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RISK PREDICTION OF TISSULE
INFARCTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a U.S. National Phase Application of
PCT International Application Number PCT/DK2013/

050301, filed on Sep. 19, 2013, designating the United
States ol America and published 1n the English language,
which 1s an International Application of and claims the
benetit of priority to Danish Patent Application No. PA 2012
70578. The disclosures of the above-referenced applications
are hereby expressly incorporated by reference in their
entireties.

FIELD OF THE INVENTION

The present invention relates to a method for predicting
tissue mfarction and more specifically relates to a method, a
system and a computer program product for generating a
risk map 1ndicating predicted voxel-by-voxel probability of
tissue 1nfarction for a set of voxels

BACKGROUND OF THE INVENTION

In acute stroke, one or more major brain arteries are
suddenly occluded, resulting 1n 1immediate risk of tissue
damage downstream from the site of occlusion. Before the
patient arrives at hospital, a volume of tissue will typically
already have sustained severe injury with little probability of
recovering, while surrounding tissue may be functionally
impaired but more likely to regain function 1f blood tlow can
be reestablished. Therapeutic strategy 1s dependent on the
volume of this tissue, which i1s likely to recover.

The relation between acute tissue state and extend of the
final infarct 1s highly complex, and therefore, e.g., Magnetic
Resonance Imaging (MRI) 1s used to gain information on a
wide range of tissue characteristics. In the acute setting, an
experienced radiologist must 1investigate a correspondingly
large body of 1mage types, in multiple regions of the brain,
and based on experience infer the likely tissue response to
treatment.

WO 01/56466 A2 describes a method of evaluating novel
stroke treatments which includes generating a risk map
indicative of the probability of tissue infarction on voxel-
by-voxel basis and selecting a probability range for evalu-
ating the therapeutic eflect of the novel treatment. In one
particular embodiment, tissue having a filty percent prob-
ability of tissue infarction 1s selected. A novel treatment that
has a reduced level of overall actual infarction as compared
to the predicted value 1s indicative of therapeutic effect.

An improved method to generate a risk map indicative of
the probability of tissue infarction on a voxel-by-voxel basis
would be advantageous, and in particular a more eflicient,
reliable, fast, reproducible and/or automated method to
generate a risk map indicative of tissue infarction on a
voxel-by-voxel basis would be advantageous.

SUMMARY OF THE

INVENTION

It 1s a further object of the present invention to provide an
alternative to the prior art.

In particular, 1t may be seen as an object of the present
invention to provide a method, a system and a computer
program product for generating a risk map indicating pre-
dicted voxel-by-voxel probability of tissue infarction for a
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set of voxels that solves the above mentioned problems of
the prior art with efliciency, reliability, time consumption,
reproducibility and/or need for manual 1nput, such as input
from an experienced radiologist and which acknowledges
and quantifies subject variability 1 probability of tissue
infarction on a voxel-by-voxel basis.

Thus, the above described object and several other objects
are mntended to be obtained 1n a first aspect of the mnvention
by providing a method for generating a risk map indicating
predicted voxel-by-voxel probability of tissue infarction for
a set of voxels, the method comprising, such as comprising
the steps of,

receiving for each voxel a first value (x), where each first

value (x) corresponds to a set of tissue marker values
being representative of a quantity, such as a measurable
quantity, which 1s representative of the corresponding
voxel, and

generating the risk map,
wherein the risk map 1s generated using a statistical model
based on data, such as data from a plurality of 1imaging
techniques, from a group of subjects, and a stochastic
variable, and wherein the statistical model receives as input
for each voxel

the first value (x), and

wherein the statistical model further receives as input

a second value (z,), being based on the stochastic variable,

such as the second value modelling non-measured
values,

and which statistical model outputs the risk map.

The 1nvention 1s particularly, but not exclusively, advan-
tageous for obtaining a method for generating a risk map
indicating predicted voxel-by-voxel probability of tissue
infarction for a set of voxels efliciently, reliably, fast, repro-
ducibly and/or automatically, since the method takes as input
tissue marker values and outputs the risk map. The method
may be seen as eflicient since 1t requires no judgements from
trained personnel, and the method may further be seen as
reliable since the lack of manual 1nput minimizes the 1ntlu-
ence of human errors. Also, the lack of judgements may
make the method reproducible. Furthermore, the mnvention
may be seen as advantageous since 1t acknowledges subject
variability 1n probability of tissue infarction on a voxel-by-
voxel basis by taking non-measured values into account,
which 1n turn may enable providing more reliable estimates
of probability of infarction.

The basic isight underlying the invention may be seen as
the 1nsight that non-observed factors do play a role for the
individual subjects, which offsets tissue probability of
infarct. While this may not be observed on the subject level,
it may be observed on the level of a population, such as
within the group of subjects upon which the statistical model
1s based, such as within the group of subjects which com-
prlses a plurality of subjects upon which the statistical model
1s based. This knowledge may then 1n turn be utilized 1n
methods according to the mvention, which takes this effect
into account by implementing one or more stochastic vari-
ables 1n the statistical model.

By an 1mage 1s understood a set of data points represen-
tative of a spatially resolved parameter, such as a set of
spatially resolved values, where each data point corresponds
to a value of a parameter 1n a position. It 1s understood that
the positions may be comprised within a plane, correspond-
ing to a two-dimensional 1mage, or they may be distributed
across more dimensions, for example three dimensions. It 1s
turther understood that each data-point may correspond to a
finite area or volume, such as having a finite area or finite
volume being assigned to each data point, although the
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position 1s described as a mathematically ideal point in
space. In the present application ‘map’ 1s used interchange-
ably with ‘image’.

By ‘risk map’ 1s understood a map with data points
representative of a spatially resolved parameter, where the
parameter 1s a predicted voxel-by-voxel probability of tissue
infarction.

By ‘infarction’ 1s understood an area of irreversibly dam-
aged tissue which has permanently lost 1ts function.

By ‘a first value’ 1s understood a set of tissue marker
values, such as a multi-dimensional vector, being represen-
tative of a quantity, such as a measurable quantity, which 1s
representative of the corresponding voxel. For example, a
first value for a voxel may be a set of tissue marker values
for Diffusion Weighted Imaging (DWI) and Perfusion
Weighted Imaging (PWI), 1.e., the DWI value for the par-
ticular voxel and the PWI value for the particular voxel. It
may be understood that the set of tissue marker values
corresponds to a plurality of tissue marker values, where
cach tissue marker value 1s representative of a quantity, such
as a measurable quantity, which 1s representative of the
corresponding voxel. For example, the first value may 1n
exemplary embodiments correspond to a vector representa-
tive of a DWI value and a PWI value, where the first value
for each voxel may thus comprise a DWI value correspond-
ing to the DWI value of the voxel (such as measured 1n the
voxel) and a PWI value corresponding to the PWI value of
the voxel (such as measured in the voxel). It 1s further
understood, that an 1image or map, such as for example a
DWI image or a PWI 1mage, may correspond to a single
tissue marker value (in the first value) which i1s spatially
resolved corresponding to the positions of a plurality of
voxels.

‘Statistical model’ 1s understood as 1s general 1n the art, as
a formalization of relationships between variables 1n the
form of mathematical equations, which describes how one
or more random variables, such as the tissue marker values
in the first value are related to one or more random variables,
such as the observed voxel-by-voxel tissue outcome (such as
“infarction” or “survival”). The statistical model 1s under-
stood to be based on data, such as data corresponding to the
tissue marker values 1n the first value, such as data from a
plurality of imaging techniques (such as DWI and PWI),
from a group of subjects, such as data including voxel-by-
voxel outcome (e.g., “infarction” or “survival) after a period
of time, such as corresponding voxel-by-voxel outcome. It
may be understood that the group of subjects comprises a
plurality of subjects, such as a plurality of patients, such as
a plurality of human patients. It may be understood that the
number of voxels associated with each subject may be larger
than 1, such as significantly larger than 1, such as at least 32,
64, 128, 256, 512, 1024, 2048, 4096, 8192 or 16384. It may
in general be understood that ‘group of subjects” may be
used interchangeably with ‘plurality of subjects’.

The second value (z,) 1s based on the stochastic variable,
such as the second value modelling non-measured values.

‘Stochastic varniable” 1s commonly known to the skilled
person, and 1s understood to denote a numerical quantity
defined 1n terms of the outcome of a random experiment.
Mathematically, 1t 1s a function defined on a probability
space taking on either integer values or real values.

It may be understood the stochastic variable may repre-
sent non-measured values in the group of subjects. The
making of the statistical model may comprise quantifying,
the stochastic properties of the stochastic variable z, which
in turn may enable providing the second value z,, which may
in turn be chosen 1n exemplary embodiments to reflect any
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one of patient average outcome, mean value of the stochastic
variable, upper bound (such as, a value which some fraction
of the sample lies below), lower bound (such as, a value
which some fraction of the sample lies below). In a specific
embodiment, a plurality of risk maps 1s generated, wherein
cach risk map 1n the plurality of rnisk maps correspond to
different second values z..

In the present context, it 15 understood that the second
value z, may model non-measured values. For an individual
subject, the non-measured value (the “individual” second
value z,) may be understood to have a fixed value. However,
for different subjects, the non-measured values may take on
different values. For a plurality of subjects, the second value
may model these non-measured values. In other words, the
individual subject 1s associated with a specific non-measured
value, but this specific value 1s not known and can for this
reason not be put into the model. However, by having
observed a plurality of subjects, 1t may be estimated what the
non-measured values could be, and this enables that these
non-measured values may be put 1nto the statistical model.

Voxel 1s commonly known 1n the art and 1s understood to
be an entity representing a given volume, such as a volume
within a biological tissue. A voxel may be assigned a value
ol a parameter, such as a perfusion parameter or a diffusion
parameter. One or more voxels may constitute an image.

By ‘voxel-by-voxel probability of tissue infarction’ 1s
understood the probability of tissue infarction for each
individual voxel.

The tissue marker values may be related to any metric. In
the present application, 1maging modalities and metric 1s
used interchangeably. A non-limiting set of metrics may
comprise: TTP, MTT, ADC, DWI, CBF, and CBYV.

Time-to-peak (1TTP) images are commonly known 1n the
art and a TTP image 1s understood to be an image where the
spatially resolved parameter corresponds to a length of a
time mterval from a start time to a time corresponding to a
maximum of a tissue concentration curve measured 1 a
grven position.

Apparent Diffusion Coeltlicient (ADC) 1mages are com-
monly known 1n the art and an ADC 1mage 1s understood to
be an 1mage where the spatially resolved parameter corre-
sponds to a measure which quantifies, represents or relates
to the mobility of molecules 1n their microenvironment, in
particular the dynamic displacements of water molecules.
The ADC 1mage intensities are in absolute scale.

Cerebral Blood Flow (CBF) 1s commonly known 1n the
art and refers to the rate of delivery of blood to tissue. In
DSC MRI, CBF 1s typically calculated for each volume
clement (voxel) by the maximum function value of the
deconvolved tissue curve.

Cerebral blood volume (CBV) 1s commonly known in the
art and refers to the volume fraction of blood 1n a tissue
region. In DSC MRI, CBYV 1s often calculated as the area
under the contrast agent concentration curve, and normal-
1zed by the area under the arterial input function.

Mean-transit-time (MU) images are commonly known 1n
the art and a M TT 1mage 1s understood to be an 1mage where
the spatially resolved parameter corresponds to the mean
cad time of a fluid, such as blood, through the capillaries of
biological tissue. The MTT value may in an exemplary
embodiment be determined by the ratio CBV/CBFE.

In an embodiment, there 1s provided a method wherein the
first value 1includes Diffusion Weighted Imaging (DWI) data
and/or Perfusion Weighted Imaging (PWI) data.

A possible advantage of using PWI and DWI data may be
that these metrics have been shown valuable in terms of
predicting infarction.
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By diffusion parameter 1s understood a measure which
quantifies, represents or relates to the mobility of molecules
in their microenvironment, such as the dynamic displace-
ments ol water molecules.

Diffusion Weighted Imaging (DWI) 1s commonly known
in the art and refers to measurement of mobility of molecules
in their microenvironment. Diffusion Weighted Imaging
(DWI) data are understood to be the values of the voxels 1n
a DWI 1mage.

By perfusion parameter 1s understood a measure which
quantifies, represents or relates to the passage of flud
through an element, such as a biological tissue, such as a
biological organ, in particular the delivery of arterial blood
to the capillaries.

Perfusion weighted imaging (PWI) 1s commonly known
in the art. Perfusion Weighted Imaging (PWI) data are
understood to be the values of the voxels 1n a PWI image.

A PWI image may be based on any of the non-limiting set
of metrics including MTT, TTP, CBE, CBV.

By ‘set of voxels’ may in embodiments be understood that
the set of voxels may be belonging to a single subject, such
as a single patient, such as a single human patient. It may 1n
embodiments be understood that the set of voxels comprises
voxels 1n a brain. It may 1 a specific embodiment be
understood that the set of voxels consists of voxels in a
brain.

In another embodiment, there 1s provided a method
wherein the method further comprises the step of

generating a plurality of risk maps, where each risk map

in the plurality of risk maps, corresponds to a particular
value of the second value.

A possible advantage of such plurality of risk maps may
be that depending on the value of the second value, the risk
map may—Iior example—be taken as representative of
upper or lower risk bounds. Thus, 1n addition to obtaining a
prediction of future values, 1t may also be possible to obtain
information regarding the variability of this prediction given
the un-measured variation in outcome, 1.e., how subject
heterogeneity may oflset the predicted value. This may be
seen as being made possible since the making of the statis-
tical model comprises quantitying the stochastic properties
of the stochastic variable z, which in turn enables providing
the second value z, which may i turn be chosen in
exemplary embodiments to reflect patient average outcome,
or mean value of the stochastic variable, an upper bound or
a lower bound.

Regarding the statistical model, 1t 1s understood, that the
coellicients corresponding to each element of x (1.e., each
tissue marker) as well as a quantification of the stochastic
properties of the stochastic variable z, may be generated
based on data, such as data from a plurality of imaging
techniques and/or 1maging modalities, such as data from a
group of subjects. For example, a method for generating the
coellicients corresponding to each element of x (1.e., each
tissue marker) as well as a quantification of the stochastic
properties of the stochastic variable z may comprise

receiving for a plurality of voxels for each voxel a first

value (x), where each first value (x) corresponds to a set
of tissue marker values being representative of a quan-
tity, such as a measurable quantity, which 1s represen-
tative of the corresponding voxel,
and which outputs coeflicients corresponding to each ele-
ment of x as well as a quantification of the stochastic
properties ol the stochastic variable z. With these quantities,
a r1isk map can be produced for a patient given when voxel
values X are given as mput.
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The method for generating the coellicients corresponding,
to each element of x (1.e., each tissue marker) as well as a
quantification of the stochastic properties of the stochastic
variable z may optionally also comprise any one of

recerving patient related information, such as clinical

findings or treatment decision,

recerving data related to follow-up studies indicative of

the extent of final infarct volume for a given subject.

It may be understood that patient related information may
be part of the information 1n the first value.

In another embodiment, there 1s provided a method
wherein the data from the group of subjects comprises an
actual tissue infarction state, such as an actual tissue infarc-
tion state for a subject being represented by the first value,
such as an actual follow-up tissue infarction state for a
subject being represented by the first value. It may be
understood that the data from the group of subjects com-
prises (such as comprises for each voxel 1 a group of one
or more voxels 1 each subject) both

a first value, such as a set of tissue marker values being

representative ol a quantity, such as a measurable
quantity, which 1s representative of the voxel or voxels
in each subject 1 the group of subjects. It may be
understood that ‘the first value’ for a voxel 1n a subject
may not be identical to ‘the first value’ (x) which
represents the voxel for which a prediction of tissue
infarction 1s desired, but it may describe numerical
values of the similar tissue marker values.
an actual follow-up tissue infarction state.
In another embodiment, there 1s provided a method fur-
ther comprising
recerving a background map based on follow-up 1images
for a secondary group of subjects, such as primarily
based on follow-up 1mages for a secondary group of
subjects, such as substantially based on follow-up
images for a secondary group of subjects, such as
substantially exclusively based on follow-up 1mages
for a secondary group of subjects, such as exclusively
based on follow-up 1mages for a secondary group of
subjects, said background map being indicative of
infarct likelihood as a function of spatial position,

and wherein the risk map 1s generated using also the
background map.

It 1s understood that the ‘secondary group of subjects’ may
be smaller than—, equal to—Ilarger than the group of
subjects (upon which the statistical model of the previous
embodiments 1s based and which 1n an alternative formula-
tion may be referred to as ‘primary group of subjects’), 1t
may be overlapping or not overlapping with the group of
subjects. In a specific embodiment, the ‘secondary group of
subjects’ 1n the present embodiment 1s numerically larger
than the group of subjects.

It may be seen as a key insight underlying the present
embodiment that when follow-up 1images are used 1n con-
junction with acute images, predictions may potentially be
obscured by artifacts 1n the acute 1mages. In other words, 1f
the data from the group of subjects (upon which the statis-
tical model 1s based) comprises outliers or noisy data
resulting 1n non-physiological values of tissue marker values
corresponding to the first value, then the deterministic
parameters 1n the model may be somewhat incorrect. Fur-
thermore, if the data from the subject (1or which the risk map
1s generated) comprises outliers or merely data resulting 1n
non-physiological values of tissue marker values corre-
sponding to the first value, then the prediction for the
corresponding voxels may be somewhat incorrect. However,
by incorporating the background map into the method as
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suggested 1n the present embodiment, the critical follow-up
information may be employed independently of the noise
which 1s inherent 1n acute modalities (1.e., acute modalities
potentially corresponding to one or more tissue marker
values 1n the first value). The present embodiment thus
cllectively strengthens overall performance, such as by
decreasing estimated risk due to noise 1n areas remote from
areas prone to tissue infarction and by increasing confidence
within the areas prone to tissue nfarction.

An advantage of this embodiment may thus be that it
cnables that the follow-up images, such as the follow-up
images alone, can be used to

(a) increase the spatial accuracy of the method for gen-

erating the risk map, and/or

(b) increase the overall performance of the method by

allowing a considerably larger amount of available data
from clinical studies to be incorporated. It 1s noted that
in general, larger amounts of

It 1s furthermore noted that potential advantages thus
include that one or more of the potential problems that

(1) the scan i1mages, such as the tissue marker values

corresponding to the first value, may exhibit consider-
able noise. Especially perfusion-based metrics, such as
PWI images, where noise 1s compounded by so-called
deconvolution techniques, which by a spatially un-
informed model typically translates mto random high-
risk predictions scattered throughout the risk map,
and/or

(2) relatively few datasets are available to be fed into the

statistical model, since only datasets where complete
scans upon admission as well as at follow-up are
acquired (such as datasets comprising data correspond-
ing to all the tissue marker values corresponding to the
first value 1n the model) can be used to establish the
statistical model, leaving out 1n practice the majority of
clinical data acquired until now where, e.g., MRI was
not performed upon admission because of timing,
logistics or availability only of techniques incapable of
providing suflicient data, such as (in certain circum-
stances) CT 1imaging.

may be partially or fully alleviated by employing the present

embodiment.

In a further embodiment, the step of providing the back-
ground map comprises

identifying voxels representative of tissue infarction, such

as permanent lesions, on each of the follow-up 1mages
for the secondary group of subjects,

providing the background map based on information

regarding spatial positions of the voxels representative
of tissue 1infarction on each of the follow-up 1images for
the secondary group of subjects.

In a further embodiment, the step of providing the back-
ground map further comprises transformations of said back-
ground map, such as transformations in order to attenuate
low risk and/or strengthen high risks.

In another further embodiment, there 1s provided a
method wherein the risk map 1s based on the background
map by having the statistical model being based on said data
(104) from a group of subjects and said stochastic variable
and the background map. For example, the background map
may be merged with the method according to any previous
embodiment by entering 1t as an additional value 1n the first
set of values along with the tissue marker values.

In another further embodiment, there 1s provided a
method wherein the risk map 1s based on the background
map by having the statistical model based on said data (104 )
from a group of subjects and the stochastic variable output
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the risk map, and wherein said risk map 1s subsequently
modified based on the background map. For example, the
risk map may be generated based on the statistical model
(which may not be based on the background map), and the
risk may subsequently be amended based on the background
map, such as the risk map thus amended being a weighted
average ol the risk map output from the statistical model and
the background map.

In another embodiment, there 1s provided a method
wherein the statistical model 1s given by

Pr(Infarctlx)=G(a,z,x),

where Pr(Infarctlx) 1s the risk of infarct for a voxel, the first
value x=(X,, X,, . . . , Xz) corresponds to each of K tissue
marker values for the voxel, o 1s a set of weights assigned
to each of K tissue marker values, z i1s the stochastic
variable, upon which the second value z, 1s based, and G 1s
a non-linear mathematical function. By estimating subject
specific tendency of tissue to infarct (where subject specific
tendency of tissue to infarct 1s modelled with the stochastic
variable, upon which the second value z, 1s based) as
described 1n this embodiment, a bias 1n model coeflicients 1s
resolved, such that shrinkage towards zero as patient het-
crogeneity icreases 1s avolded. The model parameters may
thus be seen as unbiased since the stochastic variable
accounts for variations 1n infarct likelithood across patients.
A possible advantage of this embodiment may thus be that
it enables a method which provides unbiased estimates of
the eflect of tissue markers and treatment eflicacy and
acknowledges and quantifies subject variability 1n probabil-
ity of tissue infarction on a voxel-by-voxel basis. It 1s
mentioned, that i1f the stochastic variable were not included
in the model, increasing the number of subjects used to
generate the model would be likely to also increase the
heterogeneity which 1n turn would lead to less difference in
probability to infarct for different input values. This could be
seen as unfortunate, in particular as the model would
become less usetul for predicting outcome of treatments and
thus less useful as a decision support system.

In another embodiment, there 1s provided a method
wherein the statistical model 1s given by

{ K A

Zﬂ?’j(Z)xj ,

/=1 /

Pr(Infarct | x) =G

where Pr(Infarctlx) 1s the risk of infarct for a voxel, the first
value x=(X,, X,, . . . , Xz) corresponds to each of K tissue
marker values for the voxel,

a(z)=(a.,(z), o,(2), . .., a(Z)) are weights assigned to each
of K tissue marker values, z 1s the stochastic variable upon
which the second value z, 1s based, and G 1s a mathematical
function.

The weights assigned to each of K tissue marker values
are estimated during model fitting, 1.e., generated when
creating the statistical model.

The mathematical function G may in general be any
function which takes values 1n the interval [0,1].

The stochastic variable z may in general have either a
discrete or continuous distribution.

In a further embodiment, there 1s provided a method
wherein the mathematical function G may be chosen from
the set comprising:

a logistic-like function, such as a logistic function, such as

a function mathematically described by
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G(1) =

1 + exp(—1)

a probit-like function, such as a probit function, such as a
function mathematically described by

1

NCE f exp(—h*/2)dh
T — oo

G(1) =

a function substantially similar to a complementary log-
log regression, such as a complementary log-log
regression, such as a function mathematically described
by G(t)=1-exp(—exp(t)).

By the suflix *-like’ 1s emphasized that minor deviations
from, e.g. a logistic function, may still be within the scope
of the claimed embodiment. In some specific embodiments,
the mathematical function G may be chosen, such as 1s
chosen, from the set comprising: an exact logistic function,
an exact probit function, an exact complementary log-log
regression.

In another further embodiment, there 1s provided a
method wherein the stochastic variable z 1s given by a
probability density function, such as a Gaussian density.

In another embodiment, there 1s provided a method
wherein the statistical model 1s given by

1
| +exp(—z— a1X] — ... — ¥kXK)’

Pr(Infarcr| x) =

where Pr(Infarct|x) 1s the risk of infarct for a voxel, the first
value x=(x,, X,, . . . , Xz) corresponds to each of K tissue
marker values for the voxel, a=(ao,, o.,, . . ., 0,) are weights
assigned to each of K tissue marker values, z 1s the stochastic
variable, upon which the second value z, 1s based. In this
embodiment, only the itercept varies, and the function G 1s
given by the logistic function. It may be understood that
minor deviations ifrom the equation may still be within the
scope of the claamed embodiment.

In another embodiment there i1s provided a method
wherein the stochastic variable z 1s given by

p(z)=N(0,0%),

where N(0,6°) is a Gaussian-like distribution, such as a
(Gaussian distribution with zero mean and non-zero standard
deviation a. In this embodiment, the stochastic variable z 1s
given by a probability density function which 1s a Gaussian
density with zero mean and non-zero standard deviation.

In another embodiment, there 1s provided a method
wherein the statistical model 1s given by

1

K b
1 +e:{p(—zm - . c:r_;xﬁ]
=1

M
Pr(Infarct| x) = Z Pr(z = z,,)
m=1

where Pr(Infarctlx) 1s the risk of infarct for a voxel, the first
value x=(x,, X,, . . . , Xz) corresponds to each of K tissue
marker values for the voxel, a=(ca.,, a.,, . . ., 0.x) are weights
assigned to each of K tissue marker values, and the stochas-
tic variable z 1s given by the set (z,, . . ., z,,) of M discrete,
possible values. In this embodiment, the stochastic variable
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Z may assume a discrete set of values. It may be understood
that minor deviations from the equation may still be within
the scope of the claamed embodiment.
In another embodiment, there 1s provided a method
wherein the method further comprises the step of
generating a plurality of risk maps, such as a plurality of

risk maps corresponding to a plurality of groups of
subjects, each of which 1s generated using said statis-
tical model based on data from a group of subjects,
such as a group of subjects within the plurality of
groups of subjects, each group of subjects, such as each
group of subjects within the plurality of groups of
subjects, having been treated with a particular therapy.

A possible advantage of generating such plurality of risk
maps may be that since the determined risk of infarction 1s
based on different therapies, 1t may enable selection of a
therapy which has a relatively low risk of infarction, such as
by comparison with the risk of infarction of other therapies.
It 1s turther noted, that since risk intervals may also be
obtained with the method, it may also enable selecting a
therapy which has a high certainty of a certain risk.

By ‘each of which 1s generated using said statistical
model based on data from a group of subjects’ may in
general be understood that different statistical models are
employed for each generation of a risk map (within the
‘ogenerating a plurality of risk maps’). It may further be
understood that the difference between the different statis-
tical models may be due to differences 1n the groups of
subjects from which the data for the different statistical
models originate. In other words, different groups of sub-
jects (such as different groups of subjects having each been
treated with a particular therapy), may entail different data,
which 1n turn may entail different statistical models, which
in turn may entail different risk maps (which correspond to
the ‘plurality of risk maps’).

Within the context of the present application, ‘therapy’ 1s
used interchangeably with ‘treatment’.

In another embodiment, there 1s provided a method
wherein the method further comprises the step of determin-
ing a volume of tissue which 1s likely to be infarcted.

An advantage of determining a volume which 1s likely to
be infarcted may be, that it provides a simple value, 1.¢.,
‘volume’, which may relatively easily be compared across,
¢.g., therapies, subjects, time, efc.

In another embodiment, there 1s provided a method
wherein the method further comprises the steps of

generating a plurality of risk maps, such as a plurality of

risk maps corresponding to a plurality of groups of
subjects, each of which 1s generated using said statis-
tical model based on data from a plurality of subjects,
such as a group of subjects, such as a group of subjects
within the plurality of groups of subjects, each plurality
of subjects, such as each group of subjects, such as each
group of subjects within the plurality of groups of
subjects, having been treated with a particular therapy,
and

for each of said risk maps, determining a volume of tissue

which 1s likely to be infarcted.

This embodiment may enable predicting, such as predict-
ing and comparing, risk maps via the statistical model,
where the statistical model used to generate each risk map
may differ with respect to the statistical model used to
generate other risk maps, due to diflerences 1n the data
between the different sets of ‘plurality of subjects” which 1s
used for generating the coeflicients 1n the statistical model.
A possible advantage of this may be that volumes which are
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likely to be infarcted may be obtained for a plurality of
therapies, which 1n turn provides a simple way of comparing,
therapies.

In a further embodiment there 1s provided a method
wherein the volume of tissue which 1s likely to be infarcted
1s determined by calculating the sum, over all voxels, of the
product between the volume of each voxel multiplied by the
probability of infarct for said voxel. The volume may 1n an
exemplary embodiment be calculated according to the for-
mula: 2; (volume,*Pr(infarctlx;)), where j 1s summed over all
voxels, volume; 1s the volume of the j’th voxel and Pr(in-
tarctlx;) 1s the risk of infarction of the j’th voxel. A possible
advantage of this may be that it yields a realistic estimate of
the volume which 1s likely to be infarcted, since the volumes
are weighted with their risk value.

In another embodiment, there 1s provided a method
wherein the method further comprises the step of

receiving patient related information, such as clinical

findings.

The patient related information may comprise patient
related information, such as gender or age, or climical
findings, such as the presence of a disorder, disease, or
underlying condition, such as diabetes. In particular embodi-
ments, the patient related information may include treat-
ment. A possible advantage of including treatment in the
patient related information may be that 1t enables forming a
risk map corresponding to the particular treatment, which
may 1n turn enable predicting the eflect of a type of
treatment.

According to a second aspect the mvention relates to a
system comprising a processor arranged for carrying out the
method according to the first aspect.

In a further embodiment there 1s provided a system,
wherein the system furthermore comprises an apparatus
arranged for obtaining one or more first values, such as a
nuclear magnetic resonance (NMR) scanner.

In a third aspect the invention relates to a computer
program product enabled to carry out the method according
to the first aspect, such as a computer program product being
adapted to enable a computer system, such as the computer
system according to the second aspect, comprising at least
one computer having data storage means in connection
therewith to control an apparatus, such as an NMR scanner.
This aspect of the mvention 1s particularly, but not exclu-
sively, advantageous 1n that the present invention may be
accomplished by a computer program product enabling a
computer system to carry out the operations of the system of
the second aspect of the mnvention when down- or uploaded
into the system. Such a computer program product may be
provided on any kind of computer readable medium, or
through a network.

The first, second and third aspect of the present invention
may each be combined with any of the other aspects. These
and other aspects of the invention will be apparent from and

elucidated with reterence to the embodiments described
hereinatter.

BRIEF DESCRIPTION OF THE FIGURES

The method, system and computer program product
according to the mvention will now be described 1n more
detail with regard to the accompanying figures. The figures
show one way of implementing the present invention and 1s
not to be construed as being limiting to other possible
embodiments falling within the scope of the attached claim
set.
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FIG. 1 shows a schematic illustration of a method accord-
ing to an embodiment of the mvention,

FIG. 2 shows a system according to an embodiment of the
imnvention,

FIG. 3 1s a flow-chart of a method for generating a risk
map indicating predicted voxel-by-voxel probability of tis-
sue 1nfarction for a set of voxels,

FIG. 4 illustrates the basic principle of relating acute
voxel values to follow up voxel values.

FIG. 5 shows the eflect of reperfusion on infarct risk as
estimated with the additive model,

FIG. 6 shows the eflect of reperfusion on infarct risk as
estimated with separate models for the two groups,

FIG. 7 shows the voxel-infarct frequency 1n a grey scale
plot for voxels with reperfusion,

FIG. 8 shows the voxel-infarct frequency 1n a grey scale
plot for voxels without reperfusion.

FIG. 9 shows the differential effect at various MTT and
DWI combinations,

FIG. 10 demonstrates the shift away from chance level
towards more certain survival/infarct by showing the histo-
grams ol fitted probabilities,

FIG. 11 shows a comparison of fitted risks for GLM and
a model according to an embodiment of the imnvention,

FIG. 12 shows predicted risk intervals,

FIG. 13 1llustrates the eflect of the latent heterogeneity
cilect 1n a patient.

FIGS. 14-17 show the effect of reperfusion on 1nfarct risk
as a function of Tmax (sSVD), TTP capillary transit time
heterogeneity (parametric) and Oxygen Extraction Fraction
(parametric).

DETAILED DESCRIPTION OF AN
EMBODIMENT

FIG. 1 shows a schematic 1llustration of a method accord-
ing to an embodiment of the mvention, wherein a first value
x and a second value z,, being based on a stochastic variable,
are put 1nto a statistical model 102, which statistical model
1s based on data 104, such as data from a plurality of imaging
techniques, from a group of subjects and the stochastic
variable. The statistical model in turn outputs a risk map 106
indicating predicted voxel-by-voxel probability of tissue
infarction for a set of voxels. In the embodiment shown, the
statistical model 102 outputs risk maps 108, 110, where the
risk maps 106, 108, 110 eerrespends to a plurality of risk
maps, where each nsk map 1n the plurality of risk maps,
corresponds to a particular value of the second value.
Furthermore, the method comprises determining a volume
116 of tissue which 1s likely to be infarcted (for a particular
value of the second value corresponding to risk map 106),
wherein the volume of tissue which 1s likely to be infarcted
1s determined by calculating the sum, over all voxels, of the
product between the volume of each voxel multiplied by the
probability of infarct for said voxel. Similar volumes 118,
120 are calculated for the risk maps 108, 110 for the other
values of the second value. In other embodiments, a plurality
of risk maps 106, 108, 110 and corresponding volumes 116,
118, 120 of tissue Wthh 1s likely to be infarcted, may be
generated using statistical models based on data for different
pluralities of subjects, such as each plurality of subjects
having been treated with diflerent therapies.

FIG. 2 shows a system 222 according to an embodiment
of the invention, the system comprising a processor 224
arranged for carrying out the method according to the first
aspect, and the system furthermore comprises an apparatus
226 arranged for obtaining one or more first values, the
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apparatus being a nuclear magnetic resonance scanner in the
present embodiment. The system 1s arranged for outputting,
the risk map to a receiving unit 228, which may, 1n exem-
plary embodiments, be any one of a computer screen, a
network connection, or a computer readable storage device.

FIG. 3 1s a flow-chart of a method for generating a risk
map indicating predicted voxel-by-voxel probability of tis-
sue 1nfarction for a set of voxels, the method comprising the
steps of

receiving 330 for each voxel a first value (x), where each

first value (x) corresponds to a set of tissue marker
values being representative of a quantity, such as a
measurable quantity, which 1s representative of the
corresponding voxel, and

generating 332 the risk map,
wherein the risk map 1s generated using a statistical model
based on data, such as data from a plurality of imaging
techniques, from a group of subjects, and a stochastic
variable, and wherein the statistical model receives as input
for each voxel

the first value, and
wherein the statistical model further receives as mput

a second value (z,), being based on the stochastic variable,

such as the second value modelling non-measured
values, and which outputs 334 the risk map.

The exemplary method furthermore comprises the step of
determining 336 a volume of tissue which 1s likely to be
infarcted.

It 1s proposed to estimate the expected risk of tissue
infarction at the level of 1mage tissue volumes (voxels). It 1s
turther proposed to estimate the difference in expected risk
of tissue infarction at the level of 1mage tissue volumes
(voxels) given 2, 3, 4, 5, 6, 7, 8, 9, 10 or more treatment
options. This prediction 1s made based on the actual tissue
progression history in all available previous subjects, such
as patients, by associating any number of 1maging modali-
ties, such as any number of 1imaging modalities acquired at
admission to hospital, with final tissue outcome. It 1s antici-
pated that patients differ in tolerance to ischemia, and that
these differences prevent meaningtul predictions of outcome
based on a single mechanistic association between acute
findings and final outcome.

Formally, the coeflicients 1n a model relating acute values,
such as the pluralities of first values for all voxels, to final
outcome should depend on a particular subjects’ inherent,
but unobserved, tolerance to 1schemia

(K
Pr(infarct|x, ;) = G

p
@ (Z)X;
1 J

=

where the first value x corresponds to a set of tissue marker
values (X, X,, . . ., Xx) so that x=(x,, X,, . . . , Xz) contains
the values of the tissue markers 1n a given voxel, and
a(z )y =(a.,(z,), o,(z,), . . ., az{(Z)) are the weights assigned
to each tissue marker, and which are estimated during model
fitting. It 1s common to use the logistic function

G(v)=1/1+exp(—v)

when modelling probabilities, however, the use of other
functions 1s also encompassed by the present invention.
The varniable z, 1n equation [1] above indicates that the
coellicients are different for different subjects (with index 1).
The value of z, 1s not known a prior1 and 1s not necessarily
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directly observed, but, as shown i the present application,
it quantitatively aflects tissue risk of infarction. In the
present application it 1s

demonstrated that contradictory conclusions about treat-

ment effects are reached when subject diflerences are
neglected,

proposed that prediction of tissue risk of infarction should
be based on anticipated subject specific tolerance to
1schemia, and

proposed that coellicients may be biased 11 subject het-
crogeneity 1s neglected.

FIG. 4 1llustrates the basic principle of relating acute
voxel values to follow up voxel values, such as final
outcome. The 1images M, -M, originate from different imag-
ing modalities, such as DWI and PWI, where each 1image,
which 1s mnterchangeably referred to as ‘map’, as 1s generally
understood 1n the art, corresponds to a spatially resolved set
of values of tissue marker values. The voxel values X, -X-
correspond to the first value for that particular voxel (shown
in light grey 1n the left side of the image). Correspondingly,
X, ~Xz; correspond to the first value for another particular
voxel (shown in dark grey in the right side of the image).
The voxel shown 1n dark grey in the right side of the image
infarcts (as can be seen in the Follow Up 1mage), while the
voxel shown 1n light grey 1n the left side of the image
SUrvives.

Previous Reference

In the reference WO 01/56466 A2 a standard regression
approach 1s adopted to link a linear (Generalized Linear
Model (GLM)) or nonlinear (General Additive Model
(GAM)) combination of tissue markers to the risk of tissue
infarct.

In the following we consider a data set consisting of N=36
stroke patients with O hour, 2 hour and 1 month MRI data.
For these patients 1t could be determined whether the tissue
experienced reperfusion, defined here as a reduction of the
acute penumbra by at least 20% within 2 hours. Reperfusion
has been demonstrated to be associated with a more favor-
able outcome.

Fitting a standard Generalized Linear Model (GLM) to
this data (M=127268 data points from N=56 patients) the
following weights are obtained for MTT (perfusion mea-
sures), DWI (diffusion measures) and the effect of reperfu-

$101.

Estimate Std. Error  z value  Pr(>lzl)
(Intercept) ~3.518895  0.025851 -136.12 <2e-16 * **
MTT 0.104088  0.001286 80.91 <2e-16 * * *
DWI 2. 780889 0.020957 132.69 <2e-16 * * *
reperf.voxl 0.185506 0.013071 14.19 <Re-16 * **

It 1s noted that increasing perfusion and diflusion abnor-
mality increases the risk of local tissue infarction. However,
reperfusion 1s estimated to increase the risk of tissue 1nfarc-
tion, thereby exhibiting a harmiul effect.

The model assumes reperfusion has the effect of shifting
the overall rnisk of infarct. However, the eflect may differ
depending on the regional MTT and DWI values.

The model 1s therefore refitted allowing full interactions
between all parameters.

This 1s formally equivalent to fitting separate models to
the two groups
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Estimate  Std. Error z value Pr(>|zl)
(Intercept) —-3.063988 0.055785 -354.925 2e-16  F * ¥
MTT 0.038094 0.005732 6.646 3.02¢e-11  * * *
DWI 2.287402 0.051493 44421 2e-16  F * ¥
reperf.voxl 0.376472 0.073270 5138 2.77e-07 * * %
MTT:DWI 0.073878 0.005565  13.275 <2e-16  * F*
MTT:reperf.voxl  -0.024016 0.008244  -2.913 0.00358 * %
DWlLreperf.voxl  -0.111086 0.068390 -1.624  0.10431
MTT:DWI: 0.009482 0.007903 1.200  0.23018
reperf.voxl

It 1s still estimated that reperfusion increases the risk of
infarction, although the effect 1s modified depending on the
MTT and DWI values. To examine the net effect the infarct

risk 1s calculated over a range of MT'T values at represen-
tative DWI values for both groups, see FIGS. 5-6.

FIGS. 5-6 show the eflect of reperfusion on infarct risk.
In both figures, the horizontal first axis represents MMT
(increase with respect to normal) and the vertical second
axis represents Risk of infarct.

FIG. 5 shows the effect of reperfusion on infarct risk as
estimated with the additive model, which shows an upward
shift in risk with reperfusion.

FIG. 6 shows the eflect of reperfusion on infarct risk as
estimated with separate models for the two groups, which
also shows an upward shift in risk with reperfusion except
for extremely high MTT and low DWI.

It 1s confirmed that even with the separate models reper-
fusion 1increases the risk of infarction with the possible
exception of extremely high MTT combined with low DWI,
where the mfarct risk with reperfusion 1s marginally lower
than without reperfusion.

It 1s possible that the conclusion 1s a consequence of a
poor fit to the underlying data. Therefore the voxel-infarct
frequency 1s calculated for the range of combinations of
MTT and DWI and plotted 1n FIGS. 7-8. The plots 1n FIGS.
7-8 are model independent and confirm that there is, on
average over the patients, a higher risk of infarct with
reperfusion 1 regions with prolonged MTT and normal
DWI, 1.e., the penumbra.

FIG. 7 shows the voxel-infarct frequency 1n a grey tone
plot for voxels with reperfusion. The highest frequency 1s
given 1n the lower right corner and the lowest frequency 1s
given 1n the upper leit corner.

FIG. 8 shows the voxel-infarct frequency 1n a grey tone
plot for voxels without reperfusion. The highest frequency 1s
given 1n the lower right corner and the lowest frequency 1s
given 1n the upper leit corner.

Proposed Method

Previous references focus on prediction of the final infarct
volume. This 1s based on a probability score for particular
combinations of MRI markers (such as for a first value x)
obtained eflectively by averaging over a patient cohort. The
previous section 1llustrates that over a wide range of MTT
and DWI values probability scores are intermediate between
the ‘certainties’ represented by probabilities O (certain sur-
vival) and 1 (certain infarct). In practice this implies pre-
dictions are centered closer to chance level (probability 0.5),
meaning the model adds limited information.

It may be seen as an objective of the inventors to obtain
individualized models for the acute-follow-up association to
overcome the lack of association found by averaging over a
population (ci. previous references) which according to an
insight made by the present inventors may be due to varia-
tions 1n the association patterns across patients. By estimat-
ing the cross-subject variability, a latent factor, which might
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not be directly observable, we can provide a model of the
actual association between acute MRI and follow-up but
‘cleaned’ for inter-subject differences. Additionally, since
this provides a handle for inter-subject differences in infarct
likelihood, bounds can be established around the most

probable treatment eflect based on the observed population.

Hence with increasing sample size, these bounds are
progressively optimized.

In the following a simple version of equation [1] 1s fitted,
where deterministic terms linking acute modalities to risk of
infarct are identical for all patients, but we 1include a
stochastic, but patient specific term (1.e., the stochastic
variable z), which offsets the overall infarct risk for indi-
vidual patients.

|
l +exp(—z —a1x] — ... — @gXK)

Pr(Infarcr| x) =

where

p(z;) = N(O, o)

[

The random term with zero mean ensures that the effect
of treatment, as well as acute MRI modalities, 1s adjusted for
subject-specific eflects. By fitting this as a random eflect we
simultaneously avoid overfitting, which would arise 11 1ndi-
vidual models were fitted to all subjects without constraints.

Fitting this model using a Laplace approximation to the

likelihood function the following eflect estimates are
obtained:

Estimate Std. Error  z value  Pr(>lzl)
(Intercept) -3.900651 0.122091 -31.95 2e-16 * * %
MTT 0.116169 0.001384 83.95 Qe-16 * * %
DWI 3.217682 0.023244 138.43 Qe-16 * F*
reperf.voxl —0.019829 0.158559 -0.13 0.9

It 1s surprisingly observed that reperfusion 1s estimated to
decrease the risk of infarct, while the 1solated eftects of MTT
and DWI are comparable to the previous analysis. As above
we can also allow the effects of MTT and DWI to change
with reperfusion, which gives the following result

Estimate Std. Error z value Pr(>|zl)
(Intercept) -3.051326 0.133502 =22.86 Qe-16  FF*F
MTT 0.043244 0.005815 744  1.04e-13  * * %
DWI 2.390816 0.052474 45.56 Qe-16 FFF
reperf.vox1 -0.480028 0.178578 -2.69 0.00719  * *
MTT:DWI 0.073944 0.005629 13.14 Qe-16 FFF
MTT:reperf.voxl -0.021536 0.008543 -2.52 0.01171 %
DWl:reperf.vox1 0.432665 0.072255 599 2.12e-09  * * %
MTT:DWI: 0.019729 0.008166 2.42 0.01569 *
reperf.voxl

The nisk-decreasing effect of reperfusion 1s now clear
(main effect —0.48).

FIG. 9 shows the eflect of reperfusion on infarct risk
(Mixed Model) and thus shows the differential effect at
various MTT and DWI combinations. As in FIGS. 5-6 the
horizontal first axis represents MMT (1ncrease with respect
to normal) and the vertical second axis represents Risk of
infarct.

This demonstrates that reperfusion has a beneficial effect
in regions with normal DWI and prolonged MU, which 1s
exactly the so-called penumbra region. With increasing




US 9,679,378 B2

17

DWI, 1.e., progressive non-reversible infarct, reperfusion 1s
indicated to be harmiful, which has been hypothesized 1n the
literature, but has not been demonstrated at the actual tissue
level.

A second surprising finding with this modeling approach
1s that infarct probabilities are shifted away from chance
level towards more certain survival/infarct.

FIG. 10 demonstrates the shift away from chance level
towards more certain survival/infarct by showing the histo-

grams ol fitted probabilities (the columns represent the
frequencies of the fitted probabilities). The leit side of FIG.
10 shows fitted probabilities as obtained with GLM. The
right side of FIG. 10 shows fitted probabilities as obtained
with the modeling approach according to an embodiment of
the present invention. The horizontal first axis of both the
left and night side graphs of FIG. 10 represents fitted
probability and the vertical second axis represents Ire-
quency.

A third finding 1s that the GLM approach utilized 1in
previous references either over- or underestimates infarct
risk in individual patients, in comparison to embodiments of
the present invention.

FIG. 11 shows a comparison of fitted risks where the
horizontal axis represents the risks fitted with GLM and the
vertical axis represent risks fitted with the model according
to an embodiment of the invention. Each shade of grey
corresponds to a patient, and the dots represent fitted values
in 1mage voxels (note that the same shade of grey 1s used for
multiple patients, but the trend still appears clear). The
points form coherent curves, which are typically entirely
below or above the 1dentity line, suggesting that fitting with
GLM as has been done 1n a previous reference in compari-
son uniformly over- or underestimates tissue risk of infarc-
tion 1n 1ndividual patients.

A fourth finding 1s that methods according to embodi-
ments of the invention may be used to generate reliable risk
intervals 1n individuals, based on the latent, unobserved, risk
variability in the population. This means that we can gen-
erate a risk interval where the individual patient’s actual
outcome 1s included with a user specified precision

FIG. 12 shows predicted risk intervals where the popu-
lation coverage 1s approximately 70%. The horizontal first
axis represents MMT (increase with respect to normal) and
the vertical second axis represents Risk of infarct.

FIG. 13 illustrates the eflect of the latent heterogeneity
cllect 1n a patient. The figure shows the predicted outcome
for a non-reperfusing subject, using intercepts of +/-2 times
the standard deviation of the population offset variability.
More specifically, subfigure A shows the upper risk bound
using the intercept at +2 times the standard deviation,
subfigure B shows the lower risk bound using the intercept
at -2 times the standard deviation, and subfigure C shows
the actual outcome. Considerable differences in estimated
risks are observed, although at both the upper and lower
bound a large infarct 1s expected, 1n agreement with final
outcome. The qualitative agreement between the upper and
lower bound gives confidence 1n the prediction.

Tissue perfusion can be quantified using other measures
than MU. Therefore 1t was investigated whether the same
difference between prior art and the proposed technique
would be consistent with the results outlined above.

FI1G. 14 shows the eflect of reperfusion on infarct risk as
a Tunction of delay, Tmax (sSVD). FIG. 14A shows the
cllect of reperfusion on infarct risk with a Mixed Model.
FIG. 14B shows the eflect of reperfusion on infarct risk
(logistic regression).
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FIG. 15 shows the eflect of reperfusion on infarct risk as
a function of delay, TTP (model-independent). FIG. 15A

shows the eflect of reperfusion on infarct risk with a Mixed
Model. FIG. 15B shows the eflect of reperfusion on infarct
risk (logistic regression).

FIG. 16 shows the eflect of reperfusion on infarct risk as
a Tunction of capillary transit time heterogeneity (paramet-
ric). FIG. 16 A shows the effect of reperfusion on infarct risk
with a Mixed Model. FIG. 16B shows the eflect of reper-

fusion on infarct risk (logistic regression).
FIG. 17 shows the eflect of reperfusion on infarct risk as
a Tunction of Oxygen Extraction Fraction (parametric). FIG.

17A shows the eflect of reperfusion on infarct risk with a
Mixed Model. FIG. 17B shows the eflect of reperfusion on
infarct risk (logistic regression).

FIGS. 14-17 show that this 1s indeed the case for a range
of markers calculated using model-independent, model-
dependent and parametric techniques.

The feasibility of quantiiying treatment eflicacy and cal-
culating upper- and lower bounds on expected tissue out-
come has been demonstrated using a simple implementation
of equation [1], where the intercept term varies with subject,
but 1s constrained by the normality assumption. However,
similar results are observed with other implementations. For
instance, 1t could be assumed that subjects can be divided
into a small number of groups with identical 1schemic
tolerances. We can model this by assuming the stochastic
variable z only takes a discrete number of values, instead of
being continuous, as above. In that case the risk of infarct
can be written as

|

K
1+ exp(—zg - 2. ﬂ'ijjj]
j=1

G
Pr(Infarcr| x) = Z Pr(z = z4)
g=1

where z,, . . ., z, are the possible values of the stochastic
variable z. For instance, with G=3 the following coeflicients
are obtained (where only the intercept varies):

Comp. 1 Comp. 2 Comp. 3

coef. MTT 0.033834116 0.033834116 0.033834116
coef. DWI 2401968519 2.401968519 2.401968519
coef.reperf.vox1 —0.390885397 -0.390885397 -0.390885397
coef. MTT:DWI 0.081028179 0.081028179 0.081028179
coef.MTT:reperf.vox1 -0.013024633 -0.013024633 -0.013024633
coef. DWl:reperf.voxl 0.130016278 0.130016278 0.130016278
coef. MTT: 0.009041223 0.009041223 0.009041223
DWl:reperf.vox1

coef.(Intercept) -3.860622394 -2.352132791 -3.087418377

"y

Similarly the coetlicients for the perfusion and diffusion
parameters can also be allowed to depend on the value of z,
using the full generality of equation [1].

To sum up, there 1s provided a method for generating a
risk map indicating predicted voxel-by-voxel probability of
tissue 1nfarction for a set of voxels, the method comprising
the steps of, receiving for each voxel a first value (x)
corresponding to a set of tissue marker values and generat-
ing the risk map, using a statistical model based on data from
a group ol subjects, and a stochastic variable, wherein the
statistical model also comprises a second value (z,), being
based on the stochastic variable, such as the second value
modelling non-measured values. The imnvention may be seen
as advantageous since it acknowledges subject variability 1n
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probability of tissue infarction on a voxel-by-voxel basis by
taking non-measured values into account, which 1n turn may
enable providing more reliable estimates of probability of
infarction.
The mnvention can be implemented by means of hardware,
soltware, firmware or any combination of these. The mnven-
tion or some of the features thereof can also be implemented
as software running on one or more data processors and/or
digital signal processors.
The individual elements of an embodiment of the inven-
tion may be physically, functionally and logically imple-
mented 1 any suitable way such as 1n a single unit, 1n a
plurality of units or as part of separate functional units. The
invention may be implemented 1n a single unit, or be both
physically and functionally distributed between different
units and processors.
In exemplary embodiments E1-E19, the invention may be
described as:
El. A method for generating a risk map (106) indicating
predicted voxel-by-voxel probability of tissue infarc-
tion for a set of voxels, the method comprising the steps
of,
receiving (330) for each voxel a first value (x), where
cach first value (x) corresponds to a set of tissue
marker values being representative of a quantity,
such as a measurable quantity, which 1s representa-
tive of the corresponding voxel, and

generating (332) the risk map,

wherein the risk map 1s generated using a statistical model
(102) based on data (104), such as data from a plurality
of imaging modalities, from a group of subjects, and a
stochastic variable, and wherein the statistical model
receives as input for each voxel
the first value (x), and

wherein the statistical model further recerves as input
a second value (z,), being based on the stochastic

variable, such as the second value modelling non-
measured values,

and which statistical model outputs (334) the risk map.

E2. A method according to embodiment E1, wherein the
first value 1includes Diffusion Weighted Imaging (DWI)
data and/or Perfusion Weighted Imaging (PWI) data.

E3. A method according to any of the preceding embodi-
ments, wherein the method further comprises the step
of
a. Generating a plurality risk maps (106, 108, 110),

where each risk map in the plurality of risk maps,
corresponds to a particular value of the second value.

E4. A method according to any of the preceding embodi-
ments, wherein the data from the group of subjects
comprises an actual tissue infarction state, such as an
actual tissue infarction state for a subject being repre-
sented by the first value, such as an actual follow-up
tissue infarction state for a subject being represented by
the first value.

E5. A method according to any one of embodiments

E1-E4, wherein the statistical model (102) 1s given by

Pr(Infarctlx)=G(a,z,x),

where Pr(Infarctlx) 1s the risk of infarct for a voxel, the first
value x=(x,, X,, . . ., Xz) corresponds to each of K tissue
marker values for the voxel, o 1s a set of weights assigned
to each of K tissue marker values, z 1s the stochastic variable
upon which the second value z 1s based, and G 1s a
non-linear mathematical function.

E6. A method according to any one of embodiments
E1-E35, wherein the statistical model (102) 1s given by
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(K
Pr(Infarct|x) =G

p
w;(2)x; |,
/=1 /

where Pr(Infarct|x) 1s the risk of infarct for a voxel, the first
value x=(X,, X,, . . . , Xz) corresponds to each of K tissue
marker values for the voxel, a(z)=(a.,(z), a.(z), . . ., Az{(Z))
are weights assigned to each of K tissue marker values, z 1s
the stochastic variable upon which the second value z; 1s
based, and G 1s a mathematical function.

E7. A method according to any one of embodiments
ES3-E6, wherein the mathematical function G may be
chosen from the set comprising:

a logistic function,

G(1) =

1 + exp(—1)

a probit model,

1

\V 27 J-o

G(r) = exp(—h* /2)d h

a complementary log-log regression, G(t)=1-exp(-exp
(V).

E8. A method according to any of the preceding embodi-
ments, wherein the stochastic variable z 1s given by a
probability density function.

E9. A method according to any of the preceding embodi-
ments, wherein the statistical model (102) 1s given by

|
l+exp(—z—ax; —...— agxg)

Pr(Infarcr| x) =

where Pr(Infarctlx) 1s the risk of infarct for a voxel, the
first value x=(x,, X,, . . . , Xz) corresponds to each of
K tissue marker values for the voxel, a=(a.,, a.,, . . .,
O.r-) are weights assigned to each of K tissue marker
values, z 1s the stochastic variable, upon which the
second value z, 1s based.

E10. A method according to any one of the preceding
embodiments, wherein the stochastic variable z 1s given

by

p(z)=N(0,0%),

where N(0,07) is a Gaussian distribution with zero mean and
non-zero standard deviation o.

E1l. A method according to any one of embodiments
E1-E6, wherein the statistical model (102) 1s given by

1

K 3
1 + exp[—zm - ), ::ijﬁ]

M
Pr(Infarct| x) = Z Pr(z = z,,)
m=1

J=1

where Pr(Infarctlx) 1s the risk of infarct for a voxel, the
first value x=(x,, X,, . . . , Xz) corresponds to each of
K tissue marker values for the voxel, a=(a.,, o.,, . . .,
O.r-) are weights assigned to each of K tissue marker



US 9,679,378 B2

21

values, and the stochastic variable z 1s given by the set
(z,, ..., 2Z,,) of M discrete, possible values.
E12. Amethod according to any of the preceding embodi-

ments, wherein the method further comprises the step
of

a. generating a plurality of risk maps (106, 108, 110),
cach of which 1s generated using said statistical
model (102) based on data from a group of subjects,
cach group of subjects having been treated with a
particular therapy.

E13. A method according to any one of the preceding
embodiments, wherein the method further comprises
the step of determining a volume (116) of tissue which
1s likely to be infarcted.

E14. A method according to any of the previous embodi-

ments, wherein the method further comprises the steps
of

a. generating a plurality of risk maps (106, 108, 110),
cach of which 1s generated using said statistical
model (102) based on data from a plurality of
subjects, each plurality of subjects having been
treated with a particular therapy, and

b. for each of said risk maps, determining a volume
(116, 118, 120) of tissue which 1s likely to be
infarcted.

E15. A method according to any one of embodiments

E13-E14, wherein the volume of tissue which 1s likely
to be infarcted 1s determined by calculating the sum,
over all voxels, of the product between the volume of
cach voxel multiplied by the probability of infarct for
said voxel.

E16. A method according to any of the previous embodi-
ments, wherein the method further comprises the steps
of
receiving patient related information, such as climical

findings.

E17. A system (222) comprising a processor (224)
arranged for carrying out the method according to any
one of the preceding embodiments.

E18. A system (222) according to embodiment E17,
wherein the system furthermore comprises an appara-
tus (226) arranged for obtaining one or more first
values, such as a nuclear magnetic resonance scanner.

E19. A computer program product enabled to carry out the
method according to any one of embodiments E1-E16.

In further exemplary embodiments E20-E26, there 1s

presented
E20. A method for generating a risk map (106) indicating,
predicted voxel-by-voxel probability of tissue infarc-
tion for a set of voxels, the method comprising the steps
of,
receiving (330) for each voxel a first value (x), where
cach first value (x) corresponds to a set of tissue
marker values being representative of a quantity,
such as a measurable quantity, which 1s representa-
tive of the corresponding voxel, and

generating (332) the risk map,

wherein the risk map 1s generated using a statistical model
(102) based on data (104), such as data from a plurality
of 1imaging modalities, from a group of subjects, and
wherein the statistical model receives as input for each
voxel
the first value (x),

and which statistical model outputs (334) the risk map.

E21. A method according to embodiment E20, wherein
the method further comprises
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recetving a background map based on follow-up 1mages
for a secondary group of subjects, said background map
being indicative of infarct likelthood as a function of
spatial position,

and wherein the risk map 1s based on the background map.

E22. A method according to embodiment E21, wherein
the risk map 1s based on the background map by having
the statistical model being based on data (104) from a
group ol subjects and a stochastic variable and the
background map.

E23. A method according to embodiment E21, wherein
the risk map 1s based on the background map by having
the statistical model based on data (104) from a group
of subjects and a stochastic variable output the risk
map, and wherein said risk map 1s subsequently
amended based on the background map.

E24. A system (222) comprising a processor (224)
arranged for carrying out the method according to any
one of the embodiments E20-E23.

E25. A system (222) according to embodiment E24,
wherein the system furthermore comprises an appara-
tus (226) arranged for obtaining one or more first
values, such as a nuclear magnetic resonance scanner.

E26. A computer program product enabled to carry out the
method according to any one of the embodiments

E20-E23.

Although the present invention has been described in
connection with the specified embodiments, 1t should not be
construed as being in any way limited to the presented
examples. The scope of the present invention 1s set out by
the accompanying claim set. In the context of the claims, the
terms “comprising’ or “comprises”’ do not exclude other
possible elements or steps. Also, the mentioning of refer-
ences such as “a” or “an” etc. should not be construed as
excluding a plurality. The use of reference signs in the
claims with respect to elements indicated in the figures shall
also not be construed as limiting the scope of the invention.
Furthermore, individual features mentioned in diflerent
claims or embodiments, may possibly be advantageously
combined, and the mentioning of these features 1n difierent
claims or embodiments does not exclude that a combination
ol features 1s not possible and advantageous.

The mnvention claimed 1s:

1. A method for generating a risk map 1indicating predicted
voxel-by-voxel probability of tissue infarction for a set of
voxels, the method comprising,

recerving for each voxel a first value (x), where each first

value (x) corresponds to a set of tissue marker values
being representative of a quantity, which 1s represen-
tative of the corresponding voxel, and

generating the risk map,

wherein the risk map 1s generated using a statistical model

based on data, from a group of subjects, and a stochas-
tic variable, and wherein the statistical model receives
as 1nput for each voxel

the first value (x), and

wherein the statistical model further receives as input

a second value (z,), being based on the stochastic variable,

and which statistical model outputs the risk map.

2. The method according to claim 1, wherein the second
value 1s chosen as a mean value of the stochastic variable.

3. The method according to claim 1, wherein the first
value includes Diflusion Weighted Imaging data and/or
Perfusion Weighted Imaging data.

4. The method according to claim 1, wherein the method
turther comprises generating a plurality of risk maps, where
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cach risk map 1n the plurality of risk maps, corresponds to
a particular value of the second value.

5. The method according to claim 1, wherein the method
turther comprises

receiving a background map based on follow-up 1mages

for a secondary group of subjects, said background map
being indicative of infarct likelithood as a function of
spatial position,

and wherein the risk map 1s generated using the back-

ground map.

6. The method according to claim 5, wherein the risk map
1s based on the background map by having the statistical
model being based on said data from a group of subjects and
said stochastic variable and the background map; or,

wherein the risk map 1s based on the background map by

having the statistical model based on said data from a
group of subjects and the stochastic variable output the
risk map, and wherein said risk map 1s subsequently
modified based on the background map.

7. The method according to claim 1, wherein the statistical
model 1s given by:

Pr(Infarctlx)=G(a,z,x),

where Pr(Infarct|x) 1s the rnisk of infarct for a voxel, the
first value x=(x,, X,, . . . , Xz) corresponds to each of
K tissue marker values for the voxel, o 1s a set of
weilghts assigned to each of K tissue marker values, z
1s the stochastic variable upon which the second value
7. 1s based, and G 1s a non-linear mathematical function.
8. The method according to claim 7, wherein a subject
specific tendency of tissue to infarct 1s modelled with the
stochastic variable.
9. The method according to claim 7, wherein the math-
ematical function G 1s selected from the group consisting of:
a logistic function,
a probit function, and
a complementary log-log regression.
10. The method according to claim 7, wherein the sto-
chastic variable z 1s given by a probability density function.

11. The method according to claim 1, wherein the statis-
tical model 1s given by:

b

K
Pr(Infarcr| x) = C[Z a;(2)x; |,
=1

/

where Pr(Infarct|x) 1s the rnisk of infarct for a voxel, the

first value x=(x,, X,, . . . , X)) corresponds to each of

K tissue marker values for the voxel, a(z)=(a,(z),

,(2), . . ., 0(Z)) are weights assigned to each of K

tissue marker values, z 1s the stochastic variable upon

which the second value z, 1s based, and G 1s a math-
ematical function.

12. The method according to claim 1, wherein the statis-
tical model 1s given by:
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1

Pr(Infarct|x) = ’
(Infarcr| x) 1 +exp(—2 — a1 X] — ... — AKXK)

where Pr(Infarct/x) 1s the risk of infarct for a voxel, the
first value x=(x,, X,, . . . , Xz) corresponds to each of
K tissue marker values for the voxel, a=(a.,, o.,, . . .,
O.) are weights assigned to each of K tissue marker
values, and z 1s the stochastic variable, upon which the
second value z, 1s based.

13. The method according to claim 12, wherein the

stochastic variable z 1s given by:

p(z)=N(0,07),

where N(0,0°) is a Gaussian distribution with zero mean
and non-zero standard deviation o.

14. The method according to claim 13, said method
further comprising making of the statistical model, and
wherein said making of the statistical model comprises
fitting the risk of infarct Pr(Infarct|x),

and wherein

adjustment for subject-specific eflects 1s enabled by fitting

this as a random ellect parameterized as the stochastic
variable z.

15. The method according to claim 1, wherein the statis-

tical model 1s given by:

1

K e
1 + exp(—zm - > Et’j.?(fﬁ]
j=1

M
Pr{Infarct| x) = Z Pr(z = z,,)
m=1

where Pr(Infarctlx) 1s the risk of infarct for a voxel, the
first value x=(x,, X,, . . . , Xz) corresponds to each of

K tissue marker values for the voxel, a=(a.,, o.,, . . .,
O.r-) are weights assigned to each of K tissue marker

values, and the stochastic variable z 1s given by the set
(z,, . .., Z,,) of M discrete, possible values.

16. The method according to claim 1, wherein the method
turther comprises generating a plurality of risk maps, each
of which 1s generated using said statistical model based on
data from a group of subjects, each group of subjects having
been treated with a particular therapy.

17. The method according to claim 1, wherein the method
turther comprises determining a volume of tissue, which 1s
likely to be infarcted, wherein the volume of tissue, which
1s likely to be infarcted, 1s determined by calculating a sum,
over all voxels, of a product between the volume of each
voxel multiplied by the probability of infarct for said voxel.

18. A system comprising a processor arranged for carry-
ing out the method according to claim 1.

19. The system according to claim 18, wherein the system
turther comprises an apparatus arranged for obtaining one or
more {irst values.

20. A non-transitory computer-readable storage medium
storing a computer program product enabled to carry out the
method according to claim 1.
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