12 United States Patent

Kim et al.

US009646105B2

US 9,646,105 B2
May 9, 2017

(10) Patent No.:
45) Date of Patent:

(54) REDUCED COMPLEXITY HASHING

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

Applicant: Texas Instruments Incorporated,

Dallas, TX (US)

(56) References Cited
U.S. PATENT DOCUMENTS

3,825,894 A * 7/1974 Johnson, Jr. GO6F 11/10
| . | 714/703
Inventors: Hunjse‘)k Kim, Dallas, TX (US); 4,162,480 A * 7/1979 Berlekampocoocov...... 714/784
Patrick Bosshart, Plano, TX (US) 4215402 A * 7/1980 Mitchell et al. 711/216
4,538,240 A * 8/1985 Carteretal. 708/492
Assignee: TEXAS INSTRUMENTS 5,559453 A * 9/1996 Covino HO3K 19/00323
INCORPORATED, Dallas, TX (US) 326/121
6,097,725 A * 82000 Glaise HO41. 12/5601
S : - : : 370/392
Notice: Subject‘ to any dlsclalmer,,. the term of this 6.877.119 B2* 42005 Lauga w..... GOIR 31/31853
patent 1s extended or adjusted under 35 714/796
U.S.C. 154(b) by 258 days. 7,039,854 B1* 5/2006 Ireland HO3M 13/159
708/492
Appl. No.: 13/922,327 7,085,988 Bl * 8/2006 Wengccovovverennnn.. 714/758
7,103,832 B2* 9/2006 Leonard HO3M 13/091
Filed: Jun. 20, 2013 714/807
7,177,891 B2* 2/2007 Stemmetal. 708/492
Prior Publication Data 7,231,572 B2* 6/2007 Clark GOIR31/332167/;§
US 2014/0129568 A1l May 8, 2014 7,242,219 B1* 7/2007 Mahurin HO3K 19/215
326/52
_ _ 7472334 B1* 12/2008 Scottoo... HO3M 13/151
Related U.S. Application Data 714/785
Provisional application No. 61/724,115, filed on Nov. 7,557,614 B1* 7/2009 Bonsels HOSK é%z/;j
8, 2012. .
(Continued)
Int. Cl. Primary Examiner — Frantz Coby
Goot 17/30 (2006-O:~) (74) Attorney, Agent, or Firm — John R. Pessetto;
GOl 12/1018 (2016.01) Charles A. Brill; Frank D. Cimino
GOOF 12/05864 (2016.01)

U.S. CL

(57) ABSTRACT

CPC ... GO6F 17/30949 (2013.01); GO6F 12/1018 Hashing complexity 1s reduced by exploiting a hashing

(2013.01); GO6F 12/0864 (2013.01) matrix structure that permits a corresponding hashing func-
Field of Classification Search

CPC

USPC

m bits

x{n-m+1)
X{n-m+2)

-~
iy,
=
g e

tion to be implemented such that an output vector of bits 1s

GOO6F 17/30949; GO6F 12/1018; GO6F produced in response to an input vector of bits without

12/0864; HO3M 13/166 combining every bit in the input vector with every bit in any

Y

Y

™
e

707/698, 673, 696, 715, 741; 711/216; row of the hashing matrix.
714/7758, 784-—785; 708/492
See application file for complete search history.

20 Claims, 3 Drawing Sheets

31 33 23
m bits m bits Im bit
N\ _\}\ N v DitS R (
l_ﬁ_, 2(1,1) —
- z(1,2) o I
PERMUTE | {o | SELECT —iisl XORTREE — ¥{f
g L
‘ z(1,m) o
o 23
z{1,)) :
0 N
: 22)
o XOR TREE [(i)
31 33 ©
\, mbits N \\ mbits N z{nimyj)
f {

Y

i o o0

i — et A b — —— o

L

~
-

PERMUTE

m perm signals

z(n/m, 1)
z{n/m, 2) o 23

SELECT ° /
z{1,m}
Z(nim, m) 2(Z,m) -
o XOR TREE [—+ y(m)
35 z{n/m,m)
m o

US 9,646,105 B2

Page 2
(56) References Cited 2008/0154998 Al* 6/2008 ITkedaccooune... HO3M 13/00
708/210
U.S. PATENT DOCUMENTS 2008/0189381 Al 8/2008 Poirier

2008/0279368 Al* 11/2008 Yencoccvrervven.. HO4T. 9/0637
7,805,595 B2* 9/2010 OZer .oooovvevveerrerren.. GOGF 9/383 380/28
717/736 2009/0080646 A1* 3/2009 Yenococovvevrevreereernen.. 380/28
7,827.384 B2* 11/2010 Zhang GO6F 7/724 2009/0240913 Al1* 9/2009 Obana HO041. 9/0662
711/216 711/216
7,952,587 B2* 5/2011 Hansen et al. 345/522 2010/0115017 AL* 52010 Yen oooivviinninnee, GO6L 7/724
7,963,306 B2* 6/2011 McCauley et al. 152/219 . 708/492
8,006,150 B2* 82011 Sinanoglu GOIR 31/31854 2010/0125728 Al™* 52010 Gueron HO4L 9/0631
o 714/726 713/150
8082350 B2 122011 Chauhan 2010/0303229 A1* 122010 Unruh .cccoovc.. HOAL 9/0637

H
8452006 B2* 52013 Alekseev ...oovceeivn Goca;gg;gg 2011/0246548 AL* 10/2011 Yen .oovvvevveevnne GOGF 7/724
708/492

H
3,804,950 B1® 8/2014 Panwarccooiee HO"%gfgg 2012/0226731 Al* 9/2012 GashKOV wovvvoovvoor.. GOGF 17/505
. 708/620

3
e reate a1a 1aaoos srein et al o o T2 20140006753 Al* 12014 Gopal etal. ... 712/221
AL s a7 2014/0016774 Al* 1/2014 Wolrich et al. 380/28

2006/0235895 Al* 10/2006 Rodriguez HO4N 21/631 * cited by examiner

U.S. Patent May 9, 2017 Sheet 1 of 3 US 9,646,105 B2

| SELECT

| LOGIC
| 7 1

n-BIT INPUT |
XOR TREE :
I

X(2

H(2, I
0 g:)—|—> y(1)

x(n-1) |
H(n-1,1) :
X(n) |
HinY) 44— | e e e e e e e e —
x(1) ——————==-q
H(1,m) — n-BITINPUT |
x(2) XOR TREE :

m)

FIG. 1

41 43

DATAPROCESSING | __ " CODE STORAGE |
RESOURCE . MEDA

FIG. 4

U.S. Patent May 9, 2017 Sheet 2 of 3 US 9,646,105 B2

21 23
n/m bits
(1) 210 N,
X(2) 212) o I
g S — i XOR TREE y(1)
0 © °
©
() z{(1,m) 0 1:
perm(1), perm(2), ... perm{m) .
21 23
z(a+1,1) z{1.j)
*m+1 ——
e 221, 202}
o | PERMUTE o o XOR TREE y(j)
(@ 1)) Z(a+1,m) z{n/m,}}
perm{a‘m+1}, perm{@a*m+2), ...]
perm((a+1)*m) 0
21 o 23
z{n/m,1) z(1,m)
-m+1 L
i (:-Lz; 2(nim.2) 22.m)
o | PERMUTE ; . XOR TREE y(m)
() ° z(n/m,m}) E(n/m,m).__
perm{n-m+1), FIG. 2

perm(n-m+2), ... perm(n)

o1 PROVIDE VECTOR X

PRODUCE VECTOR Y WITHOUT

52 COMBINING EVERY BIT IN X WITH
EVERY BIT INANY ROW OF H

FI1G. 5

US 9,646,105 B2

Sheet 3 of 3

May 9, 2017

U.S. Patent

(DA

3341 HOX

(W ‘Wju)z

y e

Z ‘Wu)z
(1 ‘wyu)z

W s|eubis wued w

J1NNYd

O G O

O
O
O

L sieubis wuad w

US 9,646,105 B2

1
REDUCED COMPLEXITY HASHING

This application claims the priority under 35 USC §119

(¢)(1) of provisional application Ser. No. 61/724,115, filed
on Nov. 8, 2012 and incorporated herein by reference.

FIELD

The present work relates generally to hashing functions
and, more particularly, to reduced complexity implementa-
tions of hashing functions.

BACKGROUND

Hashing functions are widely used to accelerate finding,
items 1 a large database. Typically, the hashing function
output 1s an index for a location 1n memory where the entry
matched with the hashing input may be stored. The size of
memory space indexed by the hashing output 1s much
smaller than the cardinality of mput space. Hashing 1s used
to assign pseudo-randomly generated mput entries to par-
ticular locations in a finite memory space. The memory
utilization 1s maximized when the rate of hashing collisions
1s minimized. A hashing collision occurs when multiple
different hashing inputs result 1n the same hashing output
value. Assuming the mput distribution 1s umform, it 1s
desired to have uniform hashing output distribution to

mimmize the probability of a hashing collision.

One example use for a hashing function 1s routing table
lookup 1n a network switch. Network switches use hashing
functions to store and find routing information. Consider an
IPv6 network switch which can store 64 k entries 1 a
routing table. Each routing table entry consists of an IPv6
destination address paired with a forwarding port. The
location of an entry in the routing table 1s identified by the
hashing function output produced when an IPv6 destination
address 1s mput to the hashing function. When a packet
arrives at the network switch, the hashing function output 1s
computed based on the IPv6 destination address input
extracted from the packet. The hashing function output
provides the index for a routing table entry which may
contain the matching IPv6 address. In this particular
example, the hashing mnput 1s the 128-bit wide IPv6 desti-
nation address and the hashing output 1s 16-bit wide index
that points to a location 1n the 64 k-entry routing table. In
other words, the hashing function 1s a mapping from a
128-bit mnput to a 16-bit output.

In network switch applications, the bit width of the input
to the hashing function can be very large when routing rules
consist of many tuples such as MAC addresses, IPv6
addresses, TCP port numbers, etc. In the OpenFlow stan-
dard, for example, the network switch flow rule requires a
hashing input of more than 600 bits. Meanwhile, the hashing,
function throughput requirement for network switch appli-
cations 1s very stringent 1n order to search flow routing rules
fast enough to keep pace with the incoming packet traflic
rate. For example, a network switch with 64 instances of 10
Gbps ports requires nearly 1 billion table look-ups per
second. It 1s highly desirable to have a uniform hashing
output distribution 1n order to maximize memory space
utilization with minimum hashing collisions.

One popular conventional hashing technique 1s based on
XOR (exclusive-OR) operations. As previously indicated, a
hashing function 1s a mapping between an n-bit input and an
m-bit output. Typically, the mnput bit width n 1s much larger
than the output bit width m (n>>m). Let X be the 1xn vector
of hashing mput bits, and let v be the 1xm vector of hashing
output bits. The XOR hashing output y 1s obtained by GF(2)

10

15

20

25

30

35

40

45

50

55

60

65

2

(Galois field 2) multiplication of the mput vector x and an
nxm binary matrix H, as shown below

(1)

where -7 indicates vector-matrix GF(2) multiplication.
The binary matrix H 1s called the hashing matrix.

The XOR-based hashing represented by (1) above can be
implemented in hardware using XOR logic. Let x(a) be the
a-th bit of the vector x, H(a, b) the (a, b) component of the
hashing matrix H, H(:, b) the b-th column of H, and H(a, :)
the a-th row of H. Each bit of the output vector y 1s obtained
by XORing selected bits 1n the input vector x. The XOR
input selection for the 1-th bit of y, y(1), 1s dictated by
non-zero bit positions of the 1-th column of H, H(:, 1). For
example, 11 H(1,1)=H(4, 1)=H(7.1)=1, while all other com-
ponents of H(:, 1) are zero, then y(1) 1s obtained by XORing
x(1), x(4) and x(7).

In many practical systems, 1t 1s important for the hashing
matrix H to be programmable, so the hashing function can
be updated according to input statistics. In some applica-
tions, H can be randomly chosen for security purposes.
Typically, H 1s programmed during system 1nitialization. In
order to program the nxm binary matrix H, nxm bits are
required 1n programming memory space.

If H 1s permitted to be an arbitrary nxm binary matrix,
then the XOR-based hashing function can be implemented
as shown 1n FIG. 1. In this conventional architecture, the
hashing matrix H 1s an arbitrary nxm binary matrix, and the
hashing output 1s obtained according to (1) above. When the
Ixn input vector x 1s very large, however, the FIG. 1
architecture disadvantageously requires a correspondingly
large programming memory space (nxm bits to program H).
Also, the architecture has considerable complexity, because
cach bit of the 1xm output vector v requires an XOR tree
with n mput bits. Note that the select logic of FIG. 1
combines every bit in input vector X with every bit 1n a
corresponding row of hashing matrix H.

The desirability of hashing large bit-width inputs to
produce a uniform output distribution, and with low com-
plexity, low programming memory space, low latency and
high throughput, 1s evident in view of the foregoing.

v=x-

L

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 diagrammatically illustrates a conventional hash-
ing architecture.

FIG. 2 diagrammatically illustrates a hashing architecture
according to example embodiments of the present work.

FIG. 3 diagrammatically illustrates a hashing architecture
according to further example embodiments of the present
work.

FIG. 4 diagrammatically illustrates a data processing
arrangement capable of implementing some or all of the
hashing functionalities of FIGS. 2 and 3.

FIG. 5 illustrates operations that may be performed
according to example embodiments of the present work.

DETAILED DESCRIPTION

The present work provides minimum Hamming weight
XOR-based hashing that has a uniform output distribution
property, with sigmficantly lower complexity, as well as
potentially better throughput and latency, than conventional
XOR-based hashing of the type shown 1n FIG. 1.

In minimum Hamming weight XOR hashing, the hashing
matrix H has the structure given by (2) below, where each
constituent matrix C, =1, 2, . . . , n/m) 1s an mxm binary

US 9,646,105 B2

3

matrix having the property that the Hamming weight of
every row and every column 1s 1.

G (2)

I Cnfm i

A hashing matrix with this structure and property guar-
antees that each input bit 1s used only once for hashing
output computation, and that each input bit contributes to
only one output bit. This 1s so because the Hamming weight
for any row of H 1s 1. If any row had Hamming weight=0,
this indicates that the corresponding input bit would not be
used for the hashing output computation. Requiring each
row to have Hamming weight=1 1s the mimimum require-
ment to fully utilize the mput bats.

The column Hamming weight constraint (Hamming
weight of every column of C; 1s 1) mimimizes Hamming
welight variation among the C; columns. It implies that all
hashing output bits are computed by XORing the same
number of mput bits when n 1s a multiple of m. The structure
given by (2) above assumes that n 1s a multiple of m. If not,
in order to construct a minimum Hamming weight matrix H,
some embodiments employ floor(n/m) instances of mxm
matrices C,, . . . Cqp,0my» and additional (n-m*tloor(n/m))
TOWS C 1, . . . C, s Aooroumys €aCh 0f whose Hamming weights
1s 1. No two of these additional rows should be 1dentical, and
cach additional row can be located at any row position of H.
Two examples of mimmum Hamming weight hashing matri-
ces follow, the first with n=16 and m=4, and the second with
n=10 and m=4, and where I, 7" 1s a randomly permuted
AxA 1dentity matrix.

oy [HE
oG Lica
G| | Iy
Cal | BT
[0 1 O O7]
0 0 1 0O
1 O 0 0O
Oy 0 0 0 1
|| _|toroo
Co 0 0 0 1]
G2l [JO O O 1°
0 1 0 0O
1 O 0 0O
0010/

H matrix
Programming

10

15

20

25

30

35

40

45

50

Minimum Hamming

4

As noted above, 1t 1s often desired to provide a hashing
output with uniform distribution. Minmimum Hamming
weight XOR hashing guarantees uniform output distribution
as long as the mput distribution 1s umiform. Its complexity,
meanwhile, 1s significantly lower than that of fully arbitrary

matrix based XOR hashing (such as shown 1n FIG. 1).

A mimnimum Hamming weight hashing matrix H as shown
in (2) above may be represented with less than nxm bats.
Using the fact that the Hamming weight of each row 1s 1, 1t
1s possible to describe each row of the H matrix with a
permute value, ‘perm’, having ceil(log,(m)) bits. The ‘perm’
value for a given row basically indicates the position of the
non-zero bit 1n that row. To fully describe the H matrix, n
‘perm’ values, perm(1), . . . perm(n), are needed, one ‘perm’
value for each row of H or, equivalently, one for each input

bit.

FIG. 2 diagrammatically illustrates an architecture
according to example embodiments of the present work that
realizes minimum Hamming weight XOR hashing when n 1s
a multiple of m. It will be evident to workers 1n the art that
extension to the more generic case (1.e., where n 1s not a
multiple of m) 1s straightforward. In FIG. 2, each of n/m
instances of permute logic 21 produces a 1xm vector
z(a+1, ;) by computing GF(2) vector-matrix multiplication
x(a*m+1, ..., (a+1)*m)-C_, where a=0, 1, . . . , n/m-1 for
the respective nstances of permute logic 21. An output bit
z(a+1, b), for b=1, 2, . . ., m, of a given instance of permute
logic 21 1s obtained by selecting one bit among m 1nput bits
x(a*m+1), . . ., x((a+1)*m) indexed by a perm(a*m+b)
signal. In other words, each output bit of each instance of
permute logic 21 can be implemented by a corresponding
m-bit (1.e., m-to-1) multiplexer. The m bits output from each
permute logic 21 are respectively fed to m XOR trees 23.
Each of the m XOR trees 23 receives n/m put bits (one
from each permute logic 21), and produces a corresponding
bit (y(1), y(2), . . . y(im)) of the hashing output vector y by
obtaining the XOR result for the n/m input bats.

Table 1 below summarizes the complexity of the fully

generic XOR hashing (see e.g., FIG. 1) and the minimum
Hamming weight XOR hashing (see e.g., FIG. 2). The

memory requirement for programming the hashing matrix H
1s significantly lower for the minimum Hamming weight
XOR hashing since one ‘perm’ value having ceil(log,(m))
bits 1s sutlicient to represent each row of H, while a generic
matrix requires m bits per row. For an n=640, m=16
example, the complexity of the permute logic 21 of FIG. 2
1s similar to that of the select logic of FIG. 1. However,
minimum Hamming weight XOR hashing exploits the
sparse H matrix structure and provides 16x lower complex-
ity 1n 1implementing the XOR trees.

TABLE 1

Complexity ratio:
n =640, m = 16 case

Fully generic XOR (Fully generic/Minimum

weight XOR hashing hashing Hamming weight)
perm(l), ..., perm(n) n * m bits to represent 4

while each ‘perm’ an n x m binary

signal i1s ceil{log2(m)) matrix

bits wide n =640, m = 16 case:

Total: n * ceil(log,(m)) 10240 bits

bits

US 9,646,105 B2

TABLE 1-continued

Complexity ratio:
n=:640, m= 16 case

Minimum Hamming
welght XOR hashing

Fully generic XOR
hashing

n =640, m = 16 case:
2560 bits

Permutation n/m instances of n * m mmstances of 2-
or Select permute logic bit input AND gate
logic Each permute logic n =640, m = 16 case:
consists of m 10240 nstances of
instances of m-bit 2-immput AND gate
input mux.
Total: n mmstances of
m-input mux
n =640, m = 16 case:
9600 1nstances of 2-
input AND gate
XOR tree m mstances of n/m m 1nstances of n bit

bit input XOR tree

n =640, m = 16 case:
624 instances of 2-
input XOR gate

input XOR tree

n =640, m = 16 case:
10224 1mstances of
2-immput XOR gate

In order to further decrease complexity of the minimum
Hamming weight hashing, some embodiments impose addi-
tional constraints on the matrices C, 1 (2) above. One
example 1s the sub-matrix structure given in (3):

- Al
Azl

Atz oo ALk | (3)

Akl

where A, , 1s a kxk matrix (k<m, m 1s a multiple ot k), and
a and b are the respective row and column indices of the
constituent kxk matrices A in C,. There 1s only one non-zero
matrix among matrices A, |, ... A, . fora given row index
a. The number of non-zero matrices among A, ,, .. . A, 2,
for a given column index b 1s also 1. Each non-zero matrix
A, , 1n (3) above 1s a permuted kxk identity matrix. An
example of H for n=16, m=4, k=m/2 1s given below.

5 o
0B

oy [0 B
le| (e o
& 0 55
ol g o
B0

e

FIG. 3 diagrammatically 1llustrates a hashing architecture
according to example embodiments of the present work
when the hashing matrix structure of (3) 1s applied. Each of
n/m sets of m input bits 1s applied to a corresponding
two-stage cascaded arrangement of permute logic 31 and
select logic 33. Permutation 1s performed separately for each
k-bit segment of mput bits. The permute logic 31 operates
analogously to permute logic 21 of FIG. 2, but permutes
cach k mput bit segment using the only non-zero matrix
among A, |, ...A, . foragiven row index a. Because the
non-zero matrix dimension 1s kxk, each of the m ‘perm’

(Fully generic/Minimum
Hamming weight)

1.07

16.38

25

30

35

40

45

50

55

60

65

signals for a given permute logic 31 can be represented by
ceil(log,(k)) bits. The select logic 33 maps a k-bit segment
of m permuted bits to m bit positions based on the non-zero
matrix location among A, ,, ... A, ., for a given column
index b. Therefore, each select logic 33 uses m select signals
35 having ceil(log,(m/k)) bits each. Each select logic 33
produces m output bits equivalent to those produced by
permute logic 21 of FIG. 2. The m XOR trees 23 of FIG. 3

operate 1n the same manner as i FIG. 2, receiving and
processing the bits output by the select logic stages 33 1n the
same manner that the m XOR trees 23 1n FIG. 2 receive and
process the bits output from the permute logic stages 21.

By using the sub-matrix structure of (3), the permute and
select logics 31 and 33 can be implemented with, respec-
tively, n instances of a k-input multiplexer (m multiplexers
per logic 31) and n mstances of an m/k mput multiplexer (m
multiplexers per logic 33). In the example case of n=640,
m=16, k=4, the total complexity of the permute and select
logics 31 and 33 1s equivalent to 3840 1nstances of a 2-1mnput
AND gate, for a 2.67x complexity reduction compared to
the total complexity required by the permute logics 21 of
FIG. 2, which 1s equivalent to 9600 instances of a 2-mnput
AND gate.

Various embodiments implement the architectures of
FIGS. 2 and 3 1n various manners, for example, hardware,
software, and combinations of hardware and software. FIG.
4 1llustrates that, 1n some embodiments, the functionalities
(or some portion thereof) described above relative to FIG. 2

(or FIG. 3) are implemented by a suitable data processing
resource 41 executing code stored on suitable machine-
readable code storage media 43. The code storage media 43
1s shown 1n broken line to indicate that the storage media
may be physically distinct from the data processing resource
41, or may be partially or fully integrated with the data
processing resource 41.

As noted above, the conventional arrangement of FIG. 1
combines every bit in input vector x with every bit 1 a
corresponding row ol hashing matrix H. In contrast, as 1s
evident from the foregoing descriptions of FIGS. 2 and 3, the
present work does not combine every bit in x with every bit
in any row ol H. As a result, and as noted above in Table 1,
the XOR trees 23 of FIGS. 2 and 3 require a signmificantly

lower gate count than those of FIG. 1.

US 9,646,105 B2

7

FIG. 5 illustrates operations that may be performed
according to example embodiments of the present work. The
embodiments described above relative to FIGS. 2 and 3 are
capable of performing the illustrated operations. At 51, the
hashing iput vector x 1s provided. At 52, the hashing output
vector y 1s produced without combining every bit 1n x with
every bit 1n any row of the hashing matrix H.

Although example embodiments of the present work have
been described above 1n detail, this does not limait the scope
of the work, which can be practiced 1n a variety of embodi-
ments.

What 1s claimed 1s:

1. A hashing circuit, comprising:

a plurality of N/M permutation circuits, where N and M
are positive integers, wherein each permutation circuit
1s coupled to receive M respective input bits and M
respective permutation signals, and wherein each of the
M respective permutation signals selects one of the M
respective mput bits as an output bit of the respective
permutation circuit; and

a plurality of M exclusive OR (XOR) ftree circuits,
wherein each XOR tree circuit 1s coupled to receive one
output bit from each of the N/M permutation circuits,
and wherein the plurality of M XOR tree circuits
produces M output bits of a hashing vector comprising,
a single output bit from each XOR tree circuait.

2. The hashing circuit of claim 1, wherein each permu-
tation circuit comprises M M-to-1 multiplex circuits,
wherein each multiplex circuit 1s coupled to receive the M
respective mput bits, and wherein a respective permutation
signal selects one of the M respective input bits.

3. The hashing circuit of claim 1, wherein each permu-
tation circuit comprises a plurality of AND gates, and
wherein each AND gate 1s coupled to receive a respective
input bit and a respective permutation signal.

4. The hashing circuit of claim 1, wherein N 1s an integer
multiple of M.

5. The hashing circuit of claim 1, wherein each permu-
tation signal comprises ceil(log,(M)) bits, which 1s the
smallest positive integer that 1s greater than or equal to
log,(M).

6. The hashing circuit of claim 1, wherein each permu-
tation signal of a respective permutation circuit selects one
of the M respective input bits of the respective permutation
circuit.

7. The hashing circuit of claim 1, wherein each of the N/M
permutation circuits 1s implemented 1n software.

8. A hashing circuit, comprising:

a plurality of N/M permutation circuits, where N and M

are positive integers, wherein each permutation circuit
1s coupled to receive M respective input bits and M
respective permutation signals, and wherein each of the
M respective permutation signals selects a plurality of
K bits of the M respective mput bits as permutation
output bits of the respective permutation circuit, where
M 1s an integer multiple of K;

a plurality of N/M select circuits, wherein each select
circuit 1s coupled to receirve a respective plurality of
permutation output bits and M respective select signals,
and wherein each select circuit produces M respective
selected bits in response to the M select signals; and

10

15

20

25

30

35

40

45

50

55

60

8

a plurality of M exclustve OR (XOR) tree circuits,
wherein each XOR tree circuit 1s coupled to receive one
of the selected bits bit from each of the N/M select
circuits, and wherein the plurality of M XOR ftree
circuits produces M output bits of a hashing vector
comprising a single output bit from each XOR ftree
circuit.

9. The hashing circuit of claim 8, wherein each permu-
tation circuit comprises M K-input multiplex circuits,
wherein each multiplex circuit 1s coupled to receive the K
respective mput bits, and wherein a respective permutation
signal selects one of the respective mput bits.

10. The hashing circuit of claim 8, wherein each permu-
tation circuit comprises a respective plurality of AND gates,
cach AND gate coupled to receive a respective mput bit and
a respective permutation signal.

11. The hashing circuit of claim 8, wherein N 1s an integer
multiple of M.

12. The hashing circuit of claim 8, wherein each permu-
tation signal comprises ceil(log,(K)) bits, which 1s the
smallest positive integer that 1s greater than or equal to
log,(K).

13. The hashing circuit of claim 8, wherein each permu-
tation signal ol a respective permutation circuit selects a
plurality of K of the M respective mnput bits of the respective
permutation circuit.

14. A method of producing a hashing vector, comprising;:

receirving M respective mput bits at each of a plurality of
N/M permutation circuits, where N and M are positive
integers and N 1s greater than M;

producing M respective output bits from each of the N/M
permutation circuits 1n response to the respective mput
bits;

recerving one of the output bits from each of the N/M
permutation circuits by each of a plurality of M exclu-
stve OR (XOR) tree circuits; and

producing M output bits of a hashing vector comprising a
single output bit from each XOR tree circuit 1n
response to the output bits from the N/M permutation
circuits.

15. The method of claim 14, comprising producing the M
respective output bits from each of the N/M permutation
circuits 1n response to a plurality of M respective permuta-
tion signals.

16. The method of claim 15, wherein each permutation
signal of a respective permutation circuit selects a respective
one of the M 1nput bits of the respective permutation circuit.

17. The method of claim 14, wherein each permutation
circuit comprises M M-to-1 multiplex circuits, wherein each
multiplex circuit 1s coupled to receive the M respective input
bits, and wherein a respective permutation signal selects one
of the M respective mput bits.

18. The method of claim 14, wherein each permutation
circuit comprises a respective plurality of AND gates, and
wherein each AND gate 1s coupled to receive a respective
iput bit and a respective permutation signal.

19. The method of claim 14, wherein N 1s an integer
multiple of M.

20. The method of claim 14, wherein each permutation
signal comprises ceil(log,(M)) bits, which 1s the smallest
positive integer that 1s greater than or equal to log,(M).

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

