12 United States Patent

Guo et al.

US009654772B2

US 9.654,772 B2
May 16, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

(58)

CONTEXT ADAPTIVE ENTROPY CODING
WITH A REDUCED INITIALIZATION VALUE
SE'T

Applicant: Qualcomm Incorporated, San Diego,
CA (US)

Inventors: Liwei Guo, San Diego, CA (US);
Muhammed Zeyd Coban, Carlsbad,
CA (US); Xianglin Wang, San Diego,
CA (US); Marta Karczewicz, San
Diego, CA (US)

Assignee: QUALCOMM Incorporated, San
Diego, CA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 538 days.

Appl. No.: 13/744,087

Filed: Jan. 17, 2013

Prior Publication Data

US 2013/0188700 Al Jul. 25, 2013
Related U.S. Application Data

Provisional application No. 61/588,604, filed on Jan.
19, 2012, provisional application No. 61/588,626,
filed on Jan. 19, 2012.

(56) References Cited
U.S. PATENT DOCUMENTS
6,894,628 B2 5/2005 Marpe et al.
7,190,289 B2 3/2007 Kobayashi et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1656817 A 8/2005
JP 2006279333 A 10/2006
(Continued)

OTHER PUBLICATTIONS

Bross, et al., “High efliciency video coding (HEVC) text specifi-
cation draft 6,” JCTVC-H1003, Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGI11, 8th Meeting: San Jose, CA, USA, Feb. 1-10, 2012, 259 pp.

(Continued)

Primary Examiner — Gims Philippe

(57) ABSTRACT

Techniques for coding data, such as, e.g., video data, include
coding a first syntax element, conforming to a particular type
of syntax element, of a first slice of video data, conforming
to a first slice type, using an mitialization value set. The

}}1;:11(\](1.7/1 b, (2006.01) techniques further include coding a second syntax element,
HO4N 19/50 (2014.01) conforming to the same type of syntax element, of a second
(Continued) slice of video data, conforming to a second slice type, using
US. CL the same 1mtialization value set. In this example, the first
CPC ... HO4N 19/00569 (2013.01); HO3M 7/4018 slice type may be different from the second slice type. Also
(2013.01); HO4N 19/13 (2014.11); in this ex‘ample, at least one of the first slif::e type and the
(Continued) second slice type may be a temporally predicted slice type.
_ _ _ For example, the at least one of the first and second slice
Field of Classification Search types may be a unidirectional inter-prediction (P) slice type,
CPC e HOZHEI (}jﬁ ijQEngHl (%17\?;1 I;gg? ngé f”l\f or a bi-directional inter-prediction (B) slice type.
19/44;
(Continued) 39 Claims, 7 Drawing Sheets
CODE A 1°" SYNTAX ELEMENT,

CONFORMING TO A PARTICULAR TYPE OF
SYNTAX ELEMENT, OF A 1°" SLICE OF
VIDEO DATA, CONFORMING TO A 1°" SLICE
TYPE, USING AN INITIALIZATION VALUE
SET

h 4

CODE A 2"° SYNTAX ELEMENT,
CONFORMING TO THE PARTICULAR TYPE
OF SYNTAX ELEMENT, OF A 2"° SLICE OF
VIDEQ DATA, CONFORMING TO A 2"° SLICE 02
TYPE, USING THE INITIALIZATION VALUE
SET, WHEREIN THE 1°" SLICE TYPE IS
DIFFERENT FROM THE 2"° SLICE TYPE,
AND WHEREIN AT LEAST ONE OF THE 1°7
SLICE TYPE AND THE 2"° SLICE TYPE IS A

TEMPORALLY PREDICTED SLICE TYPE

US 9,654,772 B2
Page 2

(51) Int. CL
HO3M 7/40 (2006.01)
HO4N 19/13 (2014.01)
HO4N 19/60 (2014.01)
HO4N 19/91 (2014.01)
HO4N 1921 (2014.01)
(52) U.S. CL
CPC ... HO4N 19/21 (2014.11); HO4N 19/50

(2014.11); HO4N 19/60 (2014.11); HO4N
19/91 (2014.11)

(58) Field of Classification Search
CPC HO4N 19/91; HO4N 19/176; HO4N 19/513;
HO4N 19/55; HO4N 19/63; HO4N
19/00793
USPC e, 3775/240.01-240.29

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,777,654 B2 8/2010 Chang
7,920,629 B2 4/2011 Bjontegaard et al.
7,929,776 B2 4/2011 Sethi et al.
2005/0012648 Al* 1/2005 Marpe HO3M 7/4006
341/107
2007/0009047 Al* 1/2007 Shimccceeeen HO4N 19/70
375/240.26
2010/0098155 Al* 4/2010 Demircin HO3M 7/4006
375/240.02
2012/0082218 Al 4/2012 Misra et al.
2012/0082232 Al 4/2012 Sole Rojals et al.
2013/0077687 Al* 3/2013 Wang HO4N 19/105
375/240.15

FOREIGN PATENT DOCUMENTS

JP 2007074337 A 3/2007
JP 2010171655 A 8/2010
WO 2006099224 Al 9/2006
WO 2011128268 Al 10/2011

OTHER PUBLICATIONS

ITU-T H.265, Series H: Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter-

national Telecommunication Union. Oct. 2014, 540 pp.
International Preliminary Report on Patentability from International
Application No. PCT/US2013/022138, dated May 13, 2014, 7 pp.
Response to Second Written Opinion dated Mar. 22, 2013, from
International Application No. PCT/US2013/022138, filed on Nov.
18, 2013, 38 pp.

Bross et al., “High efliciency video coding (HEVC) text specifica-
tion draft 6,” Joint Collaborative Team on Video Coding, JCTVC-
H1003, Nov. 21-30, 2011, 259 pp.

Bross et al., “High efliciency video coding (HEVC) text specifica-
tion draft 7,” Joint Collaborative Team on Video Coding, JCTVC-
[1003__D2, Apr. 27-May 7, 2012, 290 pp.

Bross et al., “High efliciency video coding (HEVC) text specifica-
tion draft 8,” Joint Collaborative Team on Video Coding, JCTVC-
J1003__D7, Jul. 11-20, 2012, 261 pp.

Bross et al., “WD4: Working Draft 4 of High-Efliciency Video
Coding,” Joint Collaborative Team on Video Coding, JCTVC-
F803_d2, Jul. 14-22, 2011, 226 pp.

Bross et al., “WD35: Working Draft 5 of High-Efliciency Video
Coding,” Joint Collaborative Team on Video Coding, JCTVC-
G1103_d2, Nov. 21-30, 2011, 214 pp.

International Search Report and Written Opinion—PCT/US2013/
022138—ISA/EPO—Mar. 22, 2013—18 pp.

International Telecommunication Union, “Advanced video coding
for generic audiovisual services,” Standardization Sector of ITU,
Jun. 2011, 674 pp.

Marpe et al.,“Final CABAC Cleanup”, Joint Video Team, JV'I-
F0O39rl, Dec. 5-13, 2002, 24 pp.

Schwarz et al., “CABAC and Slices”, Joint Video Team, No.
JIVI-E154, Oct. 19-17, 2002, 18 pp.

Wiegand, “Editors Proposed Changes Relative to JVTI-
El46d37ncm, revision 27, Joint Video Team, JVT-F082r2, Dec.
5-13, 2002, 245 pp.

Wiegand et al., “WD2: Working Draft 2 of High-Efliciency Video
Coding”, Joint Collaborative Team on Video Coding, JCTVC-
D503, Jan. 20-28, 2011, 153 pp.

Wiegand et al., “WD3: Working Draft 3 of High-Efliciency Video
Coding,” Joint Collaborative Team on Video Coding, JCTVC-E603,
Mar. 16-23, 2011,193 pp.

Wiegand et al.,* WD1: Working Draft 1 of High-Efficiency Video
Coding”, Joint Collaborative Team on Video Coding, JCTVC-C403,
Oct. 7-15, 2010, 137 pp.

Bossen F., “Common test conditions and software reference con-
figurations,” 7th Meeting: Nov. 21-30, 2011, Geneva, CH, Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SGI16
WP3 and ISO/IEC JTC1/SC29/WG11, Document: JCTVC-G1200,
WGI11 No. m22869, 2011, 4 pages.

Guo L., et al., “On CABAC Initialization,” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/
IEC JTC1/SC29/WG@G11, 8th Meeting: San Jose, CA, USA, Feb.
1-10, 2012, Document JCTVC-HO0561, pp. 1-8.

Misra K., et al., “Cei1 subtest B4—on CABAC Init IDC,” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SGI16
WP3 and ISO/IEC JTC1/SC29/WG11, 8th Meeting: San Jose, CA,
USA, Feb. 1-10, 2012, Document JCTVC-H0540, pp. 1-9.
Bross., B., et alL, “WD4: Working Draft 4 of High-Efliciency Video
Coding, Joint Collaborative Team on Video Coding (JCT-VC) of
[TU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11,” 6th Meeting:
Torino, IT, Oct. 2011, JCTVC-F803_d5, pp. 1, 169-180, http://
phenix.it-sudparis.eu/jct/doc__end_ user/sdocuments/6_ Torino/
wgll/JCTVC-F803-v7.zip.

Guo L., et al., “Non-Cel: 8-bit Initialization for CABAC,” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SGI16
WP3 and ISO/IEC JTC1/SC29/WG11, 7th Meeting: Geneva, Nov.
2011, JCTVC-G837_13, pp. 1-7.

Marpe, D., et al., “Unified PIPE-Based Entropy Coding for
HEVC”,6. JICT-VC Meeting; 97. MPEG Meeting; Jul. 14-22, 2011;
Torino; (Joint Collaborative Team on Video Coding of ISO/IEC
JTC1/SC29/WG11 and ITU-T SG.16), URL:http://witp3.1tu.int/av-
arch/jctve-site/, No. JCTVC-F268, Jul. 15, 2011 (Jul. 15, 2011),
XP030009291, 16 pp.

Misra K., et al., “Improved CABAC Context Initialization,” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SGI16
WP3 and ISO/IEC JTC1/SC29/WG11, 6th Meeting: Torino, I'T, Jul.
2011, JCTVC-F593_1l, pp. 1-3.

Misra K., et al., “On CABAC Init IDC,” Joint Collaborative Team
on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, 7th Meeting: Geneva, CH, Nov. 2011, JCTVC-
G716, pp. 1-7.

Yeo C., et alL, “Non-Cej: on CABAC context initialization,” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SGI16
WP3 and ISO/IEC JTC1/SC29/WG11, 7th Meeting: Geneva, CH,
Nov. 2011, JCTVC-G155, pp. 1-11.

Japanese First Oflice Action from corresponding Japanese Appli-

cation Serial No. 2014-553452 dated Dec. 6, 2016 having including
translation (18 pp).

* cited by examiner

U.S. Patent May 16, 2017 Sheet 1 of 7 US 9,654,772 B2

/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
18 28
————
VIDEO | STORAGE | VIDEO
ENCODER DEVICE DECODER
20 24 30

_ L I L I I

OUTPUT

INTEREACE . INPUT INTERFACE

26

22

16

FIG. 1

US 9,654,772 B2

Sheet 2 of 7

May 16, 2017

U.S. Patent

v.1vd O3dIA ¢ 9Ol
AddOON3
r——7r 7 7 7 _— T T T T
| 0¢ |
| ¥IAOONI O3AIA SYO014 —
| O3aiA ¥9 |
_ 55 Zq a3LoNYISNOOTH AMOWIN |
| 9% aG 1INA JINVY |
LINN LINN 44 |
“ ONIQOON3 NOILYZILNYNO W.EWNMNWMH_ |
| AdOHLNS 4SHdANI ISYIAN! — |
| Of |
LINN |
“ Rt ONISSIO0U |
| d3aLoN¥1SNOD3IY NOILOIddad |
| V&LNI |
|
_ p—
| 144 ay |
T e LINN 1INA |
NOILYVSNIddINOD |
“ . mﬁ_ﬁ_mmk N OLLON NOILILYVd _
| |
SY0014g 75 |
| |
| d3il101d3xd 1IN % _
| SINIIDIH4430D NOILVINILSS 1IN} |
| NMOJSNYML — 05 NOILOW 1D373S 300N | |
| qvnaisa 5C ¢S |
| @3ZILNYNO LINA 1INN e
| NOILVZIINVND [| DN >5a o0 + |
“ S)0078 SMo0T8 |

1VNAIS3d O3ddIA |

VivQ
OddiA

US 9,654,772 B2

Sheet 3 of 7

May 16, 2017

U.S. Patent

AR
OddIA
d3daoo3a

VALNI

v8

— _
| 5 06 a8 |
| Anowan a LINN LINN |

ONISSID0Nd
dWvds INYOJSNVYL zo_mpMmN_mh\”,__,“ no “
cER 26 3SHIANI _
SHMO01d O4dIA SHM30714d SYMO014d |
A31LoNHLSNOOTN a3121d3dd TYNAis3y _
98 _
1IN SINIINIA430D |
ONISSIO0Nd AN o "
NOILOId3¥d a3ZIINYNO _
|
_
|

LINMN 08

(1]3
434d093d O3AdIA

NOILYSNIdINOID F 1l zmn_mwu_,._«.__m_mmm_o
NOILOI _
4] SINAWS 13 vivaoaan |
1INN XVLNAS aagoonNa |
ONISSF00¥dd “
NOILOIdddd _
|
_

WV3d1Slid
O3dIA
d3dOON3

U.S. Patent May 16, 2017 Sheet 4 of 7 US 9,654,772 B2

CODE A 1°" SYNTAX ELEMENT,
CONFORMING TO A PARTICULAR TYPE OF 400
SYNTAX ELEMENT, OF A 1°T SLICE OF
VIDEO DATA, CONFORMING TO A 1°" SLICE
TYPE, USING AN INITIALIZATION VALUE
SET

CODE A 2"° SYNTAX ELEMENT.,
CONFORMING TO THE PARTICULAR TYPE
OF SYNTAX ELEMENT, OF A 2"° SLICE OF
VIDEO DATA, CONFORMING TO A 2"° SLICE 402
TYPE, USING THE INITIALIZATION VALUE
SET, WHEREIN THE 1°" SLICE TYPE IS
DIFFERENT FROM THE 2"° SLICE TYPE,
AND WHEREIN AT LEAST ONE OF THE 1°T
SLICE TYPE AND THE 2"° SLICE TYPE IS A
TEMPORALLY PREDICTED SLICE TYPE

FIG. 4

US 9,654,772 B2

Sheet 5 of 7

May 16, 2017

U.S. Patent

14

A

0l

80

¢ Old

SLX3LNOJ FHON JO INO A3ZITVILINI-Fd JHL
NO d3svd S$S300dd ONIQOI AdOdLNI JALLAVAV
1L X3LNOD FHL ONIANHO4dd3d A9 FI11S ¢ IHL
40 "LNIJINWITI XVLNAS 40 IdAL ¥VINIILYVd FHL
OL ONINYOANOD "LNINWITI XVLNAS 4,¢ V 3d023A

13S ANTVA NOLLVZITVILINI
dHL 40 S3ANTVA JHON 0 INO FHL NO d3sva
$$S300dd DNIAOO AdOALNS JAILAVAYV LXJ1LNOD
JdHL 40 S1X31NOOD 4O J0 INO 3HL FZINVILINI-3d

SNOILONNA ONIddVIA
JHOW HO INO .2 IHL ANV ‘INTVA HOLVIIANI
NOILVZITVILINI ;2 ‘IdAL I21S 4,2 IHL 4O
NOILYDIANI 4,2 Q3AIFOTY FHL 40 FHOIW O INO NO
a3svd 13S ANTVA NOILVYZITVILINI IHL ANIN¥ILIA

NVIHLSLIG A3AIFDTY IHL NI ‘SNOILONNS
ONIddVIN FHOW ¥O INO ., V ANV ‘IS
onZ IHL 300D OL1 a3asn 13S ANTVA NOILVZITVILINI
JVINJILYVd V ONILYIIANI 32118 ,,Z FHL
Y04 ANTVA ¥OLVYIIANI NOILYZITVILINI 4,2 V ‘IdAL
32I1S Ad3L01a3d¥d ATIVHOdINAL V SI S3dAL 32118
onC ANV <} JHL 40 3NO 1SV31 1V ANV LNIYIH4Id
JYV SAdAL 9IS 4, Z ANV <} HL NIFHIHM
‘v1vd O3dIA 40 3211S 4 Z V 40 IdAL IS 2
V 40 NOILVYIIANI 4,2 ¥V 40 3NO 1LSv31 1V 3AIFOT

S1X31LNOD JHOIN 0O INO A3ZITVILINI
JdHL NO d3svd $S300dd ONIdOD AdOdLN3
JAILAVAY LX31LNOJD JH1 ONINYNO4dd3dd A9 F0I111S
1ol 3HL 40 "INJIN3T3 XVLINAS 40 3dAL dVvINIILdvd
V OL ONINYO4ANOD "LNIWI T3 XVLNAS .} V 3A023a

13S ANTTVA
NOILVZITVILINI 3HL 40 S3ANTVA 40N J40 3INO
NO @3svd SS300dd ONIAOD AdOHLN3 JAILAVAY
1X31NOD V 4O S1X31LNOJ JHOIN JO INO FZIVILINI

SNOILONNA
ONIddVIN JHOW ¥O0 INO .} ANV ‘INTVA ¥OLVIIANI
NOILVZITVILINI ¢} ‘dAL 3017S ;L FHL 40
NOILVYOIANI ;1 A3AIFOTY FHL 40 FHOW ¥O IANO NO
@3svd L3S INTVA NOILVZIVILINI NV ININYIL13A

AVIH1S1Ig
A3AITO3Y V NI ‘SNOILONNL ONIddVIN SHON
JO 3NO .l V ANV 32118 |} 3HL 3a0D 01 a3sn L3S
JNTVA NOILVZITTVLLINI dV1N2ILdVd V ONILVIIANI
J011S |} 3H1 404 NTVA JdOLVOIANI NOILLVZITTVILINI
1ob V 'VLVA O3AIA 40 32118 [} V 40 3dAL 3211S L
V 40 NOILVOIANI |} V 40 INO LSV3I1 1LV JAITO03d

US 9,654,772 B2

Sheet 6 of 7

May 16, 2017

U.S. Patent

142

A%

OL¢

80¢

9 Old

WY3HL1SLIg IHL NI ‘SNOILONNA ONIddVIN
JHOW 3O INO ,,Z IHL ANV ‘ANTVA HOLVYIIANI
NOILVZITVILINI 5, IHL ‘dAL OIS 4,2 THL
40 NOILVDIANI 4,2 ¥ 40 INO 1SV31 1V 3d0DN3

S1X3LNOD JHOIN HO
ANO d3ZI'TVILINI-FY dHL NO d3sSvd $S300dd
ONIAOD AdOdLINT JAILdVYAVY LX3INOD dHL
ONINHO4¥3d A9 3D11S g, IHL 40 "LNIN3IT3
XVLINAS 40O 4dAl dV1NDI1LdVd dH1 Ol
ONINYOANOD "LNIWITI XVLNAS ¢ V IAOIN3

13S dNTVA NOILVZITVLLINI 3HL 40 S3ANTTVA
JHOIN 40O ANO dHL NO d4Svd SS300:d
ONIQOD AdOYLINT JAILdVYAVY LX3JINOD dHL
40 S1Xd1LNOD J4ON 4O ANO JHL JZIVILINI-3A

SNOILONNA

ONIddVIN FUOIN MO INO 2 V ANV ‘OIS 2

3H1 3009 OL1 @3sn L3S ANTVA NOILVZITVILINI
UV INOILYVd V ONILVOIANI 32118

~Z JHL ¥04 INTVYA HOLVIIANI NOILVZITVILINI
e V ‘AdAL ID11S @IL2IAT¥d ATIVHOdNAL V SI
S3dAL 39I1S o Z ANV ¢} IHL 40 INO 1SVI1 LV

ANV LNINH3441d 34V STdAL IDITS o2 ANV)

JHL NIFY¥IHM ‘V1vd O3AIA 40 IDI1S 4,2 V 40
3dAL 32118 4,2 ¥V 40 INO 1SV3I1 LV NO aasva

13S ANTVA NOILLVZITVILINI IHL ININYI 13

NVIYLSLIE V NI ‘SNOILONNA ONIddVIN
JHON ¥O INO .l IHL ANV ‘INTVA HOLVIIANI
NOILVZITVILINI ,.} IHL ‘dAL IS ,} THL
40 NOILVOIANI (} V¥ 40 INO 1Sv31 1V 3A0IN3

S1Xd1INOD Fd4ON
d0 dNO d3ZINVILINI dHL NO d3svd SS3004dd
ONIGOI AdOYLNG JAILdVAV LXJ1LNOOD
dH1L DNINHJO443dd A9 J0111S | dHL 40
"LNJNTT3 XVLNAS 40 3dAL UVINIILYVYd V OL
ONINYOINOD "LNIJWI13 XVLNAS | V IAOINS

13dS JdNTVA NOILVZITVILINI JHL
40 SANTVA JHd0N JdO ANO NO d3svd $S300dd
ONIAOD AdOYINS JAILdVAV LX41NOD
V 40 S1IX3d1LNQOI JHOW JO ANO JZITVILINI

SNOILONIMNA
ONIddVIN FHOIN ¥O INO |} V ANV ‘3JI11S |l
dHL 3000 O1 d3sSN 13S ANTVA NOILVZITVLLINI
dV1N2ILdVd V ONILVOIIANI JOI'1S
1gb AHL HO4d ANTVA JdOLVIIANI NOILVZITVILINI
gl V 'VLVA O3AlA 40 32118 (L YV 40
AdALl 301'1S g} V 40 ANO 1Sv3'1 1V NO d3svd
13dS dNTVA NOILVZITVILINI NV dNIN&3130

U.S. Patent May 16, 2017 Sheet 7 of 7 US 9,654,772 B2

00
RECEIVE DATA FOR A SLICE OF VIDEO DATA
DETERMINE ONE OF A SLICE TYPE AND AN 702
INITIALIZATION INDICATOR VALUE
ASSOCIATED WITH THE SLICE OF VIDEO
DATA BASED ON THE RECEIVED DATA
04

RECEIVE A SYNTAX ELEMENT ASSOCIATED
WITH THE SLICE OF VIDEO DATA

DETERMINE AN INITIALIZATION VALUE SET 06
FOR THE RECEIVED SYNTAX ELEMENT BASED
ON THE DETERMINED ONE OF THE SLICE
TYPE AND INITIALIZATION INDICATOR VALUE

CODE THE RECEIVED SYNTAX ELEMENT 08

USING THE DETERMINED INITIALIZATION
VALUE SET

NO

IS THE RECEIVED SYNTAX ELEMENT A 10

LAST SYNTAX ELEMENT ASSOCIATED
WITH THE SLICE OF VIDEO DATA?

YES

12

NO
IS THE SLICE OF VIDEO DATA A LAST

SLICE OF VIDEO DATA?

YES 14

END CODING OF VIDEO DATA

FIG. 7

US 9,654,772 B2

1

CONTEXT ADAPTIVE ENTROPY CODING
WITH A REDUCED INITIALIZATION VALUE
SE'T

This application claims the benefit of U.S. Provisional

Application No. 61/388,604, filed Jan. 19, 2012, and U.S.
Provisional Application No. 61/588,626, filed Jan. 19, 2012,
the entire contents of each of which are incorporated herein
by reference.

TECHNICAL FIELD

This disclosure relates to video coding, and, more par-
ticularly, to entropy coding slices of video data generated by
video coding processes.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range ol devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferenc-

ing devices, video streaming devices, and the like. Digital

video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2,
MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advanced Video Codmg (AVC), the High FEiliciency Video
Coding (HEVC) standard presently under development, and
extensions ol such standards. The video devices may trans-
mit, receive, encode, decode, and/or store digital video
information more ethciently by implementing such video
compression techniques.

Video compression techniques perform spatial (intra-
picture) prediction and/or temporal (inter-picture) prediction
to reduce or remove redundancy inherent 1 video
sequences. For block-based video coding, a video slice (1.e.,
a video frame or a portion of a video frame) may be
partitioned into video blocks, which may also be referred to
as treeblocks, coding units (CUs) and/or coding nodes.
Video blocks 1 an intra-coded (I) slice of a picture are
encoded using spatial prediction with respect to reference
samples 1 neighboring blocks in the same picture. Video
blocks 1n an inter-coded (P or B) slice of a picture may use
spatial prediction with respect to reference samples in neigh-
boring blocks 1n the same picture or temporal prediction
with respect to reference samples 1n other reference pictures.
Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

Spatial or temporal prediction results 1n a predictive block
for a block to be coded. Residual data represents pixel
differences between the original block to be coded and the
predictive block. An inter-coded block 1s encoded according
to a motion vector that points to a block of reference samples
forming the predictive block, and the residual data indicat-
ing the difference between the coded block and the predic-
tive block. An intra-coded block 1s encoded according to an
intra-coding mode and the residual data. For further com-
pression, the residual data may be transformed from the
pixel domain to a transform domain, resulting 1n residual
transform coellicients, which then may be quantized. The
quantized transform coeflicients, mitially arranged in a two-

dimensional array, may be scanned in order to produce a

10

15

20

25

30

35

40

45

50

55

60

65

2

one-dimensional vector of transform coeflicients. Entropy
coding may then be applied to achieve even more compres-
S1011.

SUMMARY

As one example, the techniques of this disclosure include
determining 1nitial context states, corresponding to initial
probabilities, for one or more contexts used to code video
data as part of performing a context adaptive entropy coding
process. In some examples, the context adaptive entropy
coding process may be a context adaptive binary arithmetic
coding (CABAC) process. For example, the disclosed tech-
niques may include determining the 1nitial context states for
the one or more contexts based on i1nitialization values for
the contexts. In particular, 1n this example, the mitialization
values, or an 1nitialization value “set” thereof, for the one or
more contexts may be selected based on a slice type asso-
ciated with the video data. For example, the slice type
associated with the video data may include any of a variety
of slice types (e.g., any of an intra-prediction (I) slice type,
a unidirectional inter-prediction (P) slice type, and a bi-
directional inter-prediction (B) slice type, as some
examples). Furthermore, also in this example, the same
initialization value set may be selected when the slice type
associated with the video data 1s any one of two or more of
the above-described slice types. As a result, the number of
initialization value sets used to code syntax elements of
slices having different slice types may be reduced, compared
to other techniques.

In one example of this disclosure, a method of coding
video data includes coding a first syntax element, conform-
ing to a particular type of syntax element, of a first slice of
video data, conforming to a first slice type, using an 1nitial-
ization value set. The method further includes coding a
second syntax element, conforming to the particular type of
syntax element, of a second slice of video data, conforming,
to a second slice type, using the mnitialization value set. In
this example, the first slice type 1s diflerent from the second
slice type. Also 1n this example, at least one of the first slice
type and the second slice type 1s a temporally predicted slice
type.

In another example of this disclosure, an apparatus con-
figured to code video data includes a video coder. In this
example, the video coder 1s configured to code a first syntax
clement, conforming to a particular type of syntax element,
of a first slice of video data, conforming to a first slice type,
using an initialization value set. The video coder 1s further
configured to code a second syntax element, conforming to
the particular type of syntax element, of a second slice of
video data, conforming to a second slice type, using the
initialization value set. In this example, the first slice type 1s
different from the second slice type. Also 1n this example, at
least one of the first slice type and the second slice type 1s
a temporally predicted slice type.

In another example of the disclosure, a device configured
to code video data includes means for coding a first syntax
clement, conforming to a particular type of syntax element,
of a first slice of video data, conforming to a first slice type,
using an 1itialization value set. The device further includes
means for coding a second syntax element, conforming to
the particular type of syntax element, of a second slice of
video data, conforming to a second slice type, using the
initialization value set. In this example, the first slice type 1s
different from the second slice type. Also 1n this example, at
least one of the first slice type and the second slice type 1s
a temporally predicted slice type.

US 9,654,772 B2

3

The techniques described 1n this disclosure may be imple-
mented 1n hardware, software, firmware, or combinations
thereol. If implemented 1n hardware, an apparatus may be
realized as an integrated circuit, a processor, discrete logic,
or any combination thereof. If implemented 1n soitware, the
soltware may be executed 1n one or more processors, such
as a microprocessor, application specific itegrated circuit
(ASIC), field programmable gate array (FPGA), or digital
signal processor (DSP). The software that executes the
techniques may be initially stored 1n a tangible computer-
readable medium and loaded and executed 1n the processor.

In another example, a computer-readable storage medium
stores instructions that, when executed, cause one or more
processors to code video data. In this example, the mnstruc-
tions cause the one or more processors to code a first syntax
clement, conforming to a particular type of syntax element,
of a first slice of video data, conforming to a first slice type,
using an 1nitialization value set. The computer-readable
storage medium further comprises instructions that cause the
one or more processors to code a second syntax element,
conforming to the particular type of syntax element, of a
second slice of video data, conforming to a second slice
type, using the mmitialization value set. In this example, the
first slice type 1s different from the second slice type. Also
in this example, at least one of the first slice type and the
second slice type 1s a temporally predicted slice type.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram that 1llustrates an example of a
video encoding and decoding system that may perform
techniques for context adaptive entropy coding with a
reduced 1nitialization value set, consistent with the tech-
niques of this disclosure.

FIG. 2 1s a block diagram that 1llustrates an example of a
video encoder that may perform the techniques for context
adaptive entropy coding with a reduced mitialization value
set, consistent with the techniques of this disclosure.

FIG. 3 1s a block diagram that 1llustrates an example of a
video decoder that may perform the techniques for context
adaptive entropy coding with a reduced mitialization value
set, consistent with the techniques of this disclosure.

FIGS. 4-6 are tflowcharts that illustrate example methods
of context adaptive entropy coding with a reduced mitial-

ization value set, consistent with the techniques of this
disclosure.

FIG. 7 1s a flowchart that 1llustrates an example method of
coding one or more syntax elements associated with one or
more slices of video data, consistent with the techniques of
this disclosure.

DETAILED DESCRIPTION

In general, the techniques of this disclosure relate to
context-adaptive binary arithmetic coding (CABAC).
CABAC generally includes coding syntax elements of a
video unit, e.g., a slice of video data. CABAC techniques
may be considered “context-adaptive” in the sense that the
context used to code a particular type of syntax element may
change (that 1s, adapt) based on historical coding actions,
e.g., coding of previous syntax elements of the same type.

10

15

20

25

30

35

40

45

50

55

60

65

4

The techniques of this disclosure are generally directed to
initialization of contexts for the various types of syntax
clements.

As one example, the techniques disclosed herein include
determining 1nitial context states, corresponding to initial
probabilities, for one or more contexts used to code various
types of syntax elements of video data as part of performing,
a context adaptive entropy coding process, such as CABAC.
For example, the disclosed techniques may include deter-
mining the initial context states for the one or more contexts
based on mitialization values for the contexts. In particular,
in this example, the mitialization values, or an mitialization
value “set” thereol, for the one or more contexts may be
selected based on a slice type associated with the video data.
For example, the slice type associated with the video data
may 1nclude any of a variety of slice types (e.g., any of an
intra-prediction (I) slice type, a unidirectional inter-predic-
tion (P) slice type, and a bi-directional inter-prediction (B)
slice type, as some examples). Furthermore, the same 1ni1-
tialization value set may be selected for two or more of the
above-described slice types. As a result, the number of
initialization value sets used to code syntax elements of
slices having diflerent slice types may be reduced, compared
to other techniques.

In other words, rather than assigning individual initial-
1zation value sets to each type of slice, the techniques of this
disclosure 1include assigning the same nitialization value set
to two or more types of slices. For example, the same
initialization value set may be assigned to I-slice types and
P-slice types. As another example, the same 1nitialization
value set may be assigned to I-slice types and B-slice types.
As still another example, the same initialization value set
may be assigned to P-slice types and B-slice types. In this
manner, the same 1nitialization value set may be assigned to
two different slice types, at least one of which 1s an inter-
predicted slice type, also referred to as a temporally pre-
dicted slice type. Inter-predicted, or temporally predicted,
slice types include P-slice types and B-slice types.

As another example, the techniques further include, for
cach slice of video data coded using the same initialization
value set 1n the manner described above, determining the
initial context states for the one or more contexts based at
least 1n part on a slice type associated with the respective
slice. As a result, accuracy of initial probabilities indicated
by the 1nitial context states may be improved compared to
other techmiques.

As still another example, the disclosed techniques include
adaptively selecting an 1nitialization value set for determin-
ing 1initial context states for one or more contexts of a
context adaptive entropy coding process used to code video
data. In particular, 1n this example, an initialization value set
for one or more contexts used to code a slice of video data
may be indicated using an initialization indicator value
associated the slice, rather than, e.g., a slice type associated
with the slice. In some cases, a video coder may code the
same 1nitialization indicator value for each of multiple slices
of video data having different slice types, resulting 1n using
the same 1nitialization value set to code one or more syntax
clements of each slice (hence, multiple slices of different
slice types, which may include at least one inter-predicted
slice).

Alternatively, as still another example, initialization indi-
cator values for multiple slices of video data having different
slice types may be diflerent imitialization indicator values,
resulting 1 using different mitialization value sets to code
one or more syntax elements of each slice. In this example,
the disclosed techniques include determining the initial

US 9,654,772 B2

S

context states for the one or more contexts based on the
different 1nitialization indicator values for each slice, rather
than a slice type associated with the respective slice. As a
result, accuracy of initial probabilities indicated by the
initial context states may be improved compared to other
techniques.

Accordingly, the disclosed techniques may, 1n some cases,
enable coding video data (e.g., quantized transformed
residual coeflicient values, or other syntax information, for
one or more blocks of video data) more efliciently. For
example, the techniques may enable coding the video data
using coding systems that have lower complexity compared
to other systems, e.g., systems that store diflerent context
initialization values, or “imitialization value sets,” for con-
texts for each slice type. Additionally, the techniques may
ecnable coding the video data using fewer bits than when
using other techmiques to code similar data, e.g., techniques
that include determining initial context states used to code
video data without considering slice type information asso-
ciated with the video data, or that do not allow adaptively
determining the 1nitial context states irrespective of the slice
type information. In particular, using the disclosed tech-
niques may result 1 1mitializing one or more contexts of a
context adaptive entropy coding process such that the con-
texts include relatively more accurate probability estimates,
compared to contexts initialized using other techniques. In
this manner, there may be a relative reduction 1n complexity
ol a coding system used to code video data, and/or a relative
bit savings for a coded bitstream that includes the coded
video data, when using the techniques of this disclosure.

FIG. 1 1s a block diagram that 1llustrates an example of a
video encoding and decoding system that may perform
techniques for context adaptive entropy coding with a
reduced 1nitialization value set, consistent with the tech-
niques of this disclosure. As shown 1n FIG. 1, system 10
includes a source device 12 that generates encoded video
data to be decoded at a later time by a destination device 14.
Source device 12 and destination device 14 may comprise
any of a wide range of devices, including desktop comput-
ers, notebook (1.e., laptop) computers, tablet computers,
set-top boxes, telephone handsets such as so-called “smart”
phones, so-called “smart” pads, televisions, cameras, dis-
play devices, digital media players, video gaming consoles,
video streaming devices, or the like. In some cases, source
device 12 and destination device 14 may be equipped for
wireless communication.

Destination device 14 may receive the encoded video data
to be decoded via a link 16. Link 16 may comprise any type
of medium or device capable of moving the encoded video
data from source device 12 to destination device 14. In one
example, link 16 may comprise a communication medium to
enable source device 12 to transmit encoded video data
directly to destination device 14 1n real-time. The encoded
video data may be modulated according to a communication
standard, such as a wireless communication protocol, and
transmitted to destination device 14. The communication
medium may comprise any wireless or wired communica-
tion medium, such as a radio frequency (RF) spectrum or
one or more physical transmission lines. The communica-
tion medium may form part of a packet-based network, such
as a local area network, a wide-area network, or a global
network such as the Internet. The communication medium
may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication
from source device 12 to destination device 14.

Alternatively, encoded data may be output from output
interface 22 to a storage device 24. Similarly, encoded data

5

10

15

20

25

30

35

40

45

50

55

60

65

6

may be accessed from storage device 24 by mput interface
26. Storage device 24 may include any of a variety of
distributed or locally accessed data storage media such as a
hard drive, Blu-ray discs, DVDs, CD-ROMSs, flash memory,
volatile or non-volatile memory, or any other suitable digital
storage media for storing encoded video data. In a further
example, storage device 24 may correspond to a file server
or another intermediate storage device that may hold the
encoded video generated by source device 12. Destination
device 14 may access stored video data from storage device
24 via streaming or download. The file server may be any
type of server capable of storing encoded video data and
transmitting that encoded video data to the destination
device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage
(NAS) devices, or a local disk drive. Destination device 14
may access the encoded video data through any standard
data connection, including an Internet connection. This may
include a wireless channel (e.g., a Wi-Fi1 connection), a
wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that 1s suitable for accessing encoded
video data stored on a file server. The transmission of
encoded video data from storage device 24 may be a
streaming transmission, a download transmission, or a com-
bination of both.

The techmiques of this disclosure are not necessarily

limited to wireless applications or settings. The techniques
may be applied to video coding 1n support of any of a variety
of multimedia applications, such as over-the-air television
broadcasts, cable television transmissions, satellite televi-
s10n transmissions, streaming video transmissions, €.g., via
the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data
storage medium, or other applications. In some examples,
system 10 may be configured to support one-way or two-
way video transmission to support applications such as
video streaming, video playback, video broadcasting, and/or
video telephony.
In the example of FIG. 1, source device 12 includes a
video source 18, video encoder 20 and an output interface
22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In
source device 12, video source 18 may include a source such
as a video capture device, e.g., a video camera, a video
archive containing previously captured video, a video feed
interface to receive video from a video content provider,
and/or a computer graphics system for generating computer
graphics data as the source video, or a combination of such
sources. As one example, iI video source 18 1s a video
camera, source device 12 and destination device 14 may
form so-called camera phones or video phones. However,
the techniques described 1n this disclosure may be applicable
to video coding 1n general, and may be applied to wireless
and/or wired applications.

The captured, pre-captured, or computer-generated video
may be encoded by video encoder 20. The encoded video
data may be transmitted directly to destination device 14 via
output 1nterface 22 of source device 12. The encoded video
data may also (or alternatively) be stored onto storage device
24 for later access by destination device 14 or other devices,
for decoding and/or playback.

Destination device 14 includes an input interface 26, a
video decoder 30, and a display device 28. In some cases,
input interface 26 may include a receiver and/or a modem.
Input interface 26 of destination device 14 receives the
encoded video data over link 16 or from storage device 24.
The encoded video data communicated over link 16, or

US 9,654,772 B2

7

provided on storage device 24, may include a varniety of
syntax elements generated by video encoder 20 for use by a
video decoder, such as video decoder 30, 1n decoding the
video data. Such syntax elements may be included with the
encoded wvideo data transmitted on a communication
medium, stored on a storage medium, or stored on a file
Server.

Display device 28 may be integrated with, or be external
to, destination device 14. In some examples, destination
device 14 may include an integrated display device and also
be configured to interface with an external display device. In
other examples, destination device 14 may be a display
device. In general, display device 28 displays the decoded
video data to a user, and may comprise any of a variety of
display devices such as a liquid crystal display (LCD), a
plasma display, an organic light emitting diode (OLED)
display, or another type of display device.

Video encoder 20 and video decoder 30 may operate
according to a video compression standard, such as the High
Eficiency Video Coding (HEVC) standard presently under
development by the Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T Video Coding Experts Group
(VCEG) and ISO/IEC Motion Picture Experts Group
(MPEG), and may conform to the HEVC Test Model (HM).
Alternatively, video encoder 20 and video decoder 30 may
operate according to other proprietary or industry standards,
such as the I'TU-T H.264 standard, alternatively referred to
as MPEG-4, Part 10, Advanced Video Coding (AVC), or
extensions of such standards. The techniques of this disclo-
sure, however, are not limited to any particular coding
standard. Other examples of video compression standards
include MPEG-2 and ITU-T H.263. A recent draft of the
HEVC standard, referred to as “HEVC Working Drait 8 or
“WD8,” 1s described 1n document JCTVC-J1003_d7, Bross
et al., “ngh elliciency video coding (HEVC) text spemﬁ-
cation drait 8,” Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WG11, 10th Meeting: Stockholm, SE, 11-20 Jul. 2012,
which, as of Oct. 2, 2012, 1s downloadable from http://
phenix.nt-evry.ir/jct/doc_end_user/documents/10_Stock-
holmm/wgl1/JCTVC-J1003-v8.z1p.

Although not shown i FIG. 1, in some aspects, video
encoder 20 and video decoder 30 may each be integrated
with an audio encoder and decoder, and may include appro-
priate MUX-DEMUX units, or other hardware and software,
to handle encoding of both audio and video 1n a common
data stream or separate data streams. If applicable, 1n some
examples, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder or
decoder circuitry, such as one or more miCroprocessors,
digital signal processors (DSPs), application specific inte-
grated circuits (ASICs), field programmable gate arrays
(FPGAs), discrete logic, software, hardware, firmware or
any combinations thereof. When the techniques are imple-
mented partially 1n software, a device may store instructions
for the software in a suitable, non-transitory computer-
readable medium and execute the instructions in hardware
using one or more processors to perform the techniques of
this disclosure. Each of video encoder 20 and video decoder
30 may be included 1n one or more encoders or decoders,
either of which may be integrated as part of a combined

encoder/decoder (“CODEC”) 1n a respective device.
The HEVC standardization el

orts are based on an evolv-
ing model of a video coding device referred to as the HEVC

10

15

20

25

30

35

40

45

50

55

60

65

8

Test Model (HM). The HM presumes several additional
capabilities of video coding devices relative to existing
devices according to, e.g., ITU-T H.264/AVC. For example,
whereas H.264 provides nine intra-prediction encoding
modes, the HM may provide as many as thirty-five intra-
prediction encoding modes.

In general, the working model of the HM describes that a
video frame or picture may be divided into a sequence of
treeblocks or largest coding units (LCU) that include both
luma and chroma samples. A treeblock has a similar purpose
as a macroblock of the H.264 standard. A slice includes a
number of consecutive treeblocks 1n coding order. A video
frame or picture may be partitioned into one or more slices.
Each treeblock may be split into coding units (CUs) accord-
ing to a quadtree. For example, a treeblock, as a root node
of the quadtree, may be split into four child nodes, and each
child node may 1n turn be a parent node and be split into
another four child nodes. A final, unsplit child node, as a leaf
node of the quadtree, comprises a coding node, 1.¢., a coded
video block. Syntax data associated with a coded bitstream
may define a maximum number of times a treeblock may be
split, and may also define a minimum size of the coding
nodes.

A CU 1includes a coding node and prediction units (PUs)
and transform units (TUs) associated with the coding node.
A si1ze of the CU corresponds to a size of the coding node
and must be square 1n shape. The size of the CU may range
from 8x8 pixels up to the size of the treeblock with a
maximum of 64x64 pixels or greater. Each CU may contain
one or more PUs and one or more TUs. Syntax data
associated with a CU may describe, for example, partition-
ing of the CU into one or more PUs. Partitioning modes may
differ between whether the CU 1s skip or direct mode
encoded, intra-prediction mode encoded, or inter-prediction
mode encoded. PUs may be partitioned to be non-square in
shape. Syntax data associated with a CU may also describe,
for example, partitioning of the CU into one or more TUs
according to a quadtree. A TU can be square or non-square
in shape.

-

The HEVC standard allows for transformations according
to TUs, which may be different for different CUs. The TUs
are typically sized based on the size of PUs within a given
CU defined for a partitioned LCU, although this may not
always be the case. The TUs are typically the same size or
smaller than the PUs. In some examples, residual samples
corresponding to a CU may be subdivided into smaller units
using a quadtree structure known as “residual quad tree”
(RQT). The leal nodes of the RQT may be referred to as
TUs. Pixel diflerence values associated with the TUs may be
transiformed to produce transform coeflicients, which may
be quantized.

In general, a PU includes data related to the prediction
process. For example, when the PU 1s intra-mode encoded,
the PU may include data describing an intra-prediction mode
for the PU. As another example, when the PU 1s inter-mode
encoded, the PU may include data defining a motion vector
for the PU. The data defining the motion vector for a PU may
describe, for example, a horizontal component of the motion
vector, a vertical component of the motion vector, a reso-
lution for the motion vector (e.g., one-quarter pixel precision
or one-eighth pixel precision), a reference picture to which
the motion vector points, and/or a reference picture list (e.g.,
List 0, List 1, or List C) for the motion vector.

In general, a TU 1s used for the transform and quantization
processes. A given CU having one or more PUs may also
include one or more TUs. Following prediction, video
encoder 20 may calculate residual values corresponding to

US 9,654,772 B2

9

the PU. The residual values comprise pixel difference values
that may be transformed into transform coetlicients, quan-
tized, and scanned using the TUs to produce serialized
transform coeilicients for entropy coding. This disclosure
typically uses the term “video block,” or stmply “block,” to
refer to a coding node of a CU. In some specific cases, this
disclosure may also use the term “video block™ to refer to a
treeblock, 1.e., LCU, or a CU, which includes a coding node
and PUs and TUSs.

A video sequence typically includes a series of video
frames or pictures. A group of pictures (GOP) generally
comprises a series of one or more of the video pictures. A
GOP may include syntax data in a header of the GOP, a
header of one or more of the pictures, or elsewhere, that
describes a number of pictures included i the GOP. Each
slice of a picture may 1nclude slice syntax data that describes
an encoding mode for the respective slice. Video encoder 20
typically operates on video blocks within individual video
slices 1n order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks
may have fixed or varying sizes, and may differ in size
according to a specified coding standard.

As an example, the HM supports prediction in various PU
s1zes. Assuming that the size of a particular CU 1s 2ZNx2N,
the HM supports intra-prediction i PU sizes of 2Nx2N or
NxN, and inter-prediction in symmetric PU sizes of 2Nx2N,
2NxN, Nx2N, or NxN. The HM also supports asymmetric
partitioning for inter-prediction in PU sizes of 2NxnU,
2NxnD, nLLx2N, and nRx2N. In asymmetric partitioning,
one direction of a CU 1s not partitioned, while the other
direction 1s partitioned 1nto 25% and 75%. The portion of the
CU corresponding to the 25% partition 1s indicated by an “n”
followed by an indication of “Up”, “Down,” “Left,” or
“Riaght.” Thus, for example, “2NxnU” refers to a 2Nx2N CU
that 1s partitioned horizontally with a 2Nx0.5N PU on top
and a 2Nx1.5N PU on bottom.

In this disclosure, “NxN” and “N by N” may be used
interchangeably to refer to the pixel dimensions of a video
block 1n terms of vertical and horizontal dimensions, e.g.,
16x16 pixels or 16 by 16 pixels. In general, a 16x16 block
will have 16 pixels 1n a vertical direction (y=16) and 16
pixels 1n a horizontal direction (x=16). Likewise, an NxN
block generally has N pixels in a vertical direction and N
pixels 1n a horizontal direction, where N represents a non-
negative integer value. The pixels mn a block may be
arranged 1n rows and columns. Moreover, blocks need not
necessarily have the same number of pixels 1n the horizontal
direction as 1n the vertical direction. For example, blocks
may comprise NxM pixels, where M 1s not necessarily equal
to N.

Following intra-predictive or inter-predictive coding
using the PUs of a CU, video encoder 20 may calculate
residual data for the TUs of the CU. The PUs may comprise
pixel data 1n the spatial domain (also referred to as the pixel
domain) and the TUs may comprise coeilicients in the
transform domain following application of a transform, e.g.,
a discrete cosine transform (DCT), an integer transform, a
wavelet transform, or a conceptually similar transform to
residual video data. The residual data may correspond to
pixel differences between pixels of the unencoded picture
and prediction values corresponding to the PUs. Video
encoder 20 may form the TUs including the residual data for
the CU, and then transform the TUs to produce transiform
coellicients for the CU.

Following any transforms to produce transform coetli-
cients, video encoder 20 may perform quantization of the
transform coeflicients. Quantization generally refers to a

10

15

20

25

30

35

40

45

50

55

60

65

10

process in which transform coeflicients are quantized to
possibly reduce the amount of data used to represent the
coellicients, providing further compression. The quantiza-
tion process may reduce the bit depth associated with some
or all of the coellicients. For example, an n-bit value may be
rounded down to an m-bit value during quantization, where
n 1s greater than m.

In some examples, video encoder 20 may utilize a pre-
defined scanning, or *“scan” order to scan the quantized
transiorm coetlicients to produce a serialized vector that can
be entropy encoded. In other examples, video encoder 20
may perform an adaptive scan. After scanning the quantized
transform coeflicients to form a one-dimensional vector,
video encoder 20 may entropy encode the one-dimensional
vector, e.g., according to context adaptive variable length
coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic
coding (SBAC), Probability Interval Partitioning Entropy
(PIPE) coding, or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements
associated with the encoded video data for use by video
decoder 30 1n decoding the video data.

To perform CABAC, video encoder 20 may assign a
context within a context model to a symbol to be transmiut-
ted. The context may relate to, for example, whether or not
neighboring values of the symbol are zero-valued. To per-
form CAVLC, video encoder 20 may select a variable length
code for a symbol to be transmitted. Codewords in VLC may
be constructed such that relatively shorter codes correspond
to more probable symbols, while relatively longer codes
correspond to less probable symbols. In this manner, the use
of VLC may achieve a bit savings over, for example, using
equal-length codewords for each symbol to be transmitted.
The probability determination may be based on a context
assigned to the symbol.

The following 1s discussed with reference to wvideo
encoder 20 and video decoder 30, as various components
thereof, as depicted 1n FIGS. 2 and 3, and as described in
greater detail below. As previously explained, according to
some video coding techniques, 1n video encoder 20, a frame
of an oniginal video sequence may be partitioned into
rectangular regions, or “blocks,” which may be coded using
Intra-mode (I-mode) or Inter-mode (P-mode or B-mode)
coding. The blocks may be coded using some type of
transform coding, such as discrete cosine transform (DCT)
coding. However, pure transform-based coding may only
reduce 1nter-pixel correlation within a particular block with-
out considering inter-block correlation of pixels, and may
still produce relatively high bit-rates for transmission. Addi-
tionally, some digital image coding standards may also
exploit certain methods that may reduce the correlation of
pixel values between blocks.

In general, blocks encoded 1n P-mode are predicted from
one of the previously coded and transmitted frames. The
prediction mformation of a block 1s represented by a two-
dimensional (2D) motion vector. For blocks encoded 1n
I-mode, the predicted block 1s formed using spatial predic-
tion from already encoded neighboring blocks within the
same frame. The prediction error, 1.¢., the difference between
the block being encoded and the predicted block, 1s repre-
sented as a set of weighted basis Tunctions of some discrete
transform. The transform 1s typically performed on an NxN
block basis. The weights, 1.¢., transform coeflicients, may be
subsequently quantized. Quantization introduces loss of
information and, therefore, quantized coetlicients have
lower precision than the original coeflicients.

US 9,654,772 B2

11

[

Quantized transform coeflicients, together with motion
vectors and some control information, form a complete
coded sequence representation, and are referred to as syntax
clements. Prior to transmission from video encoder 20 to
video decoder 30, all syntax elements are entropy coded so
as to further reduce the number of bits needed for their

representation.

Video decoder 30 obtains the block 1n the current frame
by first constructing a prediction block 1n the same manner
as described above with reference to video encoder 20, and
by adding to the prediction block the compressed prediction
error (represented by a residual block). The compressed
prediction error 1s found by weighting the transform basis
functions using the quantized coeilicients. The difference
between the reconstructed frame and the original frame 1s
called reconstruction error.

This disclosure relates to techniques for determining
initial context states, 1.e., mitial probabilities, for contexts
used to code video data as part of performing a context
adaptive entropy coding process, such as, for example, a
CABAC process. Arithmetic coding 1s a form of entropy
coding used In many Compressmn algorithms that have high
coding efliciency, since 1t 1s capable of mapping symbols to
non-integer length codewords. An example of an arithmetic
coding algorithm 1s Context Based (or “Context Adaptive™)
Binary Arithmetic Coding (CABAC) used in H.264/AVC.

In general, coding data symbols using CABAC 1nvolves
one or more of the following steps:

(1) Binarization: If a symbol to be coded 1s non-binary
valued, a video coder, such as video encoder 20 or
video decoder 30, maps the symbol to a sequence of
so-called “bins.” Each bin can have a value of “0” or
«q »

(2) Context Assignment: The video coder assigns each bin
(1n regular mode) to a context. For example, the video
coder uses a context model to determine how a context
for a given bin 1s to be calculated based on information
available for the bin, such as values of previously
encoded symbols, or bin number.

(3) Bin encoding: An arithmetic encoder, such as video
encoder 20, encodes bins. To encode a bin, the arith-
metic encoder (e.g., video encoder 20) uses as an 1input
a probability of the bin’s value, 1.e., a probability that
the bin’s value 1s equal to “0,” and a probability that the
bin’s value 1s equal to “1.” The (estimated) probability
of each context 1s represented by an integer value called
a “context state.” Each context has a state, and thus the
state (1.e., estimated probablhty) 1s the same for bins
assigned to one context, and differs between contexts.

(4) State update: The video coder updates the probability
(state) for a selected context based on the actual coded
value of the bin (e.g., 1f the bin value was “1,” the
probability of “1s” may be increased).

Before imtiating a CABAC process, the video coder may
assign an 1nitial context state to each context. A linear model
has been used to assign mitial context states for each context
in H.264 and version “HM4.0” of the HEVC standard
presently under development. Specifically, for each context,
there may exist pre-defined parameters slope (“m”) and
intersection (“n’’), which may be retferred to as imtialization
values. The video coder may derive an initial context state
for a particular context using the following expressions:

Int iInitState=((m *QP)/16)+n, EQ1

{InitState=min(max(1,;Ini1tState),126); EQ2

10

15

20

25

30

35

40

45

50

55

60

65

12

where 1QP 1s a quantization parameter (sometimes referred
to as an imitialization QP) associated with the video data

being coded. In version “HM 3.0” of HEVC, the initializa-

tion value for each context 1s represented as an 8-bit integer
value “m8,” (rather m and n, as i1s the case 1n H.264 and
HM4.0), and a piece-wise linear function 1s used to derive
the CABAC 1nitial context states (i.e., using m8 and 1QP
values).

For different slice types (e.g., I-mode, P-mode, and
B-mode), the estimated probabailities described above for the
same syntax element may be different. Accordingly, a num-
ber of existing video compression standards and/or systems
use different sets of 1nitialization values for different slice
types. As a result, the total storage of the 1nitialization values
used by these standards and/or systems may be represented

as follows:

No. of initialization values=No. of contexts*No. of

slice types EQ. 3

The wvarious approaches described above, relating to
determining 1nitial context states for one or more contexts
(or “imtializing” the one or more contexts, generally) of a
context adaptive entropy coding process, have several draw-
backs. For example, as 1llustrated by the relationship in EQ.
3 provided above, the number of mitialization values (e.g.,
“No. of mitialization values” of EQ. 3 shown above) for a
particular context adaptive entropy coding process may be
relatively large, and may require a significant amount of data
storage.

This disclosure describes several techniques that may, 1n
some cases, reduce or eliminate some of the drawbacks
described above. For example, this disclosure provides some
techniques that may be used to reduce quantities of data
stored for mitialization values of a context adaptive entropy
coding process, by allowing imitialization of contexts of
syntax elements of slices of video data having different slice
types using the same, or “common,” initialization values (or
initialization value “sets™). In other words, the disclosed
techniques may enable coding the slices of video data
having the different slice types by “sharing” one or more
initialization value sets between different slice types.

As one example, “M” different slice types, e.g., Slice-
Type_ 0, ..., Slicelype_M-1, and “N” sets of mitialization
values, e.g., ImtializationSet_0, . . . , ImtializationSet_N-1,
may be used. A mapping, or a “mapping function,” e.g.,
“InmitializationSet_k=1(SliceType_1),” may be defined to map
different slice types to diflerent imtialization value sets. For
example, when multiple slice types are mapped to the same
initialization value set, the data storage saving described
above may be achieved.

In some examples, three different slice types (e.g.,
I-mode, P-mode, and B-mode), and only two 1nitialization
value sets, e.g., Setl and Set2, may be used. In these
examples, an I-mode slice and a B-mode slice may use
iitialization value Setl, and a P-mode slice may use 1ni-
tialization value Set2. In other examples, the P-mode slice
and the B-mode slice may use 1nitialization value Setl, and
the B-mode slice may use mmitialization value Set2, and so
forth. In yet other examples, three slice types and only one
initialization value set may be used. In these examples, all
three slice types (1.e., the I-mode, P-mode, and B-mode) may
use the same 1nitialization value set.

As another example, the mapping function described
above (1.e., the mapping function used to map a slice type of
a slice of video data to an 1nitialization value set used to code
one or more syntax elements of the slice) may be pre-

defined, or “fixed,” e.g., known to both video encoder 20 and

US 9,654,772 B2

13

video decoder 30. Alternatively, the mapping function may
be user-specified, and/or be explicitly signaled to video
decoder 30 using some high-level syntax information, such
as, €.g., adaptive parameter set (APS), picture parameter set
(PPS), sequence parameter set (SPS), video parameter set
(VPS), slice header, frame header, sequence header, or the
like). In other examples, the mapping function may also be
adaptive, such that, for example, the mapping function may
be dependent on “side” information associated with the
video data, such as, e.g., a QP, frame resolution, a GOP
structure, or other information, associated with the video
data.

As yet another example, the techniques described above
with reference to the previous examples may apply to only
a subset of total contexts. For example, the total contexts
may include 253 contexts, such as in HM 5.0, 1.e., ctx0 to
ctx232. As one example, a subset of the total contexts, e.g.,
“CtxSubset,” may be defined. As such, only contexts that
belong to this subset may be mitialized in the manner
described above, 1.e., for different slice types, using the same
initialization value set. For other contexts (1.e., contexts that
do not belong to this subset), the iitialization values may be
different for different slice types. An example of such a
subset of contexts 1s a subset that includes contexts that
relate to coetlicient coding, such as contexts used to code last
significant coetlicient position data (e.g., “last_significant_
coell_tlag™), significance map data (e.g., “significant_coefl
flag”), level data (e.g., “‘coefl_abs_level minusl” and
“coell_si1gn_flag™), “larger-than-one” tlag data (e.g., “larg-
er_than_one flag”), “larger-than-two” flag data (e.g., “larg-
er_than_two_flag™), and so forth. In other words, the subset
ol contexts may correspond to one or more types of syntax
clements associated with the video data.

In some examples, diflerent subsets of contexts may
correspond to diflerent initialization value sets. In particular,
as one example, a first subset of contexts (e.g., “subset 17)
may be mitialized using a first group of 1nitialization value
sets, while a second subset of contexts (e.g., “subset 2”) may
be mitialized using a second, different group of initialization
value sets. In this example, each of the first and second
groups ol mitialization value sets may include one or more
initialization value sets.

In one example, the definition of the subset of contexts
may be pre-defined, or fixed, e.g., known to both video
encoder 20 and video decoder 30. In another example, the
definition of the subset of contexts may be user-selected,
and/or explicitly signaled to video decoder 30 within the
high-level syntax information described above. Addition-
ally, the definition of the subset of contexts may also be
adaptive, such that, for example, the definition can be
dependent on the side information previously described.

As still another example, multiple subsets of contexts,
e.g., “CtxSubseti,” may be defined, and the mapping func-
tion for mitialization value sharing for the different subsets
ol contexts may be different among the multiple subsets of
contexts. In a similar manner as described in previous
examples, the definition of the multiple subsets of contexts
can be pre-defined, user-specified, and/or dependent on the
side information associated with the video data, as described
above. Additionally, the mapping functions can be pre-
defined, user-specified, and/or dependent on the side infor-

mation associated with the video data, as also previous
described.

As 1llustrated 1in EQ. 1 and EQ. 2 above, the initial
CABAC state (“ilmtState”) values are a function (1.e., as
indicated by designator “1”) of the initialization values
(“ImitValue™) (e.g., “m” and “n,” or “m8” values) and the

10

15

20

25

30

35

40

45

50

55

60

65

14

“1QP” value, 1.e., ilmtState=i(InitValue, 1QP). As another
example consistent with the disclosed techniques, for con-
texts associated with different slice types but sharing the
same 1nitialization values (or the same initialization value
“set”), the context imtialization process may also depend on
the slice type. In other words, the context mnitialization
process may be performed using the following relationship:

(InitState=G{InitValue,iQP,SliceType)

where 1InitState 1s a function (1.e., as indicated by designator
“G”), of ImtValue, 1QP, as well as “SliceType.” In this
example, Slicelype corresponds to a slice type associated
with the video data being coded.

In one example, a “QPOf{Iset,” or “dQP,” may be defined

for each slice type, and the mmtial context state may be
calculated as follows:

Int iInitState=((m *({QP+dQP))/ 16)+#; EQ4

{InitState=min(max(1,;ImitState),126); EQ5

Generally, the value of dQP of an I-mode slice may be
smaller than a value of dQP for B-mode and P-mode slices,

in some examples. An example of this relationship i1s pro-
vided 1n Table I below:

TABL.

L1
-

SliceType [-mode P-mode B-mode

dQP -3 0 0

As another example, the techmiques described above,
wherein multiple slices having different slice types share the
same 1nitialization value set, but wherein the context 1nitial-
ization process for each slice also depends on the corre-
sponding slice type, may be applied only to a subset of total
contexts, 1n a similar manner as previously described.

In one example, the definition of the subset of contexts
may be pre-defined, e.g., known to both video encoder 20
and video decoder 30. In another example, the definition of
the subset of contexts may be user-selected and/or explicitly
signaled to video decoder 30 with the high-level syntax
information described above. Furthermore, the definition of
the subset of contexts may also be adaptive, such that the
definition can be dependent on the side information previ-
ously described.

The techniques described above generally relate to 1ni-
tializing one or more contexts ol a context adaptive entropy
coding process used to code one or more syntax elements of
one or more slices of video data, by selecting an 1nitializa-
tion value set based on slice type information associated
with the one or more slices. In addition to the above-
described techmiques, this disclosure also includes tech-
niques for mmitializing one or more contexts of a context
adaptive entropy coding process used to code one or more
syntax elements of one or more slices of video data, by
selecting an iitialization value set based on one or more
initialization indicator values associated with the one or
more slices.

In particular, 1n accordance with the disclosed techniques,
rather than selecting 1nitialization value sets based strictly on
a slice type, as illustrated by the examples above, video
encoder 20 and/or video decoder 30 may be configured to
adaptively select one or more initialization value sets to
initialize one or more contexts used to code one or more
syntax elements of a slice of video data.

As one example, video encoder 20 and/or video decoder
30 may be configured to infer an initialization value set for

US 9,654,772 B2

15

a slice of video data based on the side information associated
with the video data, as described above. In this manner,
video encoder 20 and/or video decoder 30 may be config-
ured to determine an 1nitialization value set in a plurality of
initialization value sets, each of the 1nitialization value sets
defining respective initial context states for one or more
syntax elements of a slice of video data, based on one or
more characteristics of the slice. In this example, 1n contrast
to the previously-described techniques, the one or more
characteristics do not include a slice type of the slice of
video data. Also 1n this example, video encoder 20 and/or
video decoder 30 may be further configured to code one or
more syntax elements of the slice of video data based on the
determined 1nitialization value set.

As another example, for each slice of video data, video
encoder 20 may transmit, and video decoder 30 may receive,
a syntax element (e.g., a so-called “mitialization indicator
value”) of a syntax element type “cabac_init_idc” that
specifies which particular initialization value set 1s used for
the respective slice of video data (1.e., used to code one or
more syntax elements associated with the respective “cur-
rent” slice). For example, suppose there are “N” initializa-
tion value sets, set0, setl, . . ., setN-1. The range of values
(1.e., “mitialization indicator” values) of cabac_init_idc 1n
this example may be from “0” to “N-1.” “Cabac_init_idc=1"
(as coded/signaled for a current slice) may specify that “set.”
1s selected for the current slice. In some examples, the
selection of the mitialization value set for a particular slice
of video data may not be related to a slice type of the slice,
but instead may be purely dependent on a value of caba-
c_1nit_1dc for the slice. The selected initialization value set
may be any one among setl, setl, setN-1, in some
examples.

In some examples, the value of cabac_imt_idc may be
explicitly transmitted using the high level syntax described
above, and can be sent as a raw byte sequence payload
(RBSP) or encoded using fixed length codes, variable length
codes, or arithmetic codes.

As yet another example, 1n a similar manner as previously
described, the techmques described above with reference to
initialization indicator values of syntax element type caba-
¢_1init_i1dc may only be applied to a subset of total contexts.
For example, in HM 5.0, there are 253 contexts, specified as
ctx0 to ctx252, as previously explained. A subset of contexts,
CtxSubset, that includes only some of the 253 contexts may
once again be defined. In this example, only when a context
used to code a particular syntax element type belongs to this
subset of contexts, the selection of the initialization value set
for the context may be based on a value of cabac_init_idc (or
inferred based on side information, as described above). For
other contexts (1.e., contexts that do not belong to this
subset), the 1imitialization values, or 1mitialization value set,
may be determined or selected using other techniques, e.g.,
techniques described above with reference to H.264/AVC.

In one example, the definition of the subset of contexts
may be pre-defined, and available to both video encoder 20
and video decoder 30. In another example, the definition of
the subset of contexts may be user-selected and/or explicitly
signaled to video decoder 30 within the high-level syntax
described above. The definition of the subset of contexts can
also be adaptive, which may mean that the mapping can be
dependent on the side information described above.

In some examples, multiple syntax elements (e.g., caba-
c_init_1dc0, cabac_init_idcl, . . ., cabac_init_idcN) may be
transmitted, and each may correspond to a subset of the total
contexts. For example, “cabac_init_idc0” may correspond to
a subset of contexts “CtxSubset0,” which may include

5

10

15

20

25

30

35

40

45

50

55

60

65

16

coellicient coding-related contexts. “Cabac_init_1dc0=1”
may indicate that coethicient-coding related contexts use the
“1-th” 1n1tialization value set. Likewise, other cabac_init_idc
values may relate to other syntax element subsets. In some
examples, the definition of the subsets may be pre-defined,
and known to both video encoder 20 and video decoder 30.

In other examples, the definition of the subset may be
user-selected and explicitly signaled to video decoder 30
within the high-level syntax described above. The defini-
tions of the subsets of contexts may also be adaptive, e.g.,
the mapping can be dependent on the side information
previously described.

In some examples, values for cabac_imt_idc may be
transmitted for each slice, e.g., 1n each slice header. In other
examples, a value for cabac_init_idc may be transmitted for
a current slice, e.g., Slice_0. Then, for the following slices
of the same type, the selection of the mnitialization value set
may be the same as Slice 0 until a new value of caba-
¢_1mit_1dc 1s received at some point to override the previous
selection. In this manner, video encoder 20 and/or video
decoder 30 may code data of a first set of one or more
subsequent slices, following a current slice, based on a first
initialization value set 1 a plurality of mitialization value
sets signaled for the current slice, code a second value
representative of a second initialization value set in the
plurality of imtialization value sets, and code a second set of
one or more subsequent slices based on the second 1nitial-
ization value set.

In some examples, a value for cabac_init_idc may have an
cllect on multiple slice types. For example, 1f “caba-
c_imt_1dc=1,” for the following slices, the initialization
value set currently used by a B slice and an I slice may be
exchanged. In another example, cabac_init_idc can cause a
shift of mitialization value sets. For example, I, P, and B
slices may currently use initialization value sets 0, 1, and 2,
respectively. After recerving cabc_init_idc=1, the I, P, and B
slices may use initialization set 1, 2, and 0, respectively.

Moreover, as noted above, 1n some examples, the value of
cabac_init_idc (1.e., the mitialization indicator value corre-
sponding to syntax element type cabac_init_idc) need not be
explicitly transmitted. Instead, 1n these examples, the value
of cabac_imit_idc may be inferred using the side information
described above.

In some examples, the context imitialization techniques
described above may be used in conjunction with any
context adaptive entropy coding methodology, including
CABAC, SBAC, PIPE, or another context adaptive entropy
coding methodology. CABAC 1s described 1n this disclosure
for purposes of illustration only, and without limitation as to
the techniques broadly described in this disclosure as a
whole. Also, as previously explained, the disclosed tech-
niques may be applied to coding of other types of data,
generally, e.g., 1n addition to, or in place of, video data.

As one example, video encoder 20 and/or video decoder
30 may be configured to code one or more blocks of video
data, as described above. For example, each of the one or
more blocks may correspond to a particular slice of a frame
of video data. In this example, video encoder 20 and/or
video decoder 30 may be configured to code a first syntax
clement, conforming to a particular type of syntax element,
of a first slice of video data, conforming to a first slice type,
using an 1nitialization value set. Also 1n this example, video
encoder 20 and/or video decoder 30 may be further config-
ured to subsequently code a second syntax element, con-
forming to the particular type of syntax element (i.e., to the
same type ol syntax element as that of the first syntax

US 9,654,772 B2

17

clement), of a second slice of video data, conforming to a
second slice type, using the 1nitialization value set.

In some examples, the first slice type may be diflerent
from the second slice type. For example, while the first slice
type may correspond to any one of the spatially-predicted
“I-” slice type and the temporally-predicted “P-" and “B-”
slice types described above, the second slice type may
correspond to any other one of the above-described slice
types. Furthermore, in other examples, at least one of the
first slice type and the second slice type may be a temporally
predicted slice type. For example, at least one of the first and
second slice types may correspond to any one of the tem-
porally-predicted “P-" and “B-"" slice types.

In addition to the coding properties attributed to each of
video encoder 20 and video decoder 30, as illustrated by the
examples above, the techmiques of this disclosure also
include generating configuration data (e.g., one or more
syntax elements) that associates two or more different types
of slices of video data with a common 1nitialization value
set. In this manner, the disclosed techniques may enable
video encoder 20 and/or video decoder 30 to interpret the
configuration data, and, based on the configuration data, use
the same 1nitialization value set to code syntax elements of
two or more different slices having different slice types.

In this manner, by enabling video encoder 20 and/or video
decoder 30 to use the same, or common, 1nitialization value
set to code (1.e., encode and/or decode) the first and second
syntax elements of the first and second slices, the techniques
of this disclosure may reduce the complexity (e.g., simplily
processing and/or storage resources, or reduce the usage
thereol) of video encoder 20 and/or video decoder 30 when
using video encoder 20 and/or video decoder 30 to code
data, such as, e.g., video data.

Additionally, the disclosed techniques may enable video
encoder 20 and/or video decoder to code the data more
ciiciently. For example, the techniques may enable video
encoder 20 and/or video decoder 30 to initialize one or more
contexts of a context adaptive entropy coding process (e.g.,
a CABAC process) used to code the data based on slice type
information associated with the data, or, alternatively, one or
more 1nitialization indicator values associated with the data.
As a result, upon being 1nitialized, the one or more contexts
may include probability estimates that are more accurate
relative to probability estimates determined using other
context mitialization techmques. As such, video encoder 20
and/or video decoder 30 may code the data more efliciently
(e.g., using fewer bits), compared to other techniques.

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder or
decoder circuitry, as applicable, such as one or more micro-
processors, DSPs, ASICs, FPGAs, discrete logic circuitry,
software, hardware, firmware, or any combinations thereof.
Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of
which may be integrated as part of a combined video
encoder/decoder (CODEC). An apparatus including video
encoder 20 and/or video decoder 30 may comprise an
integrated circuit (IC), a microprocessor, and/or a wireless
communication device, such as a cellular telephone.

FIG. 2 15 a block diagram that 1llustrates an example of a
video encoder that may perform the techniques for context
adaptive entropy coding with a reduced imitialization value
set, consistent with the techniques of this disclosure. Video
encoder 20 may perform intra- and inter-coding of video
blocks within video slices. Intra-coding relies on spatial
prediction to reduce or remove spatial redundancy 1n video
within a given video frame or picture. Inter-coding relies on

5

10

15

20

25

30

35

40

45

50

55

60

65

18

temporal prediction to reduce or remove temporal redun-
dancy 1n video within adjacent frames or pictures of a video
sequence. Intra-mode (I mode) may refer to any of several
spatial based compression modes. Inter-modes, such as
uni-directional prediction (P mode) or bi-prediction (B
mode), may refer to any of several temporal-based com-
pression modes.

In the example of FIG. 2, video encoder 20 includes mode
select unit 40, motion estimation unit 42, motion compen-
sation unit 44, intra-prediction module 46, reference frame
memory 64, summer 50, transform processing unit 52,
quantization unit 34, and entropy encoding unit 56. For
video block reconstruction, video encoder 20 also includes
inverse quantization unit 58, inverse transform processing
umt 60, and summer 62. A deblocking filter may also be
included to filter block boundaries to remove blockiness
artifacts from reconstructed video.

As shown 1n FIG. 2, video encoder 20 receives a current
video block within a video slice to be encoded. The slice
may be divided into multiple video blocks. Mode select unit
40 may select one of the coding modes, intra- or inter-, for
the current video block based on error results. If the intra- or
inter-modes are selected, mode select unit 40 provides the
resulting intra- or mter-coded block to summer 50 to gen-
erate residual block data and to summer 62 to reconstruct the
encoded block for use as a reference picture. Intra-prediction
module 46 performs intra-predictive coding of the current
video block relative to one or more neighboring blocks in the
same frame or slice as the current block to be coded to
provide spatial compression. Motion estimation unit 42 and
motion compensation unit 44 perform inter-predictive cod-
ing of the current video block relative to one or more
predictive blocks 1n one or more reference pictures to
provide temporal compression.

In the case of inter-coding, motion estimation unit 42 may
be configured to determine the inter-prediction mode for a
video slice according to a predetermined pattern for a video
sequence. The predetermined pattern may designate video
slices 1n the sequence as P slices, B slices or GPB slices.
Motion estimation unit 42 and motion compensation unit 44
may be highly mtegrated, but are illustrated separately for
conceptual purposes. Motion estimation, performed by
motion estimation unit 42, 1s the process ol generating
motion vectors, which estimate motion for video blocks. A
motion vector, for example, may indicate the displacement
of a PU of a video block within a current video frame or
picture relative to a predictive block within a reference
picture.

A predictive block 1s a block that 1s found to closely match
the PU of the video block to be coded in terms of pixel
difference, which may be determined by sum of absolute
C
C

ifference (SAD), sum of square difference (SSD), or other
ifference metrics. In some examples, video encoder 20 may
calculate values for sub-integer pixel positions of reference
pictures stored 1n reference frame memory 64. For example,
video encoder 20 may calculate values of one-quarter pixel
positions, one-cighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion
estimation unit 42 may perform a motion search relative to
the full pixel positions and fractional pixel positions and
output a motion vector with fractional pixel precision.
Motion estimation unit 42 calculates a motion vector for
a PU of a video block 1n an inter-coded slice by comparing
the position of the PU to the position of a predictive block
ol a reference picture. The reference picture may be selected
from a first reference picture list (List 0) or a second
reference picture list (List 1), each of which i1dentify one or

US 9,654,772 B2

19

more reference pictures stored in reference frame memory
64. Motion estimation unit 42 sends the calculated motion
vector to entropy encoding unit 56 and motion compensation
unit 44.

Motion compensation, performed by motion compensa-
tion umt 44, may mvolve fetching or generating the predic-
tive block based on the motion vector determined by motion
estimation. Upon receiving the motion vector for the PU of
the current video block, motion compensation umt 44 may
locate the predictive block to which the motion vector points
in one of the reference picture lists. Video encoder 20 forms
a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video
block being coded, forming pixel difference values. The
pixel difference values form residual data for the block, and
may include both luma and chroma difference components.
Summer 50 represents the component or components that
perform this subtraction operation. Motion compensation
unit 44 may also generate syntax elements associated with
the video blocks and the video slice for use by video decoder
30 1n decoding the video blocks of the video slice.

After motion compensation unit 44 generates the predic-
tive block for the current video block, video encoder 20
forms a residual video block by subtracting the predictive
block from the current video block. The residual video data
in the residual block may be included in one or more TUSs
and applied to transform processing unit 52. Transiorm
processing unit 52 transiforms the residual video data into
residual transform coeflicients using a transform, such as a
discrete cosine transform (DCT) or a conceptually similar
transform. Transform processing unit 52 may convert the
residual video data from a pixel domain to a transform
domain, such as a frequency domain.

Transform processing unit 52 may send the resulting
transiform coellicients to quantization unit 54. Quantization
unit 54 quantizes the transform coethicients to further reduce
bit rate. The quantization process may reduce the bit depth
associated with some or all of the coeflicients. The degree of
quantization may be modified by adjusting a QP. In some
examples, quantization unit 54 may then perform a scan of
the matrix including the quantized transform coetlicients.
Alternatively, entropy encoding unit 56 may perform the
scan.

Following quantization, entropy encoding unit 56 entropy
encodes the quantized transform coeflicients. For example,
entropy encoding umt 36 may perform CAVLC, CABAC, or
another entropy encoding technique. Following the entropy
encoding by entropy encoding unit 56, the encoded bait-
stream may be transmitted to video decoder 30, or archived
for later transmission or retrieval by wvideo decoder 30.
Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current
video slice being coded.

Inverse quantization unit 58 and verse transiorm pro-
cessing unit 60 apply inverse quantization and inverse
transformation, respectively, to reconstruct the residual
block 1n the pixel domain for later use as a reference block
ol a reference picture. Motion compensation unit 44 may
calculate a reference block by adding the residual block to
a predictive block of one of the reference pictures within one
of the reference picture lists. Motion compensation unit 44
may also apply one or more interpolation filters to the
reconstructed residual block to calculate sub-integer pixel
values for use 1n motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated
prediction block produced by motion compensation unit 44
to produce a reference block for storage in reference frame

10

15

20

25

30

35

40

45

50

55

60

65

20

memory 64. The reference block may be used by motion
estimation umt 42 and motion compensation unit 44 as a
reference block to inter-predict a block 1n a subsequent video
frame or picture.

In some examples, video encoder 20 may be configured to
encode one or more blocks of video data during a video
coding process €.g., for transmission in a bitstream to video
decoder 30 and/or storage device 24. For example, the one
or more blocks may be included within one or more slices
of video data, as previously described. As one example,
entropy encoding unit 36 of video encoder 20 may be
configured to encode a first syntax element, conforming to
a particular type of syntax element, of a first slice of video
data, conforming to a first slice type, using an initialization
value set. In this example, entropy encoding unit 56 may be
further configured to encode a second syntax element,
conforming to the particular type of syntax element, of a
second slice of video data, conforming to a second slice
type, using the imitialization value set. For example, as
previously described, the first slice type may be diflerent
from the second slice type. As also previously described, at
least one of the first slice type and the second slice type may
be a temporally predicted slice type.

In other examples, entropy encoding unit 56 may be
further configured to determine the initialization value set
used to encode the first and second syntax elements based on
at least one of: (1) the first slice type of the first slice of video
data, and the second slice type of the second slice of video
data; and (2) a first imitialization indicator value for the first
slice of video data, and a second initialization indicator
value for the second slice of video data. In these examples,
cach of the first and second 1nitialization 1indicator values for
the first and second slices of video data may indicate a
particular iitialization value set used to code the corre-
sponding slice of video data.

In some examples, entropy encoding unit 56 may be
turther configured to determine a first mapping between one
or more of the first slice type and a first 1nitialization
indicator value for the first slice of video data, and the
initialization value set using a first mapping function of one
or more mapping functions. That 1s, entropy encoding unit
56 may be configured with a mapping from a slice type to
an 1itialization value set, a mapping ifrom an initialization
indicator value to an initialization value set, or a mapping
from both a slice type and an 1nitialization indicator value to
an 1nitialization value set. In some examples, entropy encod-
ing unit 56 may be further configured to determine a second
mapping between one or more of the second slice type and
a second 1nitialization indicator value for the second slice of
video data, and the initialization value set using a second
mapping function of the one or more mapping functions.
Also 1n these examples, each of the first and second 1nitial-
ization indicator values for the first and second slices of
video data may once again indicate a particular initialization
value set used to code the corresponding slice of video data.

In the above-described examples, entropy encoding unit
56 (or another component or unit of video encoder 20) may
be further configured to encode one or more values repre-
sentative of at least one of the one or more mapping
functions and the first and second mitialization indicator
values 1n at least one of a PPS, an SPS, an APS, a VPS, a
slice header, a frame header, and a sequence header, asso-
ciated with the video data.

Alternatively, 1n the above-describe examples, entropy
encoding umit 36 may be further configured to determine at
least one of the one or more mapping functions and the first
and second iitialization indicator values based on one or

US 9,654,772 B2

21

more of a QP, a frame resolution parameter, and a GOP
structure parameter associated with the video data, and a
user put.

In other examples, entropy encoding unit 56 may be
turther configured to determine a subset of contexts of a full
set of contexts used to encode each of the first and second
slices. In these examples, the subset of contexts may include
at least one or more contexts used to code the particular type
of syntax element of the first and second syntax elements.
Also 1n these examples, to encode the first and second syntax
clement using the mitialization value set, entropy encoding
unit 56 may be configured to mitialize one or more contexts
of the subset of contexts based on the initialization value set.

In the above-described examples, 1n a similar manner as
described above with reference to the one or more mapping
functions and the first and second initialization indicator
values, entropy encoding unit 56 (or another component or
unit of video encoder 20) may be further configured to
encode one or more values that indicate the contexts of the
tull set of contexts that are included 1n the subset of contexts
in at least one of a PPS, an SPS, an APS, a VPS, a slice
header, a frame header, and a sequence header, associated
with the video data.

In some examples, also 1n a similar manner as described
above with reference to the one or more mapping functions
and the first and second initialization indicator values, to
determine the subset of contexts of the full set of contexts,
entropy encoding unit 56 may be configured to determine
the contexts of the full set of contexts that are included in the
subset of contexts based on one or more of a QP, a frame
resolution parameter, and a GOP structure parameter asso-
ciated with the video data, and a user input.

Furthermore, 1n some examples, to encode the first syntax
clement and the second syntax element using the nitializa-
tion value set, entropy encoding umt 36 may be configured
to determine an 1nitial context state for each of one or more
contexts that are used to code at least the particular type of
syntax element of the first and second syntax elements based
on the mitialization value set and a corresponding one of the
first and second slice types of the first and second slices of
video data to which the respective syntax element belongs.
In these examples, video encoder 20 may determine the
initialization value set based on the first slice type of the first
slice of video data, and the second slice type of the second
slice of video data.

In the above-described examples, to determine the nitial
context state for each of the one or more contexts based on
the 1nitialization value set and the corresponding one of the
first and second slice types, entropy encoding unit 36 may be
configured to determine the respective mnitial context state
based on one or more values of the 1mitialization value set,
a QP value, and a QP oflset value determined based on the
corresponding one of the first and second slice types.

As previously described, 1n some examples, the nitial-
1ization value set may include one of: (1) a slope value and
a separate mntersection value; and (2) a single value repre-
senting both the slope value and the intersection value. For
example, the mitialization value set may include at least one
“pair”” of the slope and intersection values, or at least one
single value representing both the slope value and the
intersection value, 1n some examples.

As 1llustrated by the examples above, the techmques of
this disclosure may enable video encoder 20 to encode
multiple syntax elements (e.g., for decoding by wvideo
decoder 30, and/or for storage within storage device 24),
cach conforming to the same type of syntax element, for
multiple slices of video data having different slice types

10

15

20

25

30

35

40

45

50

55

60

65

22

using a context adaptive entropy coding process (e.g., a
CABAC process) based on the same, or common, 1nitial-
ization value set. In some examples, the particular type of
syntax element may be used to indicate values of one or
more coellicients, or other syntax information, for one or
more blocks of video data. Specifically, according to the
disclosed techniques, video encoder 20 may use the 1mitial-
ization value set to determine 1nitial context states for (i.e.,
“immitialize™) one or more contexts of the context adaptive
entropy coding process prior to encoding each of the mul-
tiple syntax elements using the contexts. As a result, the
techniques disclosed herein may, in some cases, reduce
complexity (e.g., simplily processing and/or storage
resources, or reduce the usage thereol) of video encoder 20
used to encode the multiple syntax elements for the multiple
slices of video data.

Additionally, the disclosed techniques may enable video
encoder 20 to encode data, e.g., video data, more etfliciently.
For example, the techniques may enable video encoder 20 to
initialize one or more contexts of a context adaptive entropy
coding process (e.g., a CABAC process) used to encode the
data based on slice type information associated with the
data, or, alternatively, one or more initialization indicator
values associated with the data. As a result, upon being
initialized, the one or more contexts may include probabaility
estimates that are more accurate relative to probability
estimates determined using other context 1nitialization tech-
niques. As such, video encoder 20 may encode the data more
cihiciently (e.g., using fewer bits), compared to other tech-
niques.

In this manner, video encoder 20 represents an example of
a video coder configured to code a first syntax element,
conforming to a particular type of syntax element, of a first
slice of video data, conforming to a first slice type, using an
initialization value set, and code a second syntax element,
conforming to the particular type of syntax element, of a
second slice of video data, conforming to a second slice
type, using the imtialization value set, wherein the first slice
type 1s different from the second slice type, and wherein at
least one of the first slice type and the second slice type 1s
a temporally predicted slice type.

FIG. 3 1s a block diagram that 1llustrates an example of a
video decoder that may perform the techniques for context
adaptive entropy coding with a reduced 1nitialization value
set, consistent with the techniques of this disclosure. In the
example of FIG. 3, video decoder 30 includes an entropy
decoding unit 80, a prediction processing unit 82, an mnverse
quantization unit 88, an 1nverse transiform processing unit
90, a summer 92, and a reference frame memory 96.
Prediction processing unit 82 includes motion compensation
umit 84 and intra-prediction processing unit 86. Video
decoder 30 may, in some examples, perform a decoding pass
generally reciprocal to the encoding pass described with
respect to video encoder 20 from FIG. 2.

During the decoding process, video decoder 30 receives
an encoded video bitstream that represents video blocks of
an encoded video slice and associated syntax elements from
video encoder 20. When the represented video blocks 1n the
bitstream 1nclude compressed video data, entropy decoding
unit 80 of video decoder 30 entropy decodes the bitstream to
generate quantized coellicients, motion vectors, and other
syntax elements. Entropy decoding unit 80 forwards the
motion vectors and other syntax elements to prediction
processing unit 82. Video decoder 30 may recerve the syntax
clements at the video slice level and/or the video block level.

When the video slice 1s coded as an intra-coded (1) slice,
intra-prediction processing unit 86 of prediction processing

US 9,654,772 B2

23

unit 82 may generate prediction data for a video block of the
current video slice based on a signaled intra-prediction mode
and data from previously decoded blocks of the current
frame or picture. When the video frame 1s coded as an
inter-coded (i.e., B, P or GPB) slice, motion compensation
unit 84 of prediction processing unit 82 produces predictive
blocks for a video block of the current video slice based on
the motion vectors and other syntax elements received from
entropy decoding umt 80. The predictive blocks may be
produced from one of the reference pictures within one of
the reference picture lists. Video decoder 30 may construct
the reference frame lists, List 0 and List 1, using default
construction techniques based on reference pictures stored 1n
reference frame memory 96.

Motion compensation unit 84 determines prediction infor-
mation for a video block of the current video slice by parsing
the motion vectors and other syntax elements, and uses the
prediction information to produce the predictive blocks for
the current video block being decoded. For example, motion
compensation unit 84 uses some of the received syntax
clements to determine a prediction mode (e.g., intra- or
inter-prediction) used to code the video blocks of the video
slice, an inter-prediction slice type (e.g., B slice, P slice, or
GPB slice), construction mnformation for one or more of the
reference picture lists for the slice, motion vectors for each
inter-encoded video block of the slice, inter-prediction status
for each inter-coded video block of the slice, and other
information to decode the video blocks 1n the current video
slice.

Motion compensation unit 84 may also perform interpo-
lation based on interpolation filters. Motion compensation
unit 84 may use 1nterpolation filters as used by wvideo
encoder 20 during encoding of the video blocks to calculate
interpolated values for sub-integer pixels of reference
blocks. Motion compensation unit 84 may determine the
interpolation filters used by video encoder 20 from the
received syntax elements and use the interpolation filters to
produce predictive blocks.

Inverse quantization unit 88 i1nverse quantizes, 1.e., de-
quantizes, the quantized transform coeflicients provided 1n
the bitstream and decoded by entropy decoding unit 80. The
inverse quantization process may include use of a quanti-
zation parameter (QP) calculated by video encoder 20 for
cach video block 1n the video slice to determine a degree of
quantization and, likewise, a degree of mnverse quantization
that should be applied. Inverse transform processing unit 90
applies an 1inverse transiform, e.g., an mverse DCT, an
iverse iteger transform, or a conceptually similar inverse
transform process, to the transform coeflicients 1n order to
produce residual blocks in the pixel domain.

After motion compensation unit 84 generates the predic-
tive block for the current video block based on the motion
vectors and other syntax elements, video decoder 30 forms
a decoded video block by summing the residual blocks from
inverse transform processing unit 90 with the corresponding
predictive blocks generated by motion compensation unit
84. Summer 92 represents the component or components
that perform this summation operation. A deblocking filter 1s
applied to filter the decoded blocks 1n order to remove
blockiness artifacts. The decoded video blocks 1n a given
frame or picture are then stored in reference frame memory
96, which stores reference pictures used for subsequent
motion compensation. Reference frame memory 96 also
stores decoded video for later presentation on a display
device, such as display device 28 of FIG. 1.

In some examples, video decoder 30 may be configured to
decode one or more blocks of video data during a video

5

10

15

20

25

30

35

40

45

50

55

60

65

24

coding process, e.g., one or more encoded blocks of video
data received 1n a bitstream from video encoder 20 and/or
storage device 24. For example, as described above with
reference to video encoder 20, the one or more blocks may
be included within one or more slices of video data. As one
example, entropy decoding unit 80 of video decoder 30 may
be configured to decode a first syntax element, conforming
to a particular type of syntax element, of a first slice of video
data, conforming to a first slice type, using an initialization
value set. In this example, entropy decoding unit 80 may be
further configured to decode a second syntax element,
conforming to the particular type of syntax element, of a
second slice of video data, conforming to a second slice
type, using the initialization value set. For example, as
previously described, the first slice type may be different
from the second slice type. As also previously described, at
least one of the first slice type and the second slice type may
be a temporally predicted slice type.

In some examples, entropy decoding unit 80 may be
further configured to determine the initialization value set
used to decode the first and second syntax elements based on
at least one of: (1) the first slice type of the first slice of video
data, and the second slice type of the second slice of video
data; and (2) a first imitialization indicator value for the first
slice of video data, and a second initialization indicator
value for the second slice of video data. In these examples,
cach of the first and second 1nitialization indicator values for
the first and second slices of video data may indicate a
particular 1nitialization value set used to code the corre-
sponding slice of video data.

As one example, each of the first and second 1nitialization
indicator values for the first and second slices may indicate
an 1nitialization value set that was used by a video encoder
(e.g., video encoder 20) to encode the corresponding slice.
In this example, video decoder 30, and, in particular entropy
decoding unit 80, may be configured to receive one or more
of indications of (or data defining) the first and second slice
types of the first and second slices, and the first and second
initialization indicator values for the first and second slices,
in a recerved bitstream. For example, for each of the first and
second slices, video decoder 30 may be configured to
receive the one or more of the indications and values
described above 1n the received bitstream as one or more
syntax elements associated with the corresponding slice.

In other examples, entropy decoding unit 80 may be
further configured to determine a first mapping between one
or more of the first slice type and a first mitialization
indicator value for the first slice of video data, and the
initialization value set using a first mapping function of one
or more mapping functions. In these examples, entropy
decoding unit 80 may be still further configured to determine
a second mapping between one or more of the second slice
type and a second mmitialization indicator value for the
second slice of video data, and the initialization value set
using a second mapping function of the one or more map-
ping functions. In these examples, each of the first and
second 1nitialization indicator values for the first and second
slices of video data may once again indicate a particular
initialization value set used to code the corresponding slice
of video data.

For example, video decoder 30, and, 1n particular entropy
decoding unit 80, may be configured to receive one or more
indications of (or data defining) the first and second mapping
functions 1n a received bitstream. In this example, for each
of the first and second slices, video decoder 30 may be
configured to receive one or more indications of the corre-
sponding one of the first and second mapping functions 1n

US 9,654,772 B2

25

the received bitstream as one or more syntax eclements
associated with the respective slice. Alternatively, video
decoder 30 may be configured to receive one or more
indications of (or data defining) the one or more mapping
functions, including the first and second mapping functions,
in their entirety, in the received bitstream, e.g., as one or
more syntax elements associated with one or both of the first
and second slices.

As one example, entropy decoding unit 80 (or another
component or unit of video decoder 30) may be configured
to decode one or more values representative of at least one
of the first and second mapping functions (or the one or more
mapping functions in their entirety) and the first and second
mitialization indicator values 1n at least one of a PPS, an
SPS, an APS, a VPS, a slice header, a frame header, and a
sequence header, associated with the video data (e.g., as
encoded by video encoder 20 1n the received bitstream).
Additionally, as previously explained, in some examples,
entropy decoding unit 80 may be further configured to
decode one or more values representative of the first and
second slice types of the first and second slices 1n the
received bitstream (e.g., 1n a slice header associated with the
video data).

Alternatively, as another example, entropy decoding unit
80 may be configured to determine, or infer, at least one of
the first and second mapping functions (or the one or more
mapping functions in their entirety) and the first and second
initialization indicator values based on one or more of a QP,
a frame resolution parameter, and a GOP structure parameter
associated with the video data (1.e., side mnformation asso-
ciated with the first and second slices), and a user input.
Additionally, 1n some examples, entropy decoding umt 80
may be further configured to determine, or infer, the first and
second slice types of the first and second slices using side
information associated with the first and second slices.

In some examples, entropy decoding unit 80 may be
turther configured to determine a subset of contexts of a full
set of contexts used to decode each of the first and second
slices. In these examples, the subset of contexts may include
at least one or more contexts used to code the particular type
of syntax element of the first and second syntax elements.
Also 1n these examples, to decode the first and second syntax
clement using the initialization value set, entropy decoding
unit 80 may be configured to 1nitialize one or more contexts
ol the subset of contexts based on the initialization value set.

In the above-described examples, video decoder 30, and,
in particular entropy decoding unit 80, may be configured to
receive one or more indications of (or data defining) the
subset of contexts 1n a recerved bitstream (e.g., as encoded
by video encoder 20 in the received bitstream), or determine
(or infer) the subset of contexts using side information
associated with the video data (1.e., the first and second
slices). As one example, in a similar manner as described
above with reference to the one or more mapping functions
and the first and second initialization indicator values, to
determine the subset of contexts of the full set of contexts,
entropy decoding unit 80 (or another component or unit of
video decoder 30) may be configured to decode one or more
values that indicate the contexts of the full set of contexts
that are included 1n the subset of contexts 1n at least one of
a PPS, an SPS, an APS, a VPS, a slice header, a frame
header, and a sequence header, associated with the video
data (e.g., as encoded by video encoder 20 1n the received
bitstream).

Alternatively, as another example, also 1n a similar man-
ner as described above with reference to the one or more
mapping functions and the first and second initialization

10

15

20

25

30

35

40

45

50

55

60

65

26

indicator values, to determine the subset of contexts of the
full set of contexts, entropy decoding unit 80 may be
configured to determine, or infer, the contexts of the full set
ol contexts that are included in the subset of contexts based
on one or more of a QP, a frame resolution parameter, and
a GOP structure parameter associated with the video data
(1.e., side information associated with the first and second
slices), and a user mput.

Furthermore, 1n some examples, to decode the first syntax
clement and the second syntax element using the nitializa-
tion value set, entropy decoding unit 80 may be configured
to determine an initial context state for each of one or more
contexts that are used to code at least the particular type of
syntax element of the first and second syntax elements based
on the mitialization value set and a corresponding one of the
first and second slice types of the first and second slices of
video data to which the respective syntax element belongs.
In these examples, entropy decoding umit 80 may determine
the iitialization value set based on the first slice type of the
first slice of video data, and the second slice type of the
second slice of video data.

In the above-described examples, to determine the initial
context state for each of the one or more contexts based on
the 1mitialization value set and the corresponding one of the
first and second slice types, entropy decoding unit 80 may be
configured to determine the respective initial context state
based on one or more values of the mitialization value set
(e.g., one or more of the “m,” “n,” and “m8” wvalues

11,
described above), a QP value (e.g., a particular QP value,
sometimes referred to as an mitialization QP, or 1QP, value,
associated with a corresponding one of the first and second
slices), and a QP oflset value (e.g., a dQP value) determined
based on the corresponding one of the first and second slice
types.

As previously described, 1n some examples, the initial-
ization value set may include one of: (1) a slope value and
a separate intersection value; and (2) a single value repre-
senting both the slope value and the intersection value. For
example, the initialization value set may include at least one
pair of the slope and intersection values, or at least one
single value representing both the slope value and the
intersection value, 1n some examples. As one example, the
initialization value set may include one or more pairs of
values, each including a slope value and a separate inter-
section value, which may be referred to as “m” and “n,”
respectively. As another example, the initialization value set
may include one or more single values, each of which
represents both a slope value and an intersection value, and
which may be referred to as “m8.”

As 1llustrated by the examples above, the techniques of
this disclosure may enable video decoder 30 to decode
multiple syntax elements (e.g., encoded by video encoder
20, and/or provided by storage device 24), each conforming
to the same type of syntax element, for multiple slices of
video data having different slice types using a context
adaptive entropy coding process (e.g., a CABAC process)
based on the same, or common, 1nitialization value set. In
some examples, the particular type of syntax element may be
used to indicate values of one or more coetlicients, or other
syntax information, for one or more blocks of video data.
Specifically, according to the disclosed techniques, video
decoder 30 may use the mitialization value set to determine
initial context states for (1.e., initialize) one or more contexts
of the context adaptive entropy coding process prior to
decoding each of the multiple syntax elements using the
contexts. As a result, the techniques disclosed herein may, 1n
some cases, reduce complexity (e.g., simplily processing

US 9,654,772 B2

27

and/or storage resources, or reduce the usage thereol) of
video decoder 30 used to decode the multiple syntax ele-
ments for the multiple slices of video data.

Additionally, the disclosed techniques may enable video
decoder 30 to decode data, e.g., video data, more efliciently.
For example, the techniques may enable video decoder 30 to
initialize one or more contexts of a context adaptive entropy
coding process (e.g., a CABAC process) used to decode the
data based on slice type imformation associated with the
data, or, alternatively, one or more initialization indicator
values associated with the data. As a result, upon being
initialized, the one or more contexts may include probability
estimates that are more accurate relative to probability
estimates determined using other context mnitialization tech-
niques. As such, video decoder 30 may decode the data more
ciiciently (e.g., using fewer bits), compared to other tech-
niques.

In this manner, video decoder 30 represents an example of
a video coder configured to code a first syntax element,
conforming to a particular type of syntax element, of a first
slice of video data, conforming to a first slice type, using an
iitialization value set, and code a second syntax element,
conforming to the particular type of syntax element, of a
second slice of video data, conforming to a second slice
type, using the mitialization value set, wherein the first slice
type 1s different from the second slice type, and wherein at
least one of the first slice type and the second slice type 1s
a temporally predicted slice type.

FIGS. 4-6 are flowcharts that illustrate example methods
of context adaptive entropy coding with a reduced 1nitial-
1zation set, consistent with the techniques of this disclosure.
The techniques of FIGS. 4-6 may generally be performed by
any processing unit or processor, whether implemented 1n
hardware, software, firmware, or a combination thereot, and
when 1mplemented 1n soitware or firmware, corresponding,
hardware may be provided to execute instructions for the
software or firmware. For purposes of example, the tech-
niques of FIGS. 4-6 are described with respect to both video
encoder 20 (FIGS. 1 and 2) and video decoder 30 (FIGS. 1
and 3), as well as various components thereof (e.g., entropy
encoding unit 36 and entropy decoding unit 80), although 1t
should be understood that other devices may be configured
to perform similar techniques. That 1s, video decoder 30 1s
generally configured to perform a reciprocal method, with
respect to entropy coding, to that performed by wvideo
encoder 20. Theretfore, video encoder 20 and video decoder
30, 1n thus example, are configured to perform similar (albeit
reciprocal) entropy coding methods. However, it should be
understood that video encoders and/or video decoders may
be individually configured to perform particular methods.
Moreover, the steps illustrated 1n FIGS. 4-6 may be per-
formed 1n a different order or in parallel, and additional steps
may be added and certain steps omitted, without departing,
from the techniques of this disclosure.

Specifically, FIG. 4 illustrates an example method of
context adaptive entropy coding with a reduced imitialization
set 1n the context of coding (1.¢., encoding and/or decoding),
generally, from the perspective of video encoder 20 and
video decoder 30. That 1s, the description of FIG. 4 indicates
both how video encoder 20 can perform the method, as well
as how video decoder 30 can perform the method. Addi-
tionally, FIGS. 5 and 6 illustrate example methods of context
adaptive binary arithmetic coding with a reduced 1nitializa-
tion set i the context of decoding from the perspective of
video decoder 30, and encoding from the perspective of
video encoder 20, respectively.

10

15

20

25

30

35

40

45

50

55

60

65

28

As one example, video encoder 20 and/or video decoder
30 may code (1.e., encode and/or decode) one or more blocks
of video data during a video coding process, as previously
described. For example, the one or more blocks may be one
or more PUs, TUs, or CUs, and may be included 1n one or
more slices of video data, as also previously described. In
this example, mitially, video encoder 20 and/or wvideo
decoder 30 may code a first syntax element, conforming to
a particular type of syntax element, of a first slice of video
data, conforming to a first slice type, using an initialization
value set (400).

For example, the particular type of syntax element of the
first syntax element may correspond to any type of syntax
clement associated with the first slice. In some examples, the
particular type of syntax element may be used to indicate
values (e.g., magnitudes and/or signs) ol one or more
coellicients, as well as other syntax information (e.g., pre-
diction information, including prediction mode and/or
motion vector information) for one or more blocks of video
data of the first slice. In other examples, the particular type
of syntax element may be used to indicate various types of
syntax iformation for the first slice 1tself (e.g., information
that 1s common to multiple blocks of video data of the first
slice). Additionally, 1n still other examples, the first slice
type of the first slice may correspond to any one of a
spatially-predicted “I-” slice type, and temporally-predicted
“P-" and “B-"" slice types, in a similar manner as described
above with reference to FIGS. 1-3.

In this example, video encoder 20 and/or video decoder
30 may further code a second syntax element, conforming to
the particular type of syntax element (1.e., to the same type
of syntax element as that of the first syntax eclement
described above), of a second slice of video data, conform-
ing to a second slice type, using the mitialization set. In this
example, the first slice type may be diflerent from the second
slice type. Also 1n this example, at least one of the first slice
type and the second slice type may be a temporally predicted
slice type (402).

Stated another way, 1n this example, while the first slice
type may correspond to any one of the spatially-predicted
“I-” slice type and the temporally-predicted “P-” and “B-”
slice types, as explained above, the second slice type of the
second slice may correspond to any other one of the above-
described slice types. In this manner, the first and second
slice types may be different from one another. Additionally,
also 1n this example, at least one of the first and second slices
may be coded using temporal prediction. In other words, at
least one of the first and second slice types described above
may correspond to any one of the temporally-predicted “P-"
and “B-" slice types. In this example, the other one of the
first and second slices may be coded using temporal or
spatial prediction (1.e., the other one of the first and second
slice types may correspond to any one of the spatially-
predicted “I-” slice type and the temporally-predicted “P-"
and “B-" slice types).

In this manner, according to the techniques of this dis-
closure, video encoder 20 and/or video decoder 30 may code
multiple syntax elements, each conforming to the same type
of syntax element, for multiple slices of video data having
different slice types using a context adaptive entropy coding
process (e.g., a CABAC process) based on the same, or
common, initialization value set. In some examples, the
particular type of syntax element may be used to indicate
values of one or more coellicients, or other syntax informa-
tion, for one or more blocks of video data. Specifically,
according to the disclosed techniques, video encoder 20
and/or video decoder 30 may use the mnitialization value set

US 9,654,772 B2

29

to determine 1nitial context states for (1.e., “mitialize”) one
or more contexts of the context adaptive entropy coding
process prior to coding each of the multiple syntax elements
using the contexts. As a result, the techniques disclosed
herein may, in some cases, reduce complexity (e.g., simplify
processing and/or storage resources, or reduce the usage
thereol) of video encoder 20 and/or video decoder 30 used
to code the multiple syntax elements for the multiple slices
of video data.

In some examples, video encoder 20 and/or video decoder
30 may further determine the mnitialization value set used to
code the first and second syntax elements based on at least
one of: (1) the first slice type of the first slice of video data,
and the second slice type of the second slice of video data,
and (2) a first imtialization indicator value for the first slice
of video data, and a second 1nitialization indicator value for
the second slice of video data. In a similar manner as
described above with reference to FIGS. 1-3, in this
example, each of the first and second 1nitialization indicator
values for the first and second slices of video data may
indicate a particular mitialization value set used to code the
corresponding slice of video data.

As one example, as described above, each of the first and
second 1nitialization indicator values for the first and second
slices may be an integer value selected from a set of one or
more integer values, e.g., a set that includes integer values
ranging from “0” to “N-1,” where “N” 1s some non-zero
integer value. In this example, each iteger value (e.g., 0, 1,
2 .. .N-1) included within the set may correspond to, or
indicate, a particular 1mitialization value set (e.g., Set(0),
Set(1), Set(2) . . . Set(N-1)) of one or more 1mtialization
value sets. Additionally, as also described above, each of the
first and second initialization indicator values for the first
and second slices may be signaled 1n a bitstream (e.g., from
video encoder 20 to video decoder 30) using a particular
type of syntax element, such as, e.g., syntax element type
cabac_init_idc, or another syntax element type. In some
examples, video encoder 20 and/or video decoder 30 may
code one or more of the first and second i1mtialization
indicator values using any of fixed length codes, variable
length codes (e.g., using VLC, or similar techniques), or
arithmetic codes (e.g., CABAC, PIPE, or similar tech-
niques).

In this manner, 1n some examples, to code each of the first
and second syntax elements, video encoder 20 and/or video
decoder 30 may determine the 1mitialization value set based
on the corresponding one of the first and second 1nitializa-
tion indicator values for the first and second slices to which
the respective syntax element belongs. For example, video
encoder 20 and/or video decoder 30 may select the 1nitial-
ization value set from a group of multiple initialization value
sets based on the first and second imtialization indicator
values, e.g., 1n an adaptive manner and irrespective of the
first and second slice types of the first and second slices.

As a result, video encoder 20 and/or video decoder 30
may code the first and second syntax elements more efli-
ciently. For example, video encoder 20 and/or video decoder
30 may 1nitialize one or more contexts of a context adaptive
entropy coding process (e.g., a CABAC process) used to
code the first and second syntax elements using the initial-
1ization value set determined 1n the manner described above.
In particular, 1n this example, to code each of the first and
second syntax elements, video encoder 20 and/or video
decoder 30 may select the initialization value set irrespective
of the corresponding one of the first and second slice types
of the first and second slices to which the respective syntax
clement belongs. As such, upon being mnitialized using the

10

15

20

25

30

35

40

45

50

55

60

65

30

initialization value set, the one or more contexts may include
probability estimates that are more accurate relative to
probability estimates determined using other context 1nitial-
1zation techniques (e.g., techniques that select an 1nitializa-
tion value set to code syntax elements of a slice of video data
based on a slice type associated with the slice). In this
manner, video encoder 20 and/or video decoder 30 may code
the first and second syntax elements more efhiciently (e.g.,
using fewer bits), compared to other techniques.

In other examples, however, as already described above,
video encoder 20 and/or video decoder 30 may select the
initialization value set from the group of multiple mnitializa-
tion value sets based on the first and second slice types.

In other examples, video encoder 20 and/or video decoder
30 may further determine a first mapping between one or
more of the first slice type and a first 1nitialization indicator
value for the first slice of video data, and the initialization
value set using a first mapping function of one or more
mapping functions. In these examples, video encoder 20
and/or video decoder 30 may still further determine a second
mapping between one or more of the second slice type and
a second 1nitialization indicator value for the second slice of
video data, and the initialization value set using a second
mapping function of the one or more mapping functions. In
these examples, once again, each of the first and second
initialization indicator values for the first and second slices
of video data may indicate a particular initialization value
set used to code the corresponding slice of video data.

In some examples, the one or more mapping functions
and, when applicable, the first and second nitialization
indicator values, may be defined, or fixed, and may be
available to both video encoder 20 and video decoder 30 for
purposes of determining the mmitialization value set 1n the
manner described above. In other examples, however, video
encoder 20 may determine, or manipulate 1n some manner,
at least one of the one or more mapping functions and the
first and second imitialization indicator values as part of
encoding the first and second syntax elements. In these
examples, video encoder 20 may further encode one or more
values representative of at least one of the one or more
mapping functions and the first and second initialization
indicator values 1n at least one of a PPS, an SPS, an APS, a
VPS, a slice header, a frame header, and a sequence header,
associated with the video data.

For example, video encoder 20 may signal the encoded
one or more values 1n a bitstream, such that video decoder
30 may receive the bitstream and decode the one or more
values. Video encoder 20 may also signal the encoded first
and second syntax elements in the bitstream. In these
examples, based on the decoded one or more values, video
decoder 30 may determine the at least one of the one or more
mapping functions and the first and second nitialization
indicator values. Subsequently, video decoder 30 may deter-
mine the mitialization value set based on the one or more
mapping lfunctions, and, when applicable, the first and
second 1nitialization indicator values. Video decoder 30 may
receive the encoded first and second syntax elements in the
bitstream, and decode the first and second syntax elements
based on the determined initialization value set.

In other examples, video encoder 20 and/or video decoder
30 may further determine at least one of the one or more
mapping functions and, when applicable, the first and sec-
ond 1nitialization indicator values, based on one or more of
a QP, a frame resolution parameter, and a GOP structure
parameter associated with the video data. In still other
examples, video encoder 20 and/or video decoder 30 may
determine the one or more mapping functions and first and

US 9,654,772 B2

31

second 1nitialization indicator values based on other infor-
mation (sometimes referred to as side information) that
relates to one or more of the first and second slices.
Additionally, 1n some examples, video encoder 20 and/or
video decoder 30 may further determine the at least one of
the one or more mapping functions and the first and second
initialization indicator values based on a user input. In other
words, 1n some examples, the one or more mapping func-
tions, and, when applicable, the first and second initializa-
tion 1ndicator values (e.g., allocation, or assignment, of the
first and second 1nitialization indicator values to the first and
second slices), may be specified by a user.

In some examples, video encoder 20 and/or video decoder
30 may further determine the imitialization value set based
on one or more of the first and second slice types and a first
initialization indicator value for the first slice of video data
and a second 1mtialization indicator value for the second
slice of video data, 1n conjunction with one or more formu-
las. In these examples, once again, each of the first and
second 1nitialization indicator values for the first and second
slices of video data may indicate a particular 1imitialization
value set used to code the corresponding slice of video data.
For example, the one or more formulas may be defined, or
fixed, and may be available to both video encoder 20 and
video decoder 30 for purposes of determining the initializa-
tion value set 1n the manner described above. In other
examples, however, video encoder 20 may encode one or
more values indicative of the one or more formulas 1n a
bitstream, and video decoder 30 may receive the encoded
one or more values 1n the bitstream and decode the one or
more values, for purposes of determining the 1nitialization
value set.

In some examples, video encoder 20 and/or video decoder
30 may further determine a subset of contexts of a full set of
contexts used to code each of the first and second slices. In
these examples, the subset of contexts may include at least
one or more contexts used to code the particular type of
syntax element of the first and second syntax elements. In
other words, 1n some examples, the subset of contexts may
include additional contexts. In any case, 1n these examples,
to code the first and second syntax element using the
initialization value set, video encoder 20 and/or video
decoder 30 may mitialize one or more contexts of the subset
of contexts based on the inmitialization value set. In this
manner, the 1mmtialization value set described above may
apply to (1.e., be used to determine 1nitial context states for,
or “initialize”) a limited number of contexts included within
the subset of contexts, rather than all contexts of the full set
ol contexts used to code each of the first and second slices.

As one example, the subset of contexts may include at
least one or more contexts used to code one or more types
of syntax elements relating to coeflicients, and/or to coding
of coethicients, of one or more blocks of video data. For
example, the one or more types of syntax elements may be
used to indicate significant coeflicient position and last
significant coellicient position (e.g., “significance map”)
information, coeflicient level (e.g., magnitude and sign)
information, as well as other information used to code
coellicients of blocks of video data. In some examples, the
syntax element types may include “significant_coefl_flag,”
“last_significant_coefl_flag,” “coefl_abs_level _minusl,”
“coefl_sign_flag,” “larger than_one_flag,” and “larger_
than_two_{lag,” as well as any number of other equivalent
or similar syntax element types.

In some examples, video encoder 20 and/or video decoder
30 may further code one or more values that indicate the
contexts of the full set of contexts that are included 1n the

5

10

15

20

25

30

35

40

45

50

55

60

65

32

subset of contexts 1n at least one of a PPS, an SPS, an APS,
a VPS, a slice header, a frame header, and a sequence header,
assoclated with the video data, in a similar manner as
described above with reference to the one or more mapping
functions and the first and second mitialization indicator
values.

In other examples, to determine the subset of contexts of
the full set of contexts, video encoder 20 and/or video
decoder 30 may determine the contexts of the full set of
contexts that are included in the subset of contexts based on
one or more of a QP, a frame resolution parameter, and a
GOP structure parameter associated with the video data. As
another example, to determine the subset of contexts of the
full set of contexts, video encoder 20 and/or video decoder
30 may determine the contexts of the full set of contexts that
are 1ncluded in the subset of contexts based on other
information (sometimes referred to as side information) that
relates to one or more of the first and second slices.
Additionally, 1n some examples, to determine the subset of
contexts of the full set of contexts, video encoder 20 and/or
video decoder 30 may determine the contexts of the full set
of contexts that are included in the subset of contexts based
on a user input. In other words, 1n some examples, the subset
of contexts (e.g., the contexts of the full set of contexts that
are included 1n the subset of contexts), may be specified by
a user.

In some examples, to code the first syntax element and the
second syntax element using the initialization value set,
video encoder 20 and/or video decoder 30 may determine an
initial context state for each of one or more contexts that are
used to code at least the particular type of syntax element of
the first and second syntax elements. For example, video
encoder 20 and/or video decoder 30 may determine the
respective 1nitial context state based on the mnitialization
value set and a corresponding one of the first and second
slice types of the first and second slices of video data to
which the respective syntax element belongs. In these
examples, video encoder 20 and/or video decoder 30 may
determine the 1nitialization value set based on the first slice
type of the first slice of video data, and the second slice type
of the second slice of video data. In these examples, to
determine the 1nitial context state for each of the one or more
contexts based on the 1mitialization value set and the corre-
sponding one of the first and second slice types, video
encoder 20 and/or video decoder 30 may determine the
respective 1nitial context state based on the following: (1)
one or more values of the mitialization value set (e.g., one
or more of the “m,” “n,” and “m8” values described above);
(2) a QP value (e.g., a particular QP value, sometimes
referred to as an mitialization QP, or 1QP, value, associated
with a corresponding one of the first and second slices), and
a QP oflset value (e.g., a dQP value) determined based on the
corresponding one of the first and second slice types. For
example, as described above, the QP offset value (e.g., dQP)
may be used to modity, or “offset,” the QP value (e.g., QP,
or 1QP) used to determine the respective 1nitial context state
(e.g., ImitState), as illustrated 1n expressions EQ. 4 and 5
reproduced below:

Int iInitState=((m*({Qp+dQP))/16)+#; EQ. 4

(InitState=min(max(1,/InitState),126) EQ. 5

As a result, video encoder 20 and/or video decoder 30
may code the first and second syntax elements more efli-
ciently. For example, video encoder 20 and/or video decoder
30 may 1itialize one or more contexts of a context adaptive
entropy coding process (e.g., a CABAC process) used to

US 9,654,772 B2

33

code the first and second syntax elements using the initial-
ization value set (1.e., the same initialization value set
determined based on the first and second slice types of the
first and second slices), as well as the corresponding one of
the first and second slice types, in the manner described
above. As such, upon being inmitialized using the nitializa-
tion value set and the first and second slice types, the one or
more contexts may include probability estimates that are
more accurate relative to probability estimates determined
using other context initialization techniques. Specifically,
the above-described techniques may enable video encoder
20 and/or video decoder 30 to code both the first and second
syntax elements using the same initialization value set,
potentially reducing the complexity of video encoder 20
and/or video decoder 30, as well as using slice type infor-
mation associated with the respective syntax element, poten-
tially improving accuracy of nitial context states determined
using the initialization value set.

In this manner, video encoder 20 and/or video decoder 30
may code the first and second syntax elements more efli-
ciently (e.g., using fewer bits) compared to other techniques,
while potentially reducing the complexity of video encoder
20 and/or video decoder 30 used to code the first and second
syntax elements, as already described above.

As previously described, 1n some examples, each of the
first and second slice types may be one of an intra-prediction
(I) slice type, a unidirectional inter-prediction (P) slice type,
and a bi-directional iter-prediction (B) slice type. For
example, as explained above, one of the first and second
slice types may be any one the (I), (B), and (P) slice types,
while the other one of the first and second slice types may
be any other one of the above-described slice types (i.e., the
first and second slice types may be diflerent from one
another). Additionally, as also explained above, at least one
of the first and second slice types may be a temporally
predicted slice type (i.e., one of the (P) and (B) slice types).

Furthermore, as also previously described, in some
examples, the initialization value set may include one of: (1)
a slope value and a separate intersection value, and (2) a
single value representing both the slope value and the
intersection value. As one example, 1n a similar manner as
described above with reference to HM 4.0, the 1nitialization
value set may include one or more pairs of values, wherein
cach pair of values includes a slope value and a separate
intersection value, which may be referred to as “m” and “n,”
respectively. As another example, 1n a similar manner as
described above with reference to HM 3.0, the 1mitialization
value set may include one or more single values, which may
be referred to as “m8”, wherein each single value represents
both a slope value and an intersection value.

As another example, video decoder 30 may receive at
least one of a first indication of (or data defining) a first slice
type of a first slice of video data, a first 1mmitialization
indicator value for the first slice indicating a particular
initialization value set used to code the first slice, and a first
one or more mapping functions, in a received bitstream
(500). In this example, the above-described syntax informa-
tion for the first slice (1.e., the first indication of the first slice
type, the first mitialization indicator value, and the first one
or more mapping functions) may be encoded within the
received bitstream by video encoder 20, as described below
with reference to the example of FIG. 6. For example, video
encoder 20 may generate the bitstream for transmission to
video decoder 30, and/or for storage within storage device
24. Also 1 this example, video decoder 30 may further
determine an 1mitialization value set based on one or more of
the received first indication of the first slice type, first

5

10

15

20

25

30

35

40

45

50

55

60

65

34

initialization indicator value, and first one or more mapping
functions (502). For example, video decoder 30 may map
the first slice type or, when applicable, the first in1tialization
indicator value, to the 1nitialization value set using the first
one or more mapping functions. In other words, using the
first one or more mapping functions, video decoder 30 may
select the mitialization value set, e.g., from among a number
of initialization value sets, using the first slice type or, when
applicable, the first imtialization indicator value.

After determiming, or selecting, the mmitialization value
set, video decoder 30 may 1nitialize one or more contexts of
a context adaptive entropy coding process (e.g., a CABAC
process) based on one or more values of the initialization
value set (504). For example, video decoder 30 may deter-
mine 1nitial context states, corresponding to initial probabili-
ties, for each of the one or more contexts using the one or
more values of the 1mitialization value set. Video decoder 30
may then decode a first syntax element, conforming to a
particular type of syntax eclement, of the first slice by
performing the context adaptive entropy coding process
based on the initialized one or more contexts (506).

Subsequently, video decoder 30 may recerve at least one
of a second indication of (or data defining) a second slice
type of a second slice of video data, a second 1nitialization
indicator value for the second slice indicating a particular
initialization value set used to code the second slice, and a
second one or more mapping functions, i the received
bitstream (508). In this example, the first and second slice
types may be different, and at least one of the first and
second slice types may be a temporally predicted slice type
(e.g., a “P-" slice type, or a “B-" slice type), as previously
described with reference to the example of FIG. 4.

In this example, the above-described syntax information
for the second slice (1.e., the second indication of the second
slice type, the second 1nitialization indicator value, and the
second one or more mapping functions) may once again be
encoded within the received bitstream by video encoder 20,
as described below with reference to the example of FIG. 6.
As previously explained, 1n some examples, video encoder
20 may generate the bitstream for transmission to video
decoder 30, and/or for storage within storage device 24.

Also 1 this example, video decoder 30 may further
determine the initialization value set based on one or more
of the received second indication of the second slice type,
second 1nitialization indicator value, and second one or more
mapping functions (510). For example, video decoder 30
may once again map the second slice type or, when appli-
cable, the second 1mitialization indicator value, to the 1ni-
tialization value set using the second one or more mapping
functions. Stated another way, using the second one or more
mapping functions, video decoder 30 may select the 1nitial-
1ization value set, e.g., from among a number of 1nitialization
value sets, using the second slice type or, when applicable,
the second 1nitialization indicator value.

After determining, or selecting, the imitialization value
set, video decoder 30 may once again initialize, or “re-
initialize,” the one or more contexts of the context adaptive
entropy coding process based on the one or more values of
the imtialization value set (512). For example, video decoder
30 may once again determine initial context states, corre-
sponding to 1nitial probabilities, for each of the one or more
contexts using the one or more values of the mitialization
value set. Video decoder 30 may then decode a second
syntax element, conforming to the particular type of syntax
clement (1.e., the same type of syntax element as that of the
first syntax element), of the second slice by performing the
context adaptive entropy coding process based on the re-

US 9,654,772 B2

35

initialized one or more contexts (514). In the above-de-
scribed example, the first and second indications of the first
and second slice types may correspond to the same value of
a particular syntax element type used to indicate a slice type
associated with a slice of video data. For example, the same
value of the particular syntax element may be associated
with each of the first and second slices. Similarly, when
applicable, the first and second initialization indicator values
for the first and second slices may also correspond to the
same value of a particular syntax element type, e.g., caba-
c_1init_1dc, associated with each of the first and second
slices. Furthermore, the first and second one or more map-
ping functions may be the same one or more mapping
functions. In this manner, video decoder 30 may map each
of the first and second slice types or, when applicable, each
of the first and second 1nitialization indicator values, to the
iitialization value set using the first and second one or more
mapping functions.

As still another example, video encoder 20 may determine
an 1itialization value set based on at least one of a first slice
type of a first slice of video data, a first 1mitialization
indicator value for the first slice indicating a particular
initialization value set used to code the first slice, and a first
one or more mapping functions (600). In this example, the
above-described syntax information for the first slice (i.e.,
the first indication of the first slice type, the first initializa-
tion indicator value, and the {first one or more mapping
functions) may be generated by video encoder 20 (e.g., as
part of encoding the first slice), or provided to video encoder
20 by another system or device. For example, video encoder
20 may encode this syntax information within a bitstream to
be recerved by video decoder 30, as described above with
reference to the example of FIG. 5. In some examples, video
encoder 20 may generate the bitstream for transmission to
video decoder 30, and/or for storage within storage device
24.

In this example, video encoder 20 may map the first slice
type or, when applicable, the first 1mitialization indicator
value, to the mitialization value set using the {first one or
more mapping functions. In other words, using the first one
or more mapping functions, video encoder 20 may select the
mitialization value set, e.g., from among a number of
initialization value sets, using the first slice type or, when
applicable, the first initialization indicator value.

After determining, or selecting, the mitialization value
set, video encoder 20 may 1nitialize one or more contexts of
a context adaptive entropy coding process (e.g., a CABAC
process) based on one or more values of the mitialization
value set (602). For example, video encoder 20 may deter-
mine 1nitial context states, corresponding to initial probabili-
ties, for each of the one or more contexts using the one or
more values of the iitialization value set. Video encoder 20
may then encode a first syntax element, conforming to a
particular type of syntax clement, of the first slice by
performing the context adaptive entropy coding process
based on the initialized one or more contexts (604). Addi-
tionally, video encoder 20 may encode at least one of a first
indication of (or data defining) the first slice type, the first
initialization indicator value, and the first one or more
mapping functions, 1n a bitstream (606). For example, video
encoder 20 may encode the above-described syntax infor-
mation 1n the bitstream for use by video decoder 30, as
described above with reference to the example of FIG. 5,
and/or for storage within storage device 24.

Subsequently, video encoder 20 may determine the ini-
tialization value set based on at least one of a second slice
type of a second slice of video data, a second mnitialization

10

15

20

25

30

35

40

45

50

55

60

65

36

indicator value for the second slice indicating a particular
initialization value set used to code the second slice, and a
second one or more mapping Ifunctions (608). In this
example, the first and second slice types may be difierent,
and at least one of the first and second slice types may be a
temporally predicted slice type (e.g., a “P-" slice type, or a
“B-" slice type), as previously described with reference to
the example of FIG. 4.

In this example, the above-described syntax information
for the second slice (1.e., the second indication of the second
slice type, the second 1nitialization indicator value, and the
second one or more mapping functions) may once again be
generated by video encoder 20 (e.g., as part of encoding the
second slice), or provided to video encoder 20 by another
system or device. For example, video encoder 20 may once
again encode this syntax information within a bitstream to
be recerved by video decoder 30, as described above with
reference to the example of FIG. 5. As previously explained,
in some examples, video encoder 20 may generate the
bitstream for transmission to video decoder 30, and/or for
storage within storage device 24.

Also 1n this example, video encoder 20 may once again
map the second slice type or, when applicable, the second
initialization indicator value, to the initialization value set
using the second one or more mapping functions. In other
words, using the second one or more mapping functions,
video encoder 20 may select the mitialization value set, e.g.,
from among a number of 1nitialization value sets, using the
second slice type or, when applicable, the second nitializa-
tion 1ndicator value.

After determiming, or selecting, the mmitialization value
set, video encoder 20 may 1nitialize, or re-initialize, the one
or more contexts ol the context adaptive entropy coding
process based on the one or more values of the mnitialization
value set (610). For example, video encoder 20 may once
again determine 1nitial context states, corresponding to
initial probabilities, for each of the one or more contexts
using the one or more values of the mitialization value set.
Video encoder 20 may then encode a second syntax element,
conforming to the particular type of syntax element (1.e., the
same type of syntax element as that of the first syntax
clement), of the second slice by performing the context
adaptive entropy coding process based on the re-initialized
one or more contexts (612). Additionally, video encoder 20
may encode at least one of a second indication of (or data
defining) the second slice type, the second nitialization
indicator value, and the second one or more mapping
functions, 1 the bitstream (614). For example, video
encoder 20 may encode the above-described syntax infor-
mation 1n the bitstream for use by video decoder 30, as
described above with reference to the example of FIG. 5,
and/or for storage within storage device 24.

In the above-described example, the first and second
indications of the first and second slice types may once again
correspond to the same value of a particular syntax element
type used to indicate a slice type associated with a slice of
video data. For example, the same value of the particular
syntax element may be associated with each of the first and
second slices. Similarly, when applicable, the first and
second 1itialization indicator values for the first and second
slices may also correspond to the same value of a particular
syntax element type, e.g., cabac_init_idc, associated with
each of the first and second slices. Furthermore, the first and
second one or more mapping functions may be the same one
or more mapping functions. In this manner, like video
decoder 30, video encoder 20 may map each of the first and
second slice types or, when applicable, each of the first and

US 9,654,772 B2

37

second 1nitialization indicator values, to the initialization
value set using the first and second one or more mapping
functions. As still another example, video encoder 20 and/or
video decoder 30 may receive data for a slice of video data
(700). For example, the slice of video data may be a
currently coded slice. In this example, the data for the
currently coded slice may include one or more syntax
clements associated with the slice. As one example, the one
or more syntax eclements may indicate various types of
information about the currently coded slice, including vari-
ous types of control information used by a video encoder
(e.g., video encoder 20) to encode the slice, and required for
a video decoder (e.g., video decoder 30) to decode the slice.

In this example, video encoder 20 and/or video decoder
30 may further determine one of a slice type and an
initialization indicator value associated with the slice of
video data based on the received data (702). For example,
the determined slice type associated with the currently coded
slice may be any of the “I,” “P,” and “B” slice types
described above. In this example, the determined slice type
may be represented using a syntax element associated with
the currently coded slice. As another example, the deter-
mined 1nitialization indicator value associated with the cur-
rently coded slice may also be represented using a syntax
clement, e.g., conforming to a particular syntax element
type. For example, the determined initialization indicator
value may be a value of syntax element type cabac_init_idc,
or of another similar syntax element type, associated with
the currently coded slice. In this example, the 1initialization
indicator value associated with the currently coded slice may
indicate a particular mitialization value set used to code the
slice.

Also 1n this example, video encoder 20 and/or video
decoder 30 may still further receive a syntax clement
associated with the slice of video data (704). For example,
the syntax element associated with the currently coded slice
may be a currently coded syntax element for the slice. As
one example, the syntax element may correspond to a syntax
clement type used to represent coeflicient information for
the currently coded slice (e.g., coeflicient value information,
or related syntax information, for one or more blocks of
video data of the slice).

In this example, video encoder 20 and/or video decoder
30 may still further determine an 1mitialization value set for
the received syntax element based on the determined one of
the slice type and imitialization indicator value (706). For
example, as previously explained, the initialization value set
may include one or more initialization values (e.g., one or
more of the “m,” “n,” and “m8&” values described above) that
may be used to determine an initial context state for (or
“mitialize”) each of one or more contexts of a context
adaptive entropy coding process (e.g., a CABAC process).

As one example, video encoder 20 and/or video decoder
30 may determine the 1nitialization value set for the received
syntax element by mapping the determined slice type asso-
ciated with the currently coded slice to the imtialization
value set using one or more mapping functions. As another
example, video encoder 20 and/or video decoder 30 may
determine the mnitialization value set for the recerved syntax
clement independently of a slice type associated with the
currently coded slice. For example, as previously described,
video encoder 20 and/or video decoder 30 may determine
the mitialization value set using a value (1.e., an 1nitialization
indicator value) of a syntax element type cabac_init_idc
associated with the currently coded slice. In any case, as a
result of video encoder 20 and/or video decoder 30 deter-
mimng the initialization value set for the received syntax

10

15

20

25

30

35

40

45

50

55

60

65

38

element 1n the manner described above, video encoder 20
and/or video decoder 30 may determine the same 1nitializa-
tion value set for multiple slices of video data, including
slices that have diflerent slice types.

Subsequently, video encoder 20 and/or video decoder 30
may code the recerved syntax element using the determined
initialization value set (708). In particular, video encoder 20
and/or video decoder 30 may imitialize one or more contexts
of a context adaptive entropy coding process (e.g., a
CABAC process) used to code the received syntax element
(e.g., one or more contexts used to code a particular syntax
clement type that corresponds to the received syntax ele-
ment) using the determined 1nitialization value set, and code
the recerved syntax element using the mitialized one or more
contexts.

In the event the received syntax element 1s not a last
syntax element associated with the currently coded slice
(e.g., additional syntax elements of the currently coded slice
exist) (“NO” branch of 710), video encoder 20 and/or video
decoder 30 may perform steps (704)-(708) for another
syntax element associated with the currently coded slice, 1n
the same or a substantially similar manner as described
above with respect to the currently coded syntax element.

However, 1n the event the received syntax element 1s the
last syntax element associated with the currently coded slice
(e.g., no additional syntax elements of the currently coded
slice exist) (“YES” branch of 710), video encoder 20 and/or
video decoder 30 may further determine whether syntax
clements of another slice of video data are available to be
coded, as described 1n greater detail below.

For example, 1n the event the currently coded, or “cur-
rent,” slice 1s not a last slice of video data (e.g., additional
slices of a frame, or a sequence of frames, or “pictures,” of
video data being coded by video encoder 20 and/or video
decoder 30 exist) (“NO” branch of 712), video encoder 20
and/or video decoder 30 may proceed to perform steps
(700)-(710) for another, subsequently coded, or “next,” slice
of video data, 1n the same or a substantially similar manner
as described above with respect to the currently coded slice.

Alternatively, 1n the event the currently coded slice 1s the
last slice of video data (e.g., a last slice of a frame, or a
sequence ol frames, or pictures, of video data being coded
by video encoder 20 and/or video decoder 30) (“YES”
branch of 712), however, video encoder 20 and/or video
decoder 30 may end coding of video data (714). In some
examples, video encoder 20 and/or video decoder 30 may
proceed to perform other tasks, such as transmitting (or
“signaling’), storing, and/or displaying the coded video data
to a user using one or more display devices.

In this manner, the methods of FIGS. 4-7 represent
examples of methods that include coding a first syntax
clement, conforming to a particular type of syntax element,
of a first slice of video data, conforming to a first slice type,
using an initialization value set, and coding a second syntax
clement, conforming to the particular type of syntax ele-
ment, of a second slice of video data, conforming to a second
slice type, using the initialization value set, wherein the first
slice type 1s diflerent from the second slice type, and
wherein at least one of the first slice type and the second
slice type 1s a temporally predicted slice type.

In one or more examples, the functions described herein
may be mmplemented 1n hardware, soiftware, firmware, or
any combination thereof. If implemented in software, the
functions may be stored on or transmitted over, as one or
more 1nstructions or code, a computer-readable medium and
executed by a hardware-based processing umt. Computer-
readable media may include computer-readable storage

US 9,654,772 B2

39

media, which may correspond to tangible or non-transitory
media, such as data storage media, or communication media
including any medium that facilitates transter of a computer
program {rom one place to another, e.g., according to a
communication protocol. In this manner, computer-readable
media generally may correspond to (1) tangible computer-
readable storage media, which 1s non-transitory or (2) a
communication medium, such as a signal or carrier wave.
Data storage media may be any available media that can be
accessed by one or more computers or one or more proces-
sors to retrieve instructions, code, and/or data structures for
implementation of the techniques described in this disclo-
sure. A computer program product may include a computer-
readable medium.

By way of example, and not limitation, such computer-

readable storage media can comprise RAM, ROM,.,
EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code 1n the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection 1s properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transient media, but are
instead directed to non-transient or non-transitory, tangible
storage media. Disk and disc, as used herein, includes
compact disc (CD), laser disc, optical disc, digital versatile
disc (DVD), floppy disk and Blu-ray disc, where disks
usually reproduce data magnetically, while discs reproduce
data optically with lasers. Combinations of the above should
also be included within the scope of computer-readable
media.

Instructions may be executed by one or more processors,
such as one or more general purpose microprocessors, DSPs,
ASICs, FPGAs, or other equivalent integrated or discrete
logic circuitry. Accordingly, the term “processor,” as used
herein, may refer to any of the foregoing structure or any
other structure suitable for implementation of the techniques
described 1n this disclosure. In addition, 1n some aspects, the
functionality described herein may be provided within dedi-
cated hardware and/or soitware modules configured for
encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented 1n
one or more circuits or logic elements.

The techniques of this disclosure may be implemented in
a wide variety of devices or apparatuses, including a wire-
less handset, an IC or a set of ICs (e.g., a chip set). Various
components, modules, or units are described 1n this disclo-
sure to emphasize functional aspects of devices configured
to perform the disclosed techniques, but do not necessarily
require realization by different hardware components, mod-
ules, or units. Rather, as described above, various units may
be combined 1n a codec hardware unit or provided by a
collection of interoperative hardware units, including one or
more processors as described above, 1 conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

10

15

20

25

30

35

40

45

50

55

60

65

40

What 1s claimed 1s:

1. A method of coding video data, the method comprising:

selecting an 1nitialization value set for coding a first
syntax element, conforming to a particular type of
syntax element, of a first slice of video data based on
a mapping of a slice type of the first slice of video data
to the initialization value set;

coding the first syntax element using the initialization
value set:

selecting the 1nmitialization value set for coding a second
syntax element conforming to the particular type of
syntax element of a second slice of video data based on
a mapping of a second slice type of the second slice of
video data to the initialization value set, wherein the
second slice type 1s different from the first slice type,
and wherein at least one of the first slice type and the
second slice type 1s a temporally predicted slice type;
and

coding the second syntax element using the initialization
value set.

2. The method of claim 1, further comprising:

determining a second 1nitialization value set for coding a
third syntax element of a third slice of video data based
on an mitialization indicator value for the third slice of
video data; and

coding the third syntax element using the second 1nitial-

1zation value set.

3. The method of claim 1, further comprising:

determinming a first mapping between one or more of the

first slice type and a first 1nitialization indicator value
for the first slice of video data, and the initialization
value set using a first mapping function of one or more
mapping functions; and

determining a second mapping between one or more of

the second slice type and a second nitialization indi-
cator value for the second slice of video data, and the
initialization value set using a second mapping function
of the one or more mapping functions,

wherein each of the first and second initialization 1ndica-

tor values for the first and second slices of video data
indicates a particular initialization value set used to
code the corresponding slice of video data.

4. The method of claim 3, further comprising coding one
or more values representative of at least one of the one or
more mapping functions and the first and second 1nitializa-
tion 1ndicator values 1n at least one of a picture parameter set
(PPS), a sequence parameter set (SPS), an adaptation param-
cter set (APS), a video parameter set (VPS), a slice header,
a frame header, and a sequence header, associated with the
video data.

5. The method of claim 3, further comprising determining,
at least one of the one or more mapping functions and the
first and second initialization indicator values based on one
or more of a quantization parameter (QP), a frame resolution
parameter, and a group-of-pictures (GOP) structure param-
eter associated with the video data, and a user mput.

6. The method of claim 1, wherein coding the first syntax
clement and the second syntax element using the 1nitializa-
tion value set comprises determining an 1nitial context state
for each of one or more contexts that are used to code at least
the particular type of syntax element of the first and second
syntax elements based on the initialization value set and a
corresponding one of the first and second slice types of the
first and second slices of video data to which the respective
syntax element belongs.

7. The method of claim 6, wherein determining the initial
context state for each of the one or more contexts based on
the 1mitialization value set and the corresponding one of the

US 9,654,772 B2

41

first and second slice types comprises determining the
respective mitial context state based on one or more values
of the mitialization value set, a quantization parameter (QP)
value, and a QP oflset value determined based on the
corresponding one of the first and second slice types.

8. The method of claim 1, wherein each of the first and
second slice types comprises one of an intra-prediction (1)
slice type, a unidirectional inter-prediction (P) slice type,
and a bi-directional inter-prediction (B) slice type.

9. The method of claim 1, wherein the initialization value
set comprises one of:

a slope value and a separate intersection value; and

a single value representing both the slope value and the
intersection value.

10. The method of claim 1, wherein coding comprises
decoding, and wherein decoding the first and second syntax
clements using the 1mitialization value set includes:

receiving at least one of the first and second slice types,
first and second 1nitialization indicator values for the
first and second slices of video data, and one or more
mapping functions, 1n a received bitstream;

determining the initialization value set based on one or
more of the recerved first and second slice types, first
and second i1nitialization indicator values, and one or
more mapping functions;

initializing one or more contexts ol a context adaptive
entropy coding process based on one or more values of
the 1nitialization value set; and

decoding the first and second syntax elements by per-
forming the context adaptive entropy coding process
based on the initialized one or more contexts.

11. The method of claim 1, wherein coding comprises
encoding, and wherein encoding the first and second syntax
clements using the 1mitialization value set includes:

determining the imitialization value set based on at least
one of the first and second slice types, first and second
initialization ndicator values for the first and second
slices of video data, and one or more mapping func-
tions;

initializing one or more contexts ol a context adaptive
entropy coding process based on one or more values of
the 1nitialization value set;

encoding the first and second syntax elements by per-
forming the context adaptive entropy coding process
based on the initialized one or more contexts; and

encoding at least one of the first and second slice types,
first and second 1nitialization indicator values for the
first and second slices of video data, and one or more
mapping functions, 1 a bitstream.

12. The method of claim 1, the method being executable
on a wireless communication device, wherein the device
COmMprises:

a memory configured to store the first slice of video data

and the second slice of video data;

a processor configured to execute mstructions to process
the first slice of video data and the second slice of video
data; and

a recerver configured to recerve the first slice of video data
and the second slice of video data.

13. The method of claim 12, wherein the wireless com-
munication device 1s a cellular telephone and the first slice
of video data and the second slice of video data are received
by the receiver and modulated according to a cellular
communication standard.

14. An apparatus configured to code video data, the
apparatus comprising;

10

15

20

25

30

35

40

45

50

55

60

65

42

a memory configured to store a first slice of data and a

second slice of video data; and

a video coder configured to:

select an 1n1tialization value set for coding a first syntax
clement, conforming to a particular type of syntax
element, of a first slice of video data based on a
mapping of a slice type of the first slice of video data
to the 1nitialization value set;

code the first syntax element using the initialization
value set;

select the mitialization value set for coding a second
syntax element conforming to the particular type of
syntax element of a second slice of video data based
on a mapping ol a second slice type of the second
slice of video data to the initialization value set,
wherein the second slice type 1s diflerent from the
first slice type, and wherein at least one of the first
slice type and the second slice type 1s a temporally
predicted slice type; and

code the second syntax element using the nitialization
value set.

15. The apparatus of claim 14, wherein the video coder 1s
turther configured to:

determine a second initialization value set for coding a

third syntax element of a third slice of video data based
on an mitialization indicator value for the third slice of
video data; and

code the third syntax element using the second initializa-

tion value set.

16. The apparatus of claim 14, wherein the video coder 1s
further configured to:

determine a {irst mapping between one or more of the first

slice type and a first in1tialization indicator value for the
first slice of video data, and the initialization value set
using a first mapping function of one or more mapping
functions; and

determine a second mapping between one or more of the

second slice type and a second 1nitialization indicator
value for the second slice of video data, and the
initialization value set using a second mapping function
of the one or more mapping functions,

wherein each of the first and second initialization 1ndica-

tor values for the first and second slices of video data
indicates a particular initialization value set used to
code the corresponding slice of video data.

17. The apparatus of claim 16, wherein the video coder 1s
turther configured to code one or more values representative
of at least one of the one or more mapping functions and the
first and second initialization indicator values 1n at least one
ol a picture parameter set (PPS), a sequence parameter set
(SPS), an adaptation parameter set (APS), a video parameter
set (VPS), a slice header, a frame header, and a sequence
header, associated with the video data.

18. The apparatus of claim 16, wherein the video coder 1s
further configured to determine at least one of the one or
more mapping functions and the first and second 1nitializa-
tion indicator values based on one or more of a quantization
parameter (QP), a frame resolution parameter, and a group-
of-pictures (GOP) structure parameter associated with the
video data, and a user input.

19. The apparatus of claim 14, wherein to code the first
syntax element and the second syntax element using the
iitialization value set, the video coder 1s configured to
determine an initial context state for each of one or more
contexts that are used to code at least the particular type of
syntax element of the first and second syntax elements based
on the mitialization value set and a corresponding one of the

US 9,654,772 B2

43

first and second slice types of the first and second slices of
video data to which the respective syntax element belongs.

20. The apparatus of claim 19, wherein to determine the
initial context state for each of the one or more contexts
based on the mitialization value set and the corresponding
one of the first and second slice types, the video coder 1s
configured to determine the respective mnitial context state
based on one or more values of the initialization value set,
a quantization parameter (QP) value, and a QP oflset value
determined based on the corresponding one of the first and
second slice types.

21. The apparatus of claim 14, wherein the mitialization
value set comprises one of:

a slope value and a separate intersection value; and

a single value representing both the slope value and the

intersection value.

22. The apparatus of claim 14, wherein the apparatus
comprises at least one of:

an 1tegrated circuit;

a microprocessor; and

a wireless communication device that includes the video

coder.

23. The apparatus of claim 14, wherein the device 1s a
wireless communication device, further comprising a
receiver configured to receive the first slice of video data and
the second slice of video data.

24. The apparatus of claim 23, wherein the wireless
communication device 1s a cellular telephone and the first
slice of video data and the second slice of video data are
received by the receiver and modulated according to a
cellular communication standard.

25. A device configured to code video data, the device
comprising;

means for selecting an initialization value set for coding

a first syntax element, conforming to a particular type
of syntax element, of a first slice of video data based on
a mapping of a slice type of the first slice of video data
to the initialization value set;

means for coding the first syntax element using the

initialization value set;

means for selecting the imtialization value set for coding

a second syntax element conforming to the particular
type of syntax element of a second slice of video data
based on a mapping of a second slice type of the second
slice of video data to the initialization wvalue set,
wherein the second slice type 1s diflerent from the first
slice type, and wherein at least one of the first slice type
and the second slice type 1s a temporally predicted slice
type; and

means for coding the second syntax element using the

initialization value set.

26. The device of claim 235, further comprising:

means for determining a second 1nitialization value set for

coding a third syntax element of a third slice of video
data based on an initialization indicator value for the
third slice of video data; and

means for coding the third syntax element using the

second 1nitialization value set.

27. The device of claim 235, further comprising:

means for determining a first mapping between one or

more of the first slice type and a first mitialization
indicator value for the first slice of video data, and the
initialization value set using a first mapping function of
one or more mapping functions; and

means for determining a second mapping between one or

more of the second slice type and a second 1nitialization
indicator value for the second slice of video data, and

10

15

20

25

30

35

40

45

50

55

60

65

44

the mitialization value set using a second mapping
function of the one or more mapping functions,

wherein each of the first and second 1nitialization indica-
tor values for the first and second slices of video data
indicates a particular initialization value set used to
code the corresponding slice of video data.

28. The device of claim 27, further comprising means for
coding one or more values representative of at least one of
the one or more mapping functions and the first and second
initialization indicator values in at least one of a picture
parameter set (PPS), a sequence parameter set (SPS), an
adaptation parameter set (APS), a video parameter set
(VPS), a slice header, a frame header, and a sequence header,
associated with the video data.

29. The device of claim 27, further comprising means for

determining at least one of the one or more mapping
functions and the first and second initialization indicator
values based on one or more of a quantization parameter
(QP), a frame resolution parameter, and a group-of-pictures
(GOP) structure parameter associated with the video data,
and a user 1put.

30. The device of claim 25, wherein the means for coding
the first syntax element and the second syntax element using
the itialization value set comprises means for determining,
an 1mtial context state for each of one or more contexts that
are used to code at least the particular type of syntax element
of the first and second syntax elements based on the 1nitial-
1ization value set and a corresponding one of the first and
second slice types of the first and second slices of video data
to which the respective syntax element belongs.

31. The device of claim 30, wherein the means {for
determining the initial context state for each of the one or
more contexts based on the initialization value set and the
corresponding one of the first and second slice types com-
prises means for determining the respective mitial context
state based on one or more values of the mitialization value
set, a quantization parameter (QP) value, and a QP oflset
value determined based on the corresponding one of the first
and second slice types.

32. The device of claim 25, wherein the initialization
value set comprises one of:

a slope value and a separate intersection value; and

a single value representing both the slope value and the

intersection value.

33. A non-transitory computer-readable storage medium
storing instructions that, when executed, cause one or more
processors to code video data, wherein the mstructions cause
the one or more processors to:

select an 1nitialization value set for coding a first syntax

clement, conforming to a particular type of syntax
element, of a first slice of video data based on a
mapping of a slice type of the first slice of video data
to the mitialization value set;

code the first syntax element using the mitialization value

set;

select the 1mitialization value set for coding a second

syntax element conforming to the particular type of
syntax element of a second slice of video data based on
a mapping of a second slice type of the second slice of
video data to the initialization value set, wherein the
second slice type 1s different from the first slice type,
and wherein at least one of the first slice type and the
second slice type 1s a temporally predicted slice type;
and

code the second syntax element using the initialization

value set.

US 9,654,772 B2

45

34. The non-transitory computer-readable storage
medium of claim 33, further comprising instructions that
cause the one or more processors to:

determine a second initialization value set for coding a

third syntax element of a third slice of video data based
on an 1mtialization indicator value for the third slice of
video data; and

code the third syntax element using the second 1nitializa-

tion value set.

35. The non-transitory computer-readable storage
medium of claim 33, further comprising instructions that
cause the one or more processors to:

determine a first mapping between one or more of the first

slice type and a first initialization indicator value for the

first slice of video data, and the initialization value set
using a first mapping function of one or more mapping
functions; and

determine a second mapping between one or more of the

second slice type and a second 1nitialization indicator
value for the second slice of video data, and the
initialization value set using a second mapping function
of the one or more mapping functions,

wherein each of the first and second initialization 1ndica-

tor values for the first and second slices of video data
indicates a particular initialization value set used to
code the corresponding slice of video data.

36. The non-transitory computer-readable storage
medium of claim 35, further comprising instructions that
cause the one or more processors to code one or more values
representative of at least one of the one or more mapping
functions and the first and second initialization indicator
values 1n at least one of a picture parameter set (PPS), a
sequence parameter set (SPS), an adaptation parameter set
(APS), a video parameter set (VPS), a slice header, a frame
header, and a sequence header, associated with the video
data.

37. The non-transitory computer-readable storage
medium of claim 33, further comprising instructions that
cause the one or more processors to determine at least one
of the one or more mapping functions and the first and
second 1nitialization indicator values based on one or more
ol a quantization parameter (QP), a frame resolution param-

5

10

15

20

25

30

35

40

46

cter, and a group-of-pictures (GOP) structure parameter
associated with the video data, and a user 1nput.

38. The non-transitory computer-readable storage
medium of claim 33, wherein the imitialization value set
comprises one of:

a slope value and a separate intersection value; and

a single value representing both the slope value and the

intersection value.

39. A method of coding video data, the method compris-
ng:

determining a subset of contexts for coding a first syntax
clement, conforming to a particular type of syntax
element, of a first slice of video data:

selecting an 1mitialization value set for the subset of
contexts for coding the first syntax element based on a
mapping ol a slice type of the first slice of video data
to the mmitialization value set, wherein selecting the
initialization value set comprises determining a subset
of contexts for coding the first syntax element from a
full set of contexts;

coding the first syntax element using the initialization
value set:

selecting the i1mitialization value set for the subset of
contexts for coding a second syntax element conform-
ing to the particular type of syntax element of a second
slice of video data based on a mapping of a second slice
type of the second slice of video data to the initializa-
tion value set, wherein the second slice type 1s difierent
from the first slice type, wherein at least one of the first
slice type and the second slice type 1s a temporally
predicted slice type, and wherein selecting the 1nitial-
ization value set comprises determinming a subset of
contexts for coding the first syntax element from a full
set of contexts;

coding the second syntax element using the initialization
value set:

determining a second 1nitialization value set for coding a
third syntax element of a third slice of video data based
on an 1nitialization indicator value for the third slice of
video data; and

coding the third syntax element using the second 1nitial-
1zation value set.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

