12 United States Patent
Kiriansky

US009665498B2

US 9,665,498 B2
May 30, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

MEMORY MANAGEMENT USING
TRANSPARENT PAGE TRANSFORMATION

Inventor: Vladimir L. Kiriansky, Alameda, CA
(US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1135 days.

Appl. No.: 12/182,989

Filed: Jul. 30, 2008

Prior Publication Data

US 2010/0030998 Al Feb. 4, 2010

Int. CI.

GoOol 12/10 (2016.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC Gool’ 12/10 (2013.01); GO6F 2212/401
(2013.01)

Field of Classification Search

P e GO6F 12/10

U S P e 711/154

See application file for complete search history.

100

VM2

(56) References Cited
U.S. PATENT DOCUMENTS
6,167,490 A * 12/2000 Levyetal. 711/148
7,050,352 B2 1/2010 Fuhetal 707/696
7,721,064 B1* 5/2010 Lametal. 711/170
7,739,250 B1* 6/2010 Hamilton et al. 707/690
2006/0161751 Al1* 7/2006 Barrsetal. 711/170
2007/0094312 Al1* 4/2007 Sim-Tang 707/204
2007/0288533 Al* 12/2007 Srivastava et al. 707/203
2008/0005489 Al* 1/2008 Watkins et al. 711/147
2009/0049271 Al* 2/2009 Schneider 711/206

* cited by examiner

Primary Examiner — Yaima Rigol
Assistant Examiner — Gautam Sain

(57) ABSTRACT

Memory space 1s managed to release storage area occupied
by pages similar to stored reference pages. The memory 1s
examined to find two similar pages, and a transformation 1s
obtained. The transformation enables reconstructing one
page from the other. The transformation 1s then stored and
one of the pages 1s discarded to release its memory space.
When the discarded page 1s needed, the remaining page 1s
fetched, and the transformation 1s applied to the page to
regenerate the discarded page.

14 Claims, 3 Drawing Sheets

PROCESSOR 135

US 9,665,498 B2

Sheet 1 of 3

May 30, 2017

U.S. Patent

\\IIII.....

_ ‘T)
vec 43INNCO | SET H0SSIN0Nd
19vd 313730 et
F..I — —
Cle
MIINIOd JHOLS
ON
=TT TS~ —
T~ LOIORAdRL <81 -7 QA SIHA
GI¢ ¢ol 201 T01
NO| LYWHOASNYYL NIV 190 WA A A

G0¢
JOVd dVTIWIS ONT4

00¢
49¥d 4ONJ4444d 104148

U.S. Patent May 30, 2017 Sheet 2 of 3 US 9,665,498 B2

START

RECEIVE PAGE
REQUEST
300

PAGE

FETCH

AVAILABLE? A REFERENCED PAGE
909 919
YES
FETCH TRANSFORM
920
FETCH PAGE
310
APPLY TRANSFORM
T0 REF. PAGE
929

DELIVER PAGE
990

DONE

Fig. 3

U.S. Patent May 30, 2017 Sheet 3 of 3 US 9,665,498 B2

Obtain addend by examining the stored
page and the reference page to determine
whether there 1s one addend that 1s
common to all memory locations of the
stored page having a stored value
different from corresponding reference
values stored on the reference page.

Step 401

Determine that all of the calculated
differences have one addend in common.

Step 402

Select the addend and store the addend
with pointers to all of the locations on
the reference page that have been found
to be different form the stored page.

Step 403

Fig. 4

US 9,665,498 B2

1

MEMORY MANAGEMENT USING
TRANSPARENT PAGE TRANSFORMATION

BACKGROUND

Most modern computers include at least one form of data
storage that has programmable address translation or map-
ping. In most computers, this storage will be provided by a
relatively high-speed system memory, which 1s usually
implemented using random-access memory (RAM) compo-
nents (DRAM and SRAM).

Although system memory 1s usually fast, it does have 1ts
weaknesses. First, 1t 1s usually volatile. Second, for a given
amount of data to be stored, system memory takes up more
physical space within the computer, 1s more expensive, and
requires more support 1n terms of cooling, component sock-
cts, etc., than does a conventional non-volatile storage
device such as a disk. Thus, whereas many gigabytes of disk
storage are commonly included in even computers in the
relatively unsophisticated consumer market, such computers
seldom come with more than a few GB of system RAM.

Because higher speed access to stored data and code
usually translates into faster performance, 1t 1s generally
preferable to run as much of an active application from
system memory as possible. Indeed, many applications
requiring real-time processing of complex calculations, such
as voice-recognition software, interactive graphics, etc., will
not run properly or run at all unless a certain amount of
RAM 1s reserved for their use while running.

High-speed system memory 1s a limited resource and, as
with most limited resources, there 1s often competition for 1t.
This has become an even greater problem in modern multi-
tasked systems, 1n which several applications may be run-
ning or, at least resident 1n memory, at the same time. Even
where there 1s enough memory 1n a given system for all of
the applications that need it, 1t 1s still often advantageous to
conserve memory use: RAM costs money, and consumes
both energy and physical space. More eflicient management
of RAM can reduce the cost, energy, or physical space
required to support a given workload. Alternatively, more
cilicient management of RAM can allow a system to support
a larger number of applications with good performance,
given a lixed monetary, energy, or physical space budget.

Using known virtualization techniques, multiple virtual
machines (VMs), each having a guest operating system, may
share a single physical host. When several VMs are execut-
ing on one physical host, there 1s an opportunity for con-
solidating memory as various VMs may use identical or
similar pages. One technique for reducing the amount of
system memory required for a given workload, and thereby
for eflectively “expanding” the amount of available system
memory, 1s to implement a scheme whereby different VMs
share the memory space. Transparent page sharing, in the
context of a multi-processor system on which virtual
machines are runming, 1s one known method for saving
RAM space. The basic 1dea 1s to save memory by eliminat-
ing redundant copies of memory pages, such as those that
contain program code or file system bufler cache data. This
1s especially important for reducing memory overheads
associated with running multiple copies of operating sys-
tems (e.g., multiple guest operating systems each running in
a respective virtual machine). Further related information 1s
provided 1n U.S. Pat. No. 6,075,938, to Bugnion, et al.,
“Virtual Machine Monitors for Scalable Multiprocessors,”
issued 13 Jun. 2000 (*Bugnion “938”).

According to another technique, the contents of pages in
memory are hashed and their hash numbers are compared to

10

15

20

25

30

35

40

45

50

55

60

65

2

identify potentially i1dentical pages. The entire content of
potentially positive candidates 1s compared to verily that
they store 1dentical content. When 1dentical pages are found,
only one 1s selected and protected by using a known copy-
on-write (COW) techmique, while the other page 1s elimi-
nated to free the memory space. This technique 1s particu-
larly advantageous 1n that 1t does not require any
modification of the guest operating system (OS). Further

relevant information 1s described 1n U.S. Pat. No. 6,789,156,
to Waldspurger, “Content-Based, Transparent Sharing of

Memory Units,” 1ssued Sep. 7, 2004.

SUMMARY

The following summary of the mvention 1s mtended to
provide a basic understanding of the memory management
described herein.

Memory 1s managed so as to reduce redundant data
storage without having to rely on i1dentical content of pages.
For example, two similar pages are selected and a transfor-
mation 1s obtained. The transformation enables reconstruct-
ing one page from the other. The transformation 1s then
stored and one of the pages 1s discarded to release its
memory space. When the discarded page 1s needed, the
remaining page 1s fetched, and the transformation 1s applied
to the page to regenerate the discarded page. The memory
management may be executed by, e.g., the operating system
ol a non-virtualized computer system or a guest operating
system 1n a virtual machine, virtualization software, etc.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated 1n
and constitute a part of this specification, together with the
description, serve to explain and illustrate principles of the
invention. The drawings are intended to illustrate major
features 1 a diagrammatic manner. The drawings are not
intended to depict every feature of actual embodiments.

FIG. 1 1illustrates an example of a virtualized computer
system.

FIG. 2 1s a high-level flow chart illustrating, by way of
example, a process for reducing redundant data storage.

FIG. 3 1s a high-level flow chart illustrating, by way of
example, a process for fetching a stored page or regenerating
a discarded page.

FIG. 4 1s a high-level flow chart illustrating, by way of
example, a process for obtaining transformation information
by which a stored page can be re-created from a reference

page.

DETAILED DESCRIPTION

The mventor of the subject imvention has noted that
conventional methods for memory consolidation cannot be
used 1n cases where Address Space Layout Randomization
(ASLR) 1s enabled. ASLR 1s a computer security technique
which ivolves arranging the positions of key data areas,
usually including the base of the executable and position of
libraries, heap, and stack, randomly 1n a process’ address
space. Microsolt’s Windows Vista and Windows Server
2008 have ASLR enabled by default, while Apple intro-

duced randomization of some library oflsets in Mac OS X
v10.5.

The mventor of the subject invention has noted that any

address constructed by a running program and present in
either code or data will be different while ASLR 1s enabled.

Therefore, when ASLR 1s enabled, even if two processes

US 9,665,498 B2

3

represent the same content 11 RAM, due to ASLR’s ran-
domization, most stored pages that contain addresses are
unlikely to be i1dentical (especially when running in different
virtual machines). Consequently, memory consolidation
methods that rely on content hash value comparison or on
actual content comparison of pages would fail to 1dentily
such similar pages, and therefore fail to provide a mecha-
nism for consolidating the memory. That 1s, conventional
techniques are not applicable 1f the content of two almost
identical pages differ even 1n a single byte. Moreover, there
1s no way 1n the art to share only a subset of a page, partly
due to limited granularity of current CPU’s memory man-
agement units (MMU), since the minimum unit of sharing 1s
typically a single 4 KB page.

Various embodiments of the invention are generally
directed to methods for management of memory so as to
reduce redundant data storage without having to rely on
identity of pages. According to methods of the invention,
pages having substantial similarities are identified, and
consolidation methods are applied to the pages so as to
reduce memory utilization by discarding redundant pages.
Pointers and/or transformations are stored so as to be able to
reconstruct the discarded pages when needed.

FIG. 1 illustrates an example of a system benefiting from
implementation of embodiments of the invention. In FIG. 1
computing system 100 comprises physical hardware PHW
130, which includes memory, e.g., RAM 120, and processor
135. In this example, three virtual machines VM1, VM2 and
VM3 run on the physical hardware 130. Each wvirtual
machine VM1, VM2, VM3 comprises virtual hardware
VHW, a guest operatmg system, GOS, and one or more
applications APPL running thereon. Vlrtuahzatlon soltware
may include one or more layers of software logically inter-
posed between and interfacing with physical hardware 130
and each VM. Virtualization software can include, for
example, a virtual machine monitor VMM 101, 102, 103, for
cach virtual machine and a VM kernel (VMK) or virtual
machine driver (VMD), as generally known 1n the field of
virtualization. The VM kernel, or for hosted implementation,
the VM driver, 1s 1llustrated as block VMK/VMD 140. Both
the OS and any running application requires certain pages to
be stored 1n memory 120. The storage of the pages 1s
managed by virtual memory manager 101, 102, and 103. As
can be understood, if two VM’s run the same OS, they
would store duplicate pages 1n memory 120, thereby need-
lessly consuming memory capacity. As noted above, the
present 1mventor has noted that conventional methods for
ehmmatmg such duphcatlon of pages cannot be utilized
when, for example, ASLR 1s enabled or when the pages are
otherwise not totally identical. Therefore, 1n this example,
similar pages are 1dentified and a transformation procedure
1s implemented to allow discarding one of two similar pages.

FIG. 2 1s a high-level flow chart illustrating a process
according to an embodiment of the invention. In step 200
one of the pages 1s selected to serve as a relference page.
Then, at step 205, a search 1s made to 1dentily similar pages
to the reference page. Finding similar pages may be done in
one or more steps. For example, stmilar pages may be found
in a single step by simply comparing the entire content of all
pages 1 the memory to the reference page. The order of
pages to be compared may be determined by randomly
selecting pages for comparison with the reference page,
applying heuristics for selecting pages for comparison, etc.
On the other hand, finding similar pages may be a two-step
process. For example, 1n a first step the pages” headings may
be compared to identify potentially similar pages. The first
step 1s then followed by a second “verification” step 1n

10

15

20

25

30

35

40

45

50

55

60

65

4

which the entire content of the 1dentified candidate pages 1s
compared to verily that the pages are indeed similar.

When two similar pages are 1dentified, at 215 a transior-
mation 1s obtained to enable subsequent generation of one
page from the other by applying a reverse transformation.
Various manners for obtaining the transformation are
detailed further below. According to this embodiment, after
a transformation 1s obtained an optional comparison step
220 1s implemented to check whether storing the transior-
mation would require an unacceptable memory space. For
example, the size of the transformation may be compared to
the si1ze of the similar page, to a preset threshold, to the size
of the similar page less a bufler amount, etc. If 1t was
determined that the size of the transformation 1s too large,
the process reverts to step 200 to select another reference
page, or to step 205 for searching another similar page.
Whether to revert to step 200 or step 205 can be pre-
programmed beforehand and the selection may depend on
various parameters, €.g., it all pages were already compared
to the reference page, the process may revert to step 200,
while 11 not all pages were compared to the reference page,
the process may revert to step 205. It should be appreciated,
however, that step 220 may be incorporated into, and
performed at the same time that, step 213 1s performed. Such
an arrangement would enable aborting the transformation
carly, 1.e., when 1t becomes clear that 1t would require too
much memory space to store.

If 1n step 220 1t was determined that the size of the
transformation 1s acceptable, or 1f step 220 1s not 1mple-
mented, the transformation 1s stored at step 225 and the
similar pages 1s discarded at step 230, so that its memory
space may be released as an available resource. In this
regard, 1f the transformation has been previously stored, a
pointer to the storage location of the transformation may be
stored 1nstead of re-storing the transformation itself, and a
corresponding optional reference counter may be incre-
mented at 235 to track the pointers. The process then reverts

to step 200 or 205, according to the program, as explained
above.

FIG. 3 1s a high-level flow chart illustrating, by way of
example, a process for fetching a stored page. When an
application attempts to access a page, the request 1s received
at step 300. If the page exists in the memory (1.e., yes at step
305) the page 1s fetched at 310 and 1s delivered at step 330.
On the other hand, if 1t 1s a page that was previously
discarded for memory conservation, the reference page 1s
fetched at 315 and the corresponding transformation 1is
fetched at 320. The transformation 1s then applied to the
reference page at 325. The transformation may be applied to
the reference page itsell 1n place, or 1n a copy of the
reference page, to thereby reconstitute the discarded page.
The reconstituted page 1s then delivered at 330.

For example, VM1 may need access to a specific page, so
the translation tables in VMMI1 are checked by processor
135 for the proper address in memory space 111 of RAM
120. However, when the page has been deleted due to the
memory management process, a page fault 1s 1ssued. The
VMK/VMD 140 then executes the process to reconstitute
the page from the reference and the stored transformation.
The process may also be implemented when all of the
memory needs to be reconstituted, e.g., for taking a VM
snapshot to write all memory to disk, for migrating a VM to
another host, etc. Of course, rather than reconstituting the
pages, 1l a reference page 1s already present in the snapshot
or 1n the migrated copy, a transformation pointer may be
recorded instead.

US 9,665,498 B2

S

According to one embodiment, referred to herein as
relocation transformation, a stored page similar to a refer-
ence page 1s 1dentified. An addend enabling transformation
of the reference page to the stored page i1s obtained. The
addend may have been previously stored, e.g., alter per-
forming a prior transformation, previously stored by the OS,
etc. This transformation 1s most applicable to code or read
only pages of an executable or a library that are relocated at
different addresses 1n different processes. According to one
embodiment, as shown 1n FIG. 4, the addend 1s obtained by
examining the stored page and the reference page to deter-
mine whether there 1s one addend that 1s common to all
memory locations of the stored page having a stored value
different from corresponding reference values stored on the
reference page (step 401). For example, the difference can be
calculated for each stored value that i1s different from a
corresponding reference value. I all of the calculated dii-
terences have one addend 1n common (step 402), the addend
1s selected and 1s stored (step 403), together with pointers to
all of the locations on the reference page that have been
found to be different from the stored page.

In some cases there may be more than one addend,
however, so long as one addend 1s common to all locations,
it may be selected as the addend for the reconstruction of the
page. For example, one may consider the following two
strings from two pages:

Reference page: 00 12 34 56 78 9A BC

Stored page: 00 12 34 57 78 9A BC

When one compares the first 4 bytes of each string, one
may obtain the difference (potential addend) as being
0x0001. On the other hand, 1f the comparison 1s made
starting at the second byte, one gets the difference to be
0x0100. Therefore, the comparison needs to proceed over all
the entries of the two pages to find all possible differences.
Then all of the diflerences need to be examined to determine
whether there 1s at least one addend that 1s common to all of
the differences. For the above case, either 0x0001 or 0x0100,
with the appropriate pointer, can be used as an addend.

The addend 1s then stored together with a string indicating,
all locations on the reference page where the addend should
be applied 1n order to reconstruct the stored page. The stored
page can then be dropped. When a process attempts to access
the dropped page, the reference page 1s retrieved and trans-
tformed using the stored locations and the addend value. This
method 1s highly scalable, as for example, for n similar
pages one only need to store any page as a relerence page,
one set of addend locations, and one addend value for each
page, which require very little memory space and, for
example, a total of 2 pages of memory can fully describe 100
to 1000 pages.

According to another embodiment, referred to herein as
delta transformation, a page 1s compared to a reference, and
a set of vectors, each comprising a location value and an
addend value, are stored. The page 1s then dropped. When a
process attempts to access the dropped page, the reference
page 1s retrieved and transformed using the vector set. While
this embodiment reduces memory space whenever the vec-
tor size 1s smaller than a page size, 1t 1s less economical than
the relocation transformation embodiment, as for n views 1t
requires n vector sets. However, 1t 1s a more general trans-
formation as there are more opportunities for finding such
‘stmilar’ data pages, since each vector may be associated
with different addend. That 1s, the requirement for finding a
common addend for the entire page 1s obviated.

Other more specialized transformation functions may also
be applicable 1n some more limited scenarios. A page may
be described simply as a truncated version of another page,

10

15

20

25

30

35

40

45

50

55

60

65

6

and only needs to store the last nonzero position; or as the
shifted content of another page. More generally, a single
page can be described by random subsequences ol content
present 1n multiple other pages. Additional transformations
on the content of otherwise identical pages may be XORed
with a random cookie value, and only that random value
needs to be stored; or similarly the iitialization vector of a
block cipher may be stored 1f pages are encrypted.

Any future transformation functions can be used in a
manner similar to this invention. Viable transformation
functions need to use substantially less memory to fully
reconstruct the content of multiple pages; must keep latency
on reconstructing pages on demand competitive to alterna-
tive backing store and add minmimal CPU overhead; and
require minimal resource utilization for i1dentifying refer-

ence pages.

It should be understood that 11 the differences between the
stored page and the references page are large, storing the
transformation 1nformation may require unacceptable
memory space and reconstructing the page may require too
much computational resources. Therefore, a certain test may
be set to ensure that the mventive process actually saves
memory space and also does not overload the system. For
example, a threshold may be set that sets up a minimum
memory savings, below which the stored page 1s not dis-
carded. The size of the transformation information may then
be examined and the transformation may be stored only it
storage saving resulting from discarding the stored page and
storing the transformation information surpasses a threshold.
One also needs to track the CPU and memory utilization
costs of 1dentifying similar pages according to the transior-
mation functions for the whole system to be eflective and
potentially dynamically trade ofl between choices of func-
tions and throttle their aggressiveness.

It should also be appreciated that the size of the transior-
mation information depends on the resolution or granularity
of the pointer, 1.¢., the selection of the size of the addend. For
example, considering a location of 4 bytes, if only one 1s
different and we select the addend to be four-byte size, then
we waste 3 bytes for storing 1dentical data. Therefore, 1t may
be better to use a 1-byte size addend. On the other hand, 1
we select an addend of one-byte size, and three of the four
bytes are different, we will have to store three indexes and
three 1-byte addends, thereby consuming more memory for
index storage.

The resolution selection of the pointer depends on the
density of the expected changes on the pages, 1.e., 1f a bit
change 1s expected, a bit mode delta should be used, 1f a byte
change 1s expected, a byte mode delta should be used, and
if word change 1s expected, then words delta should be used.
Different resolution may be selected when relocation trans-
formation or delta transformation are implemented. For
relocation transformation, which is more proper for ASLR,
the addend size would depend on the size of the address used
by the OS. For example, in 32-bit Linux a 4-byte selection
1s proper, but since Windows OS always keeps the lower
2-bytes the same, one may use a 2-byte granularity, although
4-byte would work as well.

For delta transformation the selection would depend on
the expected change and may be set to the same granularity
for all the pages, different for every page, or even diflerent
for every location within the page. However, selecting
different size for each location may cause increase 1n
memory usage, as for each location we will have to indicate
the size of the transformation (generally two extra bits), so
it may be more beneficial to select one size for the entire

e

US 9,665,498 B2

7

page. Moreover, 1l several VMs are running, each may be set
differently. Similarly, different size can be selected for each
host.

The present invention has been described in relation to
particular examples, which are intended in all respects to be
illustrative rather than restrictive. Those skilled 1n the art
will appreciate that many different combinations of hard-
ware, software, and firmware will be suitable for practicing,
the present mvention. Moreover, other implementations of
the invention will be apparent to those skilled in the art from
consideration of the specification and practice of the inven-
tion disclosed herein. Various aspects and/or components of
the described embodiments may be used singly or 1in any
combination 1n the server arts. It 1s intended that the speci-
fication and examples be considered as exemplary only, with
a true scope and spirit of the invention being indicated by the
following claims.

We claim:

1. A non-transitory computer readable storage medium
embodying soitware instructions for managing memory
space, the soltware instructions causing a computer to
perform a method, the method comprising the steps of:

identifying a page, within a memory space of a random

access memory that 1s managed 1n units of pages, that
1s similar, but not 1dentical, to a reference page within
said memory space, wherein the 1dentified page and the
referenced page are each a single page 1n said memory
space;

obtaining transformation information enabling re-creation

of the identified page from the reference page;
storing at least one of the transformation mformation or a
pointer to the transformation mnformation; and,

deleting the 1dentified page, wherein the step of obtaiming
the transformation information comprises calculating a
set of vectors, each vector comprising an addend loca-
tion and an addend, the addend location i1dentifying a
location 1n the 1dentified page having a stored present
value different from a reference value stored at a
corresponding location on the reference page, the
addend equaling a difference between the stored pres-
ent value and the stored reference value.

2. A non-transitory computer readable storage medium
embodying solftware instructions for managing memory
space, the software instructions causing a computer to
perform a method, the method comprising the steps of:

identifying a page, within a memory space of a random

access memory that 1s managed 1n units of pages, that
1s similar, but not 1dentical, to a reference page within
said memory space, wherein the 1dentified page and the
referenced page are each a single page 1n said memory
space;

obtaining transformation information enabling re-creation

of the identified page from the reference page;

storing at least one of the transformation information or a

pointer to the transformation information; and,
deleting the identified page,

wherein the step of obtaining the transformation informa-

tion comprises determining one addend that 1s common
to all memory locations of the identified page having a
stored present value diflerent from corresponding ref-
cerence values stored on the reference page, the one
addend equaling a difference between each of the
stored present values and each of the corresponding
stored reference values.

3. The non-transitory computer readable storage medium
of claim 2, wherein the step of storing the transformation
information comprises storing the one addend and the

10

15

20

25

30

35

40

45

50

55

60

65

8

memory locations of the identified page having a stored
present value different from corresponding reference values
stored on the reference page.

4. The non-transitory computer readable storage medium
of claim 3, wherein the step of deleting of the 1dentified page
comprises releasing the memory space occupied by the
identified page.

5. The non-transitory computer readable storage medium
of claim 3, wherein the method further comprises the steps
of

fetching the reference page and applying the transforma-

tion information to the reference page to regenerate the
identified page on attempts to access the identified
page.

6. The non-transitory computer readable storage medium
of claim 3, wherein the step of i1dentifying of the page
comprises applying heuristics to a plurality of pages to
identify a page that 1s similar to the reference page.

7. The non-transitory computer readable storage medium
of claim 6, wherein the step of applying heuristics comprises
comparing page headers of the plurality of pages.

8. The non-transitory computer readable storage medium
of claim 3, wherein the step of identitying the page com-
prises randomly selecting at least one of the 1dentified page
and the reference page from a plurality of pages.

9. The non-transitory computer readable storage medium
of claim 3, wherein the step of obtaining the transformation
information comprises fetching previously calculated trans-
formation nformation from a storage location and main-
taining a reference counter to ensure one copy 1s 11 memory.

10. The non-transitory computer readable storage medium
of claim 3, wherein the method further comprises the steps
of:

examining a size of the transformation information and

performing the storing step only 1f storage saving
resulting from discarding the i1dentified page and stor-
ing the transformation information exceeds a threshold.

11. The non-transitory computer readable storage medium
of claim 3, wherein:

the computer comprises a virtualized computer system
having wvirtualization software logically interposed
between and interfacing with computer hardware and at
least one virtual machine having a guest operating

system and at least one application, the virtualization

software comprising the software 1nstructions for man-
aging the memory space; and

the steps of identifying the page, obtaining the transior-
mation information, the storing the at least one of the
transformation information or the pointer, and deleting
are performed by the virtualization software in the
virtualized computer system.

12. The non-transitory computer readable storage medium

of claim 3, further comprising the step of:

selecting a size of the addend prior to obtaining of the

transformation information.

13. The non-transitory computer readable storage medium
of claim 12, wherein the size of the addend 1s selected based
on an expected size of diflerences between the identified
page and the reference page.

14. The non-transitory computer readable storage medium
of claim 12, wherein the size of the addend 1s selected based
a memory address size used by an operating system of the
computer.

	Front Page
	Drawings
	Specification
	Claims

