transactions that are
intended to be merged into the LSM database but have not
yet been handled. The extent 258 cannot ever be modified.
Instead, it exists until the LSM database merges the queued
transactions at which point it no longer required or relevant
and thus deleted or marked for deletion depending on how
the log 257 handles the processed extents 2358.

Thus, unlike the update-in-place database which 1s 1n a
constant state of change due to the updates being transacted
to the physical locations of the database and 1n which
corruption can quickly spread, the LSM database 255, 1f
corrupted, will localize that corruption to a particular extent
2358 yet to be merged, at least for a period of time. Resolving
corruption within the LSM database 235 while it remains
live and operational 1s therefore much more feasible than

US 9,684,570 Bl

11

with the update-in-place database. For instance, once cor-
ruption 1s 1dentified, 1t can be resolved by replacing the
pending extent 258 with a corrected or replacement extent
335 having the corrupted data re-stamped, or re-applied 1n
its correct form. The corrected/replacement extent 335 may
be re-generated by replaying the necessary transactions as
recorded by the logs 257 and updating the corrected/replace-
ment extent 335 based on the compensating transaction data
333, after which the corruption editor 330 causes the cor-
rected/replacement extent 335 to over-write the pending
extent 258 prior to merge. Alternatively, compensating
transactions 334 can be queued into the latest extent 2358
without having to replace any existing pre-merge extent, in
which case the compensating transactions 334 which would
simply counter-act the corrupting transaction.

With suilicient redundancy 1n the logs and/or older extents
stored after merge processing, including extents having
since been merge and marked for deletion, 1t 1s possible to
replay the logs again creating the same extent that was
created previously based on compensating transaction data
333 via a “replay” or to generate new compensating trans-
actions 334 which will 1n turn cause a compensating merge
event through the LSM databases’ 255 normal processing
thus re-creating, restoring, or otherwise correcting the cor-
ruption 1ssue. In the event that records were erroneously or
maliciously nserted a compensating transaction 334 would
simply delete the new record and at merge processing the
new record would be effectively destroyed or negated by the
compensating transaction 334.

Conversely, 11 a record deletion 1s transacted against the
database, but 1s in error and thus represents logical corrup-
tion, the enqueued record deletion cannot be removed from
the 1immutable extent’s 2358 pending merge processing.
However, the erroneously deleted record still exists within
the LSM database’s 2535 stored records 256 at its permanent
location until such time that the merge occurs for the extent
2358 having the erroneous delete transaction queued therein.
Therefore, a compensating transaction 334 can read out that
record from the stored records 256 as compensating trans-
action data 333 and then transact 1t for entry into the
database via the compensating transaction 334, thus queuing
it for later merge via the extent 258. When the LSM database
235 performs 1ts subsequent merge, the two transactions will
cllectively annihilate one another when fully processed.
More particularly, the first erroneous delete will be effected
into the LSM database 255 via the merge and then the
insertion will be effected into the LSM database 235 via the
merge, resulting in a net no-change event from the perspec-
tive of a user or anyone querying for the data belonging to
the erroneously deleted record.

The compensating transactions 334 or corrected/replace-
ment extent 335 operations may require special handling,
bypassing the standard SQL interface available to database
users, however, the fact that transactions are not immedi-
ately updated at their permanent stored records 256 location
in the LSM database 255 makes such special handling
during live operation of the LSM database 255 feasible
where 1t 1s not always possible with an update-in-place
database. For instance, special queries can be executed
against the LSM database 255 to query the permanent stored
records 256 location, bypassing the logged/enqueued modi-
fication present 1n an extent 258, so as to obtain the
compensating transaction data 333 of a record pending
deletion. One way of doing this differentiate between an
older record pending deletion and the transaction specitying
the deletion based on time-stamps kept by the LSM database
255. A normal sert transaction can then be 1ssued as a

10

15

20

25

30

35

40

45

50

55

60

65

12

compensating transaction 334. Alternatively, while the
LSM’s extent 258 having the queued transactions 1s 1tself
immutable and cannot be modified, where corruption exists
in such an extent 238, a corrected/replacement extent 335
can be substituted reflecting the corruption fix, which will
then be taken up by the LSM database and merged 1n the
usual fashion. Again, this may require special handling
transactions, but can be implemented through customized
tools and interfaces to carry out the requisite operations such
as the corruption editor 330 and 1ts supporting historical
record viewer 186 and corruption user interface 187.

FIG. 4 depicts an exemplary graphical interface operating,
at a mobile, smartphone, or tablet computing device 1n
accordance with the embodiments. In particular, there is
depicted a smartphone or tablet computing device 401
having embodied therein a touch interface 405, such as a
mobile display. Presented or depicted to the mobile display
405 1s the historical record viewer 402 1n which the various
changed records 425 are depicted to a user via the display
and additionally presented or depicted to the mobile display
403 1s the corruption user interface 480 with a record editor
484 from which a user can select one of the changed records
425 from the historical record viewer 402 and then modity
the selected changed record at the corruption user interface
480 via the record editor 484. For instance, the user can, via
the mobile display 4035, change the values of the selected
changed record at the record editor 484, restore the record
via the undo delete button, delete the record via the undo
msert button, commit edits entered to the record editor 484,
cancel, or select from various other options appropriate for
the UI. At element 481 the user can also select the option to
preview how the proposed changes impact other records.

The LSM database 2355 stores logical information about
where data 1s stored whereas an update-in-place database
conversely stores physical information about where data 1s
stored. Therefore, embodiments further benefit from the
L.SM’s structure by permitting users to undo or compensate
for erroneous transactions or even malicious transactions
carried out by, for example, a disgruntled employee or a
hacker having gained illicit access to the user’s account or
the customer organization’s data. For example, a disgruntled
employee or hacker may go into a database and delete
records or modily data, such as salary information, eftc.
These changes are perfectly valid in a physical sense. That
1s to say, they are transacted to the database and written to
the proper location regardless of whether the database 1s an
update-in-place or LSM database. However, such changes
represent logical errors, which can be corrected as described

herein by reviewing or replaying available logs to show
what changes were made via historical record viewer 402
and corruption Ul 480 and then permaitting the user to undo
those changes through compensating transactions 334 via
the functionality of the corruption editor 330 as set forth at
FIG. 3.

Consider another example 1n which a user’s account was
accessed at 3:00 AM by a hacker with a vanety of database
transactions 1ssued against the LSM database from the user’s
account. As noted previously, such transactions are perfectly
valid from a physical sense, but may very well represent
logical corruption in the database due to the fact that the
transactions are unwanted and erroneously applied to the
database. In certain embodiments the user 1s notified of
transactions out of the ordinary, such as edits being made to
the customer organization’s data at an odd time, such as 3:00
AM, or from a strong location or IP address. These and other

US 9,684,570 Bl

13

means may bring to the user’s attention the fact that some
logical corruption may have been introduced into the data-
base.

Using the logs, the historical record viewer 402 presents
user a user with a display showing all transactions made
within a period of time. For instance, via the interfaces
presented at the mobile display 405 the user can select
changed records 425 ranging 1n time from, for example, 3:00
AM to 6:00 AM, causing the display and Ul logic to retrieve
those transactions from the log and display them to the user
for review or editing via record editor 484. The LSM
database 1tself possesses no knowledge that such properly
executed transactions represent logical corruption, however,
the user, customer organization, or tenant having ownership
or responsibility for such data would have intimate knowl-
edge of the data. Such persons can retrieve the data and
review 1t for correctness. If such data i1s incorrect, then
according to described embodiments, the user can select via
the Ul which records to revert, for instance, by checking
check boxes, or highlighting records, clicking the appropri-
ate buttons, etc. The Ul will then institute the proper
compensating transactions on behalf of the user (e.g., read-
ing the records at a time prior to the 3:00 AM hack and
re-updating them or re-inserting them with the proper data
record, etc) to revert the LSM database records to their prior
state or to an updated state at the discretion of the user.

According to another embodiment, the user can addition-
ally be presented with a view at the Ul of all records that will
be aflected by the proposed changes by checking the selec-
tion at clement 481. For instance, a user after selecting
which records to revert or modily can be presented with a
verification or confirmation screen at the Ul asking them to
coniirm the proposed changes and showing the user those
records that will be modified or directly affected by the
compensating transactions. For instance, 1t may be that
subsequent database transactions were processed subsequent
to a malicious hack, and the proposed changes, while
reverting the aflects of the erroneous transactions, will also
revert properly processed transactions subsequent to the
hack, and may therefore require additional review or modi-
fication of the proposed compensating transactions by the
user, all of which 1s enabled at the Ul interface presented to
the user 1n accordance with such embodiments.

Physical corruption issues or logical corruption may also
occur at the database engine level. For instance, a record
may be created or deleted without a corresponding change to
the index. Theretfore, 1n accordance with another embodi-
ment, a count or checksum 1s maintained for rows inserted
into the tables of the database and a corresponding count or
checksum 1s maintained for rows of the tables in the data-
base represented by an index. A check may then verily
whether the two are 1n sync, and 1f not, then a user may be
notified to review transactions corresponding in time when
the counts or checksums became out of sync.

CRC checks may additionally be maintained on blocks to
check for corruption and then 1 corruption 1s detected
through a scan, users aflected by the corrupted block can be
notified via an error message or other trigger without requir-
ing the entire database be taken ofiline and impacting those
users having no data associated the corrupted block. In such
a way, only a limited number of rows, records, or transac-
tions that are actually impacted by the corruption need to be
isolated thus leaving the system available for the over-
whelming majority of other records and users.

FIG. 5A depicts a tablet computing device 501 and a
hand-held smartphone 502 each having a circuitry integrated
therein as described 1n accordance with the embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

14

As depicted, each of the tablet computing device 501 and the
hand-held smartphone 502 include a touch interface 503
(e.g., a touchscreen or touch sensitive display) and an
integrated processor 504 1n accordance with disclosed
embodiments.

For example, 1n one embodiment, a system embodies a
tablet computing device 501 or a hand-held smartphone 502,
in which a display unit of the system includes a touchscreen
interface 503 for the tablet or the smartphone and further 1n
which memory and an integrated circuit operating as an
integrated processor are incorporated into the tablet or
smartphone, 1n which the integrated processor implements
one or more of the embodiments described herein. In one
embodiment, the integrated circuit described above or the
depicted integrated processor of the tablet or smartphone 1s
an 1ntegrated silicon processor functioming as a central
processing unit (CPU) and/or a Graphics Processing Unit
(GPU) for a tablet computing device or a smartphone.

FIG. 5B 1s a block diagram 300 of an embodiment of

tablet computing device, a smart phone, or other mobile
device 1n which touchscreen interface connectors are used.
Processor 510 performs the primary processing operations.
Audio subsystem 520 represents hardware (e.g., audio hard-
ware and audio circuits) and software (e.g., drivers, codecs)
components associated with providing audio functions to the
computing device. In one embodiment, a user interacts with
the tablet computing device or smart phone by providing
audio commands that are received and processed by pro-
cessor 310.

Display subsystem 330 represents hardware (e.g., display
devices) and software (e.g., drivers) components that pro-
vide a visual and/or tactile display for a user to interact with
the tablet computing device or smart phone. Display sub-
system 530 includes display interface 332, which includes
the particular screen or hardware device used to provide a
display to a user. In one embodiment, display subsystem 530
includes a touchscreen device that provides both output and
input to a user.

I/0 controller 340 represents hardware devices and soft-
ware components related to interaction with a user. I/O
controller 540 can operate to manage hardware that 1s part
of audio subsystem 520 and/or display subsystem 3530.
Additionally, I/O controller 540 illustrates a connection
point for additional devices that connect to the tablet com-
puting device or smart phone through which a user might
interact. In one embodiment, I/O controller 540 manages
devices such as accelerometers, cameras, light sensors or
other environmental sensors, or other hardware that can be
included in the tablet computing device or smart phone. The
input can be part of direct user interaction, as well as
providing environmental mmput to the tablet computing
device or smart phone.

In one embodiment, the tablet computing device or smart
phone includes power management 550 that manages bat-
tery power usage, charging of the battery, and features
related to power saving operation. Memory subsystem 560
includes memory devices for storing information 1n the
tablet computing device or smart phone. Connectivity 570
includes hardware devices (e.g., wireless and/or wired con-
nectors and communication hardware) and software com-
ponents (e.g., drivers, protocol stacks) to the tablet comput-
ing device or smart phone to communicate with external
devices. Cellular connectivity 572 may include, {for
example, wireless carriers such as GSM (global system for
mobile communications), CDMA (code division multiple
access), TDM (time division multiplexing), or other cellular
service standards). Wireless connectivity 574 may include,

US 9,684,570 Bl

15

for example, activity that 1s not cellular, such as personal
arca networks (e.g., Bluetooth), local area networks (e.g.,
Wik1), and/or wide area networks (e.g., WiMax), or other
wireless communication.

Peripheral connections 580 include hardware interfaces
and connectors, as well as software components (e.g., driv-
ers, protocol stacks) to make peripheral connections as a
peripheral device (“to” 382) to other computing devices, as
well as have peripheral devices (“from” 584) connected to
the tablet computing device or smart phone, including, for
example, a “docking” connector to connect with other
computing devices. Peripheral connections 580 include
common or standards-based connectors, such as a Universal
Serital Bus (USB) connector, DisplayPort 1including
MimiDisplayPort (MDP), High Definition Multimedia Inter-
tace (HDMI), Firewire, efc.

FIG. 6 1s a flow diagram 1illustrating a method 600 for
fixing logical or physical corruption in databases using
immutable LSM trees 1n accordance with disclosed embodi-
ments. Method 600 may be performed by processing logic
that may include hardware (e.g., circuitry, dedicated logic,
programmable logic, microcode, etc.), soltware (e.g.,
instructions run on a processing device to perform various
operations such as storing records, processing transactions,
recording, logging, 1dentifying errors and corruption, cor-
recting errors and corruption, displaying, retrieving, com-
municating, updating, applying, committing, querying,
executing, generating, exposing, transmitting, sending,
returning, etc., in pursuance of the systems, apparatuses, and
methods, as described herein. For example, the computing
architecture (e.g., within production environment 111) of
host organization 110 as depicted at FIG. 1, the hand-held
smartphone 302 or mobile tablet computing device 3501
depicted at FIG. 5A, the machine 800 at FIG. 8, or the
system 900 at FIG. 9, may implement the described meth-
odologies. Some of the blocks and/or operations listed
below are optional 1n accordance with certain embodiments.
The numbering of the blocks presented i1s for the sake of
clarity and 1s not intended to prescribe an order of operations
in which the various blocks must occur.

At block 605, processing logic stores records in a LSM
database at a host organization.

At block 610, processing logic processes transactions to
the LSM database by writing the transactions into 1mmu-
table extents for subsequent merge into the LSM database.

At block 615, processing logic records a history of the
transactions in a log.

At block 620, processing logic identifies corruption 1n at
least one of the records of the LSM database represented
within the immutable extents prior to merge of the immu-
table extents to the LSM database.

At block 625, processing logic corrects the identified
corruption to the at least one of the records of the LSM
database based at least 1n part on the recorded history of the
transactions 1n the log during live operation of the LSM
database.

According to another embodiment of method 600, cor-
recting the i1dentified corruption to the at least one of the
records of the LSM database includes at least one of:
restoring a modified record to a prior state; deleting an
erroneously 1inserted record; restoring an erroneously
deleted record; or changing one or more field values of an
erroneously modified record.

According to another embodiment of method 600, cor-
recting the identified corruption to the at least one of the
records of the LSM database includes: reading a stored
record from the LSM database having a corresponding

10

15

20

25

30

35

40

45

50

55

60

65

16

transaction pending merge processing within the immutable
extents; reading compensating transaction data from the log;
generating a compensating transaction based on the com-
pensating transaction data from the log and the stored record
from the LSM database; and sending the compensating
transaction to the LSM database.

According to another embodiment of method 600, send-
ing the compensating transaction to the LSM database
includes: 1ssuing the compensating transaction to the LSM
database as a new transaction, in which the new transaction
1s enqueued within the immutable extent of the LSM data-
base for subsequent merge processing; and i which the
subsequent merge processing counteracts the corresponding,
transaction pending merge processing within the immutable
extents for the stored record read from the LSM database.

According to another embodiment of method 600, send-
ing the compensating transaction to the LSM database
includes: generating a replacement extent by replaying a
plurality of transactions from the log for one of the 1mmu-
table extents of the LSM database awaiting subsequent
merge and updating the identified corruption 1n the replace-
ment extent using the compensating transaction; and replac-
ing the one immutable extent for which the plurality of
transactions were replayed with the replacement extent.

According to another embodiment of method 600, 1den-
tifying corruption 1n at least one of the records of the LSM
database includes: triggering error messages to users for any
queries to the LSM database having the identified corruption
within the query claim scope; and maintaining availability
and accessibility to the LSM database to database queries.

According to another embodiment, method 600 further
includes: presenting a historical records view to a user
interface based on the log, the historical records view
displaying one or more records updated during a time range
configurable at the user interface.

According to another embodiment, method 600 further
includes: receiving user mput selecting one or more of the
records updated during the time range; and receiving user
input specifying corruption edits to the one or more records.

According to another embodiment of method 600, the
user mput specilying corruption edits to the one or more
records includes user input specitying one or more of: a
selected record erroneously 1nserted into the LSM database
to be deleted from the LSM database via a compensating
delete transaction; a selected record erroneously deleted
from the LSM database to be restored to the LSM database
via a compensating insert transaction; a selected record
erroneously modified within the LSM database to be
reverted to a prior state via a compensating update transac-
tion; and a selected record erroneously modified within the
LLSM database to be updated to a new state via a compen-
sating update transaction.

According to another embodiment, method 600 further
includes: presenting a preview of other records impacted by
a proposed compensating transaction to the user interface
prior to proceeding with the proposed compensating trans-
action.

According to another embodiment, method 600 further
includes: receiving a selection from the user interface speci-
tying one of the displayed records updated during the time
range; presenting a record editor to the user interface having,
the record corresponding to the selection populated therein;
receiving user mput to the fields of the record corresponding
to the selection from the record editor at the user interface;
and generating a compensating transaction for the record
corresponding to the selection using the user mput to the

fields of the record.

US 9,684,570 Bl

17

According to another embodiment of method 600, the
host organization implements the method via computing
architecture of the host organization including at least the
processor and the memory; in which a user interface oper-
ates at a user client device remote from the host organization
and communicatively interfaces with the host organization
via a public Internet; and 1n which the host orgamization
operates as a cloud based service provider to the user client
device.

According to another embodiment of method 600, the
host organization provides a multi-tenant database system
via the LSM database and the computing architecture of the
host organization, the multi-tenant database system having
clements of hardware and software that are shared by a
plurality of separate and distinct customer organizations,
cach of the separate and distinct customer organizations
being remotely located from the host orgamzation.

According to another embodiment of method 600, 1den-
tifying corruption in at least one of the records of the LSM
database 1ncludes one of: 1dentifying corruption responsive
to a physical corruption error triggered by the LSM data-
base; or identifying corruption responsive user input at a
corruption user interface, the user input indicating a selected
record 1s to be corrected via a compensating transaction.

According to a particular embodiment, there 1s non-
transitory computer readable storage media having instruc-
tions stored thereon that, when executed by a processor 1n a
host organization, the instructions cause the host organiza-
tion to perform operations including: storing records in a
LLSM database at the host organization; processing transac-
tions to the LSM database by writing the transactions into
immutable extents for subsequent merge into the LSM
database; recording a history of the transactions 1n a log;
identifying corruption 1n at least one of the records of the
LLSM database represented within the immutable extents
prior to merge of the immutable extents to the LSM data-
base; and correcting the identified corruption to the at least
one of the records of the LSM database based at least 1n part
on the recorded history of the transactions 1n the log during
live operation of the LSM database.

FIG. 7A illustrates a block diagram of an environment 798
in which an on-demand database service may operate in
accordance with the described embodiments. Environment
798 may 1include user systems 712, network 714, system
716, processor system 717, application platform 718, net-
work 1interface 720, tenant data storage 722, system data
storage 724, program code 726, and process space 728. In
other embodiments, environment 798 may not have all of the
components listed and/or may have other elements instead
of, or 1n addition to, those listed above.

Environment 798 1s an environment in which an on-
demand database service exists. User system 712 may be
any machine or system that 1s used by a user to access a
database user system. For example, any of user systems 712
can be a handheld computing device, a mobile phone, a
laptop computer, a work station, and/or a network of com-
puting devices. As illustrated 1n FIG. 7A (and 1n more detail
in FIG. 7B) user systems 712 might interact via a network
714 with an on-demand database service, which 1s system
716.

An on-demand database service, such as system 716, 1s a
database system that 1s made available to outside users that
do not need to necessarily be concerned with building and/or
maintaining the database system, but imstead may be avail-
able for their use when the users need the database system
(e.g., on the demand of the users). Some on-demand data-
base services may store information from one or more

10

15

20

25

30

35

40

45

50

55

60

65

18

tenants stored into tables of a common database 1mage to
form a multi-tenant database system (MTS). Accordingly,
“on-demand database service 716” and “system 716" 1s used
interchangeably herein. A database image may include one
or more database objects. A relational database management
system (RDMS) or the equivalent may execute storage and
retrieval of information against the database object(s).
Application platform 718 may be a framework that allows
the applications of system 716 to run, such as the hardware
and/or software, e.g., the operating system. In an embodi-
ment, on-demand database service 716 may include an
application platform 718 that enables creation, managing
and executing one or more applications developed by the
provider of the on-demand database service, users accessing,
the on-demand database service via user systems 712, or
third party application developers accessing the on-demand
database service via user systems 712.

The users of user systems 712 may differ 1n their respec-
tive capacities, and the capacity of a particular user system
712 might be entirely determined by permissions (permis-
sion levels) for the current user. For example, where a
salesperson 1s using a particular user system 712 to interact
with system 716, that user system has the capacities allotted
to that salesperson. However, while an administrator 1s using
that user system to iteract with system 716, that user system
has the capacities allotted to that administrator. In systems
with a hierarchical role model, users at one permission level
may have access to applications, data, and database infor-
mation accessible by a lower permission level user, but may
not have access to certain applications, database informa-
tion, and data accessible by a user at a higher permission
level. Thus, different users will have different capabilities
with regard to accessing and modifying application and
database information, depending on a user’s security or
permission level.

Network 714 1s any network or combination of networks
of devices that communicate with one another. For example,
network 714 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-

work, token ring network, hub network, or other appropriate
configuration. As the most common type of computer net-
work 1n current use 1s a TCP/IP (Transier Control Protocol
and Internet Protocol) network, such as the global internet-
work of networks often referred to as the “Internet” with a
capital “I,” that network will be used in many of the
examples herein. However, 1t 1s understood that the net-
works that the claimed embodiments may utilize are not so
limited, although TCP/IP 1s a frequently implemented pro-
tocol.

User systems 712 might communicate with system 716
using TCP/IP and, at a higher network level, use other
common Internet protocols to communicate, such as HT'TP,
FTP, AFS, WAP, etc. In an example where HTTP 1s used,
user system 712 might include an HTTP client commonly
referred to as a “browser’” for sending and receiving HT'TP
messages to and from an HT'TP server at system 716. Such
an HT'TP server might be implemented as the sole network
interface between system 716 and network 714, but other
techniques might be used as well or instead. In some
implementations, the interface between system 716 and
network 714 includes load sharing functionality, such as
round-robin HTTP request distributors to balance loads and
distribute incoming HTTP requests evenly over a plurality of
servers. At least as for the users that are accessing that

.

US 9,684,570 Bl

19

server, each of the plurality of servers has access to the
MTS’ data; however, other alternative configurations may
be used instead.

In one embodiment, system 716, shown in FIG. 7A,
implements a web-based customer relationship management
(CRM) system. For example, in one embodiment, system
716 includes application servers configured to implement
and execute CRM software applications as well as provide
related data, code, forms, webpages and other information to
and from user systems 712 and to store to, and retrieve from,
a database system related data, objects, and Webpage con-
tent. With a multi-tenant system, data for multiple tenants
may be stored in the same physical database object, how-
ever, tenant data typically 1s arranged so that data of one
tenant 1s kept logically separate from that of other tenants so
that one tenant does not have access to another tenant’s data,
unless such data 1s expressly shared. In certain embodi-
ments, system 716 implements applications other than, or in
addition to, a CRM application. For example, system 716
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
718, which manages creation, storage of the applications
into one or more database objects and executing of the
applications in a virtual machine in the process space of the
system 716.

One arrangement for elements of system 716 1s shown 1n
FIG. 7A, including a network interface 720, application
platform 718, tenant data storage 722 for tenant data 723,
system data storage 724 for system data 725 accessible to
system 716 and possibly multiple tenants, program code 726
for implementing various functions of system 716, and a
process space 728 for executing MTS system processes and
tenant-specific processes, such as running applications as
part of an application hosting service. Additional processes
that may execute on system 716 include database indexing,
Processes.

Several elements 1n the system shown 1n FIG. 7A include
conventional, well-known elements that are explained only
briefly here. For example, each user system 712 may include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled
device or any other computing device capable of interfacing
directly or indirectly to the Internet or other network con-
nection. User system 712 typically runs an HTTP client, e.g.,
a browsing program, such as Microsoit’s Internet Explorer
browser, a Mozilla or Firefox browser, an Opera, or a
WAP-enabled browser in the case of a smartphone, tablet,
PDA or other wireless device, or the like, allowing a user
(e.g., subscriber of the multi-tenant database system) of user
system 712 to access, process and view information, pages
and applications available to it from system 716 over
network 714. Each user system 712 also typically includes
one or more user interface devices, such as a keyboard, a
mouse, trackball, touch pad, touch screen, pen or the like, for
interacting with a graphical user intertace (GUI) provided by
the browser on a display (e.g., a monitor screen, LCD
display, etc.) in conjunction with pages, forms, applications
and other mformation provided by system 716 or other
systems or servers. For example, the user interface device
can be used to access data and applications hosted by system
716, and to perform searches on stored data, and otherwise
allow a user to iteract with various GUI pages that may be
presented to a user. As discussed above, embodiments are
suitable for use with the Internet, which refers to a specific
global internetwork of networks. However, 1t 1s understood

10

15

20

25

30

35

40

45

50

55

60

65

20

that other networks can be used instead of the Internet, such
as an intranet, an extranet, a virtual private network (VPN),
a non-TCP/IP based network, any LAN or WAN or the like.

According to one embodiment, each user system 712 and
all of 1ts components are operator configurable using appli-
cations, such as a browser, including computer code run
using a central processing unit such as an Intel Pentium®
processor or the like. Similarly, system 716 (and additional
instances of an MTS, where more than one 1s present) and
all of their components might be operator configurable using
application(s) including computer code to run using a central
processing unit such as processor system 717, which may
include an Intel Pentium® processor or the like, and/or
multiple processor units.

According to one embodiment, each system 716 1s con-
figured to provide webpages, forms, applications, data and
media content to user (client) systems 712 to support the
access by user systems 712 as tenants of system 716. As
such, system 716 provides security mechanisms to keep
cach tenant’s data separate unless the data 1s shared. I more
than one MTS 1s used, they may be located in close
proximity to one another (e.g., 1n a server farm located 1n a
single building or campus), or they may be distributed at
locations remote from one another (e.g., one or more servers
located 1n city A and one or more servers located 1n city B).
As used herein, each MTS may include one or more logi-
cally and/or physically connected servers distributed locally
Or across one or more geographic locations. Additionally, the
term “‘server’ 1s meant to include a computer system,
including processing hardware and process space(s), and an
associated storage system and database application (e.g.,
OODBMS or RDBMS) as 1s well known 1n the art. It 1s
understood that “server system” and “server” are often used
interchangeably heremn. Similarly, the database object
described herein can be implemented as single databases, a
distributed database, a collection of distributed databases, a
database with redundant online or offline backups or other
redundancies, etc., and might include a distributed database
or storage network and associated processing intelligence.

FIG. 7B illustrates another block diagram of an embodi-
ment of elements of FIG. 7A and various possible intercon-
nections between such elements in accordance with the
described embodiments. FIG. 7B also illustrates environ-
ment 799. However, 1n FIG. 7B, the elements of system 716
and various interconnections in an embodiment are 1llus-
trated 1n further detail. More particularly, FIG. 7B shows
that user system 712 may include a processor system 712A,
memory system 712B, mput system 712C, and output sys-
tem 712D. FIG. 7B shows network 714 and system 716.
FIG. 7B also shows that system 716 may include tenant data
storage 722, having therein tenant data 723, which includes,
for example, tenant storage space 727, tenant data 729, and
application metadata 731. System data storage 724 1is
depicted as having therein system data 725. Further depicted
within the expanded detail of application servers 700, _,; are
User Interface (UI) 730, Application Program Interface
(API) 732, application platform 718 includes PL/SOQL 734,
save routines 736, application setup mechanism 738, process
space 728 includes system process space 702, tenant 1-N
process spaces 704, and tenant management process space
710. In other embodiments, environment 799 may not have
the same elements as those listed above and/or may have
other elements instead of, or in addition to, those listed
above.

User system 712, network 714, system 716, tenant data
storage 722, and system data storage 724 were discussed

above 1 FIG. 7TA. As shown by FIG. 7B, system 716 may

US 9,684,570 Bl

21

include a network interface 720 (of FIG. 7A) implemented
as a set of HTTP application servers 700, an application
plattorm 718, tenant data storage 722, and system data
storage 724. Also shown 1s system process space 702,
including individual tenant process spaces 704 and a tenant
management process space 710. Each application server 700
may be configured to tenant data storage 722 and the tenant
data 723 therein, and system data storage 724 and the system
data 725 therein to serve requests of user systems 712. The
tenant data 723 might be divided into individual tenant
storage areas (e.g., tenant storage space 727), which can be
either a physical arrangement and/or a logical arrangement
of data. Within each tenant storage space 727, tenant data
729, and application metadata 731 might be similarly allo-
cated for each user. For example, a copy of a user’s most
recently used (MRU) 1tems might be stored to tenant data
729. Similarly, a copy of MRU 1tems for an entire organi-
zation that 1s a tenant might be stored to tenant storage space
727. A Ul 730 provides a user interface and an API 732
provides an application programmer interface into system
716 resident processes to users and/or developers at user
systems 712. The tenant data and the system data may be
stored 1n various databases, such as one or more Oracle™
databases.

Application platform 718 includes an application setup
mechanism 738 that supports application developers’ cre-
ation and management of applications, which may be saved
as metadata 1nto tenant data storage 722 by save routines 736
for execution by subscribers as one or more tenant process
spaces 704 managed by tenant management process space
710 for example. Invocations to such applications may be
coded using PL/SOQL 734 that provides a programming
language style interface extension to API 732. Invocations to
applications may be detected by one or more system pro-
cesses, which manages retrieving application metadata 731
for the subscriber making the imvocation and executing the
metadata as an application 1n a virtual machine.

Each application server 700 may be communicably
coupled to database systems, e.g., having access to system
data 725 and tenant data 723, via a diflerent network
connection. For example, one application server 700, might
be coupled via the network 714 (e.g., the Internet), another
application server 700,., might be coupled via a direct
network link, and another application server 700, might be
coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are typical
protocols for communicating between application servers
700 and the database system. However, 1t will be apparent to
one skilled 1n the art that other transport protocols may be
used to optimize the system depending on the network
interconnect used.

In certain embodiments, each application server 700 1s
configured to handle requests for any user associated with
any organization that 1s a tenant. Because 1t 1s desirable to be
able to add and remove application servers from the server
pool at any time for any reason, there 1s preferably no server
allinity for a user and/or organization to a specific applica-
tion server 700. In one embodiment, therefore, an interface
system 1mplementing a load balancing function (e.g., an F3
Big-IP load balancer) 1s communicably coupled between the
application servers 700 and the user systems 712 to distrib-
ute requests to the application servers 700. In one embodi-
ment, the load balancer uses a least connections algorithm to
route user requests to the application servers 700. Other
examples of load balancing algorithms, such as round robin
and observed response time, also can be used. For example,
in certain embodiments, three consecutive requests from the

10

15

20

25

30

35

40

45

50

55

60

65

22

same user may hit three different application servers 700,
and three requests from different users may hit the same
application server 700. In this manner, system 716 1s multi-
tenant, 1n which system 716 handles storage of, and access
to, different objects, data and applications across disparate
users and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses
system 716 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all appli-
cable to that user’s personal sales process (e.g., in tenant
data storage 722). In an example of a MTS arrangement,
since all of the data and the applications to access, view,
modily, report, transmit, calculate, etc., can be maintained
and accessed by a user system having nothing more than
network access, the user can manage his or her sales efforts
and cycles from any of many different user systems. For
example, 11 a salesperson 1s visiting a customer and the
customer has Internet access 1n their lobby, the salesperson
can obtain critical updates as to that customer while waiting
for the customer to arrive in the lobby.

While each user’s data might be separate from other
users’ data regardless of the employers of each user, some
data might be organization-wide data shared or accessible by
a plurality of users or all of the users for a given organization
that 1s a tenant. Thus, there might be some data structures
managed by system 716 that are allocated at the tenant level
while other data structures might be managed at the user
level. Because an MTS might support multiple tenants
including possible competitors, the MTS may have security
protocols that keep data, applications, and application use
separate. Also, because many tenants may opt for access to
an MTS rather than maintain their own system, redundancy,
up-time, and backup are additional functions that may be
implemented 1n the MTS. In addition to user-specific data
and tenant specific data, system 716 might also maintain
system level data usable by multiple tenants or other data.
Such system level data might include industry reports, news,
postings, and the like that are sharable among tenants.

In certain embodiments, user systems 712 (which may be
client systems) communicate with application servers 700 to
request and update system-level and tenant-level data from
system 716 that may require sending one or more queries to
tenant data storage 722 and/or system data storage 724.
System 716 (e.g., an application server 700 in system 716)
automatically generates one or more SQL statements (e.g.,
one or more SQL queries) that are designed to access the
desired information. System data storage 724 may generate
query plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” 1s one representation of
a data object, and may be used herein to simplity the
conceptual description of objects and custom objects as
described herein. It 1s understood that “table” and “object™
may be used interchangeably herein. Each table generally
contains one or more data categories logically arranged as
columns or fields 1n a viewable schema. Each row or record
of a table contains an instance of data for each category
defined by the fields. For example, a CRM database may
include a table that describes a customer with fields for basic
contact mnformation such as name, address, phone number,
fax number, etc. Another table might describe a purchase
order, including fields for information such as customer,
product, sale price, date, etc. In some multi-tenant database
systems, standard entity tables might be provided for use by

US 9,684,570 Bl

23

all tenants. For CRM database applications, such standard
entities might include tables for Account, Contact, Lead, and
Opportunity data, each containing pre-defined fields. It 1s
understood that the word “entity” may also be used inter-
changeably herein with “object” and “table.”

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for
example by creating custom fields for standard objects,
including custom index fields. In certain embodiments, for
example, all custom entity data rows are stored in a single
multi-tenant physical table, which may contain multiple
logical tables per organization. It 1s transparent to customers
that theirr multiple “tables” are 1n fact stored in one large
table or that their data may be stored in the same table as the
data of other customers.

FIG. 8 illustrates a diagrammatic representation of a
machine 800 1n the exemplary form of a computer system,
in accordance with one embodiment, within which a set of
instructions, for causing the machine/computer system 800
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a Local Area Network (LAN), an intranet, an
extranet, or the public Internet. The machine may operate 1n
the capacity of a server or a client machine 1n a client-server
network environment, as a peer machine i a peer-to-peer
(or distributed) network environment, as a server or series of
servers within an on-demand service environment. Certain
embodiments of the machine may be in the form of a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a
web appliance, a server, a network router, switch or bridge,
computing system, or any machine capable of executing a
set of instructions (sequential or otherwise) that specily
actions to be taken by that machine. Further, while only a
single machine 1s 1llustrated, the term “machine” shall also
be taken to include any collection of machines (e.g., com-
puters) that individually or jointly execute a set (or multiple
sets) ol instructions to perform any one or more of the
methodologies discussed herein.

The exemplary computer system 800 includes a processor
802, a main memory 804 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
such as synchronous DRAM (SDRAM) or Rambus DRAM
(RDRAM), etc., static memory such as flash memory, static
random access memory (SRAM), volatile but high-data rate
RAM, etc.), and a secondary memory 818 (e.g., a persistent
storage device including hard disk drives and a persistent
database and/or a multi-tenant database implementation),
which communicate with each other via a bus 830. Main
memory 804 includes a historical record viewer engine 824
having display logic and functionality to present the histori-
cal state of records and associated transactions for such
records to a user imterface. The corruption Ul engine 823
also of main memory 804 presents a user interface through
which a user can modily selected records to correct or
otherwise rectify corruption i the LSM database. The
corruption editor 825 generates compensating transactions
and 1f necessary replacement or corrected extents to the
LLSM database on behalf of a user based on the user’s
selections and modifications at a Ul. Main memory 804 and
its sub-eclements are operable in conjunction with processing
logic 826 and processor 802 to perform the methodologies
discussed herein. The computer system 800 may addition-
ally or alternatively embody the server side elements as
described above.

10

15

20

25

30

35

40

45

50

55

60

65

24

Processor 802 represents one or more general-purpose
processing devices such as a microprocessor, central pro-
cessing unit, or the like. More particularly, the processor 802
may be a complex instruction set computing (CISC) micro-
processor, reduced 1nstruction set computing (RISC) micro-
processor, very long mstruction word (VLIW) microproces-
sor, processor implementing other instruction sets, or
processors implementing a combination of instruction sets.
Processor 802 may also be one or more special-purpose
processing devices such as an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), network processor, or the
like. Processor 802 1s configured to execute the processing
logic 826 for performing the operations and functionality
which 1s discussed herein.

The computer system 800 may further include a network
interface card 808. The computer system 800 also may
include a user interface 810 (such as a video display unit, a
liquad crystal display (LCD), or a cathode ray tube (CRT)),
an alphanumeric mput device 812 (e.g., a keyboard), a
cursor control device 814 (e.g., a mouse), and a signal
generation device 816 (e.g., an integrated speaker). The
computer system 800 may further include peripheral device
836 (e.g., wireless or wired communication devices,
memory devices, storage devices, audio processing devices,
video processing devices, etc.).

The secondary memory 818 may include a non-transitory
machine-readable storage medium or a non-transitory com-
puter readable storage medium or a non-transitory machine-
accessible storage medium 831 on which 1s stored one or
more sets of istructions (e.g., software 822) embodying any
one or more of the methodologies or functions described
herein. The software 822 may also reside, completely or at
least partially, within the main memory 804 and/or within
the processor 802 during execution thereof by the computer
system 800, the main memory 804 and the processor 802
also constituting machine-readable storage media. The sofit-
ware 822 may further be transmitted or received over a
network 820 via the network intertace card 808.

FIG. 9 shows a diagrammatic representation of a system
900 1n which embodiments may operate, be installed, inte-
grated, or configured.

In accordance with one embodiment, there 1s a system 900
having at least a processor 990 and a memory 995 therein to
execute implementing logic and/or mstructions 996. Accord-
ing to such an embodiment, the system 900 further includes
an LSM database 950 to store records 998; a query interface
935 to process transactions 997 to the LSM database 950 by
writing the transactions into immutable extents 951 for
subsequent merge nto the LSM database 950; a log 999 to
record a history of the transactions 997; a corruption locator
930 to 1dentity corruption 1n at least one of the records 998
of the LSM database 950 represented within the immutable
extents 951 prior to merge of the immutable extents 951 to
the LSM database 950; and a corruption editor 931 to correct
the 1dentified corruption to the at least one of the records 998
of the LSM database 950 based at least in part on the
recorded history of the transactions 1n the log 999 during live
operation of the LSM database 950.

According to another embodiment, the system 900 further
includes a historical record viewer engine 920 to present a
historical records view to a user interface based on the log
999, the historical records view to display one or more
records updated during a time range configurable at the user
interface.

According to another embodiment, the system 900 further
includes a corruption user interface engine 925 to receive

US 9,684,570 Bl

25

user mput selecting one or more of the records updated
during the time range; and in which the corruption user
interface engine 925 is to further receive user mput speci-
fying corruption edits to the one or more records.

26

on the recorded history of the transactions in the log
during live operation of the LSM database.

2. The method of claim 1, wherein correcting the 1denti-

fied corruption to the at least one of the records of the LSM

According to another embodiment, the system 900 further 5 database comprises at least one of:

includes a web-server 925 to implement the historical record
view engine and to receive the user mput at the system from
a client device operating at one of a plurality of customer
organizations remote from the system; in which the plurality
of customer organizations communicably interface with the
system 900 via a public Internet; and 1n which each customer
organization 1s an entity selected from the group consisting
of: a separate and distinct remote organization, an organi-
zational group within the host organization, a business
partner of the host organization, or a customer organization
that subscribes to cloud computing services provided by the
host organization.

According to another embodiment of the system 900, a
user interface operates at a user client device remote from
the system and communicatively interfaces with the system
via a public Internet; 1n which the system operates at a host
organization as a cloud based service provider to the user
client device; and 1n which the cloud based service provider
hosts the customer data within a multi-tenant database
system at a host organization on behalf of the user.

Bus 915 interfaces the various components of the system
900 amongst each other, with any other peripheral(s) of the
system 900, and with external components such as external
network elements, other machines, client devices, etc.,
including communicating with such external devices via a
network interface over a LAN, WAN, or the public Internet.

According to another embodiment, the system 900 1s
embodied within one of a tablet computing device or a
hand-held smartphone such as those depicted at FIGS. 5A
and 3B.

While the subject matter disclosed herein has been
described by way of example and 1n terms of the specific
embodiments, 1t 1s to be understood that the claimed
embodiments are not limited to the explicitly enumerated
embodiments disclosed. To the contrary, the disclosure is
intended to cover various modifications and similar arrange-
ments as are apparent to those skilled in the art. Therefore,
the scope of the appended claims are to be accorded the
broadest interpretation so as to encompass all such modifi-
cations and similar arrangements. It 1s to be understood that
the above description 1s intended to be 1llustrative, and not
restrictive. Many other embodiments will be apparent to
those of skill 1n the art upon reading and understanding the
above description. The scope of the disclosed subject matter
1s therefore to be determined in reference to the appended
claims, along with the full scope of equivalents to which
such claims are entitled.

What 1s claimed 1s:

1. A method 1n a host organization having a processor and
a memory therein, wherein the method comprises:

storing records 1n a LSM database at the host organiza-

tion;

processing transactions to the LSM database by writing

the transactions into immutable extents for subsequent
merge 1nto the LSM database;

recording a history of the transactions 1n a log;

identifying corruption in at least one of the records of the

LSM database represented within the immutable
extents prior to merge of the immutable extents to the
[LSM database; and

correcting the i1dentified corruption to the at least one of

the records of the LSM database based at least 1n part

10

15

20

25

30

35

40

45

50

55

60

65

restoring a modified record to a prior state;
deleting an erroneously inserted record;
restoring an erroneously deleted record; and
changing one or more field values of an erroneously
modified record.
3. The method of claim 1, wherein correcting the 1denti-
fied corruption to the at least one of the records of the LSM

database comprises:
reading a stored record from the LSM database having a
corresponding transaction pending merge processing
within the immutable extents;
reading compensating transaction data from the log;
generating a compensating transaction based on the com-

pensating transaction data from the log and the stored
record from the LSM database; and

sending the compensating transaction to the LSM data-

base.
4. The method of claim 3, wherein sending the compen-
sating transaction to the LSM database comprises:
1ssuing the compensating transaction to the LSM database
as a new transaction, wherein the new transaction 1s
enqueued within the immutable extent of the LSM
database for subsequent merge processing; and

wherein the subsequent merge processing counteracts the
corresponding transaction pending merge processing
within the immutable extents for the stored record read
from the LSM database.

5. The method of claim 3, wherein sending the compen-
sating transaction to the LSM database comprises:

generating a replacement extent by replaying a plurality

of transactions from the log for one of the immutable
extents of the LSM database awaiting subsequent
merge and updating the identified corruption in the
replacement extent using the compensating transaction;
and

replacing the one immutable extent for which the plurality

of transactions were replayed with the replacement
extent.

6. The method of claim 1, wherein 1dentifying corruption
in at least one of the records of the LSM database comprises:

triggering error messages to users for any queries to the

LSM database having the identified corruption within
the query claim scope; and

maintaining availability and accessibility to the LSM

database to database queries.

7. The method of claim 1, further comprising:

presenting a historical records view to a user interface

based on the log, the historical records view displaying
one or more records updated during a time range
configurable at the user interface.

8. The method of claim 7, further comprising;:

receiving user mput selecting one or more of the records

updated during the time range; and

recerving user mput speciiying corruption edits to the one

or more records.

9. The method of claim 8, wherein the user 1nput speci-
tying corruption edits to the one or more records comprises
user mput specilying one or more of:

a selected record erroneously inserted into the LSM

database to be deleted from the LSM database via a
compensating delete transaction;

US 9,684,570 Bl

27

a selected record erroneously deleted from the LSM
database to be restored to the LSM database via a
compensating insert transaction;

a selected record erroneously modified within the LSM
database to be reverted to a prior state via a compen-
sating update transaction; and

a selected record erroneously modified within the LSM
database to be updated to a new state via a compen-
sating update transaction.

10. The method of claim 7, further comprising;:

presenting a preview of other records impacted by a
proposed compensating transaction to the user interface
prior to proceeding with the proposed compensating
transaction.

11. The method of claim 1, further comprising;:

receiving a selection from the user interface speciiying
one of the displayed records updated during the time
range;

presenting a record editor to the user interface having the
record corresponding to the selection populated
therein;

receiving user iput to the fields of the record correspond-
ing to the selection from the record editor at the user
interface; and

generating a compensating transaction for the record

corresponding to the selection using the user mput to

the fields of the record.

12. The method of claim 1:

wherein the host organization implements the method via
computing architecture of the host organization includ-
ing at least the processor and the memory;

wherein a user interface operates at a user client device

remote from the host organization and communica-
tively mterfaces with the host organization via a public
Internet; and

wherein the host organization operates as a cloud based

service provider to the user client device.

13. The method of claim 11, wherein the host organization
provides a multi-tenant database system via the LSM data-
base and the computing architecture of the host organization,
the multi-tenant database system having elements of hard-
ware and software that are shared by a plurality of separate
and distinct customer organmizations, each of the separate and
distinct customer organizations being remotely located from
the host organization.

14. The method of claim 1, wherein 1dentifying corruption
in at least one of the records of the LSM database comprises
one of:

identifying corruption responsive to a physical corruption

error triggered by the LSM database; and

identifying corruption responsive user mput at a corrup-

tion user interface, the user mput indicating a selected
record 1s to be corrected via a compensating transac-
tion.

15. Non-transitory computer readable storage media hav-
ing instructions stored thereon that, when executed by a
processor 1n a host organization, the instructions cause the
host organization to perform operations comprising:

storing records 1n a LSM database at the host organiza-

tion;

processing transactions to the LSM database by writing

the transactions into immutable extents for subsequent

merge 1nto the LSM database;
recording a history of the transactions 1n a log;

5

10

15

20

25

30

35

40

45

50

55

60

65

28

identifying corruption in at least one of the records of the
LSM database represented within the immutable
extents prior to merge of the immutable extents to the
[LSM database; and

correcting the identified corruption to the at least one of
the records of the LSM database based at least 1n part
on the recorded history of the transactions in the log
during live operation of the LSM database.

16. The non-transitory computer readable storage media
of claim 15, wherein correcting the identified corruption to
the at least one of the records of the LSM database com-
prises at least one of:

restoring a modified record to a prior state;

deleting an erroneously inserted record;

restoring an erroneously deleted record; and

changing one or more field values of an erroneously
modified record.

17. The non-transitory computer readable storage media
of claim 15, wherein correcting the identified corruption to
the at least one of the records of the LSM database com-
Prises:

reading a stored record from the LSM database having a
corresponding transaction pending merge processing
within the immutable extents;

reading compensating transaction data from the log;

generating a compensating transaction based on the com-
pensating transaction data from the log and the stored
record from the LSM database; and

sending the compensating transaction to the LSM data-
base.

18. The non-transitory computer readable storage media
of claim 15, wherein the mnstructions cause the processor to
perform further operations comprising:

presenting a historical records view to a user interface
based on the log, the historical records view displaying
one or more records updated during a time range
configurable at the user interface;

recerving user input selecting one or more of the records
updated during the time range;

receiving user mput speciiying corruption edits to the one
or more records, wherein the user input specifying
corruption edits to the one or more records comprises
user nput specilying one or more of:

a selected record erroneously inserted into the LSM
database to be deleted from the LSM database via a
compensating delete transaction;

a selected record erroncously deleted from the LSM
database to be restored to the LSM database via a
compensating isert transaction;

a selected record erroneously modified within the LSM
database to be reverted to a prior state via a compen-
sating update transaction; and

a selected record erroneously modified within the LSM
database to be updated to a new state via a compen-
sating update transaction.

19. A system comprising:

a processor and a memory to execute instructions at the
system:

an LSM database to store records:

a query interface to process transactions to the LSM
database by writing the transactions into immutable
extents for subsequent merge mnto the LSM database;

a log to record a history of the transactions;

a corruption locator to 1dentily corruption in at least one
of the records of the LSM database represented within
the immutable extents prior to merge of the immutable
extents to the LSM database; and

US 9,684,570 Bl

29

a corruption editor to correct the identified corruption to
the at least one of the records of the LSM database
based at least 1n part on the recorded history of the
transactions 1n the log during live operation of the LSM
database.

20. The system of claim 19, further comprising:

a historical record viewer engine to present a historical
records view to a user interface based on the log, the
historical records view to display one or more records
updated during a time range configurable at the user
interface.

21. The system of claim 20, further comprising:

a corruption user interface engine to receive user nput
selecting one or more of the records updated during the
time range; and

the corruption user interface engine to further receive user
iput specilying corruption edits to the one or more
records.

22. The system of claim 21, further comprising:

a web-server to implement the historical record viewer
engine and to receive the user mput at the system from
a client device operating at one of a plurality of

customer organizations remote from the system;

10

15

20

30

wherein the plurality of customer organizations commus-
nicably interface with the system via a public Internet;
and

wherein each customer organization 1s an entity selected
from the group consisting of: a separate and distinct
remote organization, an organizational group within the
host organization, a business partner of the host orga-
nization, or a customer organization that subscribes to
cloud computing services provided by the host organi-
zation.

23. The system of claim 19:

wherein a user interface operates at a user client device
remote from the system and communicatively inter-
faces with the system via a public Internet;

wherein the system operates at a host organization as a
cloud based service provider to the user client device;
and

wherein the cloud based service provider hosts the cus-
tomer data within a multi-tenant database system at a
host organization on behalf of the user.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

