US009652230B2

a2 United States Patent (10) Patent No.: US 9,652,230 B2

Godard et al. 45) Date of Patent: May 16, 2017
(54) COMPUTER PROCESSOR EMPLOYING (52) U.S. CL

DEDICATED HARDWARE MECHANISM CPC ... GOGF 9/30032 (2013.01); GO6F 9/30145
CONTROLLING THE INITIALIZATION AND (2013.01); GO6F 12/0292 (2013.01); GO6F
INVALIDATION OF CACHE LINES 12/0811 (2013.01); GO6F 12/0864 (2013.01);
GOGF 12/0893 (2013.01); GO6F 12/1027
(71) Applicant: Mill Computing, Inc., Palo Alto, CA (2013.01); GO6F 12/0897 (2013.01); GO6F
(US) 12/1009 (2013.01); GOGF 17/30286 (2013.01):
| GOGF 2212/1024 (2013.01); GO6F 2212/1028
(72) Inventors: Roger Rawson Godard, _Ea§t Palo | (2013.01); GOGF 2212/283 (2013.01); GO6F
Alto, CA (US); Arthur David Kahlich, 2212/608 (2013.01); GO6F 2212/6032
Sunnyvale, CA (US); Norman Hardy. (2013.04); GOGF 2212/684 (2013.01); Y028
Portola Valley, CA (US); Allen Jay 60/1225 (2013.01)

Baum, Palo Alto, CA (US) (58) Field of Classification Search
CPC oo GOGF 12/0893; GOGF 2212/608

(73) Assignee: Mill Computing, Inc., Palo Alto, CA

(US) See application file for complete search history.

(*) Notice: Subject to any disclaimer, the term of this (56) References Cited

patent 1s extended or adjusted under 35 U.S PATENT DOCUMENTS
U.S.C. 154(b) by 168 days.

6,026,485 A 2/2000 O’Connor et al.

(21) Appl. No.: 14/515,231 6,385,697 B1* 5/2002 Miyazaki GOGF 12/122
711/128
(22) Filed: Oct. 15, 2014 (Continued)
(65) Prior Publication Data Primary Examiner — Ryan‘ Bertram
(74) Attorney, Agent, or Firm — Gordon & Jacobson,
US 2015/0106566 Al Apr. 16, 2015 PC.
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 61/890,891, tiled on Oct. A computer processing system includes execution logic that
15, 2013. generates memory requests that are supplied to a hierarchi-
cal memory system. The computer processing system
(51) Int. CL. H includes a hardware map storing a number of entries asso-
GO6F 9/30 (2006'();) ciated with corresponding cache lines, where each given
GO6F 12/0593 (2016-0;) entry of the hardware map indicates whether a correspond-
GOOF 12/0511 (201 6-0;) ing cache line 1) currently stores valid data 1n the lhierarchical
GO6F 12/0564 (2016'0;) memory system, or 11) does not currently store valid data in
GO6E 12/02 (2006-0;) hierarchical memory system and should be interpreted as
Goor 12/1027 (2016.01) being implicitly zero throughout.
GO6F 12/1009 (2016.01)
(Continued) 20 Claims, 8 Drawing Sheets
| © mercommestNetwork percovectNener |
E’;‘:‘;‘:t&;c ~ (o Operand Storage or FUs)) 45 {t> Operand Storaga or FUs)
Load/\WVrite atire =',_,..t.?’n)"fl
bi?t?;atore Request . Izr:f:l]icif Stiﬁ;n(s} |
Map +
HitMiss -
) _ ____, Faturn !‘LEEETEd data bytes
41 |, oo tng
\Write data bytes for the cache line as specified by the |
store reguest in L1 Data Cache with zeroed data values
for any unspecified data bytes for the cache fine (Store l
Request Access - Hit for Cache Ling) l

L
l.oad/Store Requests

§ ,JF; Request Data
L1 Data Cache »
; T
L2 Cache >
_jolA

Main Memory

US 9,652,230 B2

Page 2
(51) Int. CL
GO6L 17/30 (2006.01)
GO6LF 12/0897 (2016.01)
(56) References Cited
U.S. PATENT DOCUMENTS
6,434,677 Bl 8/2002 Breuder et al.
6,601,235 Bl 7/2003 Holzle et al.
6,725,341 B1* 4/2004 Peirco.oeeeennn, GOO6F 12/0831
711/117
7,428,615 B2 9/2008 Van Eyndhoven
2003/0023814 Al1* 1/2003 Barroso GOG6F 12/0826
711/122
2010/0199024 Al1* 8/2010 Jeong GOG6F 12/0246
711/103
2012/0221774 Al 8/2012 Atkisson et al.
2013/0139007 Al1l* 5/2013 Higocccoeeerennn, GO6F 11/1666
714/54
2014/0164708 Al* 6/2014 Breternitz, Jr. GOG6F 12/0875
711/132
2014/0344522 Al1* 11/2014 Fan GO6F 12/0833
711/128
2015/0127911 Al1* 5/2015 Steissccoeevenenen, GO6F 12/0871
711/123
2016/0026579 Al* 1/2016 Samanta GOO6F 12/0893
711/136

* cited by examiner

US 9,652,230 B2

Sheet 1 of 8

May 16, 2017

U.S. Patent

¢ Dld

SHIBY e BYUTIOXT] aNsSSs| apo2a(g « - Y018

p 015071 SN MOIN0BXT

P
| 1ol ! | |
BNoD
| abejq apona] — > WEIB0)
tor”] ,
. ﬂ_\\v Ww% ,K%q |
JalNG Uoonsy)
“ S0l |
|) |
| HUM D19 UOHOnISY| <
_
| va i "
__ 491
” ¥ N Y m
| auoen BIB(] L SYOBD) UONOMIISU L1
| 71 A
o y

_ tﬂu? ahw_mm m.
| ¥ v

el 2UoeD 7] w
— e fi%iii N R

y wigisAg Alowisiy 2100/N1d0

ol

US 9,652,230 B2

Sheet 2 of 8

May 16, 2017

U.S. Patent

€ Old
e
21607
51139 H/U0IIN08XT /
MIOMIBN 108UU0SISIU]
W i~y -~ ~” -
- T M,.._r,.\ Illll:lllﬂfu%i:lillllﬂf.\w
W S B
\ N\ \
P (9114 1a1s1bey 10 Yag ""Ba) sjuaws|g abeiols puelado

Lo e I SO I o e e - R T T N T T T T R T T R - T

\\\; ._._‘h”,r ¢

US 9,652,230 B2

Sheet 3 of 8

May 16, 2017

U.S. Patent

ejeq 1senboyy

¥ 2ld
Atowsiy Ui
~
w&i. N o H L o
< ayoen 71
1 —
A ayoe] ejeq |

1S3nbay 2101g/peo]

,.. _. -
T - T /— - -_—_—_—_—,e_,ee—_—_—_——_—er--——-———-——llk_-__—.-_G_—_-—-—_-_r—e - _———_———————_—_——IIIIJ

Bkt SRR EERAMMLEE MEhchiklk WRESE AROUTMAM 0 WuAiREGS 0 ekl 0 EMeMEoRE 0 BEMDmerrds 0 ACraGiinid 0 BAbdieiolld 0 LEEBNGERW

(eury syoeD Joj iy
— 88920V 1senbay peo)

810}S) Bul suoed syl Jos salAg eiep palosdsun Aue 1o}
San|EA Blep paolaz YUm ayoen eleq |1 Ul isenbai 21018

(aul7 ayoen 4o} 1 ~ SS220Y 1sanbay

a2yl AQ psailivads sk aul] ayoed ay} 10} $alAq Blep Et?)/
B

| 017

eul| 8UDED 10§ — _) L
SalAQ Blep paolaz uinay /
< SSHA/HH
i dejn)
r | 019/ (s)uun
(s)uonels | yondwy [sonbey |2101s/pEOT |
o)k B SMINVPEOT

Gkl Shpeskay $#AEEE SEEEES SEEEEE AEEEEE OGS AR S S S AR T SR Skl G DS 0 DA mpmbmish e 0 DEEETEE 0 SIS Mkkieiey 0 sampeest DS DS 0 bl 0 S IS MR)

_.ﬁ|||.N%\... : |

(sn4 1o ebe10)g puelsd(0})
MIOMIBN 102UU0DIBIUY

(sn4 Jo abeloig puelsd(Wol))
MIOMIBN J0BUU0IBIU]

T 010077 8oy

[¥lelslglel=)e=

US 9,652,230 B2

Sheet 4 of 8

May 16, 2017

U.S. Patent

elep puetsdo |esol-auiel]

Bullols aweld Yoelg Juaiuny |
| JO saulT syoen Jo JagqunN

g Hels sweld uelnd NZ|

HG INZI

NZI

awielj
MOBlS
JuS1no
40 auUi|
ayoeo

g Old

HOE)S elep

awel)
| YOBIS

| BlED puBlIado |BO0|-auR)
| BuLiols awel4 Moel1g ualing

U.S. Patent May 16, 2017

Sheet 5 of 8

o>

US 9,652,230 B2

(o

\ 4 i Z

*iviam

Adjust IZM address registers to point to an IZM address range
corresponding to cache lines of the stack frame for the current
function frame activation which store frame-local operand data

aai L T

el il ke

\ 4

"hinislel————L bl il

7

ues throughout

Set the zero or more bits of the IZM address range sp‘eciﬁed by
the [ZM address registers to indicate that all of the data bytes
of the corresponding cache lines do not currently store valid
data in the hierarchical memory system and should be
interpreted as having zeroed va

L5

_ number of cache
lines of current stack frame >
/M address range
for any one function

rame activation?

max size of the

Write excess cache i
with zero data va

ue for all data bytes
for each excess cache line

4

Yes

o’
/éﬂ

nes to the cache

el

A4

- il LT T T T R

.@ S—

(o)

FIG. 6

No

US 9,652,230 B2

Sheet 6 of 8

May 16, 2017

U.S. Patent

L "Dl

1‘ kil I bbbl

Jun 240318
/peoj] 8yl 03 |BUSBIS I, UJnlad

| pue 1senbad peoj syl sjpuey

O] paledcije UCHIelS ailisy 3yl O}
2Ul} Dyoed palsanbal 8yl 1o} $9IAQ
elep PS0ISz BI0W JO BUO UIN18Y|

Ay

~ A

SAA

TP,

Hun 21035 /peo 01 ,SS51A,, winjay

el el i

Lot~

S0t

el

ON

sselppe INZ] 2Y3 1 1] [NZ| pedy

7
| oL

irirrirth

.* 3(paau Ji ‘Aelie 1iq AZ] 01Ul SSUpPE 7| Suipuodsaliod Ojul SSaUppe sulf 24Jed LdAU0)

m NiD3Ig)

Teh

US 9,652,230 B2

Sheet 7 of 8

May 16, 2017

U.S. Patent

8 DI

FRLL R R TP T T

| JUN 94015/peOo] 3yl 01 ,HH, Uuinial

5

DUE 11 IAIZ] 8Ul JB3JD ‘aul} ayoed
943 40} SBIAQ B1EP poliDadsun Aug T
10} SBNIBA B1ED PA0ISZ YUM BYoIe) Hupn 84015/peo 01 ,SSHA, Uiniay
eleq 17 8yl 01Ul 1S8nb3a 8101S vy} -

Ag paljioads se sul] 9yded 8yl 40y Lo

sa3Aqg elep Suim Ag ayoe) eie(

171 941 01Ul 3Ul} 9YOLI 3UL 1A ON

A

prey Jo5 5UHY NZL — HH

SSRIPPE N7 B4l 1B 3q INZ) peay
B e o e

3g paau i ‘Aedie 1iq |AZ] 01Ul SSauppe A7) Suipuodsaliod 0JuUl SSUPPE BUlj aYIED LSAUO0)

e — I S

|0F
m zmmvm_mnv

U.S. Patent May 16, 2017 Sheet 8 of 8 US 9,652,230 B2

(o)

|

40|
. .

|Read out all IZM bits in the IZM address range corresponding to the cache line(s) of the
stack frame for the current function frame activation |

Vil T - s . ok Ll A Ok B Lk,

l _

4 47

Determine if each 1ZM bit is cleared !

P, AR Sl r e L Vel PR rriivt i PO

IZM bit cleared?

Yes 407

lInvalidate the cache line of the L1 Data Cache corresponding to the
icleared IZM bit, thereby discarding the cache line; cancel any pending
write-back of the cache line

| {ZM bits
ocessed?

| qil

- — A

Adjust the IZM address registers to deallocate the address space of the |

1ZM; possibly set the bits of the 1ZM address space for the current stack
frame before deallocation

(oo)

—

FIG. 9

US 9,652,230 B2

1

COMPUTER PROCESSOR EMPLOYING
DEDICATED HARDWARE MECHANISM
CONTROLLING THE INITIALIZATION AND
INVALIDATION OF CACHE LINES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure claims priority from U.S. Provi-
sional Patent Appl. No. 61/890,891, filed on Oct. 15, 2013,
entitled “Cache Support for a Computer Processor,” herein
incorporated by reference in 1ts entirety.

BACKGROUND

1. Field
The present disclosure relates to computer processors

(also commonly referred to as CPUs).

2. State of the Art

A computer processor (and the program which it
executes) needs places to put data for later reference. A
computer processor design will typically have many such
places, each with its own trade off of capacity, speed of
access, and cost. Usually these are arranged 1n a hierarchal
manner referred to as the memory system of the processor,
with small, fast, costly places used for short lived and/or
frequently used small data and large, slow and cheap places
used for what doesn’t fit in the small, fast, costly places. The
memory system typically includes the following compo-
nents arranged 1n order of decreasing speed of access:

register file or other form of fast operand storage;

one or more levels of cache memory (one or more levels

of the cache memory can be integrated with the pro-
cessor (on-chip cache) or separate from the processor
(off-chip cache);

main memory (typically implemented by DRAM memory

and/or NVRAM memory and/or ROM);

controller card memory; and

on-line mass storage (typically implemented by one or

more hard disk drives).

In many computer processors, the main memory of the
memory system can take several hundred cycles to access.
The cache memory, which 1s much smaller and more expen-
s1ive but with faster access as compared to the main memory,
1s used to keep copies of data that resides in the main
memory. IT a reference finds the desired data in the cache (a
cache hit) i1t can access 1t in a few cycles mstead of several
hundred when it doesn’t (a cache miss). Because a program
typically cannot do anything while waiting to access data in
memory, using a cache and making sure that desired data 1s
copied 1nto the cache can provide significant improvements
in performance.

A large part of the memory traflic of an executing program
stems from memory accesses to the stack frame of the
currently executing function, or, via pointer arguments, to a
few of the immediately surrounding frames. Of this traflic,
many accesses are initializations of frame local variables
with zero.

Because of the high frequency of access, the referenced
memory of the current stack frame tends to be resident in the
top level data cache. When the current function exits, its
entire stack frame 1s invalid and the corresponding lines are
meaningless. Because the invalidated lines have been wrait-
ten to, the cache has marked them as dirty and subject to
write-back 1n a write-back cache structure, even though the
values contained are meaningless.

10

15

20

25

30

35

40

45

50

55

60

65

2

If a line not m any cache 1s written to i1n a write-allocate
cache design then the cache experiences a write miss, which

causes the rest of the line to be read 1n from memory, be
merged with the written data 1n a write bufler, and the result
copied into the cache. Reads caused by write-misses con-
sume power and memory bandwidth, and write buflers are
EXpEensive resources.

While the frame of an exited function 1s no longer valid
in the program, the memory 1t had occupied still resides 1n
the cache and can be read by an accidental or contrived wild
address. This permits browsing in the detritus of called
functions, a potential source of insecurity and exploits.

It 1s not uncommon for a program to contain a bug by
which 1t will read and use a value that has never been
initialized. The read of the imtialized value will often be
from stack frame locations of previously exited functions. In
this case, the read receives the most recent value that
happened to reside at the read address, which may vary from
run to run of the program. The resulting failures tend to be
dificult to reproduce and debug.

SUMMARY OF TH.

INVENTION

(L]

This summary 1s provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary 1s not intended to 1dentily key or
essential features of the claimed subject matter, nor 1s 1t
intended to be used as an aid 1n limiting the scope of the
claimed subject matter.

[lustrative embodiments of the present disclosure are
directed to a computer processor for use with a hierarchical
memory system. The computer processor includes execution
logic that generates memory requests that are supplied to the
hierarchical memory system. The execution logic (and/or
possibly other parts of the computer processing system)
includes a hardware map storing a number of entries asso-
ciated with corresponding cache lines, where each given
entry of the hardware map indicates whether a correspond-
ing cache line 1) currently stores valid data 1n the lhierarchical
memory system or 11) does not currently store valid data in
the hierarchical memory system and should be mterpreted as
having an implicit zero value throughout.

The memory requests can include a load request speci-
tying a requested cache line. The hardware map can be
accessed before 1ssuing the load request to cache or a lower
level of the hierarchical memory system 1n order to deter-
mine 11 the hardware map includes an entry that corresponds
to the requested cache line of the load request. Such entry
corresponding to the requested cache line of the load request
can be processed to determine whether the requested cache
line 1) currently stores valid data 1n the hierarchical memory
system or 11) does not currently store valid data in the
hierarchical memory system and should be interpreted as
having an implicit zero value throughout. In the event that
the processing determines that the requested cache line does
not currently store valid data in the hierarchical memory
system and should be mterpreted as having an implicit zero
value throughout, a cache line with a zero value for one or
more data bytes can be returned to the execution logic
without accessing the hierarchical memory system and the
issuance ol the load request to the hierarchical memory
system can be avoided.

The memory requests can include a store request speci-
tying a requested cache line along with one or more operand
data bytes for storage in the requested cache line. The
hardware map can be accessed before issuing the store
request to the hierarchical memory system in order to

US 9,652,230 B2

3

determine 1f the hardware map includes an entry that cor-
responds to the requested cache line of the store request.
Such entry corresponding to the requested cache line of the
store request can be processed to determine whether the
requested cache line 1) currently stores valid data in the
hierarchical memory system or 1) does not currently store
valid data in the hierarchical memory system and should be
interpreted as having an implicit zero value throughout. In
the event that the processing determines that the requested
cache line does not currently store valid data in the hierar-
chical memory system and should be interpreted as having
an 1mplicit zero value throughout, a new cache line 1s written
into the hierarchical memory system. The new cache line
can include the operand data bytes specified by the store
request together with zero value data bytes for those data
bytes of the cache line not specified by the store request. The
issuance of the store request to the hierarchical memory
system can also be avoided.

The cache lines corresponding to certain entries of the
hardware map can store frame-local operand data for the
current stack frame (i.e., the stack frame of the current
function frame activation). During an allocation process
associated with the current function frame activation, one or
more entries of the hardware map that corresponds to cache
lines that store frame-local operand data for the stack frame
ol the current function frame activation can be iitialized to
indicate that such cache lines do not currently store valid
data 1 the hierarchical memory system and should be
interpreted as having an implicit zero value throughout. In
the event that the number cache lines that store frame-local
operand data for the stack frame of the current function
frame activation exceeds the maximum number of entries of
the hardware map that can be allocated for the current
function frame activation, each excess cache line can be
written to the cache of the hierarchical memory system with
a zero value throughout. The hardware map can be accessed
before 1ssuing any given memory request to the cache or
lower level of the hierarchical memory system as part of a
function frame activation in order to determine if the hard-
ware map includes an entry that corresponds to the requested
cache line of the given memory request. The hardware map
can also be accessed when terminating the function frame
activation in order to identily one or more cache lines that
currently store valid frame-local operand data for the func-
tion frame activation. The 1dentified one or more cache lines
can be invalidated within the hierarchical memory system
when terminating the function frame activation. Any pend-
ing write-back of the identified one or more cache lines
within the hierarchical memory system can be cancelled
when terminating the function frame activation.

In one embodiment, the entries of the hardware map can

cach comprise a single bit associated with a corresponding
cache line.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

FIG. 1 1s a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 2 1s a schematic diagram of exemplary pipeline of
processing stages that can be embodiment by the computer
processor of FIG. 1.

FI1G. 3 1s schematic 1llustration of components that can be
part of the execution/retire logic of the computer processor
of FIG. 1 according to an embodiment of the present
disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 1s schematic illustration of components that can be
part of the execution/retire logic and hierarchical memory
system of the computer processor of FIG. 1 according to an
embodiment of the present disclosure.

FIG. 5 1s a schematic diagram of an exemplary data stack
and an Implicit Zero Map (IZM) 1n accordance with the
present disclosure.

FIG. 6 1s a flow chart that 1llustrates exemplary operations
carried out by the computer processor 1n allocating entries
(e.g., bits) of the IZM to the stack frame of the current
function frame activation.

FIG. 7 1s a flow chart that 1llustrates exemplary operations
carried out by the computer processor 1n processing a load
request generated by the load/store unit of the processor.

FIG. 8 1s a flow chart that 1llustrates exemplary operations
carried out by the computer processor 1n processing a store
request generated by the load/store unit of the processor.

FIG. 9 1s a flow chart that 1llustrates exemplary operations
carried out by the computer processor in deallocating entries
(bits) of the IZM with respect to the stack frame of the
current function frame activation.

(L]

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

[llustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clanity, not all features of an actual implementation are
described 1n this specification. It will of course be appreci-
ated that 1n the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, 1t will be appreciated that such a development eflort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill 1n the
art having the benefit of this disclosure.

As used herein, the term “operation™ 1s a unit of execu-
tion, such as an individual add, load, store or branch
operation.

The term “instruction” 1s a unmit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

The term “hierarchical memory system” 1s a computer
memory system storing instructions and operand data for
access by a processor 1n executing a program where the
memory 1s logically organized 1n a hierarchical arrangement
of levels of memory with 1ncreasing access latency from the
top level of memory closest to the processor to the bottom
level of memory furthest away from the processor.

The term “cache line” or “cache block™ 1s a unit of
memory that 1s accessed by a computer processor. The cache
line includes a number of bytes (typically 4 to 128 bytes).

The term “function” (also commonly referred to as a
“subroutine” or “procedure”) refers to a sequence of pro-
gram 1nstructions that perform a specific task, packaged as
a unit. This unit can then be used in programs wherever that
particular task should be performed. Functions may be
defined within programs, or separately in libraries that can
be used by multiple programs. A function behaves 1n much
the same way as a computer program that 1s used as one step
in a larger program or another function. A function 1s often
coded so that it can be started (called) several times and/or
from several places during one execution of the program,

US 9,652,230 B2

S

including from other functions, and then terminates by
returning back to the next instruction after the call once the
task of the function 1s done.

The term “function frame activation™ 1s an 1nstance of a
function which 1s active and currently executing and has not
yet terminated.

The term “data stack™ 1s a stack data structure maintained
by a processor that stores information about one or more
function frame activations. Such information can include the
return address of a function frame activation (i.e., the
address to return back to once the task of the function frame
activation 1s done), operand data (such as variables and
constants) that are local to the function frame activation,
incoming parameters or arguments passed into the function
frame activation, and outgoing parameters or arguments
passed out of the function frame activation.

The term “‘stack frame” 1s part of a data stack that stores
information about a particular function frame activation.
Thus, the data stack can be organized as a number of stack
frames each corresponding to a particular function frame
activation 1n an executing program.

The term ““frame-local operand data™ refers to operand
data (such as variables and constants) that 1s part of a stack
frame for a particular function frame activation and local to
the particular function frame activation. Such frame-local
operand data 1s known only within the particular function
frame activation and does not retain its value after the
particular function frame activation terminates.

The computer processing system ol the present applica-
tion employs a dedicated hardware mechanism for allocat-
ing, iitializing and deallocating cache lines storing frame-
local operand data. The hardware mechanism i1s configured
such that cache lines storing frame-local operand data are
pre-initialized with zeros belfore access to cache or a lower
level of the memory hierarchy. New cache lines storing
frame local operand data are wholly occupied when 1nitially
written 1nto cache. And cache lines storing frame-local
operand data are imvalidated and discarded without write-
back when the corresponding function frame activation
terminates.

The dedicated hardware mechanism can include a hard-
ware map (which 1s referred to herein as the Implicit Zero
Map or IZM)) 1n which each given entry (which can one bit
1n size) corresponds or maps to a cache line storing frame-
local operand data, where the mapped cache lines cover the
address range that stores frame-local operand data for the
current function frame activation (1.¢., the frame-local oper-
and data for the top stack frame). The IZM can store a fixed
maximum number of entries (e.g., bits), and thus cache lines
it maps may comprise an address region that 1s greater than
or less than the size of the frame-local operand data of the
top stack frame. If the address region of the cache lines
storing frame-local operand data of the top stack frame 1s
greater than the fixed size of the IZM, then a portion of such
address region 1s not mapped by the entries (e.g. bits) of the
IZM. Otherwise, all cache lines storing frame-local operand
data of the top stack frame are mapped by the entries (e.g.,
bits) of the IZM, and possibly all or a part of the cache lines
for some lower stack frame or frames can be mapped by the
entries (e.g., bits) of the IZM.

The entries (e.g., bits) of the IZM each correspond to a
cache line storing frame-local operand data and provides an
indication whether the corresponding cache line 1) currently
stores valid data 1n the memory hierarchy of the computer
processing system and thus has a meaningiul physical
existence 1n the cache or lower level of the memory hier-
archy, or 11) does not currently store valid data in the memory

10

15

20

25

30

35

40

45

50

55

60

65

6

hierarchy and should be interpreted as being implicitly zero
throughout. In one embodiment, 1if an IZM entry (e.g., bit)
1s clear, then the corresponding cache line 1s interpreted as
currently storing valid data 1n cache or a lower level of the
memory hierarchy of the computer processing system (and
thus has a meaningful existence 1n cache and lower level of
the memory hierarchy). However, if an IZM entry (e.g., bit)
1s set, then the corresponding cache line 1s interpreted as not
currently storing valid data in cache or lower level of the
memory hierarchy (and thus not having a meaningiul physi-
cal existence i cache or a lower level of the memory
hierarchy); instead the corresponding cache line is inter-
preted as being implicitly zero throughout.

Each memory request generated in a function frame
activation 1s checked against the entries of the IZM to
determine whether the eflective address of the memory
request 1s within the address range covered by the entries of
the IZM. In the event that the effective address of the
memory request 1s outside the range covered by the entries
of the IZM, the memory request proceeds as normal to
access the cache or a lower level of the hierarchical memory
system without interference. In the event that the effective
address of the memory request falls within the range covered
by the entries of the IZM, the eflective address of the
memory request 1s converted mto a corresponding IZM
address 1nto the IZM. Where “base+displacement™ address-
ing 1s employed for specilying frame-local operand data,
such conversion can involve subtracting the eflective
address of the memory request from the base address of the
IZM-covered region for the current function frame activa-
tion and then scaling the result by the width of a cache line.
The IZM address selects the IZM entry (e.g., bit) corre-
sponding to the addressed cache line.

If the selected IZM entry (e.g., bit) 1s clear (e.g., it
indicates that the cache line currently stores valid data in
cache or a lower level of the memory hierarchy of the
computer processing system and thus has a meaningiul
physical existence in the cache and lower level(s) of the
memory hierarchy of the computer processing system), then
the IZM outputs a “miss” signal which allows the memory
request to proceed as normal to access the hierarchical
memory system without interference.

If the selected IZM entry (e.g., bit) 1s set and the memory
request 1s a load request, then the hardware outputs a zero
value for one or more data bytes of the requested cache line
for return to the processor, exactly as 11 the cache line with
all zeroed data bytes had been read from cache or memory,
but without any cache or memory access. Because such a
load operation returns one or more zeroed data bytes for the
cache line without examining the underlying memory, it 1s
not possible to browse for former values 1n the address range
covered by the IZM. In consequence of this behavior, the
compilers or other tools that generate code may be altered
such that initialization of frame-local operand data with zero
1s omitted, leading to faster and more compact code.

If the selected IZM entry (e.g., bit) 1s set and the memory
request 1s a store request, then the hardware write the cache
line 1nto the hierarchical memory system by writing the data
bytes of the cache line as specified by the store request mnto
the hierarchical memory system with zeroed data values for
any data bytes that are not specified by the store request. In
this manner, the stored value 1s written to hierarchical
memory system as would be performed normally, but with
the entire rest of the containing cache line set to zero as 1t
it had been written by one or more store requests writing
zeros to the cache line. In addition, the selected IZM entry
(e.g., bit) 1s cleared. A cache line can be displaced by writing

US 9,652,230 B2

7

the cache line as specified by the store request. In a write-
allocate cache structure 1t 1s not necessary to allocate a write
bufler or read the rest of the line from memory because the
whole line has a new valid value. Moreover, write misses to
cache lines covered by the IZM are impossible.

The above description outlines the steady state where the
IZM covers cache lines storing frame-local operand data for
the top stack frame. To establish this steady state, the
hardware includes a mechanism that tracks the allocation
and deallocation of stack frames. If the mstruction set of the
processing system defines explicit CALL and RETURN
operations that perform frame allocation and deallocation
then maintaining the IZM can be incorporated into those
operations. If frame allocation and deallocation 1s a conse-
quence of register manipulation by explicit code then the
instruction set may be augmented with operations to inform
the IZM of the changing frame structure.

In the event of the allocation of new stack frame (corre-
sponding to a new function frame activation), the IZM 1s
altered to retlect the new stack frame. Registers that indicate
the address range covered by the IZM can be adjusted to
indicate the address range for the new stack frame. The
entry(ies) (e.g., bit(s)) of the IZM that cover this new
address range are set to indicate that the corresponding
cache lines do not currently store valid data 1n cache or a
lower level of the memory hierarchy of the computer
processing system and should be interpreted as being implic-
itly zero throughout. The same number of entries (e.g., bits)
can be removed from the opposite end of the IZM so that the
IZM continues to map the same amount of memory, merely
at a diflerent address. The removed entries are examined to
determine if they are sets, corresponding to lines that are
implicitly zero but are no longer mapped by the IZM. Each
of those lines can be written into the hierarchical memory
system by writing zeroed data bytes for all data bytes of the
corresponding cache line into the hierarchical memory sys-
tem.

In the event of a stack frame deallocation (corresponding
to the termination of the current function frame activation),
the IZM 1s altered to retlect the revised frame structure. The
registers that indicate the address range covered by the IZM
can be adjusted to 1ndicate the return address of the current
function frame activation. The entry(ies) (e.g., bit(s)) of the
IZM that cover the function frame activation which 1s being
deallocated are removed from the IZM and processed entry-
by-entry to determine 1f the respective entry 1s clear. If so,
the cache line corresponding to the respective cleared entry
1s 1nvalidated in the hierarchical memory system, thus
discarding this cache line. Furthermore, any pending write-
back of the cache line can be cancelled. This prevents
unnecessary spurious write-back of invalid data. If the
address range of the cache lines occupied by the deallocated
stack 1s larger than the region that can be covered by the
IZM, then each excess cache line not covered by the IZM 1s
invalidated in the hierarchical memory system as part of the
deallocation of the task, thus discarding such excess cache
line. Furthermore, any pending write-back of the excess
cache line can be cancelled.

In accordance with the present disclosure, a sequence of
instructions 1s stored in the memory system 101 and pro-
cessed by a CPU (or Core) 102 as shown in the exemplary
embodiment of FIG. 1. The CPU (or Core) 102 includes a
number of instruction processing stages including at least
one struction fetch unit (one shown as 103), at least one
instruction bufller or queue (one shown as 103), at least one
decode stage (one shown as 107) and execution/retire logic
109 that are arranged in a pipeline manner as shown. The

10

15

20

25

30

35

40

45

50

55

60

65

8

CPU (or Core) 102 also includes at least one program
counter (one shown as 111), at least one L1 instruction cache
(one shown as 113), an L1 data cache 115 and a shared
instruction/data L2 Cache 117.

The LL1 instruction cache 113, the .1 data cache 115 and
the L2 cache are logically part of the hierarchy of the
memory system 101. The L1 mnstruction cache 113 1s a cache
memory that stores coples of 1nstruction portions stored 1n
the memory system 101 in order to reduce the latency (1.e.,
the average time) for accessing the instruction portlons
stored 1n the memory system 101. In order to reduce such
latency, the L1 instruction cache 113 can take advantage of
two types of memory localities, including temporal locality
(meamng that the same 1nstruction will often be accessed
again soon) and spatial locality (meaning that the next
memory access for instructions 1s oiten very close to the last
memory access or recent memory accesses for mstructions).
The L1 instruction cache 113 can be organized as a set-
associative cache structure, a fully associative cache struc-
ture, or a direct mapped cache structure as 1s well known 1n
the art. Slmllarly, the L1 data cache 115 1s a cache memory
that stores copies of operands stored 1n the memory system
101 1n order to reduce the latency (1.e., the average time) for
accessing the operands stored 1n the memory system 101. In
order to reduce such latency, the L1 data cache 115 can take
advantage of two types of memory localities, including
temporal locality (meaning that the same operand will often
be accessed again soon) and spatial locahty (meaning that
the next memory access for operands 1s oiten very close to
the last memory access or recent memory accesses for
operands). The L1 data cache 115 can be organized as
set-associative cache structure, a fully associative Cache
structure, or a direct mapped cache structure as 1s well
known 1n the art. The shared L2 Cache 117 stores both
instructions and data. The L2 cache 117 can be organized as
a set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as 1s well
known 1n the art. The hierarchy of the memory system 201
can also include additional levels of cache memory, such as
a level 3 cache, as well as main memory. One or more of
these additional levels of the cache memory can be inte-
grated with the CPU 202 as 1s well known. The details of the
organization of the memory hierarchy are not particularly
relevant to the present disclosure and thus are omitted from
the figures of the present disclosure for sake of simplicity.

The program counter 111 stores the memory address for
a particular instruction and thus indicates where the mstruc-
tion processing stages are in processing the sequence of
instructions. The memory address stored in the program
counter 111 can be used to control the fetching of the
instructions by the instruction fetch unit 103. Specifically,
the program counter 111 can store the memory address for
the 1nstruction to fetch. This memory address can be derived
from a predicted (or resolved) target address of a control-
flow operation (branch or CALL operation), the return
address of a function frame activation in the case of a
RETURN operation, or the sum of memory address of the
previous 1nstruction and the length of previous instruction.
The memory address stored 1n the program counter 111 can
be logically partitioned into a number of high-order bits
representing a cache line address ($ Cache Line) and a
number of low-order bits representing a byte offset within
the cache line for the instruction.

The 1nstruction fetch unit 103, when activated, sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). This cache line address can be

derived from the high-order bits of the program counter 111.

US 9,652,230 B2

9

The L1 mstruction cache 113 services this request (possibly
accessing lower levels of the memory system 101 1f missed
in the L1 instruction cache 113), and supplies the requested
cache line to the nstruction fetch unit 103. The instruction
fetch unit 103 passes the cache line returned from the L1
instruction cache 113 to the mstruction bufler 105 for storage
therein.

The decode stage 107 1s configured to decode one or more
instructions stored in the mnstruction butler 105. Such decod-
ing generally mvolves parsing and decoding the bits of the
instruction to determine the type of operation(s) encoded by
the instruction and generate control signals required for
execution of the operation(s) encoded by the instruction by
the execution/retire logic 109.

The execution/retire logic 109 utilizes the results of the
decode stage 107 to execute the operation(s) encoded by the
istructions. The execution/retire logic 109 can send a load
request to the L1 data cache 115 to fetch data from the L1
data cache 115 at a specified memory address. The L1 data
cache 115 services this load request (possibly accessing the
[.2 cache 117 and lower levels of the memory system 101 1f
missed 1n the L1 data cache 115), and supplies the requested
data to the execution/retire logic 109. The execution/retire
logic 109 can also send a store request to the L1 data cache
115 to store data into the memory system at a specified
address. The L1 data cache 1135 services this store request by
storing such data at the specified address (which possibly
involves overwriting data stored by the data cache and
lowering the stored data to the L2 Cache 117 and lower
levels of the hierarchical memory system).

The istruction processing stages of the CPU (or Core)
102 can achieve high performance by processing each
istruction and 1ts associated operation(s) as a sequence of
stages each being executable 1n parallel with the other
stages. Such a technique 1s called “pipelining.” An instruc-
tion and its associated operation(s) can be processed 1n five
stages, namely, fetch, decode, issue, execute, and retire as
shown 1n FIG. 2.

In the fetch stage, the instruction fetch unit 103 sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). The instruction fetch unit 103 passes
the cache line returned from the L1 instruction cache 113 to
the 1nstruction builer 1035 for storage therein.

The decode stage 107 decodes one or more nstructions
stored 1n the 1nstruction bufler 107. Such decoding generally
involves parsing and decoding the bits of the instruction to
determine the type of operation(s) encoded by the instruc-
tion and generating control signals required for execution of
the operation(s) encoded by the instruction by the execution/
retire logic 109.

In the 1ssue stage, one or more operations as decoded by
the decode stage are 1ssued to the execution logic 109 and
begin execution.

In the execute stage, 1ssued operations are executed by the
functional units of the execution/retire logic 109 of the
CPU/Core 102.

In the retire stage, the results of one or more operations
produced by the execution/retire logic 109 are stored by the
CPU/Core 102 as transient result operands for use by one or
more other operations in subsequent 1ssue/execute cycles.

The execution/retire logic 109 includes a number of
tunctional units (FUs) which perform primitive steps such as
adding two numbers, moving data from the CPU proper to
and from locations outside the CPU such as the memory
hierarchy, and holding operands for later use, all as are well
known 1n the art. Also within the execution/retire logic 109

10

15

20

25

30

35

40

45

50

55

60

65

10

1s a connection fabric or iterconnect network connected to
the FUs so that data produced by a producer (source) FU can
be passed to a consumer (sink) FU for further storage or
operations. The FUs and the interconnect network of the
execution/retire logic 109 are controlled by the executing
program to accomplish the program aims.

During the execution of an operation by the execution
logic 109 1n the execution stage, the functional units can
access and/or consume transient operands that have been
stored by the retire stage of the CPU/Core 102. Note that
some operations take longer to finish execution than others.
The duration of execution, 1n machine cycles, 1s the execu-
tion latency of an operation. Thus, the retire stage of an
operation can be latency cycles after the 1ssue stage of the
operation. Note that operations that have 1ssued but not yet
completed execution and retired are “in-tlight.” Occasion-
ally, the CPU/Core 102 can stall for a few cycles. Nothing
1ssues or retires during a stall and in-flight operations remain
in-flight.

FIG. 3 1s a schematic diagram 1llustrating the architecture
of an illustrative embodiment of the execution/retire logic
109 of the CPU/Core 102 of FIG. 1 according to the present
disclosure, including a number of functional units 201. The
execution/retire logic 109 also includes a set of operand
storage clements 203 that are operably coupled to the
functional units 201 of the execution/retire logic 109 and
configured to store transient operands that are produced and
referenced by the functional umits of the execution/retire
logic 109. An mterconnect network 205 provides a physical
data path from the operand storage elements 203 to the
functional units that can possibly consume the operand
stored 1n the operand storage elements. The interconnect
network 205 can also provide the functionality of a bypass
routing circuit (directly from a producer functional unit to a
consumer function unit).

In one embodiment shown 1n FIG. 4, the memory hier-
archy of the CPU/Core 102 includes several levels of cache,
such as L1 data cache 115 (for example, with an access time
of three machine cycles) and an L2 instruction/data cache
117 (for example, with an access time of 10 machine cycles),
as well as main memory 101 A (for example, with an access
time of 400 machine cycles). Other memory hierarchy
organizations and access times can also be used. The func-
tional units of the execution/retire logic 109 include a
load/store unit 401 as shown. Load operations are decoded
by the decode stage 107 and issued for execution by the
load/store unit 401, which issues a load request correspond-
ing to the decoded load operation to the L1 Data Cache 115.
The address for the load request can be provided directly
from the machine code of the load operation. Alternatively,
the address for the load request can be provided from the
operand storage (via the interconnect network 205) at a
reference specified by the machine code of the load opera-
tion. When “base+displacement” addressing 1s used, the
base address can be stored 1n a special purpose register and
the displacement offset relative to the base address can be
provided from the operand storage (via the interconnect
network 205) at a reference specified by the machine code
of the load operation (or possibly directly from the machine
code of the load operation). Likewise, the store operations
are decoded by the decode stage 107 and 1ssued for execu-
tion by the load/store unit 401, which 1ssues a store request
corresponding to the decoded store operation to the L1 Data
Cache 115. The address for the store request can be provided
directly from the machine code of the store operation.

US 9,652,230 B2

11

Alternatively, the address for the store request can be
provided from the operand storage (via the interconnect
network 205) at a reference specified by the machine code
ol the store operation. When “base+displacement™ address-
ing 1s used, the base address can be stored i a special
purpose register and the displacement oflset relative to the
base address can be provided from the operand storage (via
the interconnect network 203) at a reference specified by the
machine code of the load operation (or possibly directly
from the machine code of the load operation). The operand
data for the store request can be provided from the operand
storage (via the interconnect network 205) at a reference
specified by the machine code of the store operation.

The execution/retire logic 109 also includes retire stations
403, which are hardware units that are able to hold the
address of a load operation and possibly butlers the result
data as 1t arrives from the memory hierarchy. The number of
retire stations 403 can vary. Each retire station 403 1s
capable of handling one potential in-flight load operation. A
load operation contains arguments that specily a memory
address and possibly the width and scalarity of the desired
data. Thus, a load operation may request to load a byte from
address 0x123456789. The load operation 1s decoded and
issued for execution by the load/store unmit 401. When
executing the load operation, the load/store unit 401 allo-
cates a retire station 403 from the available pool of retire
stations. The load/store unit 401 also sends the station
number of the allocated retire station with the address and
width as part of a load request to the L1 Data Cache.

Under normal operations (where there 1s no intervention
from the operations of the IZM 405 as described herein), the
load/store unit 401 1ssues load requests and the L1 data
cache 115 services each load request by returning all (or
part) of the requested data that hits 1n the L1 data cache 115
to the allocated retire station 403. It the requested data 1s not
found (misses) mn L1 data cache 115, the missing part(s) of
the requested data are requested from the next level 1n the
memory hierarchy (the L2 cache 117 and so on) until 1t 1s
located and returned to the allocated retire station 403. The
allocated retire station 403 can bufler the requested data, if
need be. The retire station 403 can output the buflered
requested data over the interconnect network 205 for storage
in the operand storage 203 of the execution/retire logic 109,
and then clears 1its state, and waits to be allocated again by
another load operation.

Under normal operations (where there 1s no intervention
from the operations of the IZM 405 as described herein), the
load/store unit 401 1ssues store requests and the L1 data
cache 113 services each store request by writing the data
bytes of the requested cache line in the L1 data cache 115.

The execution retire logic 109 also includes an Implicit
Zero Map (1ZM) 4035, which interfaces to the load/store unit
in order to receive data pertaining to each load request and
store request that 1s to be 1ssued by the load/store unit 401,
where such data includes the address of the cache line of the
given load or store request and possibly data that specifies
that the request 1s either a load or store request. For a store
request, the data also includes one or more operand data
bytes that are to be written to the L1 data cache 115 by the
store request. The IZM 405 includes a hardware map of
entries that are single bits (i.e., a bit array) 1n which each
entry (bit) corresponds to a cache line storing frame-local
operand data for the current function frame activation (i.e.,
the frame-local operand data for the top stack frame) as
shown 1n FIG. 5. The stack frame for the current function
frame activation (the “current stack frame) 1s part of the data
stack. The address space for the cache lines of the current

10

15

20

25

30

35

40

45

50

55

60

65

12

data stack that store frame-local operand data 1s dictated by
the address stored 1n the stack pointer (SP) register 301 and
an oflset stored 1n a special-purpose register 503 that rep-
resents the number of cache lines of the current stack frame
that stores frame-local operand data. Furthermore, a number
of bits of the hardware map of the IZM 504 are allocated to
correspond to the cache lines that store frame-local operand
data for the current function frame activation. The address
space for these IZM entries (bits) 1s dictated by the address
(1ndex) stored 1n a special-purpose register 305 that points to
the start IZM bit for the current function frame activation
and the oflset stored 1n a special-purpose register 503 that
represents the number of cache lines of the current stack
frame that stores frame-local operand data. The values for
these special registers are updated according to the CALL
operation that invokes the current function frame activation.
In this manner, the cache lines mapped by the bits of the IZM
405 cover the address range that stores frame-local operand
data for the current function frame activation.

The hardware map of the IZM 405 supports a fixed
maximum number of bits, and the cache lines it maps may
comprise an address region that i1s greater than or less than
the size of the frame-local operand data of the top stack
frame. If the address region of the cache lines storing
frame-local operand data of the top stack frame 1s greater
than the fixed maximum size of the hardware map of the
IZM 405 then a portion of such address region 1s not mapped
by the bits of the IZM 405. Otherwise, all cache lines storing
frame-local operand data of the top stack frame are mapped
by the bits of the IZM 405, and possibly all or a part of the
cache lines for some lower stack frame can be mapped by
the bits of the IZM 405.

The bits of the IZM 403 each correspond to a cache line
storing frame-local operand data and provides an indication
whether the corresponding cache line 1) currently stores
valid data 1n the memory hierarchy of the computer pro-
cessing system and thus has a meaningiul physical existence
in the memory hierarchy, or 11) does not currently store valid
data 1n the memory hierarchy of the computer processing
system and should be interpreted as being implicitly zero
throughout. In one embodiment, 1t an IZM bit 1s clear, then
the corresponding cache line 1s interpreted as currently
storing valid data in cache or a lower level of the memory
hierarchy of the computer processing system and thus hav-
ing a meaningiul physical existence in the cache or lower
level of the memory hierarchy of the computer processing
system. However, if an IZM bait 1s set, then the correspond-
ing cache line 1s interpreted as not currently storing valid
data 1n cache or a lower level of the memory hierarchy of the
computer processing system; instead the corresponding
cache line 1s interpreted as being implicitly zero throughout.

In one 1illustrative embodiment, the bits of the 1ZM 405
are allocated and mapped to the current function frame
activation by a process outlined in the tlow chart of FIG. 6.
The operations begin 1n block 601 where the IZM address
registers 5305 and 503 are adjusted to point to an IZM address
range corresponding to cache lines of the stack frame for the
current function frame activation which store frame-local
operand data.

In block 603, the bit(s) of the IZM address range specified
by the IZM address registers 505 and 503 are set 1f need be
in order to indicate that all of the data bytes of the corre-
sponding cache line(s) of the current stack frame do not
currently store valid data in the L1 data cache 115 (and 1n
other parts of the memory hierarchy of the computer pro-
cessing system) and should be interpreted as being implicitly
zero throughout.

US 9,652,230 B2

13

In block 605, it 1s determined 11 the number of cache lines
of the current stack frame that stores frame-local operand
data 1s greater than the maximum size of the IZM address
range for any one particular function frame activation. If not,
the operations end. Otherwise, the operations continue to
block 607 where the excess cache lines (beyond the maxi-
mum size of the IZM address range) are written into the L1
data cache 115 with zero data values for all data bytes for
cach excess cache line.

In one illustrative embodiment, each load request gener-
ated by the load/store unit 401 1n a function frame activation
1s checked against the IZM 4035 employing the operations of

the flowchart of FIG. 7, which begins 1n block 701 where

data pertaining to the load request 1s supplied to the IZM
405. Such data includes the address of the cache line of the
given load request and possibly data that specifies that the
request 1s a load request (in order to distinguish 1t from a
store request) and possibly a station identifier for the retire
station 403 that has been allocated to handle the load
request. The address of the requested cache line of the load
request 1s converted 1nto a corresponding I1ZM address. Such
conversion can ivolve subtracting the eflective address of
the load request from the base address of the IZM-covered
region for the current function frame activation and then
scaling the result by the width of a cache line.

In block 703, the bit of the IZM 405 at the IZM address
generated i block 701 1s read from the bit array of the IZM
405.

In block 705, 1t 1s determined whether the IZM bit read
from the bit array of the IZM 405 in block 703 1s set to
indicate that all of the data bytes of the corresponding cache
line(s) of the current stack frame do not currently store valid
data 1n the L1 data cache 1135 (and in other parts of the
memory hierarchy of the computer processing system) and
should be iterpreted as being implicitly zero throughout. It
s0, the operations continue to 707. Otherwise, the operations
continue to 709.

In block 707, the IZM 405 1s configured to return one or
more zeroed data bytes for the requested cache line to the
Retire Station 403 allocated to handle the load request. Such
retire station can be 1dentified by a station identifier that 1s
communicated from the load/store unit 401 to the IZM 4035
in block 701. The IZM also returns a “Hit” signal to the
load/store unit 401. When received, the “Hit” signal causes
the load/store unit to intervene and discard the load request
such that 1t 1s not 1ssued to the L1 data cache 1135. Note that
in this case the load request 1s handled by the operations of
the IZM 405 1n block 707.

In block 709, the 1ZM 405 is configured to return a “Miss™
signal to the load/store umt. When received, the “Miss”
signal causes the load/store unit to 1ssue the load request to
the L1 data cache 115 as normal.

In one 1llustrative embodiment, each store request gener-
ated by the load/store unit 401 1n a function frame activation
1s checked against the IZM 4035 employing the operations of
the flowchart of FIG. 8, which begins in block 801 where
data pertaining to the store request 1s supplied to the IZM
405. Such data includes the address of the cache line of the
given load request and possibly data that specifies that the
request 1s a store request (1n order to distinguish 1t from a
load request). The data also includes one or more operand
data bytes that are to be written to the L1 data cache 1135 by
the store request. The address of the requested cache line of
the store request 1s converted into a corresponding IZM
address. Such conversion can involve subtracting the eflec-
tive address of the store request from the base address of the

10

15

20

25

30

35

40

45

50

55

60

65

14

IZM-covered region for the current function frame activa-
tion and then scaling the result by the width of a cache line.

In block 803, the bit of the IZM 405 at the IZM address
generated 1 block 801 i1s read from the bit array of the IZM
405.

In block 805, 1t 1s determined whether the IZM bit read
from the bit array of the IZM 405 in block 803 1s set to
indicate that all of the data bytes of the corresponding cache
line(s) of the current stack frame do not currently store valid
data 1n the L1 data cache 115 (and in other parts of the
memory hierarchy of the computer processing system) and
should be interpreted as being implicitly zero throughout. It
s0, the operations continue to 807. Otherwise, the operations
continue to 809.

In block 807, the IZM 405 1s configured to write the cache
line 1nto the L1 Data Cache 115 by writing the data bytes for
the cache line as specified by the store request into the L1
Data Cache with zeroed data values for any unspecified data
bytes for the cache line. Furthermore, the IZM bit corre-
sponding to the cache line 1s cleared to indicate that the
cache line currently stores valid data 1n the L1 data cache
115 (and thus has a meaningiul physical existence in the
memory hierarchy of the computer processing system). A
cache line can be displaced by writing the cache line as
specified by the store request. Furthermore, the IZM 405
returns a “Hit” signal to the load/store unit 401. When
received, the “Hit” signal causes the load/store unit to
intervene and discard the store request such that 1t not 1ssued
to the L1 data cache 115. Note that in this case the store
request 1s handled by the operations of the 1ZM 4035 1n block
807.

In block 809, the IZM 403 1s configured to return a “Miss”™
signal to the load/store umt. When received, the “Miss”
signal causes the load/store unit to 1ssue the store request to
the L1 data cache 115 as normal.

In one 1illustrative embodiment, the bits of the 1ZM 405
are deallocated and unmapped from the current function
frame activation by a process outlined in the flow chart of
FIG. 9, which begins in block 901 where all IZM bits within
the IZM address range corresponding to the cache line(s) of
the data stack for the current function frame activation are
read out from the bit array of the IZM 405.

In blocks 903 to 907, the bit(s) of the bit array of the IZM
405 read out 1n block 901 are processed bit-by-bit.

In block 903 and 905, 1t 1s determined 1f the respective
IZM bit 1s cleared and thus indicates that the cache line
currently stores valid data 1in the memory hierarchy of the
computer processing system (and thus has a meaningiul
physical existence 1n the memory hierarchy of the computer
processing system). IT so, the operations continue to 907;
otherwise, the operations continue to 909.

In block 907, the cache line of the .1 data cache corre-
sponding to the respective IZM bit 1s invalidated. And any

pending write-back operation of this cache line 1s cancelled.
In block 909, 1t 1s determined whether all of the IZM bits

read out from the bit array of the IZM 405 in block 901 have
been processed by the operations of clocks 903 to 907. IT
not, the operations return to continue such operations. It so,
the operations continue to block 911.

In block 911, the IZM address registers 505 and 303 are
adjusted to deallocate the address space of the IZM for the
current function frame activation. Moreover, before such
deallocation, the bits of the IZM address space correspond-
ing to the current function frame activation can be set for
initialization and use in one or more subsequent function
frame activations as needed.

US 9,652,230 B2

15

It 1s contemplated that the operations of the IZM can
readily be extended to operate 1n a multiprocessor shared-
memory system (such as a multicore processor chip) or a
multitasking environment operating on a single processor.
Specifically, 11 all of the five following conditions hold:

1) the cache line address 1s covered by the 1ZM;

2) the entry (e.g., bit) of the bit array of the IZM
corresponding to the cache line address 1s set to a
binary level that indicates that the cache line does not
currently store valid data 1in the memory hierarchy of
the computer processing system but 1s implicitly zero
throughout;

3) the cache line address can be passed to another pro-
cessor executing 1n parallel or to a different task in the
same processor after a task swap (a pointer escape);

4) the pomnter may then be dereferenced by the other
processor or task; and

5) the machine definition requires that the result of the

dereference (on a load) or change to memory (on a
store) be well defined;

then the corresponding cache line(s) can be realized so that
the other processor or task see a physical zero for all of the
data bytes of the cache line. In general, the IZM hardware
mechanism will not, and the compiler may not, know that a
pointer escape 1s possible. A combination of automatic
and/or compiler controlled realizations can conservatively
defend against this possibility.

Furthermore, the IZM mechanism as described above can
be used 1n conjunction with hardware that realizes implicitly
zero lines from the IZM as a background process, using
spare cache bandwidth as available. The eflect of such
background realization 1s to reduce the flurry of realizations
that occur with each call 1n a deeply nested sequence of calls
with large frame sizes, where each function calls the next
before doing much initialization of 1ts own frame.

Furthermore, the IZM mechanism as described above can
be used in conjunction with hardware that invalidates real-
ized lines 1n exited frames as a background process, using
spare cache bandwidth as available. The effect of such
background invalidation 1s to reduce the flurry of invalida-
tions that occur with each return from a deeply nested
sequence of calls with large frame sizes, where each func-
tion had significantly realized lines 1n its own frame. An exit
followed by another call may leave the IZM referring to a
line that 1s still queued for mvalidation 1n the background
invalidator. If that line 1s realized without removing 1t from
the invalidator then the realization could be lost. Loss may
be avoided by causing the call (and new frame allocation) to
discard any pending invalidations in the new frame region;
by having realization check for pending invalidation of the
same line; by having invalidation check for prior realization
of the same line in the current IZM; or by other evident
means.

While the embodiments of the present disclosure 1s
described above 1n terms of a stack frame, it 1s evident that
the features and operations can readily be adapted to be
performed 1n conjunction with other operational states of a
CPU that have a high density of allocation and deallocation
of memory.

Furthermore, as described herein, the IZM 1s configured
to filter memory requests for access to the top level cache of
the hierarchical memory system. In an alternate embodi-
ment, 1t can readily be adapted to filter memory requests that
access lower levels of the hierarchical memory system, such
as access to the L2 cache and/or to higher level cache or to
main memory 1i desired.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

There have been described and 1illustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, 1t 1s not intended that the
invention be limited thereto, as 1t 1s intended that the
invention be as broad 1n scope as the art will allow and that
the specification be read likewise. For example, the micro-
architecture and memory organization of the CPU 101 as
described herein 1s for illustrative purposes only. A wide
variety of CPU microarchitectures can embody the improve-
ment and methods described herein, including microarchi-
tectures that employ in-order execution, microarchitectures
that employ out-of-order execution, superscalar microarchi-
tectures, VLIW microarchitectures, single-core microarchi-
tectures, multi-core microarchitectures, and combinations
thereof. In another example, the functionality of the CPU
101 as described herein can be embodied as a processor core
and multiple instances of the processor core can be fabri-
cated as part of a single integrated circuit (possibly along
with other structures). It will therefore be appreciated by
those skilled 1n the art that yet other modifications could be
made to the provided mvention without deviating from its
spirit and scope as claimed.

What 1s claimed 1s:

1. A computer processor for use with a hierarchical
memory system that includes at least one level of cache
memory and main memory, the computer processor com-
prising;:

execution logic that generates memory requests that are

supplied to the hierarchical memory system, wherein
the execution logic includes a hardware map storing a
number of entries associated with corresponding units
of memory, where each given entry of the hardware
map indicates whether a corresponding unit of memory
1) currently stores valid data in the hierarchical memory
system, or 11) does not currently store valid data in the
hierarchical memory system and should be interpreted
as being implicitly zero throughout,

wherein the memory requests include a load request

specilying a memory address, and the hardware map 1s
accessed 1n conjunction with servicing the load request
in order to determine 1f the hardware map includes an
entry that corresponds to the memory address of the
load request;

wherein the entry that corresponds to the memory address

of the load request 1s processed to determine whether
the corresponding unit of memory 1) currently stores
valid data in the hierarchical memory system, or 11)
does not currently store valid data in the hierarchical
memory system of the computer processing system and
should be interpreted as being implicitly zero through-
out:; and

wherein, 1n the event that the processing determines that

the corresponding unit of memory does not currently
store valid data 1n the hierarchical memory system and
should be interpreted as being implicitly zero through-
out, a zero value for one or more data bytes 1s returned
to the execution logic while avoiding memory access 1n
servicing the load request.

2. A computer processor according to claim 1, wherein:

the address of the load request refers to a requested cache

line; and

the hardware map 1s accessed before 1ssuing the load

request to the hierarchical memory system in order to
determine 11 the hardware map includes an entry that
corresponds to the requested cache line of the load
request.

US 9,652,230 B2

17

3. A computer processor according to claim 2, wherein:

the entry that corresponds to the requested cache line of
the load request i1s processed to determine whether the
requested cache line 1) currently stores valid data 1n the
hierarchical memory system, or 11) does not currently
store valid data 1n the hierarchical memory system of
the computer processing system and should be inter-
preted as being implicitly zero throughout.

4. A computer processor according to claim 3, wherein:

in the event that the processing determines that the
requested cache line does not currently store valid data
in the hierarchical memory system and should be
interpreted as being implicitly zero throughout, a cache
line with a zero value for one or more data bytes is
returned to the execution logic while avoiding memory
access 1n servicing the load request.

5. A computer processor according to claim 1, wherein:

the memory requests further include a store request speci-
fying a memory address along with one or more
operand data bytes for storage at such memory address;

the hardware map 1s accessed 1n conjunction with servic-
ing the store request in order to determine 1f the
hardware map includes an entry that corresponds to the
memory address of the store request;

the entry that corresponds to the memory address of the
store request 1s processed to determine whether the
corresponding unit of memory 1) currently stores valid
data in the hierarchical memory system, or 11) does not
currently store valid data in the hierarchical memory
system of the computer processing system and should
be interpreted as being implicitly zero throughout; and

in the event that the processing determines that the
corresponding unit of memory does not currently store
valid data in the hierarchical memory system and
should be interpreted as being implicitly zero through-
out, the operand data bytes specified by the store
request are combined with zero or more data bytes of
zero value and the resulting data bytes are written into
the hierarchical memory system at the memory address
of the store request.

6. A computer processor according to claim 5, wherein:

the address of the load request references a requested
cache line; and

the entry that corresponds to the requested cache line of
the store request 1s processed to determine whether the
requested cache line 1) currently stores valid data 1n the
hierarchical memory system of the computer process-
ing system, or 11) does not currently store valid data 1n
the hierarchical memory system of the computer pro-
cessing system and should be interpreted as being
implicitly zero throughout.

7. A computer processor according to claim 6, wherein:

in the event that the processing determines that the
requested cache line does not currently store valid data
in the hierarchical memory system and should be
interpreted as being implicitly zero throughout, a new
cache line 1s written into the hierarchical memory
system, wherein the new cache line includes the oper-
and data bytes specified by the store request together
with zero value data bytes for those data bytes of the
cache line not specified by the store request.

8. A computer processor according to claim 1, wherein:

the units of memory corresponding to certain entries of
the hardware map store frame-local operand data for a
stack frame of a current function frame activation.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

9. A computer processor according to claim 8, wherein:
during an allocation process associated with the current
function frame activation, one or more entries of the
hardware map that corresponds to cache lines that store
frame-local operand data for the stack frame of the
current function frame activation are imtialized to

indicate that such cache lines do not currently store
valid data 1n cache or a lower level of the hierarchical

memory system of the computer processing system and

should be nterpreted as being implicitly zero through-
out.
10. A computer processor according to claim 9, wherein:
in the event that the number cache lines that store frame-
local operand data for the stack frame of the current
function frame activation exceeds the maximum num-

ber of entries of the hardware map that can be allocated

for the current function frame activation, each excess
cache line 1s written to the hierarchical memory system
with a zero value throughout.

11. A computer processor according to claim 8, wherein:

the hardware map 1s accessed 1n conjunction with servic-
ing a function frame activation in order to determine 1f
the hardware map includes an entry that corresponds to
units of memory of the function frame activation.

12. A computer processor according to claim 8, wherein:

the hardware map 1s accessed when terminating the
function frame activation in order to identify one or
more cache lines that currently store frame-local oper-
and data for the function frame activation.

13. A computer processor according to claim 12, wherein:

the identified one or more cache lines are invalidated
within the hierarchical memory system when terminat-
ing the function frame activation.

14. A computer processor according to claim 12, wherein:

any pending write-back of the identified one or more
cache lines within the hierarchical memory system 1is
cancelled when terminating the function frame activa-
tion.

15. A computer processor according to claim 1, wherein:

the entries of the hardware map each comprise a single bit
associated with a corresponding cache line.

16. A computer processing system comprising:

a hierarchical memory system that includes at least one
level of cache memory and main memory; and

execution logic that generates memory requests that are
supplied to the hierarchical memory system, wherein
the execution logic includes a hardware map that 1s
configured to selectively filter access to at least one
level of the hierarchical memory system, wherein the
hardware map stores a number of entries associated
with corresponding units of memory, where each given
entry of the hardware map indicates whether a corre-
sponding unit of memory 1) currently stores valid data
in the hierarchical memory system and should be
interpreted as being implicitly zero throughout;

wherein the memory requests include a load request
specilying a memory address, and the hardware map 1s
accessed 1n conjunction with servicing the load request
in order to determine if the hardware map includes an
entry that corresponds to the memory address of the
load request;

wherein the entry that corresponds to the memory address
of the load request 1s processed to determine whether
the corresponding unit of memory 1) currently stores
valid data in the hierarchical memory system, or 11)
does not currently store valid data in the hierarchical

US 9,652,230 B2
19 20

memory system of the computer processing system and
should be interpreted as being implicitly zero through-
out; and

18. A computer processing system according to claim 17,
wherein:

the entry that corresponds to the requested cache line of

the load request i1s processed to determine whether the

5 requested cache line 1) currently stores valid data 1n the

wherein, 1n the event that the processing determines that

the corresponding unit of memory does not currently
store valid data 1n the hierarchical memory system and
should be interpreted as being implicitly zero through-
out, a zero value for one or more data bytes 1s returned

hierarchical memory system, or 11) does not currently
store valid data in the hierarchical memory system of
the computer processing system and should be inter-
preted as being implicitly zero throughout.

19. A computer processing system according to claim 18,
wherein:
in the event that the processing determines that the
requested cache line does not currently store valid data
in the hierarchical memory system and should be
interpreted as being implicitly zero throughout, a cache
15 line with a zero value for one or more data bytes is
returned to the execution logic while avoiding access to
memory 1n servicing the load request.
20. A computer processor according to claim 16, wherein:
the entries of the hardware map each comprise a single bit
associated with a corresponding cache line.

to the execution logic while avoiding memory accessin
servicing the load request.

17. A computer processing system according to claim 16,
wherein:

the address of the load request references a requested
cache line; and

the hardware map 1s accessed before accessing the hier-
archical memory system as specified by the address of
the load request 1n order to determine 11 the hardware
map includes an entry that corresponds to the requested 2Y
cache line of the load request. S I T

	Front Page
	Drawings
	Specification
	Claims

