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Generate pressure waves 101
using a speaker connected
to a mouthpiece

Measure oscillations in 103

flow and pressure to give
a respective time series

of measurements

Transform the respective time series to

the time-frequency domain to partition 105
the variance of each time series into
components that are associated with a
specific time and frequency
107

Perform a least squares analysis in the

time-frequency domain to give an
estimate of the respiratory impedance

FIG. 9
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Generate pressure waves using a
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Measure oscillations in flow and
pressure and digitise to give a
respective time series of measurements

Transform the time series to the discrete
time-frequency domain

Calculate power and cross spectra of
the flow and pressure as a function of
time and frequency

Use power and cross spectra to
determine transfer functions from the
loudspeaker input to the flow and pressure

respectively

Determine the respiratory impedance
from the transfer functions

Determine confidence limits for the
determined impedance
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METHOD AND APPARATUS FOR
ESTIMATING RESPIRATORY IMPEDANCE

TECHNICAL FIELD OF THE INVENTION

The invention relates to a method and apparatus for
estimating respiratory 1mpedance from forced pressure
oscillations.

BACKGROUND TO THE INVENTION

The respiratory or acoustic impedance of a human respi-
ratory system can be measured to obtain information con-
cerning the resistance, compliance and inertia of the air-
ways, lungs and chest wall. This information 1s useful in
diagnosing the nature and severity of a variety of respiratory
diseases such as chronmic obstructive pulmonary disease
(COPD), asthma and bronchatis.

In a forced oscillation technmique (FOT), such as that
described in“Expiratory Flow Limitation Detected by
Forced Oscillation and Negative Expiratory Pressure™ by
Dellaca et al., pages 363-374 European Respiratory Journal
Vol. 29 No. 2 (reference 1), acoustic waves are directed into
the respiratory system while the person breathes normally,
and the response 1s measured to determine the respiratory
impedance.

The respiratory impedance describes the frequency-de-
pendent relation in the oscillations resulting from the acous-
tic waves 1n terms of flow and pressure. Where the respi-
ratory impedance varies from inspiration to expiration (as in
some diseases and other medical conditions), the respiratory
impedance must be estimated with a fine time resolution.
However, 1n the prior art, little consideration has been given
to the reliability of techniques for estimating the respiratory
impedance 1n time intervals that are short enough for physi-
ological purposes (i.e. shorter than the duration of an inha-
lation or exhalation).

Therelore, there 1s a need for a method and apparatus for
reliably estimating the respiratory impedance in short time
intervals.

SUMMARY OF THE INVENTION

According to a first aspect of the invention, there 1s
provided a method of estimating respiratory impedance, the
method comprising generating pressure waves 1n a patient
interface device i communication with an airway of a
subject; determining the flow and pressure of the gas 1n a
pneumatic system that includes the patient interface device
and an airway of such a subject to produce respective time
series representing the flow and pressure; transforming the
respective time series to the time-frequency domain to create
a transformed time series; estimating the power of the tlow
and pressure from the respective transiformed time series;
estimating respective cross spectra of the tlow and pressure
based on the transformed time series; and estimating the
respiratory impedance of the subject from the estimated
power and cross spectra.

According to a second aspect of the invention, there 1s
provided an apparatus for estimating respiratory impedance,
the apparatus comprising a patient interface device; an
exitation source for generating oscillating pressure, flow, or
volume of gas 1n such an airway of such a subject; means for
determining the tlow and pressure of gas 1n a pneumatic
circuit defined by the patient interface device and an airway
of such a subject and for outputting respective time series of
values representing the flow and pressure; a processor
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2

configured to transform the respective time series to the
time-irequency domain; estimate a power of the tlow and the
pressure from the respective transformed time series; esti-
mate respective cross spectra of the flow and pressure based
on the respective transformed time series; and estimate the
respiratory 1mpedance of the subject from the estimated
power and cross spectra.

According to a third aspect of the invention, there 1is
provided a computer program product comprising a com-
puter readable medium with computer readable code embod-
ied therein, the computer readable code being configured
such that, on execution by a suitable processor or computer,
the processor or computer performs the method described
above.

The estimate of respiratory impedance may be made by a
diagnostic tool that uses the estimate to assess obstruction of
the airways or to estimate the severity of disease. The
diagnostic tool may therefore also be used to assess the
cllectiveness of treatments (whether pharmacological or
otherwise) that should afiect the respiratory impedance.

Thus, according to a fourth aspect of the invention, there
1s provided a method of diagnosing a physiological condi-
tion, the method comprising measuring respiratory imped-
ance as described above, and diagnosing a physiological
condition on the basis of the measured respiratory imped-
ance.

The estimates ol respiratory impedance may also or
alternatively be used to adapt the settings of machine used
in the treatment of a medical condition, for example a
non-invasive ventilator that 1s used for counteracting arrway
obstruction, or in determining a treatment regimen (for
example which particular medication or device to use, the
medication dosage, etc.) for the physiological condition.

Thus, according to a fifth aspect of the invention, there 1s
provided a method of treatment of a physiological condition,
the method comprising measuring respiratory impedance as
described above, and determining and/or administering a

treatment for the physiological condition on the basis of the
measured respiratory impedance.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention will now be
described 1n detail, by way of example only, with reference
to the following drawings, 1n which:

FIG. 1 1s a block diagram of an apparatus for estimating
the respiratory impedance from forced pressure oscillations
in accordance with the invention:

FIG. 2 1s a schematic diagram of the linear model used to
estimate the respiratory impedance 1n accordance with the
invention;

FIGS. 3A and 3B 1llustrate the circularity assumption and
the uncertainty in the discrete time domain respectively;

FIGS. 4A and 4B illustrate time series for which A+
N*A /7 is minimal;

FIG. 5 illustrates the bivanate least squares 1n the time-
frequency domain;

FIG. 6 1llustrates confidence region 1n the complex plane;

FIG. 7 illustrates the respiratory impedance 1n a healthy
patient as a function of time and frequency with confidence
limits for forced pressure oscillations at five diflerent fre-
quencies;

FIG. 8 1illustrates the respiratory impedance 1n a patient
with COPD as a function of time and frequency with
confidence limits for forced pressure oscillations at five
different frequencies;
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FIG. 9 1s a flow chart 1llustrating the steps 1n the method
of estimating the respiratory impedance in accordance with
the 1nvention;

FIG. 10 1s a flow chart illustrating the processing steps
performed by the apparatus according to the invention in
more detail;

FIG. 11 shows the mimimal and maximal singular values
of the matrix C as a function of the number of events N 1n
a time series:

FIG. 12 illustrates the relation between uncertainty in
time A, and the centers of gravity of the eigenvectors of C*C
for N=16;

FIG. 13 1illustrates the relation between uncertainty in
time A, and uncertainty in frequency A.tor N=16;

FIG. 14 1s a graph plotting v,,,,, ,, against 1 ;

F1G. 13 1llustrates the uncertainty in the plot of NA, vs. A,
for N=16;

FIG. 16 illustrates the estimation of 100(1-a) % confi-
dence limits for erm in the complex plane;

FIG. 17 1llustrates the squared coherence as a function of
time and frequency for a healthy subject; and

FI1G. 18 1llustrates the squared coherence as a function of
time and frequency for a subject with COPD.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

(Ll

As described above, the acoustic impedance of the respi-
ratory system can be inferred from forced pressure oscilla-
tions 1n a mouthpiece or facemask (forced oscillation tech-
nique, FOT). Since this ‘respiratory impedance’ depends on
resistance, compliance and inertia of the airrways, lungs and
chest wall, 1t provides 1nsight into the nature and severity of
a variety of respiratory diseases. The frequency-dependent
impedance 1s often variable 1 time. In chronic obstructive
pulmonary disease, airway resistance usually increases dur-
ing expiration. In sleep apnea or snoring, resistance may
increase during inspiration. This asks for a reliable estima-
tion of impedance in short time intervals, shorter than the
duration of a breath.

Respiratory impedance 1s defined as the complex-valued
transfer function that describes a linear relation between
flow g and pressure p as a function of frequency 1,

p=q(Nz(f), (1)

where the impedance 1s denoted by z(1). This equation only
holds 1t z(1) 1s constant and time 1s infinite. If the system 1s
temporarily stable, z(1) may still be estimated 1n a short time
interval. This 1s limited, however, by the uncertainty prin-
ciple, which says that a signal cannot be sharply localized 1n
both the time and frequency domains. In addition, the use of
short time intervals makes the estimation increasingly
dependent on chance events. The question 1s how this would
aflect the estimation of a transfer function like z(1), which
may only be stable 1n a part of the respiratory cycle.

In the following, the transier function of a temporarily
stationary process 1s estimated by linear regression in the
discrete time-irequency domain. An uncertainty relation 1s
derived for discrete time and frequency, which 1s used to
obtain an optimal time-frequency resolution. Analysis of the
statistical properties of the used impedance estimator yields
a frequency-dependent parameter of respiratory mechanics,
of which both the estimated values and the confidence limaits
can be followed 1n time.
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A table (Table 1) 1s included at the end of the Detailed
Description which provides a glossary of symbols and
abbreviations used in the following explanation of the
invention.

Methods

This section of the Detailed Description sets out the
mathematical basis for the method and apparatus according
to the mvention. A less mathematical explanation of the
invention 1s provided 1n the “Discussion” section below.

A schematic diagram of an apparatus 2 according to the
invention 1s shown 1n FIG. 1. Briefly, the used FOT device
2 consists of a patient interface device 4 connected to an
airway ol a subject to create a pneumatic system that
includes an airrway of such a subject. Patient interface device
4 1s any device suitable to provide a pneumatic connection
with the airway of a subject, such a mask or mouthpiece.
Patient 1nterface device 4 1s operatively coupled to an
excitation source 6 that generates pressure waves, flow
changes, or volume changes with relatively low frequencies,
for example frequencies from 8 to 24 Hz. In an exemplary
embodiment of the present invention, patient interface
device 4 1s a loudspeaker.

In the 1illustrated embodiment, a patient breathes air
through a mesh-wired resistance 9 that 1s near to pneumo-
tach head 8, which 1s located between the patient interface
device 4 and exitation source 6. The forced waves are partly
reflected 1n the airways and lungs of the patient and lead to
oscillations 1n airflow and pressure which are measured 1n
the FOT device 2. The airtlow through the pneumotach head
8 1s measured using a differential pressure transducer 10 and
the pressure 1s measured using a second pressure transducer
12 near to the mouthpiece 4. An analog-to-digital convertor
12 yields respective time series of flow and pressure, {q,}
and {p,}, where the integer t is the discrete time index, which
are provided to a processor or computer 16 for analysis. The
computer or processor 16 can also provide the signals for
controlling the frequency of the acoustic waves generated by
the loudspeaker 6 via the analog-to-digital convertor 14 and
an amplifier 18. Further details of a specific embodiment of
the apparatus 2 are provided in the section below entitled
“The measurement apparatus”.

The present invention also contemplates that other gas
flow delivery devices can be coupled to the airway of the
subject 1 addition to excitation source 6. For example, a
pressure support system or ventilator can be coupled to
patient interface device 4 to provide a flow of gas, for
example, while excitation source 6 oscillates the airrway of
the subject. It should also be noted that the flow and pressure
measurements can be made at any location along the pneu-
matic system, including measuring the pressure and flow
within the pressure support system or ventilator. The mea-
sured pressure and flow can then be used to determine the
flow and pressure of the gas 1n the pneumatic system, such
as at the airway of the patient, using any conventional
technique.

The present invention also contemplates that excitation
source 6 can be a components of the pressure support system
or the ventilator rather than a stand-alone apparatus. For
example, a pressure support system or ventilator may
include a valve to control the flow/pressure of gas delivered
to the patient. The present mmvention contemplates oscillat-
ing such a valve to produce the low frequency pressure
waves, flow changes, or volume changes. Of course, any
other device or system that i1s capable of generating the low
frequency pressure waves, flow changes, or volume
changes, such as a piston, can be used as excitation source

6.
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Rather than measuring pressure and/or flow using a
pressure and/or flow sensors, the present invention also

contemplates that the flow or the pressure can be set or
controlled, such as by the pressure support system or ven-
tilator. In which case, the set pressure or the set flow 1s used
as the tlow of pressure for present purposes rather than the
output of differential pressure transducer 10 or second
pressure transducer 12.

The interval between two samples (in seconds) i1s the
reciprocal of the sample rate (in Hz). In this section, the
time- and frequency-dependent impedance 1s derived from
these time series, using relatively simple linear algebra. The
reader who 1s not familiar with linear algebra 1s referred to
the Discussion section below, where the main results are
summarized 1n words.

A Simple Linear Model.

To account for chance events, assume that the bivariate
time series {q,, p,} is a realization of the bivariate stochastic
process {Q, P,}. Deterministic variables are written in
lowercase and random variables (RVs) in uppercase. Further
assume that time 1s infinitely long (t=. .., -1, 0, 1, . . . ).
Referring now to FIG. 2, the excitation source mput X, 1s
filtered through linear time-invariant filters (2 and 3) with
impulse response sequences {h,_,;; and {h, ,}. This gives
flow and pressure as predicted by the linear model,

(2)

(1o o
Upt = Z hqx,.f-xr—.f and Pp: = Z hpx,.!-xr—i-
{=0 {=0

Suppose that these ‘true’ values are disturbed by two
independent sources of zero mean white noise with respec-
t1ive variances CFQ2 and o,°. These sources of noise are also
passed through linear time-invanant filters (1 and 4) to give
the ‘error’ terms Q, , and P, ,. The complete model 1s then
written as

{ O = o +gp: + Qe (3)
Pir=pup+pp: + Pe;

where the mean values |, and p, are constants. Since the
resulting Q, and P, are normally distributed, the supposed
bivariate process {Q,, P,} is completely stationary.

The Circularity Assumption.

While the described stationary process 1s infinitely long,
it 1s an aim of the invention to describe transient phenomena,
where stationary can only be assumed for a fimite sequence
of N events. This can be solved by assuming that time 1s
circular, 1n the sense that the last event precedes the first. The
resulting time series may then be represented by placing the
N events at regular intervals along a circle, like a clock. One
can endlessly pursue the circle 1n the same direction without
leaving 1t. The resulting infinite time series 1s periodic i N.
That 1s, for any integer 1,

Mg :xr+jN - (4)

Substituting u=t-1+7 N, the first convolution 1n Eq. 2 can
be rewritten as

N—-1 oo

Upt = Z Z hqx,r—u—l—jN-xu—jN-

4=0 j=—co
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Due to the supposed periodic character of x, (Eq. 4),
X, _~~X . The infinite sum 1n the above equation can be
defined as h ‘periodized to length N’, denoted by

GXI—1

- (3)
hgx?r—u = Z hqx,r—ﬂ+jN.

j==oo

As a result,

N-1 (6)
pt = Z hgx,r—u'xﬂ'
=0

Since h_, ,_,° 1s also periodic in N, the mdex t-u can be
augmented with N 1f t—u 1s negative (so that the index
always falls 1n the range from zero to N-1, which 1is
convenient). When the sequences are represented by column

vectors, Eq. 6 can also be written as (if N=4)

- . - 1,0 o o o 1. )
po | [Haro Has Hgz Moot [ xo (7)
o o o o
4p,1 qx,1 qx,0 Gx,3 g2 || X1
— o o o o
9p,2 hqx,Z hqx,l hqx,ﬂ h’qx,?; A2
o o o o
| qﬁ'j 1 i hqxﬁ hqx,Z hqx,l hqx,{] 1t A3

The NxN matrix in this equation 1s a circulant (a square
matrix whose rows are right-shifted versions of the previous
row, with wraparound at the edges). When the first row 1s
denoted by h_ “ where the superscript H stands for the

X

Hermitian transpose, the circulant may also be written as
circ{h,,”}. Let x={Xo, . . ., Xn_1}, C ,=circ{h_} and

={,00 - - - » Q1 - Then q,=C_ x. Similarly, p,=C,,X, so
that Eq. 3 becomes

ar

Q=g +4g,+ Q. (8)
P=up+p,+PF, "

Q:#Q-I_CQIX-I-QE
P=up+Crx+P,.

i

T'he Discrete Frequency Domain.
To denive the frequency-dependent impedance, the model
of Eq. 8 has to be transformed to the discrete frequency
domain. As a step-up to time-frequency analysis, this 1s
briefly summarized here. Transformation of a given time
series X=1X,, . . . , X, to the discrete frequency domain

partitions the series mto a set of harmonic oscillations with

discrete frequencies f =n/N, for n=0, . . . , N-1. Such an
oscillation 1s described by the N-vector
f={lo" 0", ... 0% ... 0" (9)

where w=exp(2ni/N) and i°=-1. Due to Euler’s theorem,
exp(2mint/N)=cos(2ant/N)+i sin(2nnt/N), (10)

so that the vector I actually describes a combined oscilla-
tion along the real and imaginary axis with frequency t . It
1s readily shown that

(11)

’.
N, n=n;

H —
i ={y
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As a result, the squared norm ||f |[’=f ““f equals N, while
two oscillations at different harmonic frequencies are
orthogonal.

Transtormation of x to the discrete frequency domain 1s
performed by the ‘orthonormal discrete Fourier transform’

(ODFT) matrix F, defined as

i fDH ] (12)
R P N
= — {0} = —
w N
Iv-r
where n,t=0, . . . , N-1. This transform yields the N-vector

F x, whose components are the inner products fﬂHx/\/ N.
From Eq. 11, 1t follows that the rows (and columns) of F are
orthonormal so that the matrix 1s unitary,

FF=F"F=J (13)

where I 1s the NxN 1dentity matrix. This permits a synthesis
of x from the N oscillations,

(14)

x=I=F'Fx=—[fo - fv-1]

1 N—-1
x= = hilh,
n=0

H
Pl

Accordingly, x 1s written as the weighted sum of N
harmonic oscillations with frequencies t, .

The vectors 1, are eigenvectors of circulant matrices, so
that we can write

ng]:‘z :anqxﬂ' (15)

The complex number H_, ,, 1s the transter function tfrom x
to q for frequency 1 ., defined as

f qx,,nEkquﬁz . (1 6)
When H

o~ 18 defined 1n similar manner, the impedance
for frequency 1, 1s

z =H

n-ttpxn

/H, . (17)

When the eigenvalues are put into the diagonal matrix
Ap=diagiH, 0. . . . . H, o} and the corresponding
eigenvectors as columns into the NxN matrix F”, Eq. 15
becomes

CFI=FIA_. (18)

Circulants are normal matrices (they commute with their
Hermitian transpose). Eq. 18 1s therefore 1n agreement with
the spectral theorem, which says that an NxN normal matrix
has N orthogonal eigenvectors (in this case, the N orthogo-
nal column vectors 1 ).

The Uncertainty Principle for Discrete Time and Fre-
quency.

The components of x={x_} are sharply localized in the
time domain, but uncertain in the frequency domain. Con-
versely, the components of the Founier transform F x are
sharply localized in the frequency domain, but uncertain in
the time domain. To obtain a signal with small uncertainty
in both domains, a measure of uncertainty has to be defined.

Assuming that time 1s circular, the approach of Forbes and
Alonso seems most appropriate (see reference 3). Referring
now to FIG. 3A, in the time domain, the squared compo-
nents 1x,|” are placed as point masses at regular intervals on
a circle with radius r, in the complex plane, centered at the
origin, with the size of each point mass i FIG. 3A corre-
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sponding to the weight of each event. Time 1s represented by
the arc length between two events. The circumierence of the
circle 1s the total period N (where N=12 1n this illustration),
so that the radius equals r=N/(2m). A given event at time t
is located at point r,m’ in the complex plane. Forbes and
Alonso (reference 3) proposed several measures ol uncer-

tainty. Here a slightly different measure 1s used, defined as
the weighted mean of the squared distances between each

event at time t and the event at a reference time t,,

N-1

N—1
2 2 2 2
at= Y Ine = r® Pl | Y
1=0

=0

(19)

This measure of uncertainty has the advantage that 1t can
casily be expressed as a ratio of quadratic forms. Without
loss of generality, 1t can be assumed that t,=0 (as shown 1n
FIG. 3A). Then the squared uncertainty A~ is

A= (Q-DP(Q-Dx/F, (20)

where the diagonal matrix Q=diag{1l, o', ..., " "'}. It is
possible to define

A= l4x|/ ] (21)

where A=Q-1. Physically, A” is the second moment of
inertia of the set of point masses about an axis (perpendicu-
lar to the plane of the circle) through the reference point R
(corresponding to time t;). As depicted mn FIG. 3B, this
moment of 1nertia 1s directly related to the center of gravity.
Geometrically, A, equals the distance from R to one of the
two points where the vertical line through the center of
gravity intersects with the circle. So, A, 1s fully determined
by the horizontal distance from the center of gravity to R. IT
the center of gravity coincides with R, then the weight of x
1s entirely concentrated at time t, and A, 1s zero. It the center
of gravity lies at the opposite point of the circle, then the
weight 1s enftirely concentrated at that point and A, 1s
maximal, equal to 2r,. Thus, in FIG. 3B, the vertical line
through the center of gravity B crosses the circle at point C.
The uncertainty A, equals the distance CR.

In the frequency domain, the components of F x are
associated with frequencies 1 =n/N. The same components
would be obtained for frequencies n/N+j, where 1 1s any
integer (see Egs. 9, 10). The components of F x are therefore
periodic 1 the frequency domain, with unit period. A
comparable measure of uncertainty can thus be defined 1n
the frequency domain, relative to a reference frequency 1.
The squared magnitudes of the components of F x are again
placed as point masses on a circle 1n the complex plane. The
radius now equals r=1/(27) so that the circumference equals
unty. If 1,=0, then

A=r(Q-DFx|.

The diagonal matrix £ 1s related to the ‘time shift
operator’ T=circ{0, . . ., 0, 1}. Premultiplication of x by T
circularly shifts the components of X one place downward.
It readily follows from Eq. 18 that F T~'=QF (the ‘shift

theorem’), so that

(22)

A=r QP -F)xibe]| =r (T =Dl x].

Since F is unitary, |[F(T'-Dx|H|(T~'-Dx||. Letting
B=T""-I,

A=r B/ ] (23)
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Now consider the matrix

The total uncertaimnty in time and frequency may be
expressed by the ratio

XA CHCx/lx|P =r 7% (A" A+ B B)x/AKI["=A+N"A7 . (24)

This ratio (a Rayleigh quotient) can take values in the
range from the minmimal to the maximal squared singular
value of C. This yields the corresponding uncertainty prin-
ciple for discrete time and frequency,

Opin” SN +N°AF<0,,,..°. (25)

Accordingly, it 1s impossible that A, and A, are both very
small, since the total uncertainty Af+N2Af2 should at least be
equal to o, ~. The total uncertainty is minimal if X is an
eigenvector of C”C that corresponds to A, ~. The eigen-
vectors of C”C can be regarded as discrete Mathieu func-
tions. An interesting property of C”C is that it commutes
with F, so that C”C and F share the same eigenvectors. The
eigenvalue of F that corresponds to v, .. equals unity, so that
Fv =v . As s depicted in FIG. 4A, this means that

A=NA 1t x equals v,,,. FIG. 4 shows the time series for
which the sum Af+NZAf2 1s mimimal. In FIG. 4A, the
eigenvector 1s derived for reference time t,=0 and frequency
1,=0 (upper graph). This 1s also an eigenvector of the Fourier
matrix F (with umit eigenvalue), so that the time series
remains unchanged after transformation to the discrete fre-
quency domain (lower graph). In these graphs, both of the
time and frequency axes are circularly shifted for visual
reasons. FIG. 4B corresponds to FIG. 4A but with a refer-
ence frequency 1,=Y In FIG. 4B, closed circles represent
real values, open circles represent imaginary values, and
crosses indicates the absolute values.

See the section entitled*Derivation of the uncertainty
principle” below for a more detailed analysis of the uncer-
tainty principle.

The Discrete Time-Frequency Domain.

The ODF'T partitions a time series of N events into a set
of oscillations with N different frequencies. A simple way to
perform a time-frequency analysis 1s to compute the ODFT
repeatedly for short-lasting sequences of M successive
events (with M<N). Accordingly, the series 1s partitioned
into M oscillations with {frequencies 1 =m/M (with
m=0, . . ., M-1), which amounts to a discrete ‘short-time
Fourier transform’. The resulting uncertainty in time and
frequency 1s minimal 1f each short-lasting oscillation 1is
‘windowed” with the components of v, . .

For a sequence of M events, such a windowed oscillation
1s described by the M-vector

v in(m):vamin' (26)

M

An example is shown in FIG. 4B. Note that v, " is in
fact a circularly shifted version of v_. 1n the frequency
domain. As 1s illustrated mm FIG. 4 and proven in the
“Derivation of the uncertainty principle” section below (see
Eq. B19), it has the same uncertainty 1n time and frequency
as the eigenvector v, . (f 1 1s taken as reference Ire-
quency). Let the components of v, . be denoted by
vmm!r(’”). An N-vector that describes a short-lasting oscilla-
tion 1s then obtained by inserting zeros in the middle of
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me(f”) (so that the umimodal structure of the vector remains
intact). This gives

km?DE{wmin,D(m)? L :wminﬁﬁ(m)!oﬂ - :0

.
ﬂl"’J'J'fslbzz'n.;.Ei'+l(m):ﬁ LI :wmz'nM—l(m)}A‘vman:

(27)

where K 1s the smallest integer less than or equal to M/2.
This oscillation 1s centered about time t=0 and frequency
t =m/M. In general, the oscillation 1n

hm?rEIfkm?O (28)

1s centered about time t and frequency 1.

The best-fitting linear relation between x and h,, , in the
least-squares sense follows from the orthogonal projection
of x onto the (complex) one-dimensional subspace spanned
by h,, ,. Taking into account that h,, , 1s defined as a unit
vector (see Eq. 27), this projection 1s

H, 2_ H,
km.}.rhm.}f XA‘hm?rH _hm?rhm,r X.

For a given frequency 1, , let the NxN matrix M be
defined as

. H
M, =circi{h,, o |-

(29)

(30)

This 1s a circulant that acts a band-pass filter with resonant
frequency 1. Premultiplication of x by M_ gives an N-vec-
tor that may be denoted by a tilde or ‘wave sign’,

% =M. x. (31)

T'he components of X are the inner products im!fshmfx.

T'he full time frequency transtorm (TFT), encompasses all
frequencies I form=0, ..., M-1. Let the MNxN matrix M
be defined as

(32)
1

M

M

M-y

Transformation to ‘the’ discrete time-frequency domain
(the time-frequency domain) 1s performed by premultipli-
cation of x by M (specific for a given M). This gives the
MN-vector X=M Xx. Back-transformation means multiplica-
tion again, by M”, giving M“X=M"M x. In the section
entitled “Derivation of the time-frequency transform”™
below, 1t 1s shown that the columns of M are orthonormal,
so that

MIM=T. (33)

Back-transformation thus recovers the original time
series, since MM x=I x=x. This makes a time-frequency
synthesis of X possible according to

| M-1N-I (34)

X = hm,rxm,r .

M

m=0 t=

The time series 1s thus written as the weighted sum of MN
short-lasting oscillations, each centered about time t and
frequency 1 (ci. Eq. 14). For a given M, these oscillations
give an optimal time-irequency resolution according to the
uncertainty principle of Eq. 25. As shown 1n the “Derivation
of the uncertainty principle” section below, the oscillations
can be approximated by a truncated Gaussian with M'=10-A
nonzero elements.

Input to the Excitation Source.

It 1s convenient to use a set of harmonic oscillations as
excitation source input X. To analyze the data, the scale M

I
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of the TFT can then be chosen so that the frequencies of
these oscillations coincide with the TF'T resonant frequen-
cies 1. First consider a single sinusoidal mput with fre-
quency 1, and amplitude a_. Due to Euler’s theorem (Eq.
10), a real-valued harmonic oscillation 1s the sum of a
complex-valued oscillation and i1ts complex conjugate. The
excitation source input can thus be written

X=Y2 oty )

where the asterisk denotes the complex conjugate. From
Eqgs. 9 and 10, 1t follows thatf *=f,, . The frequency { =n/N
can be matched with a TFT resonant frequency { =m/M 1f
N 1s an mteger multiple of M. If 1n 1s subsequently chosen

so that £ =f ,

(33)

x,=M,(2a, f. +2a, v . )=%a,f,.

The latter approximation 1s valid 1if M 1s large enough and
the corresponding A, small enough to suppress the oscilla-
tion at frequency ft,,, by the TFT filter with resonant
frequency £ =t . A 1ull representation of the excitation
source 1nput 1n the time-frequency domain 1s obtained if the
component at the ‘complementary frequency’ 1, b (here
equal to 1,, ) 1s also included by adding M, , to M_ 1n Eq.
36.

The model of Eq. 8 1s transformed to the time-frequency
domain by premultiplying both the equations by M. Con-
centrating on the frequencies of the interest (e.g., the fre-
quency of the forced oscillation described by Eqg. 35),
multiplying the upper part of Eq. 8 by M__ yields

(36)

M,,0=M, 1 ,+M,,C_x+M,,0, (37)
It 1s readily shown that M, u, 1s zero if m=0. Thus,
0,,=M,,C . 3+0,, (38)
Since circulants all commute, 1t {follows that
M, C x=C_M, x=C_X, . If n and m are chosen so that
f f then using Egs. 36 and 15,
(;j%Z%ﬂmQEHZ%mm@H%mZi g (39)
When H_, , for t =t  1s denoted by b, ,, (and the corre-
sponding H,_, by b, ), the model of Eq. 8 reduces to
(O =Znbom+ 0., (40)
i P = Xnbp o + Pe
The impedance for £ =1, 1s
(41)

ZmEbPJH/bQ,m

A set of other oscillations can be added to the excitation
source 1nput of Eq. 35, provided that A.of the used TFT 1s
small enough so that these oscillations are well separated 1n
the time-frequency domain.

Analysis of Variance in the Time-Frequency Domain.

The TFT permits an analysis of variance in the time-
frequency domain (see the section below entitled “Analysis
of variance 1n the time-frequency domain”). For instance,
the squared norm of the noise i flow (see Eq. 8) can be
partitioned 1nto

| M-l , (42)

— 2,10

m=0
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The random variable \\QemHZ/N may be called the ‘TFT
sample power spectrum’ of the noise Q_. Suppose that the
transter tunction of filter 1 from noise 1 to Q,, (FIG. 2) 1s
relatively flat 1n the passband of the TFT filter about 1. Then
Q.. is approximately distributed as if it were derived from
Whlte noise with zero mean and variance O, _, “1. As a result,
Q. mHZ/OQ: > follows an approximate chi-square distribu-
tion with equivalent degrees of freedom m. See section
“Analysis of variance 1n the time-frequency domain™ below
for a derivation of 1, where only those components of Qe,m
are 1included that are independent of the circularity assump-
tion (as well as the component at the complementary 1ire-
quency 1,, ).

Bivariate Least Squares in the Time-Frequency Domain.

It 1s now assumed that at every time t, a new temporarily
stationary process starts that 1s described by the model of
FIG. 2. The process encompasses N events and 1s assumed
to be circular (that 1s, periodic in N). In the time-frequency
domain, the model becomes (from Eq. 40)

r éf,?ﬂ — '%T,mbg,f,m + éf,f,?ﬂ (43)

)

Pr,m — Xr,mbP,r,m + PE,I,m

where the vectors are ‘short-lasting” N-vectors now, starting
at time t. Note that the constants b, ,, and b, have acquired
the index t as well, since they are assumed to be specific for
the time at which the process starts. The constants, as well
as the mputs to the model, may therefore be diflerent at
different times t (even 1 two processes overlap 1n time).
The best-fitting estimators of by, ,, and bp,, can be
derived from X, ,,, Qf _and P, by mmlmizing the squared
norm of the error vectors. This yields the least-squares
estimators B, , . and B, .. The estimated relations are

S . ,
Qf?m — xr,mBQ,r,m + Qgpf?m (44)
3 gl
\ Pr,m — ir,mBP,r,m + Pf,r,m
L) ‘ - j - —_
where the estimated “predicted” vector Q, , . XmB Ot

orthogonal to the estimated ‘error’ Q,,, (and, 81mllarly,
P, ., 1s orthogonal to P_, ). In FIG. §, the vectors are
depicted as arrows and all variables refer to time 1mndex t and
frequency 1index m (corresponding to frequency 1 _=m/M).
In particular, in FIG. S, the excitation source mput X, 1s a
fixed variable, while the flow Q . and pressure f’m are
random variables. The vectors Q and P are the

p.l.m
projections of Qm and P,

_onto the eemplex one-dimen-
sional subspace spanned by X, n, (the line 1). The impedance
estimator follows from P

P pﬂrngfﬂm. The error vectors

QE ~m and PE +m are perpendicular to X, ,,. Each vector 1s

represented by an arrow whose length equals the norm. The

angles between the vectors are drawn so that cos”¢ and

cos’0 equal the squared coherences between X, , and,
respectively, Qm and P,

The degree of linear relatlen between X, ,, and Qr _ comes

to expression 1n the ‘“TFT squared sample coherence’

A,

‘ H ér,m ‘2 (45)

KZ =
Q—Iprrm — 2 -~ 2
1Xemll 11 Qo
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The random variable X, HQf _/N may be called the ‘“TFT

sample cross spectrum’ frcnl X to Q. Geometrically, KQI -

equals cos®¢, where ¢ is the angle from X, to Qm in FIG.
5. Similarly, K, ..~ equals cos*0. The least-squares esti-

X 1.7

mators are derived in the standard way. This gives

. e HA . D
BQ:-UH “em Qr?m/ erﬁmH (46)

Accordingly, éQ,r,m 1s the ratio of the sample cross spec-
trum from x to Q to the sample power spectrum of x. When
B, . 1s derived 1n a similar way, the impedance 1s estimated

by

Z £ :E) P?r;n/ ‘E_;) (2. f (47)

The “true’ impedance z, ,, has areal partr, ,, (‘resistance’)
and 1maginary part X, . (‘reactance’). The corresponding
estimators are the real and 1maginary parts of Z

A4

Z L :ﬁ r,m+1.“jzv gl (4 8)

As 1s depicted 1n FIG. 6A, the 100(1-c)% confidence
region for by, , 1s delimited by a circle i the complex

plane, centered about B, , .. The confidence region 1s given
by

D0 em=Boim’S1B oA i (49)

O.tom ?

where AQJ:JP,,TZEF,DLQ(I—KQ;,E!Lﬂy_ﬂq2)/(1]—2)KQ;,Emﬂ2 and F, 1s the
upper 100(1-a)% point of the F-distribution (see the section
entitled “Derivation of confidence limit” below). The exci-
tation source 1nput X, 1s a dimensionless variable so B, ,
has units of tlow (since Q, , =X, ,.Bo, ., from FIG. 5). The
values that depend on the circulanty assumption are dis-
carded here (the eflective number of samples 1s N.~=N-M+
1). The relation will be rejected 1t the origin 1s within the
circle (then B _ 1s not significantly difterent from zero at
the 100-a% conﬁdence level). Hence, 1t follows from Eq. 49
that significance 1s obtained it A, <I. The confidence
region for B p.e.m 18 delimited by a comparable circle and the

relation between X, ,, and f’ﬁ:m 1s considered significant 1t
A, . <l.

Pt m
A conservative estimate of the confidence region for Z

1s dertved 1n the section entitled “Derivation of cenﬁdence

limits” below, under the assumption that Q, ,,, and P, , , are

uncorrelated. The region 1s described by

().tom

. 1+ AQ,I,mAP,I,m A : (50)

AQ,r,m + AP,I,m
Zr,m R Zr,m 3 ZI‘,H‘!
] - AD tm

1 - A%}rpm

|A

Referring to FIG. 6B, the limiting circle 1s not concentric
about the estimator % . The real and 1maginary parts of 7.
are represented by R, ,, and X! The vertical arrow 1nd1-
cates the upper confidence limit for the real part and the
horizontal arrow indicates the lower confidence limit for the
imaginary part of the impedance. The distribution of ‘“true’
Z,» tor a given realization of Z,, 1s apparently skew-
symmetric. In FIG. 6B, the skewness 1s determined by the
angle 3. The skewness 1s entirely due to the noise 1n flow, as

appears 1rom the relation between 3 and the angle ¢ 1 FIG.
S,

(31)

If the noise 1 tlow 1s zero, then ¢=0, K “mz 1 and
A0, so that p=0 and the conﬁdence region 1s synnnetric

~

about 7, ,

tan’P=4 ., =tan’¢p-F-2/(n-2)
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The section entitled “Derivation of confidence limits”
below gives a further analysis of what happens i 1t 1s
assumed that either the noise 1n flow or the noise in pressure
1s zero. The respective estimators would then be equal to

2y D=0, POl and Z,, =P,

Pt i'll.l

P Qf,m

This amounts to linear regression from flow to pressure
(or conversely) in the time-frequency domain. The variables
HQfDmHZ/N, Hf’fijZ/N and ijmgf’fjm/N are the respective
sample power and cross spectra. The main difference
between the estimators of Eq. 52 and Zm lies 1n the

magnitude of the estimated impedance. The magnitudes are
related through

(52)

Z /K oo =N i =\ 2y | K oy (53)

It follows that, if noise 1s present in both flow and
pressure, the magnitude of impedance 1s underestimated 1f
Z, .9 is used instead of Z, , (and overestimated if Z, ,**” is
used)

Settings.

In use of the apparatus 2, tlow and pressure were recorded
at a sample rate of 800 Hz. A TF'T was performed with A =50
(which amounts to 50/800=0.0625 s). This would require a
width of the TFT filter of M=4xA *=31,416. However, the
coellicients of the TF'T filter were approximated by a Gauss-
1an truncated at M'=10-A =300 (see the “Derivation of the
uncertainty principle” section below). The associated uncer-
tainty 1n frequency 1s A~1/(4mA,)=0.0016 (or 0.0016x
800=1.27 Hz). The TFT was denived for 1 _=0.01, 0.013,
0.02, 0.023, 0.03, corresponding to the imposed FOT {fre-
quencies of 8, 12, 16, 20, 24 Hz. Sample power and cross
spectra were computed tfor N =500 (that 1s, over a time
interval of 500/800=0.625 s). Only data were used that are
independent of the circularity assumption. This leads to an
approximate chi-square distribution of the sample spectra
with n=6.72. Confidence limits for impedance were derived
for the 90% confidence level (F_=4.05). Time-frequency
spectra were aligned 1n time with the original time series.

EXAMPLES

FIG. 7 shows the real and imaginary parts of the estimated
impedance 7, ,, as a tunction of time and frequency for a
normal subject. The blue lines represent the real part Rr,m
and the red lines represent the imaginary part X, .. The grey
lines represent the confidence limits as depicted 1n FIG. 6B.
The right hand axis of the 8 Hz frequency band indicates the
scale of the components of impedance. At 8 Hz, the real part
lim 1s positive and fluctuates in the course of the respiratory
cycle, while the imaginary part X, 1s almost equal to zero
and remains relatively constant. The confidence limits give
an 1mmediate impression of the statistical significance of the
changes 1n f{m and im in the course of time. At higher
tfrequencies, R, decreases while X, gradually becomes
more positive. The signals were severely disturbed when the
subject swallowed on request, which was accompanied by a
large increase in the confidence region. The associated
coherence spectra are shown in section “Derivation of
confidence limits” below.

FIG. 8 shows the impedance tor a patient with COPD with
large negative swings 1 X, during expiration (which are
obviously significantly different from the ispiratory values
in view ol the confidence limits). Such negative swings have
previously been described 1n COPD and are related to flow
limitation due to submaximal collapse of the airways during
expiration. The confidence region 1s maximal at the turning
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points from inspiration to expiration and vice versa, prob-
ably due to the high-frequency content of the patient’s own
breathing, which disturbs the forced oscillations. See section
“Derivation of confidence limits” below for the coherence
spectra.

Discussion

FIG. 9 1s a flow chart that summarizes the steps in the
method according to the ivention. In this exemplary
embodiment, pressure waves are generated using a loud-
speaker connected to a mouthpiece as a patient interface
device 4 that 1s 1n communication with an airway of a
subject (step 101). The oscillations 1n flow and pressure of
the gas passing through the mouthpiece 4 are measured to
give a respective time series of measurements (step 103). In
the steady state, the respiratory impedance can be imferred
from forced pressure oscillations in the mouthpiece 4 of a
quietly breathing subject. Since the mechanical properties of
the respiratory system oiten change from inspiration to
expiration, the method estimates the impedance under cir-
cumstances ol temporary ‘stability’. The main problem 1is
that impedance 1s a frequency-dependent quantity and that a
high time resolution inevitably leads to a low frequency
resolution, thereby distorting the estimation. Since the data
consists of discrete time series (sequential measurements of
flow and pressure in the mouthpiece 4), thus asks for an
optimal time-ifrequency analysis of short time series.

As described 1n the “Methods™ section above, the present
invention 1s based on the concept that a short time series can
be stationary if time 1s assumed to be circular (see below).
As described, a new version of the uncertainty principle has
been derived for such time series, which poses a lower limit
to the total uncertainty 1n the time and frequency domain. In
step 105, this principle 1s used to partition the variance of
cach time series mnto components that are associated with a
specific time and frequency (through transformation to the
‘discrete time-frequency domain” or ‘lime-frequency
domain’). Least squares analysis in the time-irequency
domain then gives an unbiased estimator of impedance with
optimal time-frequency resolution (step 107). Finally, con-
fidence limits for impedance have been constructed as a
function of time and frequency. The main steps are summa-
rized and discussed below.

The Linear Model.

The estimation of respiratory impedance 1s based on a
simple linear model (Eq. 3, FIG. 2). Oscillations in the
mouthpiece 4 of the apparatus 2 are induced by a loud-
speaker 6. The resulting changes in flow and pressure
depend on the mechanical properties of the patient’s respi-
ratory system (the acoustics of that system). In the model,
this 1s expressed by two linear time-invariant filters (2 and
3 in FIG. 2) that modity the loudspeaker mnput. The resulting
fluctuations 1 tlow and pressure are disturbed by two
independent sources of noise 1n both flow and pressure. The
respiratory impedance 1s determined by the two linear filters
(2 and 3).

Possible sources of noise are: 1) components of the
patient’s breathing in the frequency range of the forced
oscillations, which 1s probably the most important problem
(see reference 2), 2) swallowing, coughing or other move-
ments by the patient, 3) cardiogenic oscillations, 1n particu-
lar when the airway resistance 1s low, 4) time-dependent
variations 1n respiratory impedance itsellf and 5) random
measurement errors.

A linear model has been used previously to explain the
frequency-dependent relation between flow and pressure
during similar experiments (see reference 2), although there
have been indications that nonlinear interactions in the

-
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respiratory system are not negligible. A linear description of
the relation between flow and pressure 1n the FOT device 2
1s however supported by the fact that the pressure diflerences
are small compared to the mean absolute pressure. Using an
impedance to describe the relation 1s a simplification of the
interaction of standing waves that can be expected under
these circumstances. The main restriction, however, seems
to lie 1n the time during which the respiratory system can be
considered as stable.

-

T'he Circularity Assumption.
To account for chance events, it has been assumed that
flow and pressure are random variables (RVs) with a given
probability distribution. A short sequence of N paired mea-
surements of flow and pressure 1s thus considered as a
sample from a finite bivariate stochastic process (a set of N
chronologically ordered paired RVs). The frequency-depen-
dent relation between flow and pressure 1n such a process
can only be described by a stable impedance 11 the bivariate
stochastic process 1s assumed to be (second-order) station-
ary. This means that the expected values of flow and pressure
are constant, as well as the covariances between simultane-
ous and successive values. The covariances between suc-
cessive values cannot be constant for a fimite sequence,
however, due to begin- and end-effects (unless these cova-
riances are equal to zero).

However, this problem i1s solved by assuming that time 1s
circular, 1n the sense that the last event precedes the first. In
this way, the covariances between successive values may be
constant, while the sequence still consists of a finite number
of RVs. This 1s a direct consequence of the discrete and finite
nature of the sequence. Think of a clock, at which 1t 1s only
possible to look at the whole hours (a chronological
sequence of N=12 events). If you look at one o’clock (time
t,) and at two o’clock (time t,), 1t 1s possible that one hour
has elapsed from t, to t,, but it 1s also possible that 13 hours
have passed or that the event at t, took place 11 hours before
t,. Without further knowledge, 1t 1s not possible to discern
between a time difference of one hour and one hour plus or
minus an integer multiple of 12. This indeterminacy 1s
directly related to ‘aliasing’ (which happens 1if ones tries to
reconstruct a continuous signal from such a time series).
Still, accidental changes in the last part of the measured
sequence may cause fluctuations i both variables that do
not continue 1n the first part. This would cause a bias in the
estimation ol impedance, which 1s however ruled out 1n the
applied time-frequency analysis (see below).

The Uncertainty Principle.

‘Uncertainty 1 time’ 1s a property of a time series that
expresses how much the components of the series are spread
in time. For a discrete, finite and circular time series, this
gives a figure as shown 1n FIG. 3A. The components of the
time series are represented by point masses placed at regular
intervals around the time circle (each mass equals the
squared absolute value of a component). The uncertainty A,
1s defined with respect to a reference point (here the point
where =0, Eq. 19) and 1s closely related to the center of
gravity (Eq. B3). If the time series has only one nonzero
component (at time t=0), then the center of gravity 1s located
at t=0 and A, 1s zero. If all components have equal weight,
then the center of gravity 1s located at the center and A, 1s
high (associated with maximal spread in the time domain).

Similarly, the “uncertainty in frequency” A.expresses the
spread 1n the frequency domain (Eq. 22). Through the
discrete Fourier transform, every time series with N com-
ponents can be written as the sum of N harmonic oscillations
with a given amplitude and frequency (representation in the
discrete frequency domain). For a discrete time series, these
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frequencies are also circular. The spread in the frequency
domain can be visualized by placing the squared amplitudes
as N point masses around a circle comparable to that in FIG.
3 A (each point corresponding to a specific frequency).

For continuous time and frequency, 1t has been shown that
there 1s a trade-ofl between uncertainty in time and Ire-
quency, expressed by the uncertainty relation

AAz1/(4m) (54)

This holds for continuous and infinite time series (under
certain conditions). It A, 1s small, A has to be large since the
product should at least be equal to 1/(4m), and vice versa.
This 1nequality 1s directly related to Heisenberg’s famous
uncertainty principle for position and momentum of a par-
ticle. For discrete time series, however, the lower limit of the
product A A 1s zero (see also “Derivation of the uncertainty
principle” below). Still, there 1s a restriction on joint values

of A, and A, In the “Methods” section above (Eq. 25), 1t is
shown that for discrete, finite and circular time series,

AZ+NAF20,,,°

(35)
where 0,,,,, 1s a function of N. Thus, A, and Acannot be both
very small. The sum A, *+N*A ? is minimal for a time series
whose discrete Fourier transform i1s exactly equal to the
original time series (FIG. 4A). As N gets large, this time
series with minimal joint uncertainty in time and frequency
approaches a Gaussian function of time. This time series 1s
analogous to the mimimal uncertainty state of two attracting
particles 1n quantum mechanics (the so-called ‘quantum
harmonic oscillator”). Forbes et al. (see reference 4) dertved
a similar time series from the wave equation for such an
oscillator. In the present case, however, this minimal uncer-
tainty state 1s simply derived from the definitions of A, and
A, for discrete and finite time series. In “Derivation of the
uncertainty principle” below, 1t 1s shown how the uncertainty
principle of Eq. 55 relates to Gabor’s uncertainty principle
for large N (see FIG. 14).

The Discrete Time-Frequency Domain.

The presented time-frequency transform (TF'T) partitions
a discrete and finite time series into a set of short-lasting
oscillations of M components, with M<N (a transformation
to the time-frequency domain). Each oscillation 1s centered
about a specific time and frequency, with minimal uncer-
tainty 1n both domains according to the principle of Eq. 55.
The TFT amounts to a windowed ‘short-term Fourier trans-
form’ or ‘runmng Founer transform’. The short-lasting
oscillations maximally overlap each other 1n time so that the
outcome 1s 1ndependent of the time at which the first
oscillation starts. Only the oscillations that start before the
beginning and end after the end of the time series are
dependent on the circularnty assumption (these are excluded
in the analysis to avoid bias). In the “Derivation of the
time-frequency transform™ section below, 1t 1s shown that
the transform 1s ‘orthonormal” (Eq. 33), which implies that
all information 1n the time series 1s preserved after trans-
formation to the discrete time-frequency domain. Nothing 1s
gained, nothing 1s lost. An inverse-transformation recovers
the original time series.

To be precise, it 1s not possible to refer to ‘the” discrete
time-frequency domain, but only about the time-frequency
domain for a chosen value of M. This integer determines the
duration of each short-term oscillation, but i1t also equals the
number of different frequencies about which these oscilla-
tions are centered (the TEFT resonant frequencies). As shown
in “Derivation of the uncertainty principle” below, the
optimal A, and A, according to the uncertainty principle of

Eqg. 55 depends on M (substitute N by M 1n Eq. B8, see also
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FIG. 11). Not surprisingly, the larger M, the larger the
corresponding optimal A, and the smaller the corresponding
A, In the present analysis, M 1s chosen so that A, 1s small
enough to be able to discern the different oscillations
induced by the loudspeaker.

Input to the Loudspeaker.

In an exemplary embodiment, a set of five harmonic
oscillations we used as an 1nput to the loudspeaker 6 (at
frequencies of 8, 12, 16, 20 and 24 Hz respectively). For the
analysis, the value of M (actually an effective value, see Eq.
B6) was chosen so that the uncertainties were, expressed 1n

time units, A=0.0625 s and A~=1.27 Hz. The TFT coetii-

cients were only computed for these five frequencies, which
amounts to band-pass filtering with five resonant frequen-
cies. One prior art approach uses a single frequency for the
loudspeaker mput. This poses less requirements to the
time-irequency analysis (they used a band-pass filter with
rectangular window, with a larger A for a given A, than in the
present invention). For a single frequency, the frequency
resolution 1s less critical, although i1t may still be usetul to
filter out the higher harmonics of the patient’s breathing. On
the other hand, the frequency dependence of impedance can
provide additional information on respiratory mechanics.
Alternatively, broad-band noise can be applied, which has
the disadvantage that the power of the mput signal 1s
gradually distributed over all frequencies, with relatively
less power at the studied frequencies (a lower signal-to-
noise ratio at the same total power of the loudspeaker). In yet
another approach, a ventilator wavelform was applied that
was built up of nonharmonic sinusoids to ventilated patients
to prevent interaction between oscillations at harmonic
frequencies. Such an approach 1s however not applicable 1n
freely breathing subjects. Some interference of the respira-
tory system at harmonic frequencies may indeed occur in the
present invention, although this has not been observed in the
frequency response of the system after broad-band stimula-
tion.

Analysis of Variance in the Time Frequency Domain.

The orthonormal property of the TFT makes 1t possible to
partition the variance of a stochastic process into time-
frequency dependent components, which gives the time-
frequency power spectrum (see “Analysis of variance in the
time-frequency domain” below). The TFT sample power
expresses the contribution of a short-lasting oscillation about
a given time and frequency to the total sample variance.
Analysis of the TFT power spectrum thus amounts to an
analysis of variance in the time-frequency domain (Eq. 42).
In the model (Eq. 43), 1t 1s assumed that there are indepen-
dent sources of noise in flow and pressure, together forming
a bivaniate circularly stationary stochastic process. When the
values that depend on the circularity assumption are dis-
carded, a number of N.~500 successive values 1n the time-
frequency domain are considered as a sample from this
process (an episode of 0.625 s at a sample rate of 800 Hz).
It was assumed that at every moment (800 times per second)
a new stochastic process of this type starts with a vanance
that 1s not necessarily equal to the previous one. Thus, the
measurements were subdivided into maximally overlapping
episodes of 500 values, each of which was considered as a
sample from a different stationary stochastic process. The
sources of noise were not assumed to be ‘white’, but 1t was
assumed that the power was constant 1n each frequency band
of the TFT filter. The mean power during each episode of
500 values then follows an approximate chi-square distri-
bution for which the equivalent degrees of freedom were
derived.
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Bivariate Least Squares in the Time-Frequency Domain.

For each episode of N =500 successive values, the coet-
ficients of the linear relation between loudspeaker input and
flow (b, ,,) and the relation between input and pressure
(bp, ) Were estimated by simple linear regression in the
time-frequency domain (Eq. 44, FIG. 5). This results in
unbiased estimators associated Wlth time t and frequency t
(respectively, ngm and B Prms S€€ Eq. 46). Each estimator
1s based on time-averaged power and cross spectra over N
values in the time-frequency domain. Subsequently, the
impedance was estimated by the ratio Z,, =B, /B,

The choice of N depends on the time during which the
system can be considered as stationary. For respiration, an
episode of ~0.5 s seems plausible, assuming that the 1mped-
ance 1s approximately stable 1n the midst of each 1nspiration
and expiration. In the shown examples, this worked out well
(FIGS. 7 and 8). In most prior art techniques, however,
spectra are averaged over a longer episode, usually of more
than 10 s. Some averaged spectral values derived from
non-overlapping segments of ~0.65 s over a total episode of
16 s. The use of non-overlapping segments, however, gives
considerably less degrees of freedom for an episode of the
same length as compared to the maximally overlapping
segments used here (i.e., the segments of M values used 1n
the TFT). The major problem 1s that the use of an episode of
16 s averages out possible physiological differences between
ispiration and expiration, which are usually more pro-
nounced 1n diseases such as COPD. In that case, a low
coherence between flow and pressure over 16 s 1s not only
a reflection of noise, but also of within-breath variability of
impedance (which 1s part of the disease). The duration of the
supposed stationary should not be chosen too short, either. In
the example of FIG. 8, the confidence intervals for are
relatively wide at the turning points from inspiration to
expiration and vice versa. This may be due to high-fre-
quency components of the patient’s own breathing. These
changes are apparently shorter than 0.5 s, so that they appear
as noise 1n the estimation. The duration of the supposed
stationary should therefore be long enough to ‘interpret’
these changes as noise.

Since the impedance estimator Z . 18 derived as the ratio
of two normally distributed RVs (B pem and BQJ ), 1t
tollows a Cauchy distribution which has no expected value.
So, strictly speaking, 7. has no bias in the sense of a
dlf erence between expected and true value. Still, since
B P and BQ: are unbiased normally distributed RV, Z ‘o
1S by approximation normally distributed with expeetatien

e Op sl Do 4 Daroczy and Hantos (reference 2) fol-
lowed a similar approach, deriving the impedance estimator
as the ratio of the regression coeflicients from the loud-
speaker 1nput to respectively flow and pressure. Based on a
simple model of the mechanical properties of patient and
apparatus, they argued that a systematic error i1s introduced
if 1t 1s assumed that noise only occurs i either flow or
pressure. Experimental evidence for such bias has been
tound. Others, however, assumed that the loudspeaker gen-
crates a pressure wave and the main noise, the high-ire-
quency component of the patient’s own breathjng, 1S a pure
flow source (while the noise in pressure 1s zero). If the TFT
would have been used, the estimator would be Z, @) in Eq.
52. On the other hand, other documents used an estlmater
analogous to Zfﬂm@) in Eq. 52. Since Zrﬂm(‘p ) and Zfﬂm@) are
least-squares estimators under the assumption that the noise
in either pressure or flow 1s zero, this leads to bias 11 this 1s
not in agreement with reality, which was already pointed out
by several authors (see reference 2). It has been argued that
this type of error 1s minimal 11 the coherence between flow
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and pressure 1s high and recommended to discard the
estimates for which this 1s not the case. This 1s 1 line with
Eq. 53, from which it follows that Z,,,” and Z,,,9 both
approach Zr:m (and thus the true z, ) 1f the coherence tends
to unity. The discussion surrounding Eqgs. 50 and 51 also
shows that the noise i flow also afl

ects the confidence
region for impedance (1n particular the skewness parameter
tan 3, see FIG. 6B). In one earlier document, band-pass
filtered pressure was divided by tlow to obtain impedance as
a Tunction of time (see above). The resulting impedance 1s
numerically equal to a ‘total least squares’ estimate with
equivalent contributions of the sample variances 1n tflow and
pressure. It can be expected that these values are often in the
same range as those obtained with bivariate least squares (1t
the coherence from input to tlow equals the coherence from
input to pressure). This ‘estimator’ 1s however not derived
from averaged values which makes 1t highly susceptible to
random error.

Thus far, confidence limits on the estimated impedance
have only been derived for relatively time long intervals.
The time-frequency dependent confidence limits in embodi-
ments of the present invention provide a continuous 1mpres-
sion of the validity of the hypothesis that the short-lasting,
sequences are samples from a stationary stochastic process.
They make it possible to test the significance of changes 1n
impedance in the course of time and provide a basis to
automatically reject unreliable estimates (like during swal-
lowing in FIG. 7), which 1s of practical interest in real-time

monitoring.

FIG. 10 1s a flow chart illustrating the method performed
by the apparatus 2 according to the invention (and particu-
larly the processing steps performed by the computer 16) 1n
more detail. As 1n FIG. 9, i step 121, pressure waves are
generated using a loudspeaker 6 connected to a mouthpiece
4 that 1s being used by a subject, and the oscillations 1n tlow
and pressure of the air passing through the mouthpiece 4 are
measured and digitized to give a respective time series of
measurements (step 123). Thus flow and pressure are given
as a function of discrete time t, q, and p..

Then, 1 step 125, the time series are each transformed
into the discrete time-frequency domain to give flow q, ,, and
pressure p, ., as a function of discrete time t and different
frequencies I, =m/M, where 1n 1s the frequency index and M
1s the effective width of the time-frequency filter. The
frequencies I, are chosen so that they match the frequencies
of the imposed FOT frequencies.

Step 125 comprises evaluating:

Ky | (56)

for the flow time series q, where i°=—1 and the weighting
factor w;, 1s approximated by a Gaussian function of time,
w—=e A" and A, 1s the chosen uncertainty in time. The filter
1s truncated at K,=5-A.. While the weighting factor w, 1s
described here as bemg approximated by a Gaussian func-
tion, 1t 1s to be understood that other windows or weighting
factors are contemplated by the present invention, such as a
triangle window, a piece-wise linear approximation, or a
polynomial function.
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The pressure p,,, as a function of time and frequency 1s
derived analogously from

K1 | (5 63‘)

Then, 1n step 127, the power and cross spectra are dertved
as a function of time and frequency. The power of the tlow
1s given by:

(57)

where N. 1s the number of samples 1n the time-frequency
domain, K,=V2(N.-1) 1f N 1s odd and [*| stands for the
absolute value.

The power of the pressure, represented by P, ,  1s derived
analogously from
1 Kz . (573.)
Pp,r,m — N_S 2 |ﬁr+£m|
I=—K>

The cross spectrum from the loudspeaker input X, | to the
flow q,,, in the time-frequency domain 1s given by:

(58)

where the asterisk denotes the complex conjugate.
The cross spectrum from loudspeaker input to pressure,

C 1s derived from X, ,, and P, ,, in a similar way:

xXp LI

(58a)

In step 129, the power and cross spectra are used to
determine the transfer functions from the loudspeaker 1input
to flow and pressure respectively.

In particular, the transfer function from loudspeaker input
to flow 1s given by the ratio of the cross spectra to the power:

(59)

and the transier function from loudspeaker input to pressure,
B 1s dertved analogously:

X I

(59a)

Thus, 1n step 131, the impedance of the respiratory system
can be determined from the ratio of the transter functions:
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Bt m 60
LrSim = i , (64)

xq,t,m

with real component Rrs, and imaginary component
Xrs, .

Furthermore, confidence limits on the respiratory imped-
ance can be derived (step 133) as follows.

The equivalent number of degrees of freedom 1 of the
power and cross spectra 1s given by:

 @rP' Py’ (61)

- r{(PHP?)

d]

where P 1s an NxN matrix, H stands for the Hermitian
transpose and tr{e} for the trace of the matrix. The matrix P

1s defined as

P=S(M,+M,, )/N. (62)

where S 1s a diagonal matrix S that has N ones on the main
diagonal (and the rest zeros), 1.e.

oY,

The (shifted) time-frequency transform matrix M_ 1s a
circulant whose entries on the first row are w,.e™™ "™ for
=-K,;, ..., K; and K;=¥A(N-1) where N 1s odd. F 1s
labeled as the upper 100(1-a.) % point of the F-distribution
on 2,n-2 degrees of freedom.

The squared coherence between X, ,, and q, ,, 1s given by:

S=diag{0, ... ,0,1,...,1,0, ... (63)

Kz _ | Cxq, 1,1 |2 (64)
L P:«:,r,m ] Pq,r,m ,
anq the squared coherence between X, ,, and p, ,,,, prﬂmz, 1S
derived analogously from
Kz _ | Cxp, i, |2 (643)
PR Px,r,m ] Pp,r,m
The flow-related vanable Aq:rﬂmz 1s defined as
_ K 65
e ) o
if, 1M ;'? _ 2 Kgq’r’m "

and the analogous pressure-related variable, denoted Apﬂfﬂmzj
1s derived 1n a similar way from

(65a)

2 I Kf:p,r,m
B Fa( ] K2
xp,t,m

Therefore, the 100(1-c.) % confidence limits for the real

and 1maginary parts of the respiratory impedance are given
by, respectively,

Rrs'cyxc, and Xrs ¢ xc-,

with ¢,=1+4,, , ,,°c3,c5=12r5, ,1c3, and
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Aqrm + A p.hm
1 - AZ

G.t,m

C3 =

The estimates of respiratory impedance for a given time
and frequency are rejected as not significant if either A_,  za
first threshold, or A, _=a second threshold. In an exemplary

DL

embodiment, the first threshold and the second threshold are
set to 1 (one), so that the estimates of respiratory impedance

for a given time and frequency are rejected as not significant
if etther A . =1 orA_ , =1.

g L7 prm

To deal with begin- and end-effects, the algorithm con-
tains several circular data bullers.
The Measurement Apparatus

Measurements.

The airflow can be measured with a pneumotach head 8
and built-in pressure transducer 10 (for example a Jacger
Masterscreen pneumotach type BE/IEC 601-1, Hoechberg,
Germany). The pressure at the mouthpiece 4 can be mea-
sured with reference to ambient air with a differential
pressure transducer 12 (for example a Hans Rudolph Pneu-
motach amplifier 1 series 1110, Shawnee, Kans.). The pres-
sure oscillations can be generated 1n the FOT device 2 by a
loudspeaker 6 (for example a Jaeger Masterscreen 108,
Hoechberg, Germany) that is controlled by an analog output
signal from a personal computer 16 (for example a Hewlett
Packard Compac dc 7600, Palo Alto, Calif.) through an
analog-digital conversion card 14 (for example a National
Instruments PCI-6221, Dallas, Tex.), which 1s amplified by
an amplifier 18 (for example a Harman Kardon HK 970
amplifier, Washington D.C.)). Subjects can breathe in and
out through the mesh-wired resistance 9 connected to the
pneumotach head 8. Analog 1nput signals can be converted
to digital sequences through the same analog-digital con-
version card 14 at a sample rate of 800 Hz and stored 1n the
personal computer 16. The generation of the output signal
and the analysis of the data can be performed by a computer
or processor 16 executing appropriate computer software.

Measurements can be made using the apparatus 2 during
a period covering a number of breathing cycles, for example
90 seconds of quiet breathing.

Denvation of the Uncertainty Principle

Geometrical Interpretation of Uncertainty in Time and
Frequency.

According to the definition of Eq. 20, the uncertainty A,
1s directly related to the ‘center of gravity’ of the time series
x={x_}. The events in the time series are represented as point
masses with value Ix,I°, placed at regular intervals around
the perimeter of a circle with radius r, in the complex plane,
centered about the origin. Each event occurs at a point r,w’
in the complex plane, with r =N/(2m) and w=exp(2m1/N). The
weighted mean w, can be defined as

(B1)

The center of gravity is located at r,w,. In matrix formu-
lation,

o, =xQx/x[%, (B2)

where Q=diag{1, o, . .., "~ '}. Using the fact that Q is a
unitary matrix, the squared uncertainty A* can then be
reduced to
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A2 = 25 - D" Q- Dx/|Ix| (B3)

=r2xP QP Q + 1 - Q7 — Q)x/ ||

= rix" |21 -2 —(QH+Q)J4i?/||3‘5||2

= 2rr (1 — Re{w;}).

This 1s 1n line with the ‘parallel axes theorem’ for the
second moment of 1mertia about an axis (perpendicular to the
plane of the circle) through the reference point R 1n FIG. 12.
FIG. 12 1illustrates the relation between uncertainty 1n time
A, and the centers of gravity of the eigenvectors of C”C for
N=16. The eigenvectors are mapped along the time circle in
the complex plane with radius r,, centered about the origin.
The centers of gravity of each eigenvector are depicted by
black dots. The corresponding singular value of C 1s mini-
mal for the center of gravity at the right (near to the reference
point R) and gradually increases to the left of the Figure. The
uncertainty A, for each eigenvector 1s the oblique distance
from R to one of the intersection points of the vertical line
through the center of gravity and the circle.

In the representation of FIG. 13, it follows from Eq. 11
that A *=2r-AR, where AR is the distance from A to R in
FIG. 12. Using the Pythagorean theorem, 1t follows that A =
CR, since

CRP=AC*+AR*=r —(r~ARY+AR*>=2r, AR

In the frequency domain, the uncertainty
metrically interpreted in a similar manner.

Singular Values of the Matrix C.
The uncertainty principle of Eq. 25 is determined by o _ . >
and o, _~, the squared minimal and maximal singular values

of C. The singular values o can be dernived from

A, can be geo-

det(CHC-0°=0 (B4)

where det(*) stands for the determinant of the matrix. For
N=2, it readily follows that o . >=2(2—V2)/x* and o, =2
(2+V2)/7?. For higher N, various strategies have been devel-
oped to derive the singular values of C (the eigenvalues of
C”C). FIG. 11 shows o, and o, _as a function of N. It
turns out that for larger N (say, N>13), o, . approaches
VN/2x and o, approaches NV2/x. In terms of the radius of
the time circle, this means that o ~yr, and o, ~2V72r,
Let v be a unit eigenvector of C”C that corresponds to
singular value o. The normal equations (C*C-0°I)v=0 can

be rewritten as

2lQ-nDHQ-n+a@ ="t - nly-o?v = (B5)

QT+ -0 —Q+ TT 41 -T-T 1y -

oty =[rRI-QF — ) - lv-r}(T-21+T 'w=0.

The first term depends on the departure of the components
of v from the reference point R along the real axis (¢t Eq.
B3). The second term can be seen as the second derivative
of the components of v (for discrete and circular time).
Equation B5 1s comparable to the Schrodinger equation for
a quantum harmonic oscillator. The solutions can be
regarded as discrete orthogonal Mathieu functions. The
eigenvector v, . that corresponds to o, . 15 a unimodal

LFE

FrIIFi
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function of time (as 1n FIG. 4A). For large N, v
approximated by a vector v__ '

FriEFE °

are a (Gaussian function of time,

can be

1
FREFL I

FrIIFE

whose components v

Viin,d =Vmin,0 €XP[=(112A,)']

min. t

where N has to be subtracted from t i1t t=12N. Since the
components v, .. | are close to zero if t>5-A,, the Gaussian
can be truncated by using only the 10-A, largest values about
the maximal value and setting the rest to zero. Calling the
resulting approximated eigenvector v', and the difference
vector d=v-v', the norm ||d|| can be taken as a measure for the
error made by the approximation. Using appropriate math-
ematical software, 1t follows that the relative error ||d||/||v|| is
less than 0.005 1f N>75.

Since C”C commutes with F, these matrices share the
same eigenvectors. Since F*=I, the eigenvalues of F are 1,
-1, 1 and -1. As a result, for every umt eigenvector v, the
uncertainty in time 1s directly related to the uncertainty in

frequency,

(B6)

A= (@I =N/25|(Q-DFV| =NA, (B7)

This means that for every eigenvector v, the total uncer-
tainty 1s evenly distributed over time and frequency,

P =ACHCY=A 2+ NP A2=2A2=2N?A (B8)

So, for every eigenvector v, AfNAf:O/\/f. Note that the
(Gaussian approximation of v, according to Eq. B6 can be
rewritten as v, =V, o'exp[-Y2(1/ o,...)°]. The total uncer-
tainty o, .~ is therefore equal to the variance of this Gauss-
ian function. Equation B8 also implies that, for N>15, the
values of A, that correspond to minimal and maximal total
uncertainty are, respectively, Argmmzomm/\/ 2=4/r/2 and
Ar,mﬁomx/\/ 2=~2r.. The latter is intuitively reasonable since
21, 1s the largest possible A, within the time circle (see FIG.
13). FIG. 13 illustrates the relation between uncertainty 1n
time A, and uncertainty in frequency A, for N=16. The
accessible region for all possible N-vectors x 1s bounded by
the two circles with radius o, . and o, (the mimimal and
maximal singular value of C). In FIG. 13, r,, 1s the radius of
the time circle, the black dots belong to the eigenvectors of
C”C,v,. and v, __ are eigenvectors corresponding to o, .
and o_ e, and e, are canonical vectors corresponding to
t=0 and t=8, 1, and 1, are harmonic oscillations with fre-
quencies I =0 and t =8/16=Y5.

As described above, FIG. 12 shows the centers of gravity
for all eigenvectors v in the time circle for N=16. Since C7C
1s a normal matrix, 1t has N orthogonal eigenvectors accord-
ing to the spectral theorem. As appears from Eq. B3, the
corresponding A, depends on the horizontal distance from R
to the center of gravity in the complex plane. It can be read
from FIG. 12 as the length of the chord from R to the
intersection of the circle with the vertical line through the
center of gravity. The center of gravity closest to R corre-
sponds to o, . . Centers of gravity that lie further away
correspond to increasing values of o(and A~=0/V2). For
relatively large N, the distance between the center of gravity

of v_. and R approaches Y4 which follows from Eq. B3 and
the finding that A, ,,, approaches Vr/2. There is a multiplic-

ity of eigenvalues of C”C in the sense that there are two
orthogonal eigenvectors with the same eigenvalue o*=N=/
n”. Such multiplicity of eigenvalues probably only occurs if
N 1s divisible by four. The centers of gravity of these two
orthogonal eigenvectors are both located on the imaginary
axis. They have the same A,, equal to o/V2=N/(V27x)=V2r,.
The corresponding A equals A/N=1/ (V2m)=V 2r, These two
eigenvectors have the largest possible spread in both time
and frequency domain (identical to the values that would be
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obtained 1f the center of gravity would be located at the
center of both the time and frequency circle). Eigenvectors
corresponding to higher values of o are associated with
larger “uncertainty” A, (relative to R), but with a smaller
spread 1n time. The weight of the vectors actually becomes
more and more concentrated at the opposite side of both time
and frequency circle, until the maximal total uncertainty
o, > 1is reached for eigenvector v. __and A, is almost equal

to 2r,. Note the apparent symmetry in FIG. 12 (the centers
of gravity are reflected 1n the imaginary axis).

FIG. 13 shows NA. as a function of A. Due to the
uncertainty principle of Eq. 25, the accessible region 1s
bounded by two circles centered about the origin, with
radius o, . and o, .. This does not mean that all values
between these circles are possible, but that all values outside
the circles are impossible. The coordinates that belong to the
eigenvectors of CC are all located on the identity line (due
to Eq. B7). Some extreme cases are also shown. One
is the canonical vector e,={1, O, , 0}, Its
‘weight’|[x|[*=Ix, 1"+ . . . +IX,_,|” is entirely concentrated at
t=0, so A, 1s zero. Transformation to the frequency domain

gIves

FrECEX

1

VN

BRI (BY)
N

Feo= —Lf5 -

f;’—l leg =

where I 1s defined as in Eq. 9, the “*’ sign stands for the
complex conjugate and 1 1s the N-vector that contains only
ones. Thus, the weight of ¢, 1s evenly distributed over all
frequencies in the frequency domain and Afﬁ/ 2r, or NA =
v2r,. Another extreme is e,. (Let the canonical vector e, be
defined as {0, ..., 0, 1,0, ..., 0}, where the one stands
on the tth place, starting from zero.) The weight of e, 1s
entirely concentrated at the pomnt (-r,0) 1n the complex
plane and so A, 1s maximal, equal to 2r,. In the frequency
domain,

1 (B10)

mfs

Feg = . fao1 Jes =

1 sk
W[ﬁ)

The column vector {,* describes a harmonic oscillation
with frequency t =8/16=\%. Its squared components are also
evenly distributed over all frequencies, so Nﬁfﬂ/ 2r,. Starting
from the time domain, other extremes are the oscillations {,,
whose weight 1s evenly distributed 1n the time domain and
sharply concentrated in the frequency domain at £ =0 (A=
v 2r, and A=0), and f;, whose weight is also evenly distrib-
uted 1n the time domain but sharply concentrated in the
frequency domain at £, =% (so that A=V2r, and NA=2r,).
Since possible values for A, and NA_ are contined to the
range [0,2r ], 1t can be expected that all possible combina-
tions (A,.NA, are confined to a region in FIG. 13 that 1s
enclosed by the coordinates forv_ . , e, 15, v, €4 and 1.
These extreme vectors are also illustrations of the general
rule: taking the Fourier transform of a time series vector x
(through premultiplication by F) exchanges the (A, NA)
coordinates in the plot of FIG. 13. Differently put: the
coordinates for x and F x are retlected 1n the identity line.

This 1s readily verified using the definitions of Eqgs. 21 and
23,

FriiFr?
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Comparison with Gabor’s Uncertainty Principle.

The uncertainty principle that was described by Gabor 1n
1946 (see reference 5 below) determines a lower limit for the
product A/A.for continuous time and frequency,

1 B11)
Adyz o~

How does this mnequality relate to the uncertainty prin-
ciple for discrete time and frequency according to Eq. 257 In
Eq. B11, A~ is also defined as the second moment of inertia
about an axis perpendicular to the point where =0, although
time 1s mapped on an infinite line now (or a circle with
infinite radius). In the derivation of Eq. B11, it 1s assumed
that the mean time 1s zero (the center of gravity 1s located at
t=0). The same holds for the spread in the frequency domain
(regardless of the fact that frequency i1s not discrete and
periodic but continuous and infinite).

The main difference between the inequalities of Eq. B11
and Eq. 25 lies 1 the fact that according to Gabon’s
uncertainty principle, the lower limit of A A, 1s attained for
(Gaussian functions of t (of the same form as in Eq. B6) with
any nonzero value of A, (see reference 5). This 1s a set of
linearly independent (infinite) vectors. The lower limit of the
total uncertainty Af+NAf2 according to Eq. 25, however, 1s
attained for only one eigenspace of C”C (the complex
one-dimensional subspace spanned by v_ . ), which corre-
sponds to one single value of A, (equal to o, . /V2). On the
other hand, the vectors 1n this eigenspace do attain the lower

limit of Gabor’s uncertainty principle (in the limit situation
as N—0). For every eigenvector of C”C, it follows from Eq.

B8 that

AAFA/N=0°/(2N) (B12)

For v_. (or any other vector 1n the corresponding eigen-
space), a approaches VN/(2r) as N gets large (FIG. 11).
Numerical approximation then shows that, as N—oo,

N 1 1

on 2N _ 4n

(B13)

51*, min&f, min T

For finite N however, 1/(4m) 1s not the absolute lower limit
tor A,A. The product 1s zero for e, and 1, and addition of
small random numbers shows that it 1s close to zero for
slightly different vectors.

The relation between the two uncertainty principles
becomes more obvious 1 we consider the N-vectors that are
derived from v, . vectors that were obtained for shorter time
series (consisting of M events, with 1<M=N). See the
example of FIG. 14, where v, . was derived from the 8x8
matrix C”C. The components of F v__ are shown as a
function of frequency {, (black dots). These frequencies are
multiples of 4. Insert a block of 8 zeros between the two
smallest components of the 8-vector v_. (so that the uni-
modal structure of the vector remains intact on a circular
time base), which results 1n the 16-vector

RY 0

pire e o

{ymfn,ﬂzymin?l: L - ?0;\’

Mmin,ﬁ} (B14)

This gives a slight increase 1n A, (from 0.7583 to 0.7900)
and an almost insignificant increase i A, (from 0.0948 to
0.0949). The open circles in FIG. 14 represent interpolated
values 1n the frequency domain when the block of eight
zeros 1s 1nserted between the two smallest values of the
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eigenvector in the time domain, the continuous line repre-
sents interpolated values as the number of added zeros 1n the
time domain tends to infinity. The resulting 16-vector leads
to 1nterpolation 1n the frequency domain, at frequencies that
are multiples of Y16 (open circles). This 1s a well-known
form of interpolation in the frequency domain (through
‘zero-padding’ 1n the time domain).

In this way, for a given N, a number of N-1 vectors can
be dertved by adding zeros to smaller M-dimensional v_ .
vectors that are obtained from MxM matrices C”C. A trivial
example 1s ¢, that 1s dertved by adding zeros to the “1-vec-
tor’ v_. =1 for M=1. FIG. 15 shows the corresponding
uncertainties in the plot of NA.vs. A, for N=16. These values
appear 1 zone I, delimited by the lines A =0, Alﬁ/ /2, NA~
Vr/2 and N&fi\/f-rr The value for M=1 coincides with e,

the value for M=2 1s indicated by an arrow and values for
higher M gradually approach the value for M=N=16, located
at the 1dentity line (which corresponds tov,_ . for N=16). For
relatively large M, A, and A, are hardly changed by the

addition of zeros, while the associated o approaches
VM/(2x) so that

A NA MNIM N
NN VNI T3

As a result, the values for relatively large M are plotted
slightly below the hyperbola x-y=N/(4m) 1n FIG. 15. As time
proceeds and N gets larger, a trail of values grows along this
hyperbola, with new values appearing at the 1dentity line. IT
A, 1s plotted against A, the related hyperbola 1s given by
x-y=1/(4m) and contains all possible values corresponding to
different Gaussians at the lower limit of Gabor’s uncertainty
principle.

(B15)

Without formal mathematical proof, one may imagine that
the N-vectors dertved from v, . for M<N pose a further limit
to the accessible region in the (A, ,NAj-plane of FIG. 15.
Since these vectors have the minimally possible total uncer-
tainty for a sequence of M nonzero events, 1t can be expected
that values outside the region marked by the black dots 1n
FIG. 15 will not occur. This also holds for the values in zone
II, which were dertved by premultiplying the vectors 1n zone
I by Q®, which circularly shifts the vectors in the frequency
domain (to the opposite part of the frequency circle), without
a change of the weights in the time domain. Thus, A of these
vectors 1s maximized without a change 1n A,. Conversely, the
points 1n zone VI are obtained from the vectors in zone I,
premultiplied by T®, which circularly shifts the vectors in the
time domain (thereby maximizing A, without a change in A/).
The vectors 1n zone V follow from those 1n zone 11 through
premultiplication by T®. The vectors in zone VIII follow
from those 1n zone I by taking the Fourier transform (pre-
multiplication by F means reflection in the identity line).
Premultiplying these vectors by Q° gives the vectors in zone
I11, premultiplying by T° gives the vectors in zone VII, and
premultiplying the latter again by Q® gives those in zone IV.
(It will be clear that there are more ways to go from one
time-frequency zone to another, e.g., taking the Fourier
transiorm of the vectors in zone VI moves them to zone III).
In conclusion, 1t can be expected that possible combinations

of A,, NA are confined to the spade-like region outlined by
the black dots (and open circles) 1n FIG. 15.
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The Uncertainty Principle for Nonzero Mean Time and
Frequency.

If the reference time t, 1n Eq. 19 1s allowed to be nonzero,
then

A 2= 5 Q-0 RN Q-0 x|, or

A =1 | (-0 D/ (B16)
Similarly, for nonzero reference frequency {,=n,/N,
A =rell(Q = @"RDFA/|Ixll = r (T = "R Dx| / ||x] (B17)

Let Ap =Q—w'R], BRET_I—{:_JHRI and

s )
= Fr
R rBR

When C 1s still defined with respect to t,=0 and 1,=0, then
C.7C, and C”C turn out to be similar,

(CRECR)TRQMR=TRQ"R(CH () (B18)

This is readily shown using the relation T"Q"=w™""Q"T*,
which is valid for any integer k, n. So, if (o%,v) is an
eigenvalue-eigenvector pair of C?C, then

(CRHCR) TR Ry=0* TR Ry (B19)

meaning that T®Q"? is an eigenvector of C,”C, with
eigenvalue o°. It follows that the uncertainty of T2y
relative to t, in the time domain and 1, in the frequency
domain 1s equal to the uncertainty of v relative to zero 1n
both domains. This 1s no surprise. The squared absolute
values (the ‘weights’) of the components of T*Q"*v are
identical to those of v, albeit atter a circular shift in the
frequency domain (by Q%) and in the time domain (by T%).
Dernvation of the Time-Frequency Transiorm

The columns of the time-frequency transform matrix M
are orthonormal,

MEM=] (C1)

This can be proved as follows. The product can be written
as a sum of circulant matrices,

1 M, (C2)
MEM = —[Mg ... My_ ]
My
=— > MIM,
Mmzﬂ

Since postmultiplication of h,** by T~ means that its
components are circularly shifted to the right, the circulant
M_ can also be written

h (C3)

i

hirl

hH T—N+l

Since circulants are normal matrices, they commute with
theirr Hermitian transpose,

MAM, = MM (C4)
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-continued
Rt
niT!
= (B Th oo TV VB
hHT—lNJrl
MWh,  hTh, hiT?h, ... BETV 'h,
=\t ", Wih, RBiTH, ... BTV %R,
=C.irc{g£},
where g ={h “h_h “T~'h_ .. . h “T"*'h ! is the

‘complex autocorrelation” of h_ .
Its components are

O=u=M-1,or (CS)

R,
N-M+2=<u=<N-1;

Smu =

0, otherwise.

According to the definition of the N-vector h , (Egs. 26
and 27), it can also be written as Q"¥*h,. Using T"Q"=
" T, it follows that the nonzero components are equal
to

Wi T "h, = (Co)

.

hDHQ—mN;‘M T—HQmN;‘M h[} — mmuN;‘M hDH T_Hh{) — EZﬂﬁmmMﬂ

where a =h,”T *h,. When these components are summed
over m, we have

tSl = _0: C7
_ 2mmimiuf M _ aoM, u= Oa ( )

Z Emu = 2 & o P— '

m=0 =0 05 Gthﬁlese,

which follows from the fact that {e*™™*“*} is a geometric
progression for m=0, . . . , M-1. Note that

a,=h, T h,=||h,|[*=1 since h,, is taken to be a unit vector. As
a result, the sum 1 Eq. C2 can be rewritten as

1 M’Z—l (C8)
— > MHM, =
M m=10
| M-1 | M-1 ) |
v cfrc{gg} = chrc{ gg > = ﬂCfFC{M, 0,... ,0} =1,
m=0 m=0 /

which completes the prootf of Eq. C1.

The orthonormality property (Eq. C1) still holds 1t h, 1s
approximated by a truncated normalized Gaussian with
uncertainty A, and M'=10-A_ nonzero components (using Eq.

B4), since it does not depend on the choice of h, (provided
I [=1).

-

I''me-Frequency Synthesis.

A direct corollary of the orthonormality property 1s that a
given time series vector X can be written as the weighted
sum of short-lasting oscillations (Eq. 34). Using the defini-
tion of Eq. 28,
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x=Ix=M"Mx= (C9)
e | M—1 hriﬂ
EZ M7y, = — E [ A0 hmnvo1 ]l P | =
m=0 - H
m=0 Pom N—1
1 M-1AN-1 1 M-1A-1
ﬂ ; ; hm,rh;irx - y: S: hm,r-%mr
m=0 =0 m=0 =0

Analysis of Varniance 1n the Time-Frequency Domain

Another direct corollary of the orthonormality property of
the TFT 1s that the ‘energy’ (the squared norm) of the
N-vector x 1s preserved after the transformation,

Joel[# =L = A Mo = M| =511 (D1)

This permits an ‘analysis of variance” (ANOVA) in the
time-frequency domain. The above also means that the
energy of X can be partitioned into M frequency-dependent
components,

1 M-1 (D2)
Ix|* = WH[Z M, Mm]x =
m=0

HasH 2 ~ 12
— X Mm Mpx = — ”Mm-x” = =, ”-xm” -
Mmzi] Mmzﬂ M m=0

Suppose the random N-vector X has a multivariate normal
distribution with expectation E{X}=0 and variance
var{X}=0’l. Then the quadratic form |X|[/o* follows a
chi-square distribution on N degrees of freedom. According
to Eq. D2, |X||* can be partitioned into M frequency-
dependent components |[X_||°. The quadratic form |[X_ |[*/N
may be called the ‘TFT sample power spectrum’ of X for
frequency 1 . For white noise, the expectation of this RV 1s

E{IXll" / N} = E{IM,, X|I}/N = E{X" MY M, X}/ N

ot M My} / N,

where tr{e} stands for the trace of the matrix. Using Eq. C4,
it follows that tr{M_“M_1=Nh_*h_=N, so that

E{|X,|F/N} =0 (D3)

The sample power spectrum according to the definition
above 1s however sensitive to bias due to the circularity
assumption. Note that the components of X =M _X are
derived from X by circular convolution with a linear time-
invariant filter with M nonzero elements (Eqs. 26-31). The
structure of this filter 1s such that the first M-K-1 and the
last K components of X are dependent on the circularity
assumption (provided these integers are larger than zero),
where K 1s the largest integer less than or equal to M/2. A
power estimator free of bias due to the circularity assump-
tion 1s thus obtained with the ‘selection matrix’ S, defined as

S = diagl0, ... ,0,1,... ,1,0,... ,0 (D4)

M—K—1 N—M+1 K

~ Premultiplication of X _ by S selects the components of

X that are independent of the circularity assumption, which
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gives the unbiased quadratic form ||S M X|[*. When the
complementary frequency 1, ' 1s also included, the ‘total’
unbiased sample power may be defined as

( 1
1SM,,, X||* / Ns. m=0orm=—:
PX,F?‘! = 4 2

IS(M,, + My )X ||/ (2N5),

(D3)

otherwise.

-

T'he number of ‘samples’ in the t-f domain 1s N.=N-M+1.

-

The sample power (divided by o) follows an approxi-
mate chi-square distribution with equivalent degrees of

freedom (EDOFs)

N=2(E{Px,.} )’ Ivar{Px,,} (D6)

Letting P=S(M_+M,, (2N, for m=0 and m=%, it
follows that for zero mean white noise X,

E{Pyx ) = c*tr{ P" P}, (D7)
var{Pyx ) = 2::1'41:1:‘{(PH P)z},.

which gives
n=(r{P"P})*/r{(P"P)’} (D8)

In the present paper, 1y was numerically computed accord-
ing to Eq. D8 using mathematical computer sotftware.
Derivation of Confidence Limits

Mean and variance ot B, , ,, and By , .. Since the noise in
flow Q_,, 1s assumed to be zero mean white noise, the
expectation of Q, ,, 1s, using Eq. 43,

E{Qf,m} = E{ir,me,r,m + err?m} = (E1)

E{i’r,mbg,r,m} + E{Qﬁ-prpm} — ir,mbg,r,m +0 = ir,mbg,r,m-

The‘ Variancei qf Qeﬂfjm 1S OQ:mZI. Since the product X, ,
by 18 deterministic,

VH.I’{ Qr,m }:Var{if,mb Q,,r?m+ Qe?r,m }:VELI'{ Qe,r,m } :GQ?mEI (Ez)

The mean and variance of B o.2.m how follow trom Eq. 46,

A “H ~ 2 E3
EtBom} = E{n Qe } = (E5)
~H e ~ 2 ~H =~ ~ 2
xr,mE{Qr,m} / ”—"-fr,m” — xr,mxr,m bQ,I,m / ”—"-fr,m” — ‘bQ,I‘,ma
~H -
. Xim . Xt m (E4)
VM{BQ,I,FH} N 2 Vﬂf{Qr?m} N 2 —
[1Xe | 1%z m |
~H ~ 2
Ir,m 5 Xt,m {TQ,m
* (TQ mI . —
~ 2 ’ ~ 2 ~ 2
|1%¢,m | | K| I N |

As aresult, B, , , 1s an unbiased estimator of' b, , .. Mean
and variance for B, , follow 1n an analogous manner,

£ {E P,r?m} :bP?r?m ELIld VH.I'{E) Piom }:UP.}mEA I'fr,m ‘ ‘2 (ES )

Confidence Limits. h A
The confidence limits for B, , ,, and B, ,, follow from the
standard approach 1n least squares analysis. Combination of

Eqgs. 43 and 44 gives

Qeﬁrﬁm - Qr,m _fr?mb O.tan :fr,m (B i b O.t.m )+ Qeﬁr,m (E 6)



US 9,649,050 B2

33

Due to the orthogonality between X, ,
5).

and Qe,r,m (see FIG.

HQeJﬁm ‘ ‘2 :‘ ‘xﬂur?m | ‘2 . |EQ?r?m_bQ?r;n |2+‘ ‘ Qeﬁrﬁm ‘ ‘2 (E7)

The random variable ||, [I*1Bom=bosm! /00, has the

form

(E O, t,m ~-L {E .1 } )H(VM {E’ O.tm })_ : (E) Ot -k {E (.t })

and 1s thus (exactly) distributed as a chi-square variable (on
one degree of freedom). When X, ,, .. at the complementary
frequency t,, =1-m/M 1s also included in the estimation,
the resulting chi-square variable has two degrees of freedom.
When the noise 1s estimated by the total unbiased power
spectrum (Eq. D5), Equation E7 decomposes the total power
of the noise into orthogonal components with EDOFs n=2+
(n-2). Then the ratio of the two orthogonal components at
the right-hand side of Eq. E7 follows an F-distribution on
(2,m-2) degrees of freedom. Let the upper 100(1-a.) % point
of this distribution be denoted by F_. Then

~ ES
BQ,I,m - bQ,r,m‘ ( )

Pt 2—
|Qgpf,m ”

~ 2
1%z, m|

< F 2
= &ﬁ—z

Using the definition of the TFT sample coherence (Eq. 45)
and assuming that KQ5£5m2>O,, this can be rewritten as

(E9)

2
- bQ,I,m‘ -
160,1.ml*

Denoting the right-hand side of this inequality by AQJ 2,

2 (E10)

3 A 2 2
|BQ=.fgm_anfam 5|BQ,.r,m| AQ,IJR

The 100(1-a) % confidence region for B o..m 18 thus
described by a circle in the complex plane with center B, ,
and radius |B,; ,,,|Ap .- The confidence region for B, ,,, 1s
derived 1n a similar manner,

|§P rm_bP rm|25|EP r,m|2AP rm2 (Ell)

To arrive at a confidence region for 7
sides of Eq. 10 by IZ ! D6 1
BQJ ! Do ms Which gwes

«.m» ultiply both
2 and substitute U=z, ,.

U-Z,,,I"<IUPA g (E12)

Using the real and imaginary parts of the complex vari-
ables, this can be rearranged into

~ 2 ~ 2
Zm Zon | . (B9
YTIZAn, | T|1saz, | Mo
R 0tm 0 tm
Next divide both sides of Eq. E11 by Ib, _1”. Replacing

BPz‘m by Zz‘m BQ,z‘m (Eq 47) Ellld Za‘f mBQ,z‘ m/bQ,rm by U

U-z,,,1°=I1U4p, .~ (E14)

The confidence region for Z _can now be derived in a
two-step approach. Aecerdmg te Eq E13, U lies within a
circle Wlth center o (1=Ap *) and radius
t,=12, |As /(1 AQ:m ) en 100(1-c)% of occasions
(FIG 16A) Suppose that QE .m and P, +m are uncorrelated.
Then, for a given value of U, z, ,, lies within a second circle,
with center U and radius |UlAg,,, on 100(1-a) % of

occasions (Eq. E14). Consider the two extreme values for
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|Ul, which are the magnitudes of U . and U 1n FIG. 16A.
The corresponding extreme values for |z, | are the magni-

tudes of z_. and z, . in FIG. 16B. From Egs. E13 and E14,
. 1—Ap,., El5
Lmin = Zr,m i ) ( :

1 + AQ,T,FH

A ]. + AP?r?m

Lmax = Zr,m 1 — AQ,r,m

A conservative limit ot the 100(1-a.) % confidence region
tor 7, ,, 1s now given by the circle that contains z ,,,and z,, ,
and whose center lies on the line through Z, ,, and the origin.
As a result, the corresponding confidence region 1s described

by

2 (E16)

N
3
|
N
=
IA

This region 1s delimited by the circle in FIGS. 168 and
16C with center Cz_Zm(1+A m Pm)/(l Ot ) and
radius r,=1Z, Wl (Apsm Pm)/(l Ot ). This circle is not
concentric about Z, .. The distribution of possible values tfor

for a given Z 1s skew-symmetric about Z _ (FIG.

16D) The Skewness 1s expressed by tan 5 in FIG. 16C From
Eq. E16, 1t fellews that

tan p=1C,—7

ol 15=A G (E17)

Special Case 1: No Noise Inflow.

I the noise in tlow 1s zero, QE .m0, then QIf S N P
and BQJ m—Dosm (Bgs. 43 and 46) Let the eerrespendmg
estimator ot z,, be denoted by Z & Assuming that
bQ£m¢Oj

M ""H el
Z(Q) . BP,r,m . xr,mPT,m

t
By tm

~ 2
”xr,m ” bQ,r,m

Since in this case X,,,=Q, /b o m:

AH ¥ ELS
~ (0) Qr,mpfm ( )
Zﬂ" - >

19, il

This 1s the ‘ordinary least squares estimator’. Then

Kgﬂmz—l and A,,,=0. The confidence limits are still
described by Eq E16 although with A, , =0. The confi-
dence circle 1s centered about Z & now, with radius
IZ (Q)IAP:rﬂm. The skewness parameter tan 3 15 equal to
z€ro.

Special Case 2: No Noise 1n Pressure.

If the noise 1n pressure 1s zero, %

by, and BF 0P 1
of z,,, 18 denoted by Z

erm—0, then P_=%

. When the eerrespendmg estlmater
Gﬂ

A . . 2
(P Bpim  bponllZnll 1Pl (E19)
t.m — — — T — -
BQ,I‘,PH 'xr,m Qr,m Pr,m Qr,m
This 1s the “data least squares estimator’. Now K, , mz 1

and Ap, ,=0. From Eq. E16, the confidence circle has center
o Ol(1-A,,,2) and radius 17,,1/(1-A,,,>%). The
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skewness parameter tan [5 equals A, .. The two estimators

L

Z, .2 and 7, ) are related through the squared coherence

AN

between flow and pressure,

~H o~ 2
‘Ql‘?mPf,m‘

~ 2. p ~
1@l 1Pl 1,0l

a H .
Ql‘?m Pr,m

5

~H - ~ ()
Pr,mQr,m Z

_ “tm
~ 2
1Pl

(E20)

2 —
KPQ,r,m = N

ZI‘

JH

Examples

Squared Coherences as a Function of Time and
Frequency

FIG. 17 shows the squared coherences for the same
recording as in FIG. 7. In this example, the coherence
between loudspeaker mput and tlow was generally lower
than the coherence between input and pressure. As 1s appar-
ent from the figure, the coherences change as a function of
both time and frequency. The smallest coherences are
obtained at the turming points from inspiration to expiration
and vice versa, and at the lowest frequencies. Swallowing
has a deep 1mpact on coherence, especially between input
and flow. FIG. 18 shows the squared coherences as a
function of time and frequency for the estimated impedance
shown 1 FIG. 8 for a patient with COPD. The drops in
coherence at the turning points between the respiratory
phases are much more pronounced than in the normal
example of FIG. 17. In both FIGS. 17 and 18, the bold lines
represent the squared coherence I(QIMT2 between loud-
speaker mput and flow as a function of time for different
resonant frequencies (8 to 24 Hz) and the thin lines represent
the squared coherence K, , ,° between loudspeaker input
and pressure. “Flow” represents the low-Irequency compo-
nent of airflow, “insp” represents inspiration and “exp”
represents expiration.

In conclusion, a method 1s presented to estimate the
transier function of the respiratory system of a subject with
optimal time-frequency resolution.

As described above, the estimate of respiratory imped-
ance may be made by a diagnostic tool that uses the estimate
to assess obstruction of the airways or to estimate the
severity of disease. The diagnostic tool may therefore also
be used to assess the eflectiveness of treatments (whether
pharmacological or otherwise) that should aflect the respi-
ratory impedance.

For example, the estimates of respiratory impedance can
be used to detect (1) expiratory flow limitation 1 chronic
obstructive lung disease (COPD); (11) the severnty of airway
obstruction in COPD or asthma, which itself be used to
evaluate the eflect of inhaled airway dilators (e.g. sympathi-
comimetic or parasympathicolytic drugs) over the course of
time (this can be applicable to a research setting and also to
a clinical setting where the patient 1s unable to perform the
standard forced respiratory maneuvers; (111) airway obstruc-
tion 1n asthma or COPD during sleep; or (1v) upper airway
obstruction during sleep 1n patients suspected of sleep
apnea-hypopnea syndrome.

The estimates of respiratory impedance may also or
alternatively be used to adapt the settings of machine used
in the treatment of a medical condition. For example, the
estimates of respiratory impedance can be used in the
adjustment of settings ol noninvasive ventilation in COPD.
The respiratory impedance can be used as an input to the
ventilator to provide information on the severity of the
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arrway 1mpedance on a continuous basis (with unrelhable
values, as indicated by the confidence values, being dis-
carded). This information can also be used to adjust the level
of bilevel positive airway pressure with which the expiratory
flow limitation 1s just overcome. As an alternative example,
the estimates of respiratory impedance can be used as an aid
to guide the level of continuous positive airway pressure in
patients with obstructive sleep apnea syndrome.

While the invention has been illustrated and described 1n
detail in the drawings and foregoing description, such 1llus-
tration and description are to be considered illustrative or
exemplary and not restrictive; the invention 1s not limited to
the disclosed embodiments.

Vanations to the disclosed embodiments can be under-
stood and effected by those skilled 1n the art in practicing the
claimed invention, from a study of the drawings, the dis-
closure, and the appended claims. In the claims, the word
“comprising” does not exclude other elements or steps, and
the indefinite article “a” or “an” does not exclude a plurality.
A single processor or other unit may fulfill the functions of
several items recited 1n the claims. The mere fact that certain
measures are recited in mutually different dependent claims
does not indicate that a combination of these measures
cannot be used to advantage. A computer program may be
stored/distributed on a suitable medium, such as an optical
storage medium or a solid-state medium supplied together
with or as part of other hardware, but may also be distributed
in other forms, such as via the Internet or other wired or
wireless telecommunication systems. Any reference signs in
the claims should not be construed as limiting the scope.
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Table 1.

Symbols and Abbreviations.

Time and Frequency
t ., 1, discrete frequency m/M (or n/N)

“Frrd Tpe?

tr reference frequency for A,
t N-vector that describes an harmonic oscillation with
frequency 1

m frequency index for the TFT

M (M") width of the TFT filter (or effective width using a
truncated Gaussian)

n frequency index for the ODFT

N number of events 1n a time series

N number of samples 1n the t-f domain from a stochastic
Process

r,, rrradius of the time circle (or frequency circle)

t discrete time 1ndex

t, reference time for A,
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A, B, C matrices related to uncertainty in time and
frequency

F ODFT matrix

M (M _) TFT matrix (or partial TFT matrix for frequency
f,)

T time-shift operator; circ{0, . . ., 0, 1}

A,, A,uncertainty in time or frequency

w complex exponential; exp(2m1/N)

o.., O,  minimal and maximal singular value of C

Q2 diagonal matrix with o’ on the main diagonal; diag
fw® ..., o'}
Names of Variables

p pressure

q tlow

X loudspeaker iput (or an unknown variable)

7Z respiratory impedance

Types of variables Examples
deterministic variable as a function of discrete time q,
random variable as a function of discrete time Q,
deterministic N-vector (lowercase) q
random N-vector (uppercase) Q
vector in the t-f domain (centered about frequency Q,,
£)

vector 1n the t-f domain (centered about frequency { _ Q -
and starting at tume t)

deterministic vector ‘predicted’ by linear Up iz

regression in t-f domain
random ‘error’ for linear regression 1 t-f domain Q...
estimator of the error in t-f domain Qo

Linear Filters

h_. vector with the periodized impulse response of filter
from x to q

H_,., transter tunction trom x to q for frequency {,

C,. circulant matrix that describes the filter between
loudspeaker input and tlow

A, diagonal matrix with H_, , on the main diagonal
Statistics

Ap.m, Variable 1n t-f domain that determines the contri-
bution of noise in flow to the confidence region tor 7, ,

F_, upper 100(1-a)% confidence limit for the F-test on
(2,m-2) degrees of freedom

I{QI:‘I;,W2 squared sample coherence between loudspeaker
input and tlow in t-f domain

/Z, ,, bivariate least squares estimator of impedance z, ,, as
a Tunction of time and frequency

Zrﬂm@) estimator of z,,, under the assumption that the
noise in flow 1s zero

o type 1l error A

b angle that determines the deviation of Z,, trom the
center of the confidence region

N equivalent degrees of freedom

L, mean flow

0Q2 variance of the noise 1n tflow
General Mathematical Symbols

i imaginary number (i°=-1)

I NxN i1dentity matrix

= 15 by definition equal to
x| I magnitude of complex-valued x,
x|| 2-norm of N-vector x
x? Hermitian transpose of the vector x
x* complex conjugate of x

{1 sequence (usually expressed as a column vector)
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Abbreviations
FOT forced oscillation techmique
t-1 domain time-frequency domain

TFT time-frequency transform
ODFT orthonormal discrete Fourier transtorm
RV random variable

The mmvention claimed 1s:

1. A method of estimating respiratory impedance with a
system comprising a patient interface device, an excitation
source operatively coupled to the patient interface, a venti-
lator, and one or more hardware processors, the method
comprising;

coupling the patient interface device to an airway of a

subject who 1s using the ventilator to create a pneu-
matic system that includes the patient interface device
and an airrway of such a subject;

generating, with the excitation source, pressure oscilla-

tions, flow oscillations, or volume of gas oscillations 1n
the airway of the subject;

determining, with the one or more hardware processors,

the tflow and pressure of the gas in the pneumatic
system to produce a respective time series representing,
the flow and the pressure;

transforming, with the one or more hardware processors,

the respective time series to the time-frequency domain
to create a transformed time series, wherein the trans-
forming determines flow and pressure as a function of
discrete time and different frequencies, wherein the
different frequencies are a function of a Irequency
index and an eflective width of a time-frequency filter,
and wherein the transforming is based on the frequency
index, the time frequency {ilter, and a weighting factor
that 1s approximated by a windowing function of time,
the weighting factor being a function of a time uncer-
tainty, wherein the time series of measurements for
flow and pressure are denoted g, and p, respectively, and
the step of transforming the respective time series to the
time-frequency domain comprises evaluating

Ky

- — —2memif M
QI,m - Z WEE Qrﬂ'
=K

for the flow time series and

Kj

- —27imi M
Ptm = Z Wie / Pt+
I=—K1

for the pressure time series, wherein the different frequen-
cies are give by I_=m/M, where m 1s the frequency index
and M 1s the eflective width of the time-frequency filter,
i°=-1, and wherein the weighting factor w, is given by
w=e~ "ﬂ‘f)zj and A 1s the uncertainty 1n time;
estimating, with the one or more hardware processors,
power ol the flow and the pressure from the trans-
formed time series;
estimating, with the one or more hardware processors,
respective cross spectra of the flow and the pressure
based the transtformed time series;
estimating, with the one or more hardware processors, the
respiratory impedance of the subject from the estimated
power and the estimated cross spectra; and
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providing, with the one or more hardware processors,
input to the ventilator based on the estimated respira-
tory impedance, the provided mput causing an adjust-
ment of one or more settings of the ventilator.

2. A method as claimed 1n claim 1, wherein the step of
estimating the respiratory impedance of the subject from the
estimated power and the estimated cross spectra comprises:

determining transier functions from the pressure oscilla-
tions to the flow and pressure respectively from the
respective estimated power and estimated cross spec-
tra; and

estimating the respiratory impedance from the flow and
pressure transfer functions.

3. A method as claimed 1n claim 1, wherein the method
turther comprises a step of determining confidence limits on
the estimated impedance.

4. A method as claimed 1n claim 1, wherein the window-
ing function 1s a Gaussian function, a triangle function, a
piece-wise linear approximation function, or a polynomial
function.

5. A method as claimed in claim 1, wherein the step of
estimating the power of the flow and pressure comprises
evaluating

for the pressure, where N 1s the number of samples 1n the
time-frequency domain, K,=V2(N~1) where N 1s odd and
|*| stands for the absolute value.

6. A method as claimed 1n claim 5, wherein the step of
estimating the cross spectra of the flow and pressure with the
generated pressure waves comprises evaluating

for the pressure, where the asterisk denotes the complex
conjugate and X, ,, represents the pressure waves.

7. A method as claimed in claim 6, wherein the step of
estimating the respiratory impedance of the subject from the
estimated power and cross spectra comprises determining a
transfer function from the pressure waves to the flow by
evaluating
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qu,r,m —

and a transfer function from the pressure waves to the
pressure by evaluating

and wherein the respiratory impedance 1s estimated by
evaluating

Bxp, {,m

L¥Sim =
X, f,m

with real component Rrs,  and imaginary component
XIS, ..

8. A method as claimed 1n claim 7, further comprising a
step of determining confidence limits on the estimated
impedance which includes:

determining the squared coherence between the pressure
waves and the flow using

2
| Cxq, t,m |

2
K ;
Px,r,m ) Pq,r,m

xg,t,m —

determining the squared coherence between the pressure
waves and the pressure using

2
| Cxp, t,m |

Px,r,m ) Pp,r,m

KZ

xp,t,m —

7

determining the number of degrees of freedom, m, of the
power and cross spectra;

determining a flow-related variable A_, < from

L5771

"

AZ

2
—F ( 2 ] 1 - qu,r,m
¢ 1 — 2 K,%q,r,m

determining a pressure-related variable A

2 from

2L, 77

"

2 1 - K,fp,r,m
) F“( ] K2
xp,t,m

determiming 100(1-c)% confidence limits for the real and
imaginary parts of the estimated 1mpedance
from, respectively, Rrs.c,xc, and Xrs-c,xc,, where
c1:l+Aq5rﬂm-c3,

Aq,r,m + Ap,r,m

2
1 - qurpm

cy = |ZLrsim|-c3 and c3 =
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9. A method as claimed 1n claim 7, further comprising the
step of rejecting the estimates of respiratory impedance for
a given time and frequency 1if either A, =za first threshold
or A_ . =za second threshold.

2. L.
10. A method as claimed in claam 9, wherein the first
threshold 1s 1 and wherein the second threshold 1s 1.

11. A method as claimed 1n claim 1, wherein estimating
the respective cross spectra ol the tlow and the pressure
based the transformed time series 1s done based on a least
squares criterion using a model with the oscillating pressure,
flow, or volume of gas as an mput and the flow and the
pressure as outputs.

q-L,77

12. A method as claimed 1n claim 1, wherein determining
the flow of the gas 1n the pneumatic system 1s accomplished
by measuring the flow using a flow sensor operatively
coupled to the pneumatic system, and wherein determining
the pressure of the gas in the pneumatic system 1s accom-
plished using a pressure sensor operatively coupled to the
pneumatic system.

13. An apparatus for estimating respiratory impedance of
a subject, the apparatus comprising:

a patient interface device;
a ventilator;

an excitation source for generating pressure oscillations,
flow oscillations, or volume of gas oscillations 1n the
arrway ol the subject;

means for determining the flow and the pressure of gas 1n
a pneumatic circuit defined by the patient interface
device and an airway of such a subject and for output-
ting respective time series of values representing the
flow or the pressure;

a processor configured to:

transiorm the respective time series to a time-frequency

domain, wherein the transforming determines flow

and pressure as a function of discrete time and

different frequencies, wherein the different frequen-

cies are a function of a frequency index and an
cllective width of a time-frequency filter, and
wherein the transtforming 1s based on the frequency
index, the time frequency filter, and a weighting
factor that 1s approximated by a windowing function
of time the weighting factor being a function of a
time uncertainty, wherein the time series of measure-
ments for flow and pressure are denoted g, and p,
respectively, and the step of transforming the respec-
tive time series to the time-frequency domain coms-

prises evaluating
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for the flow time series and

Kj

- —27imij M
Ptm = Z Wie / Pt+l
!Z—Kl

e

for the pressure time series, wherein the different
frequencies are given by 1 =m/M, where m 1s the
frequency index and M 1s the effective width of the
time-frequency filter, i*=—1, and wherein the weight-
ing factor w, is given by w,~e¢ Y~ and A, is the
uncertainty in time;

estimate power of the flow and the pressure based on
the respective transformed time series;

estimate respective cross spectra of the flow and pres-
sure based the respective transiformed time series;

estimate the respiratory impedance of the subject from
the estimated power and cross spectra; and

provide mput to the ventilator based on the estimated
respiratory impedance, the provided input causing an
adjustment of one or more settings of the ventilator.

14. An apparatus as claimed 1n claim 13, wherein the
means for determining the flow and the pressure of gas 1n the
pneumatic circuit comprises:

a flow sensor operatively coupled to the pneumatic sys-

tem; and

a pressure sensor operatively coupled to the pneumatic

system.

15. An apparatus as claimed 1n claim 13, wherein esti-
mating the respective cross spectra of the flow and the
pressure based the transformed time series 1s done based on
a least squares criterion using a model with the oscillating
pressure, flow, or volume of gas as an mput and the flow and
the pressure as outputs.

16. An apparatus as claimed in claim 13, wherein esti-
mating the respiratory impedance of the subject from the
estimated power and the estimated cross spectra comprises:

determining transier functions from the pressure oscilla-

tions to the flow and pressure respectively from the
respective estimated power and estimated cross spec-
tra; and

estimating the respiratory impedance from the flow and

pressure transier functions.

17. An apparatus as claimed 1n claim 13, wherein the
processor 1s further configured to determine confidence
limits for the estimated respiratory impedance.

18. Amethod as claimed in claim 1, wherein providing the
input to the ventilator comprises providing the estimated
respiratory impedance as iput to the ventilator to cause the
adjustment of one or more settings of the ventilator based on
the estimated respiratory impedance.

19. Amethod as claimed in claim 1, wherein providing the
input to the ventilator comprising providing input to the
ventilator on a continuous basis based on the estimated
respiratory impedance to cause the ventilator to adjust
positive airway pressure effectuated by the ventilator for the
subject.
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