12 United States Patent

Guminy et al.

US009674060B2

US 9,674,060 B2
Jun. 6, 2017

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC AND SELECTIVE MANAGEMENT
OF INTEGRATION POINTS USING
PERFORMANCE METRICS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Scott M. Guminy, Newmarket (CA);
Leho Nigul, Richmond Hill (CA);
Kevin Yu, Unionville (CA)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 833 days.

(21) Appl. No.: 14/046,359

(22) Filed: Oct. 4, 2013
(65) Prior Publication Data
US 2014/0101309 Al Apr. 10, 2014
(30) Foreign Application Priority Data
Oct. 5, 2012 (CA) oo 2791771
(51) Int. CL
GO6F 15/173 (2006.01)
HO4L 12/26 (2006.01)
(Continued)
(52) U.S. CL
CPC HO4L 43/0811 (2013.01); GO6F 11/349
(2013.01); HO4L 41/5096 (2013.01);
(Continued)
(58) Field of Classification Search
CPC e, HO4L 43/0817
(Continued)
/" Start
602 j

Comnect a set of
applicationg to a
communication interconnect
fabric to form a set of
comections
604

|

I Yes

Monitor the set of No Instruct a change in
connections using cific application availability of the
an integration specific application > miegration
controller component 1s within component
606 defined tolera: 610

(56) References Cited

U.S. PATENT DOCUMENTS

5,913,061 A
0,256,676 Bl

6/1999 Gupta et al.
7/2001 Taylor et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1620781 A 5/2005
CN 102460391 A 5/2012
CN 1685330 A 10/2016

OTHER PUBLICATIONS

Oracle White Paper; “Guide to Implementing Application Integra-
tion Architecture on Oracle Service Bus™, Oracle; p. 1-114; Mar.

2011.

Primary Examiner — David Lazaro

Assistant Examiner — Marie Georges Henry

(74) Attorney, Agent, or Firm — Cantor Colburn LLP;
Rahan Uddin

(57) ABSTRACT

In one embodiment, a computer-implemented method for
dynamic management ol integration points includes con-
necting a set of applications to a communication 1ntercon-
nect fabric to form a set of connections, wherein each
application 1n the set of applications i1s interconnected and
cach individual connection has a set of integration paths
defined including a default path. The set of connections 1s
monitored to determine whether a performance metric for a
specific application in the set of applications 1s within a
predefined tolerance. Responsive to a determination that the
performance metric for the specific application in the set of
applications 1s not within a predefined tolerance, a change
may be instructed 1n availability of an integration compo-

nent.

14 Claims, 7 Drawing Sheets

US 9,674,060 B2
Page 2

(51) Int. CL
HO4L 12/24
GOGF 11/34
GOGF 9/50

U.S. CL
CPC

(52)

(58)
USPC

(2006.01)
(2006.01)
(2006.01)

HO4L 43/0817 (2013.01); GO6F 9/5083

(2013.01); GOGF 11/3433 (2013.01)

Field of Classification Search

709/224, 223, 711/100

See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

6,871,324 B2 *
7,383,355
7,546,606
7,827,256

Bl
B2
B2 *

7,903,571 Bl
2003/0120502 Al
2004/0103193 Al
2007/0074225 Al*

2008/0039042 Al*

2009/0106480 Al*

2013/0275585 Al*

* cited by examiner

3/2005

6/2008
6/2009
11/2010

3/2011
6/2003
5/2004
3/2007

2/2008

4/2009

10/2013

Hand HO041. 41/046
709/223

Berkman et al.

Upton

Phillipscoooovviiininnl, GO6F 8/67
709/220

Herington

Robb et al.

Pandya et al.

Viertola GO6F 9/546
719/313

Ciccarelli HO04B 1/109

455/234.1

Chung GO6F 12/0866
711/100

Santhanakrishnan GO6F 11/3476

709/224

U.S. Patent Jun. 6, 2017 Sheet 1 of 7 US 9,674,060 B2

FIG. 1

104
100

—

LI =

TG s s

SERVER
UL
Q000101 o
SERVER -

W CLIENT

U.S. Patent Jun. 6, 2017 Sheet 2 of 7 US 9,674,060 B2

—_——e—_—— e —_ —_———— — —_——_——_— —_— —_— —_— —_——_— —_— —_— —_——_— —_—— —_— —_— —_—_—_— ——_——_— —_——_— — — —_ —— — — — — — — — — —— — — —— — —— —— —— —— —— —— —— —— — —— —— ——— ——— — —— o ——— ——— ——— —— o . —— —m —— —— o . —— . —— o — — — — — — —— — —— —— — — — ——— —— — —— — — — —— — — — — — — — — — — — —y

S TORAGE DEVICES 216
PROCESSOR PERSISTENT
UNIT MEQN(I)C;RY S TORAGE
204 - 208
R < 7 N
;*"’f S \f,ﬁ N / [RH
”’f\ 202 >
\I /f’ gx\h H'H'“-x fﬁf {
COMMUNICATIONS INPUT/OUTPUT DISPLAY
UNIT UNIT 214
210 212 T

DATA PROCESSING SYSTEM 200

COMPUTER COMPUTER
READABLE STORAGE READABLE SIGNAL
MEDIA 224 MEDIA 226
PROGRAM CODE PROGRAM CODE
218 218

COMPUTER READABLE MEDIA 220

COMPUTER PROGRAM PRODUCT
222

U.S. Patent Jun. 6, 2017

Correspondence
data structure

303

FIG. 3

Integration
controller

304

Rules data

structure
302

Management system

300

Sheet 3 of 7

Performance
metrics data
structure

306

US 9,674,060 B2

.________________________I

Cache data

structure
310

————— —_— —- - —- —- —_- —_—- —_—- —_—- .—_—- —_—_ —_—- —_— —_—-— —_— —_— —_— —_——_——

U.S. Patent

Component
402

Jun. 6, 2017

FIG. 4

420

|

.

Sheet 4 of 7

US 9,674,060 B2

Component
404

Component
406

|

\.

Soft switch
416

"\

-

.

Soft switch
418

\'I

/

|
|
|
|
|
I

A

|

Component
414

S A —

-

Component
408

Component
410

.

Component
412

U.S. Patent Jun. 6, 2017 Sheet 5 of 7 US 9,674,060 B2

FIG. 5

component condition notify cache

U.S. Patent Jun. 6, 2017 Sheet 6 of 7 US 9,674,060 B2

FIG. 6

Start
602 600

v
Connect a set of
applications 1o a (End >
communication interconnect 612
fabric to form a set of A
connections
604
Y Determine whether a
Monitor the set of performance metric tor a No Instruct a change 1n
connections using gpecific application and'z availability of the
an integration specilic application > integration
controller component is within a component
606 redefined toleranee 610
3 608

Yes

U.S. Patent Jun. 6, 2017

Start
702

h

Link performance metrics
including service definitions and
quality of service for requests an

application needs to process to
specific protocols and
integration channels used to
integrate the application with
other components of a system

704

h 4

Assign a relative
importance value as an
attribute to each integration

component based on

performance metrics
706

h 4

Connect applications and
application components to a
communication interconnect

fabric to form a set of
connections

708

h 4

Monitor the set of
connections using

Sheet 7 of 7

FIG. 7

Yes

NoO

cte

US 9,674,060 B2

End
728
F 3

Send the notification
for the change
associated with the
mtegration component

hether noti 796
is enabled .
Obtain data for a
notification associated
Instruct a change in | ® With the integration
availability of the component
integration 724
component
720
other a
performance metric tor a
gpecific application and s
specific application
component 18 within g
r¢defined tolerance
Use cache data for Obtain data for the
the sct of :
connections bemng set D t conne_ctlons
monitored being monitored
214 716
A

Yes

an integration <
controller
710

cte
hether cache
1S enabled

712

No

US 9,674,060 B2

1

DYNAMIC AND SELECTIVE MANAGEMENT
OF INTEGRATION POINTS USING
PERFORMANCE METRICS

PRIORITY

This application claims priority to Canadian Patent Appli-
cation No. 2791771, filed Oct. 5, 2012, and all the benefits
accruing therefrom under 35 U.S.C. §119, the contents of
which 1n its entirety are herein incorporated by reference.

BACKGROUND

This disclosure relates generally to component integration
in a data processing system and, more specifically, to
dynamic and selective management of integration points
using performance metrics 1n the data processing system.

Applications or application components often communi-
cate to other applications or components to retrieve and
process associated data forming an integration point. For
example, an electronic commerce application communicat-
ing with a search appliance to retrieve catalog search data
forms an integration point, and the electronic commerce
application communicates with an order management sys-
tem to store orders from another integration point because
cach pair of components 1s configured to work together.

Granular, interconnected services are becoming more
common with software as a service (SaaS), also referred to
as soltware on demand. Using this delivery model, software
and associated data are centrally hosted on a cloud-comput-
ing environment. Granular, interconnected services also
result from deployment of applications using cloud comput-
ng.

When using these support and delivery models, overall
performance of such a resulting integrated system 1s often
only as strong as the weakest link. Typically the weakest link
in the system 1s outside control of the owner of the software
or application. For example, a performance 1ssue may be
located 1n a non-performing third-party application or 1n a
slow network component.

SUMMARY

In one embodiment, a computer-implemented method for
dynamic management of integration points includes con-
necting a set of applications to a communication 1ntercon-
nect fabric to form a set of connections, wherein each
application 1n the set of applications 1s mterconnected and
cach individual connection has a set of integration paths
defined including a default path. The set of connections 1s
monitored to determine whether a performance metric for a
specific application 1n the set of applications 1s within a
predefined tolerance. Responsive to a determination that the
performance metric for the specific application 1n the set of
applications 1s not within a predefined tolerance, a change
may be instructed in availability of an integration compo-
nent.

In another embodiment, a computer program product
includes a computer readable storage medium having com-
puter readable program code embodied therecon. The com-
puter readable program code 1s executable by a processor to
perform a method for dynamic management of integration
points. The method includes connecting a set of applications
to a communication interconnect fabric to form a set of
connections, wherein each application 1n the set of applica-
tions 1s mterconnected and each individual connection has a
set ol integration paths defined including a default path.

10

15

20

25

30

35

40

45

50

55

60

65

2

Further according to the method, the set of connections 1s
monitored to determine whether a performance metric for a
specific application in the set of applications 1s within a
predefined tolerance. Responsive to a determination that the
performance metric for the specific application 1n the set of
applications 1s not within a predefined tolerance, a change
may be instructed in availability of an integration compo-
nent.

In yet another embodiment, an apparatus for dynamic
management of integration points includes a processing unit.
The processing unit 1s configured to connect a set of appli-
cations to a communication mterconnect fabric to form a set
ol connections, where each application 1n the set of appli-
cations 1s mnterconnected and each imndividual connection has
a set of itegration paths defined including a default path;
monitor the set of connections; and determine whether a
performance metric for a specific application in the set of
applications 1s within a predefined tolerance. Responsive to
a determination that the performance metric for the specific
application in the set of applications i1s not within a pre-
defined tolerance, the processing unit 1s further configured to
instruct a change 1n availability of an integration component.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the mvention are described 1n detail herein
and are considered a part of the claimed invention. For a
better understanding of the invention with the advantages
and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

For a more complete understanding of this disclosure,
reference 1s now made to the following brief description,
taken 1n conjunction with the accompanying drawings and
detailed description, wherein like reference numerals repre-
sent like parts.

FIG. 1 1s a block diagram of an exemplary network data
processing system operable for various embodiments of the
disclosure:

FIG. 2 1s a block diagram of an exemplary data processing
system operable for various embodiments of the disclosure;

FIG. 3 1s a block diagram of components of a manage-
ment system operable for various embodiments of the dis-
closure;

FIG. 4 1s a block diagram of relationships among com-
ponents of the management system of FIG. 3 operable for
various embodiments of the disclosure:

FIG. 5 1s a block diagram of a rule construct used in a
management system operable for various embodiments of
the disclosure;

FIG. 6 1s a flow chart of a high-level view of a method
using the management system operable for various embodi-
ments of the disclosure; and

FIG. 7 1s a flow chart of a detail view of a method using
the management system operable for various embodiments
of the disclosure.

DETAILED DESCRIPTION

Although an illustrative implementation of one or more
embodiments 1s provided below, the disclosed systems and/
or methods may be implemented using any number of
techniques. This disclosure should 1n no way be limited to
the 1llustrative implementations, drawings, and techniques
illustrated below, including the exemplary designs and
implementations illustrated and described herein, but may

US 9,674,060 B2

3

be modified within the scope of the appended claims along
with their full scope of equivalents.

As will be appreciated by one skilled 1n the art, aspects of
the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to hereimn as a “circuit,” “module,” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer-readable data
storage medium(s) may be utilized. A computer-readable
data storage medium may be, for example, but not limited to,
an electronic, magnetic, optical, or semiconductor system,
apparatus, or device, or any suitable combination of the
foregoing. More specific examples (a non-exhaustive list) of
the computer-readable data storage medium would include
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a portable compact disc read-
only memory (CDROM), an optical storage device, or a
magnetic storage device or any suitable combination of the
foregoing. In the context of this document, a computer-
readable data storage medium may be any tangible medium
that can contain, or store a program for use by or in
connection with an 1nstruction execution system, apparatus,
or device.

A computer-readable signal medium may include a propa-
gated data signal with the computer-readable program code
embodied therein, for example, either 1n baseband or as part
of a carrier wave. Such a propagated signal may take a
variety ol forms, including but not limited to electro-mag-
netic, optical or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1 connection with an 1instruction execution
system, apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wire line, optical fiber cable,
RF, etc. or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written 1 any
combination of one or more programming languages,
including an object oriented programming language such as
Java®, Smalltalk, C++, or the like and conventional proce-
dural programming languages, such as the “C” program-
ming language or similar programming languages. Java and
all Java-based trademarks and logos are trademarks of
Oracle, and/or 1ts afhliates, in the United States, other
countries or both. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a
stand-alone software package, partly on the user’s computer
and partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through any
type ol network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

10

15

20

25

30

35

40

45

50

55

60

65

4

Aspects of the present disclosure are described below
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatus, (systems), and computer pro-
gram products according to embodiments of the invention.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart 1llustrations and/or block diagrams,
can be implemented by computer program instructions.

These computer program 1nstructions may be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer
or other programmable data processing apparatus to function
in a particular manner, such that the istructions stored in the
computer readable medium produce an article of manufac-
ture including mstructions which implement the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series ol operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer-implemented method such that the
instructions which execute on the computer or other pro-
grammable apparatus provide processes for implementing
the functions/acts specified i the flowchart and/or block
diagram block or blocks.

With reference now to the figures and in particular with
reference to FIGS. 1-2, exemplary diagrams of data pro-
cessing environments are provided in which illustrative
embodiments may be implemented. It should be appreciated
that FIGS. 1-2 are only exemplary and are not imntended to
assert or imply any limitation with regard to the environ-
ments 1n which different embodiments may be implemented.
Many modifications to the depicted environments may be
made.

FIG. 1 depicts a representation of a network of data
processing systems 1n which illustrative embodiments of
dynamic and selective management ol integration points
using performance metrics may be implemented. Network
data processing system 100 1s a network of computers 1n
which the illustrative embodiments may be implemented.
Network data processing system 100 contains network 102,
which 1s the medium used to provide communications links
between various devices and computers connected together
within network data processing system 100. Network 102
may include connections such as, for example, wired, wire-
less communication links, fiber optic cables, or a combina-
tion thereof.

In the depicted example, server 104 and server 106
connect to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 connect to network 102.
Clients 110, 112, and 114 may be, for example, personal
computers or network computers. In the depicted example,
server 104 provides data, such as boot files, operating
system 1mages, and applications, to clients 110, 112, and
114. Clients 110, 112, and 114 are clients to server 104 in this
example. Network data processing system 100 may include
additional servers, clients, or other devices not shown.

In the depicted example, network data processing system
100 1s the Internet with network 102 representing a world-

US 9,674,060 B2

S

wide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet i1s a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, governmental,
educational and other computer systems that route data and
messages. Network data processing system 100 alternatively
may be implemented as one or more different types of
networks, such as, for example, an intranet, a local area
network (LAN), or a wide area network (WAN). FIG. 1 1s
intended as an example, and not as an architectural limita-
tion for the different illustrative embodiments.

Embodiments of the disclosed method may programmati-
cally enable and disable selected integration components,
responsive to predefined performance metrics. An embodi-
ment of the disclosed method defines a single point of
configuration and quality management for inter-application
and 1nter-component requests. The embodiment also pro-
vides a common view 1nto available integration interfaces
and enables definition of relationships between functionality
of the integration interfaces and performance metrics. For
example, using an embodiment, a business user may be
enabled to define a rule specilying when integration with
Component A on a web site becomes too slow (defined as,
for example, average response time being higher that 1
second) at certain critical moments. In that case, the Com-
ponent A integration functionality may be suspended and not
retried for a specified time period, for example, 30 minutes.
The service may thus be unavailable during the specified
time period.

With reference to FIG. 2, a block diagram of an exemplary
data processing system operable for various embodiments of
the disclosed dynamic and selective management of inte-
gration points using performance metrics 1s presented. In
this 1llustrative example, data processing system 200
includes communications fabric 202, which provides com-
munications between processor unit 204, memory 206,
persistent storage 208, communications unit 210, mput/
output (I/0) unit 212, and display 214.

Processor umit 204 serves to execute instructions for
soltware that may be loaded into memory 206. Processor
unit 204 may be a set of one or more processors or may be
a multi-processor, depending on the particular implementa-
tion. Further, processor unit 204 may be implemented using
one or more heterogeneous processor systems 1 which a
main processor 1s present with secondary processors on a
single chip. As another illustrative example, processor unit
204 may be a symmetric multi-processor system containing
multiple processors of the same type.

Memory 206 and persistent storage 208 are examples of
storage devices 216. A storage device may be a piece of
hardware capable of storing information, such as, for
example, data, program code 1n functional form, or other
suitable information either on a temporary basis or perma-
nent basis. Memory 206 may be, for example, a random
access memory or other suitable volatile or non-volatile
storage device. Persistent storage 208 may take various
forms depending on the particular implementation, and may
contain one or more components or devices. For example,
persistent storage 208 may be a hard drive, a flash memory,
a rewritable optical disk, a rewritable magnetic tape, or some
combination of the above. The media used by persistent
storage 208 may be removable. For example, a removable
hard drive may be used for persistent storage 208.

Communications unit 210 may provide for communica-
tions with other data processing systems or devices. In the

10

15

20

25

30

35

40

45

50

55

60

65

6

example, communications unit 210 1s a network interface
card. Communications unit 210 may provide communica-
tions through the use of either or both physical and wireless
communications links.

Input/output unit 212 allows for data mput from and
output to other devices that may be connected to data
processing system 200. For example, input/output unit 212
may provide a connection for user iput through a keyboard,
a mouse, or some other suitable mput device. Further,
input/output unit 212 may send output to a printer. Display
214 may provide a mechanism to display information to a
user.

Instructions for the operating system, applications, and
programs may be located in storage devices 216, which may
be 1n communication with processor unit 204 through com-
munications fabric 202. In this illustrative example, the
mstructions are 1 a functional form on persistent storage
208. These 1nstructions may be loaded 1into memory 206 for
execution by processor unit 204. The operations of the
different embodiments may be performed by processor unit
204 using computer-implemented instructions, which may
be located 1n a memory, such as memory 206.

These mnstructions are referred to as program code, com-
puter usable program code, or computer readable program
code that may be read and executed by a processor, such as
processor unit 204. The program code in the different
embodiments may be embodied on different physical or
tangible computer readable storage media, such as memory
206 or persistent storage 208.

Program code 218 may be located 1n a functional form on
computer readable storage media 220 that 1s selectively
removable and may be loaded onto or transferred to data
processing system 200 for execution by processor unit 204.
Program code 218 and computer readable storage media 220
form computer program product 222 1n this example. Com-
puter readable storage media 220 may be 1n a tangible form,
such as, for example, an optical or magnetic disc that 1s
inserted or placed 1into a drive or other device that 1s part of
persistent storage 208 for transier onto a storage device,
such as a hard drive that 1s part of persistent storage 208. In
a tangible form, computer readable storage media 220 also
may take the form of a persistent storage, such as a hard
drive, a thumb dnive, or a flash memory that 1s connected to
data processing system 200. In some instances, computer
readable storage media 220 may not be removable.

In some cases, program code 218 may be transferred to
data processing system 200 from computer readable storage
media 220 through a commumcations link to communica-
tions unit 210 or through a connection to input/output unit
212. The communications link or connection may be wired
or wireless 1n this example. The computer readable media
also may take the form of non-tangible media, such as
communications links or wireless transmissions containing
the program code.

In some 1illustrative embodiments, program code 218 may
be downloaded over a network to persistent storage 208
from another device or data processing system for use within
data processing system 200. For instance, program code
stored 1 a computer readable storage medium 1n a server
data processing system may be downloaded over a network
from the server to data processing system 200. The data
processing system providing program code 218 may be a
server computer, a client computer, or some other device
capable of storing and transmitting program code 218.

Using data processing system 200 of FIG. 2 as an
example, a computer-implemented method for dynamic
management of integration points i1s presented. Processor

US 9,674,060 B2

7

unit 204 may connect a set of applications to a communi-
cation interconnect fabric to form a set of connections,
wherein each application in the set of applications 1s inter-
connected and each individual connection has a set of
integration paths defined, including a default path. Processor
unit 204 may monitor the set of connections to determine
whether a performance metric for a specific application in
the set of applications 1s within a predefined tolerance.
Responsive to a determination that the performance metric
for the specific application 1n the set of applications 1s not
within a predefined tolerance, processor unit 204 may
instruct a change 1n availability of a particular integration
component.

With reference to FIG. 3, a block diagram of a manage-
ment system operable for various embodiments of the dis-
closure 1s presented. Management system 300 1s an example
of a set of components for dynamic and selective manage-
ment of integration points using performance metrics of the
disclosure.

Management system 300 comprises a number of compo-
nents leveraging support of an underlying data processing,
system, for example, network data processing system 100 of
FIG. 1 and data processing system 200 of FIG. 2. Manage-
ment system 300 may include functional components,
including rules data structure 302, integration controller 304,
performance metrics data structure 306, correspondence
data structure 308, and cache data structure 310.

Rules data structure 302 may behave as a configurable
repository that stores existing rules and enables business and
technical users to add and customize rules on an as-needed
basis. For example, a user can specily a rule to instruct a
system to shut down a specific integration component when
a response time (of an applicable component) exceeds a
specified threshold for a predefined time duration. Rules
data structure 302 may be accessed and managed using an
interface such as an editor or other user interface. An
example of a rule structure i1s provided in FIG. 5.

Integration controller 304 may monitor a set of connec-
tions, wherein the itegration controller uses a set of select-
able rules maintained 1n a repository of performance-metric-
driven rules of rules data structure 302 and measurement
plugins used to populate performance metrics data structure
306. Integration controller 304 may include a set of soft
switches, wherein a soft switch 1s a logical element config-
ured to enable or disable a connection between component
pairs defining an integration point responsive to execution of
an associated rule of rules data structure 302. Integration
controller 304 may be configured to enable and disable
integration links under programmatic control.

Integration controller 304 need not correct or analyze a
problem using a performance observation; however the
controller can stop and start a predefined link when a
predetermined threshold is reached. Integration controller
304 may accordingly respond to values 1dentified 1n pertor-
mance metrics data structure 306, as defined 1in conditions
identified using rules of rules data structure 302.

Performance metrics data structure 306 may store mea-
surement values associated with a number of predetermined
component metrics representative of performance of a
respective component. Performance metrics data structure
306 may determine an action for a specified component
without having to incur overhead of determining a status of
the specified component each time a status 1s used. For
example, a response time measurement value associated
with a network component may be saved as a performance
metric for the specific network component 1n performance
metrics data structure 306.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Performance metrics data structure 306 may provide a
pluggable performance monitoring capability as a set of
selectable, pluggable, and customizable components for
measuring the values of metrics defined 1n rules data struc-
ture 302. A rule 1n rules data structure 302 may reference the
metric during rules processing and use the saved value rather
than interrogating the network component directly.

Correspondence data structure 308 may link performance
metrics, including service definitions and quality of service
for requests an application needs to process, to specific
protocols and integration channels used to integrate the
application with other components of a system. A relative
importance value may be assigned as an attribute to each
integration component based on performance metrics.

Optional cache data structure 310 may store data received
through integration points. The existence of cached data, for
example inventory information obtained from integration
with a third party inventory system, may enable use of a rule
defined to pick data from cache, rather than requiring use of
a real time integration request.

With reference to FIG. 4, a block diagram of component
relations 1n the management system 300 of FIG. 3, operable
for various embodiments of the disclosure, 1s presented.
Management system 400 1s an example of a set of compo-
nents for dynamic and selective management of integration
points using performance metrics of management system
300 of FIG. 3.

In the example of management system 400, component
402 through component 412 communicate through a com-
munication fabric containing integration controller 420 to
form defined pairs of integration points. The defined pairs of
integration points may be defined in relationships, such as a
one to one, one to many, and a many to one relationships.

For example, component 402, component 404, and com-
ponent 406 may communicate with component 408 and
component 410, to define a portion of set of integration
points. Component 414 may be paired with component 412
to form another integration point.

Integration controller 420 may contain soit switch 416
and soft switch 418 to control communication links for the
defined integration points. Soit switch 416 may be under
programmatic control to enable or disable communication
links connecting component 402, component 404, and com-
ponent 406 with respect to component 408 and component
410. In a similar manner, soft switch 418 may be under
programmatic control to enable or disable communication
links connecting component 414 with component 412.

The soft switch elements of integration controller 420
may be functional logical elements typically implemented in
software as needed. An analogy for the soft switch of
integration controller 420 1s a circuit breaker, because once
a predefined condition 1s reached, an action i1s performed
aflecting an associated pair of components. For example, the
action specified may disconnect a specified component for a
predetermined time period and may additionally specity a
number of retries before stopping completely. In addition, as
part of the rules framework, a policy for restoring the
integration component may be specified using a time-based
rule, such as “retry after 30 minutes™ or using a predefined
value, for example, “retry after requests per hour metric 1s
less than 10,000.”

Management system 400 may reduce complexity of com-
ponent logic from the logic of an integration point. For
example, using the system may enable a predefined rule
expressed as “when average response time for the integra-
tion Point A takes more than 1 sec, stop sending requests to
Point A for 30 minutes,” where Point A can be a previously

US 9,674,060 B2

9

defined integration point, to exercise control 1n a program-
matic manner. The system may therefore be responsive to a
measurable condition of a rule being determined and a
corresponding action taken. Embodiments of the disclosed
system can be implemented, for example, as part of an
on-premise software product or part of a cloud-based
deployment without loss of functionality.

With reference to FIG. 5, a block diagram of a rule
construct used 1n a management system operable for various
embodiments of the disclosure 1s presented. Rule construct
500 1s an example of a rule format as used within a set of
rules for dynamic and selective management of integration

points using performance metrics of management system
300 of FIG. 3.

Rule construct 500 comprises a number of clements
including component 302, condition 304, action 506, notily
508 and cache 510. Each element of a rule may define a
portion of an executable rule responsive to the performance
metrics as defined 1n management system 300 of FIG. 3. An
clement may be an explicit value associated with a param-
cter or may be optionally used with a default value.

Component 502 may 1dentity the application or applica-
tion component that 1s the focus of a particular rule state-
ment and 1s affected during processing of the applicable rule.
The 1dentified application or application component may be
identified from a set of integration points 1n which pairs of
applications or application components are 1dentified using
correspondence data structure 308 of management system
300 of FIG. 3. For example, using a pair of Application A
and Application B, forming integration points defined 1n the
correspondence table, enables use of either A or B or a
combination of A and B 1n a rule definition.

Component or application component refers to an iden-
tifiable unit (logical, physical, or a combination) that rep-
resents a measurable and managed portion of a data pro-
cessing system. For example, a component can specily a
disk drive or a collection of disk drives, a subsystem, or a
portion of an application such as a payment-processing
portion or a communication interface. The components and
associated relationships may be identified using correspon-
dence data structure 308 of management system 300 of FIG.
3.

Condition 504 may provide a capability to define an
expression 1n the form of a combination of portions, includ-
ing a performance metric, an operator and a value. The
condition identifies a test to be evaluated before a corre-
sponding action 1s taken. For example, a performance metric
such as “average response time” (associated with the a
named component in the statement) may be provided in a
first portion of the condition element. A second portion may
state a specific arithmetic operator, for example “greater
than™ to indicate a specification of limit or threshold. And a
third portion may specily a value, which may be a simple
numeric with implied units (for example, 15) or a combi-
nation of a numeric value and units stated (for example, 5
seconds). The condition may be evaluated to determine an
outcome of true or false.

Action 506 may provide a capability to specifically 1den-
tify what processing 1s to occur as a consequence ol deter-
mimng a condition to be one of true or false. For example,
when the condition evaluates to true, a sequence of mstruc-
tions may be performed causing the named component to
have communications suspended for a predetermined time
period, and after the predetermined time period, a retry
operation mat be performed to establish communications.
The sequence may be repeated when defined as a repeating

5

10

15

20

25

30

35

40

45

50

55

60

65

10

sequence for a predetermined number of repetitions. When
the condition evaluates to false, no action 1s taken in the
given example.

Notity 508 may be an optional element enabling notifi-
cation of an identified application, application component,
or user upon evaluating a condition as true. Notification may
therefore be used to trigger another operation in another
component or simply to inform or to log an occurrence of the
condition.

Cache 510 1s an optional element enabling use of cache
data rather than interrogating a component during resolution
of the condition. For example, when cache 1s enabled,
evaluation of a particular rule may use cache data obtained
prior to processing of the rule. Use of cache may therefore
avold repeated interrogation of a related component and
associated overhead. Cache data may be accumulated asyn-
chronously to the operation of the management system by
well-known methods to populate a cache data structure for
identified components 1n subsequent use. Caching may also
permit methods to be used to collect information for com-
ponents, which may not have the capability to respond to a
real time query for performance metric information.

When cache 1s disabled, a performance metric for a
specified component may be obtamned in real time for
evaluation (real time 1n relation to a rule being processed).
Caching may be typically enabled.

With reference to FIG. 6, a tlow chart of a high-level view
of a method 600 using a management system operable for
various embodiments of the disclosure 1s presented. Method
600 1s a high level example of a method using the set of rules
for dynamic and selective management of integration points

using performance metrics of management system 300 of
FIG. 3.

Method 600 begins (block 602) and connects a set of
applications (including associated application components)
to a communication interconnect fabric to form a set of
connections (block 604). The applications, including the
application components, may be interconnected and each
individual connection may have a set of integration paths
defined including a default path. The integration paths may
be defined and managed in correspondence data structure
308 of management system 300 of FIG. 3.

Method 600 monitors the set of connections using an
integration controller (block 606). The integration controller
may use a set of selectable rules maintained 1n a repository
of performance metric driven rules and measurement plu-
gins to determine when a predefined action involving one or
more of the applications, including the application compo-
nents, 1s required to be performed. Method 600 determines
whether a performance metric for a specific application or a
specific application component 1s within a predefined toler-
ance (block 608). Monitoring may determine whether a
predefined condition for a particular combination of com-
ponents forming an integration point i1s reached.

According to method 600, responsive to a determination
that a performance metric for a specific application or a
specific application component 1s not within (1.e., exceeds)
a predefined tolerance of a particular rule, the integration
controller instructs a change 1n availability of the integration
component (block 610) and terminates thereafter (block
612). The change 1n availability may cause an associated
state change to occur in the specific application. The asso-
ciated state change may remain 1n effect for a predetermined
time period (as indicated in the applicable rule) until the
integration controller restores the original state (as defined 1n
the applicable rule). For example, a rule may state “when
component A has an average response time greater than 1

US 9,674,060 B2

11

second” (the condition), then “disable communication” (the
action), “restore after 30 seconds” (the predetermined period
of time), “notily operator” (noftification 1s enabled and
directed to the operator), and “cache enable (cache usage 1s
enabled and directed to the cached data associated with the
component). IT the condition 1s evaluated to be true, the
communication link for the component may be disabled, but
the link may be enabled after 30 seconds and subsequently
evaluated.

With reference to FIG. 7, a flow chart of a detail-view of
a method 700 using the management system operable for
various embodiments of the disclosure 1s presented. Method
700 1s a detailed example of a method using the set of rules
for dynamic and selective management of integration points

using performance metrics of management system 300 of
FIG. 3.

Method 700 begins (block 702) and links performance
metrics, including service defimtions and quality of service
for requests an application needs to process, to specific
protocols and integration channels used to integrate the
application with other components of a system (block 704).
The linkage may be defined using a data structure such as
correspondence data structure 308 of management system
300 of FIG. 3. The links defined therein may provide pairs
of applications forming integration points.

Method 700 assigns a relative importance value as an
attribute to each integration component based on pertor-
mance metrics (block 706). The relative importance pro-
vides a capability to manage the application according to
importance ranking. For example, when the performance
metric 1s not within a predefined tolerance, a further deter-
mination using the relative importance value may enable
more precision proportional to the relative importance in
iitiating a change to the application.

Method 700 connects applications and application com-
ponents to a communication interconnect fabric to form a set
of connections (block 708). Each of the applications and the
application components may be interconnected, and each
individual connection may have a set of integration paths
defined including a default path. Method 700 monitors the
set of connections using an integration controller (block
710). The integration controller may use a set of selectable
rules maintained 1 a repository ol performance metric
driven rules and measurement plugins such as rules data
structure 302 and performance metrics data structure 306 of
management system 300 of FIG. 3.

Method 700 determines whether a cache 1s enabled (block
712). Cache data may or may not be used 1n association with
a specific set of integration paths. Responsive to a determi-
nation that cache 1s enabled, method 700 uses cache data for
the set of connections being monitored (block 714). Respon-
sive to a determination that cache 1s not enabled, method 700
obtains data for the set of connections being monitored
(block 716). Obtaiming data may require interrogating a
component to retrieve current status and performance metric
information representative of the particular component asso-
ciated with the set of connections being monitored.

Method 700 determines whether a performance metric for
a specific application and a specific application component
1s within a predefined tolerance (block 718). Responsive to
a determination that a performance metric for a specific
application and a specific application component 1s within a
predefined tolerance, method 700 loops back to perform
block 710 as before. Responsive to a determination that a
performance metric for a specific application and a specific
application component 1s not within a predefined tolerance,
method 700, using the integration controller, instructs a

10

15

20

25

30

35

40

45

50

55

60

65

12

change 1n availability of the particular integration compo-
nent (block 720). Instructing a change in availability of the
particular mtegration component may cause a state change
to occur 1n the particular component. The state change may
remain for a predetermined time period until an original
state 1s again restored using the integration controller.

Method 700 determines whether notily 1s enabled (block

722). Responsive to a determination that notily 1s not
enabled, method 700 terminates (block 728). Responsive to
a determination that notily i1s enabled, method 700 obtains
data for a notification associated with the component of the
integration point (block 724). Method 700 sends the notifi-
cation associated with the change mvolving the integration
component (block 726) and terminates thereafter (block
728).

Thus 1s presented an illustrative embodiment of a com-
puter-implemented method for dynamic management of
integration points, where that method connects a set of
applications to a communication interconnect fabric to form
a set of connections, wherein each application in the set of
applications 1s interconnected and each individual connec-
tion has a set of integration paths defined including a default
path. The set of connections may be monitored to determine
whether a performance metric for a specific application in
the set of applications 1s within a predefined tolerance.
Responsive to a determination that the performance metric
for the specific application 1n the set of applications 1s not
within a predefined tolerance, the computer-implemented
method may 1nstruct a change 1n availability of a particular
integration component.

The flowchart and block diagrams 1n the figures 1llustrate
the architecture, functionality, and operation of possible
implementations ol systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing a specified logical function. It
should also be noted that, in some alternative implementa-
tions, the functions noted 1n the block might occur out of the
order noted 1n the figures. For example, two blocks shown
In succession may, 1n fact, be executed substantially con-
currently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality imvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements 1n the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
1llustration and description, but 1s not intended to be exhaus-
tive or limited to the mnvention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the mmvention. The embodiment was chosen and
described 1 order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
vartous embodiments with various modifications as are
suited to the particular use contemplated.

US 9,674,060 B2

13

The 1invention can take the form of an entirely hardware
embodiment, an enfirely software embodiment or an
embodiment containing both hardware and software ele-
ments. In a preferred embodiment, the invention 1s 1mple-
mented 1n software, which includes but i1s not limited to
firmware, resident software, microcode, and other software
media that may be recognized by one skilled 1n the art.

It 1s important to note that while the present invention has
been described 1n the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable data storage medium having computer executable
instructions stored thereon 1n a variety of forms. Examples
of computer readable data storage media include recordable-
type media, such as a floppy disk, a hard disk drive, a RAM,
CD-ROMs, DVD-ROMs. The computer executable mstruc-
tions may take the form of coded formats that are decoded
for actual use 1n a particular data processing system.

A data processing system suitable for storing and/or
executing computer executable mstructions comprising pro-
gram code will include at least one processor coupled
directly or indirectly to memory elements through a system
bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening I/0O
controllers.

Network adapters may also be coupled to the system to
cnable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modems, and Ethernet cards are just a few
of the currently available types of network adapters.

What 1s claimed 1s:
1. A computer-implemented method for dynamic man-
agement ol integration points, the computer-implemented
method comprising:
connecting a set of applications to a communication
interconnect fabric to form a set of connections,
wherein each application in the set of applications 1s
interconnected and each individual connection has a set
of 1ntegration paths defined including a default path;

adding a first rule to a rule repository, wherein the first
rule 1s user-defined, and wheremn the rule repository
comprises a plurality of rules defimng management of
the set of applications;

monitoring the set of connections of the communication

interconnect fabric to determine whether a performance
metric for a specific application 1n the set of applica-
tions 1s within a predefined tolerance associated with
the first rule in the rule repository; and

responsive to a determination that the performance metric

for the specific applications 1n the set of applications
connected through the communication interconnect
fabric, 1s not within the predefined tolerance, instruct-
ing a change in availability of an integration compo-
nent;

wherein the integration component 1s associated with the

specific application and 1s integrated with the commu-
nication interconnect fabric:

5

10

15

20

25

30

35

40

45

50

55

60

65

14

wherein the change 1n availability of the integration
component causes a state change of the specific appli-
cation, and wherein the state change remains effective
for a time period that 1s based on the first rule.

2. The computer-implemented method of claim 1,
wherein connecting the set ol applications to the commu-
nication interconnect fabric to form a set of connections
COmprises:

linking performance metrics, including one or more ser-

vice definitions and a quality of service for requests
cach application needs to process, to one or more
protocols and integration channels used to integrate the
specific application with other components of a system,
wherein a linkage 1s defined using a correspondence
data structure, and wherein the links defined therein
provide one or more pairs ol applications forming
integration points; and

assigning a relative importance value as an attribute to the

integration component using the performance metrics.

3. The computer-implemented method of claim 1,
wherein monitoring the set of connections comprises:

determining whether cache 1s enabled;

responsive to a determination that cache 1s enabled, using

cache data for the set of connections being momitored;
and

responsive to a determination that cache 1s not enabled,

obtaining data for the set of connections being moni-
tored.

4. The computer-implemented method of claim 3,
wherein obtaining data for the set of connections being
monitored comprises:

obtaining data 1n real time by interrogating the integration

component to retrieve current status and performance
metric information representative ol the integration
component associated with the set of connections being
monitored.

5. The computer-implemented method of claim 1,
wherein instructing a change in availability of the integra-
tion component comprises:

determiming whether notify 1s enabled;

responsive to a determination that notify 1s enabled,

obtaining data for notification associated with the inte-
gration component; and

sending the notification for the change associated with the

integration component.
6. A computer program product comprising a non-transi-
tory computer readable storage medium having computer
readable program code embodied thereon, the computer
readable program code executable by a processor to perform
a method for dynamic management of integration points, the
method comprising:
connecting a set ol applications to a communication
interconnect fabric to form a set of connections,
wherein each application 1n the set of applications 1s
interconnected and each individual connection has a set
of integration paths defined including a default path;

adding a first rule to a rule repository, wherein the first
rule 1s user-defined, and wherein the rule repository
comprises a plurality of rules defimng management of
the set of applications;

monitoring the set of connections of the communication

interconnect fabric to determine whether a performance
metric for a specific application 1n the set of applica-
tions 1s within a predefined tolerance associated with
the first rule 1n the rule repository; and

responsive to a determination that the performance metric

for the specific applications 1n the set of applications

US 9,674,060 B2

15

connected through the communication interconnect
fabric, 1s not within the predefined tolerance, instruct-
ing a change in availability of an integration compo-
nent;
wherein the integration component 1s associated with the
specific application and 1s integrated with the commu-
nication interconnect fabric;
wherein the change in availability of the integration
component causes a state change of the specific appli-
cation, and wherein the state change remains etlective
for a time period that 1s based on the first rule.
7. The computer program product of claim 6, wherein
connecting the set of applications to the communication
interconnect fabric to form a set of connections comprises:

linking performance metrics, including one or more ser-
vice definitions and a quality of service for requests
cach application needs to process, to one or more
protocols and 1ntegration channels used to integrate the
specific application with other components of a system,
wherein a linkage 1s defined using a correspondence
data structure, and wherein the links defined therein
provide one or more pairs ol applications forming
integration points; and

assigning a relative importance value as an attribute to the

integration component using the performance metrics.

8. The computer program product of claim 6, wherein
monitoring the set of connections comprises:

determining whether cache 1s enabled;

responsive to a determination that cache 1s enabled, using

cache data for the set of connections being monitored;
and

responsive to a determination that cache i1s not enabled,

obtaining data for the set of connections being moni-
tored.

9. The computer program product of claim 8, wherein
obtaining data for the set of connections being monitored
COmMprises:

obtaining data in real time by interrogating the integration

component to retrieve current status and performance
metric imformation representative of the integration
component associated with the set of connections being
monitored.

10. The computer program product of claim 6, wherein
instructing a change in availability of the integration com-
ponent comprises:

determining whether notity 1s enabled;

responsive to a determination that notify 1s enabled,

obtaining data for notification associated with the inte-
gration component; and sending the notification for the
change associated with the integration component.

11. An apparatus for dynamic management of integration
points, the apparatus comprising:

a memory, and

a computer processing device coupled with the memory
and configured to: connect a set of applications to a
communication interconnect fabric to form a set of
connections, wherein each application in the set of

10

15

20

25

30

35

40

45

50

55

16

applications 1s interconnected and each individual

connection has a set of integration paths defined

including a default path;

add a first rule to a rule repository, wherein the first rule
1s user-defined, and wherein the rule repository com-
prises a plurality of rules defining management of the
set of applications;

monitor the set of connections of the communication
interconnect fabric to determine whether a perfor-
mance metric for a specific application in the set of
applications 1s within a predefined tolerance associ-
ated with the first rule 1n the rule repository; and

responsive to a determination that the performance
metric for the specific applications i1n the set of
applications connected through the communication
interconnect fabric, 1s not within the predefined
tolerance, instruct a change in availability of an
integration component;

wherein the integration component 1s associated with
the specific application and 1s integrated with the
communication interconnect fabric;

wherein the change 1n availability of the integration
component causes a state change of the specific
application, and wherein the state change remains

ellective for a time period that 1s based on the first

rule.

12. The apparatus of claim 11, the computer processing
device being further configured, in connecting the set of
applications to the communication interconnect fabric to
form a set of connections, to:

link performance metrics, including one or more service

definitions and a quality of service for requests each
application needs to process, to one or more protocols
and integration channels used to integrate the specific
application with other components of a system,
wherein a linkage 1s defined using a correspondence
data structure, and wherein the links defined therein
provide one or more pairs ol applications forming
integration points; and

assign a relative importance value as an attribute to the

integration component using the performance metrics.

13. The apparatus of claam 11, the computer processing
device being further configured, in monitoring the set of
connections, to:

determine whether cache 1s enabled;

responsive to a determination that cache i1s enabled, use

cache data for the set of connections being momitored;
and

responsive to a determination that cache 1s not enabled,

obtain data for the set of connections being monitored.

14. The apparatus of claim 11, the computer processing
device being further configured, 1n mstructing a change 1n
availability of the integration component, to: determine
whether notily 1s enabled; responsive to a determination that
notily 1s enabled, obtain data for notification associated with
the integration component; and send the notification for the
change associated with the integration component.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

