12 United States Patent

Geist

US009645913B2

US 9,645,913 B2
May 9, 2017

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
DEBUGGING PROGRAMS

(76) Inventor:

(%)

Daniel Geist, Haifa (IL)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 517 days.

(21) 13/564,079

(22)

Appl. No.:

Filed: Aug. 1, 2012

Prior Publication Data

US 2013/0036403 Al Feb. 7, 2013

(65)

Related U.S. Application Data

(60) Provisional application No. 61/514,533, filed on Aug.

3, 2011.

Int. CI.

GO6F 9/44
GO6F 11/36
GO6l 11/32

U.S. CL
CPC

(51)
(2006.01
(2006.01

(2006.01

L N -

(52)
........ GO6F 11/3664 (2013.01); GO6F 11/323
(2013.01); GO6F 11/362 (2013.01); GO6F
11366 (2013.01); GO6F 11/3636 (2013.01)

Field of Classification Search

(58)
GOGF 11/362
.. 717/125

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUM

NS

6,981,243 Bl *
2012/0278791 Al*

12/2005 Browning et al. 717/124
11/2012 Geust 717/125

ttttttttttttttttttttttttttttt

OTHER PUBLICATTIONS

Bill Lewis; “Debugging Backwards in Time”; Fifth Int. Workshop
on Automated and Algorithmic Debugging (AADEBUG2003); Sep.

2003.*

Kovacs, Jozsef, et al.; “Integrating temporal assertions into a

parallel debugger”; Euro-Par 2002 Parallel Processing; Springer

Berlin Heidelberg, 2002; 113-120.*
“Waveform Viewer”;, Wikipedia.org website; Sep. 15, 2011.*
Jovitha Jerome; “Virtual Instrumentation Using LabVIEW?™, PHI

Learning Pvt. Ltd.; Mar. 29, 2010; pp. 131-142, 152.*
“Waveform Graph Cursors”; LabVIEW virtual instrumentation (VI)
tutorial pages, National Instruments website (ni.com); Apr. 30,
2010.*

Manna et al., The Temporal Logic of Reactive and Concurrent
Systems: Specification, 1992, Springer-Verlag, Berlin.

Sancho et al., Current Practice and a Direction Forward in Check-
point/Restart Implementations for Fault Tolerance, Proceedings of
the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05) Workshop 18, 2005, vol. 19.

Platform PSF, Retrieved at <<http://www.platform.com/workload-
management/high-performance-computing/>>, on Jul. 26, 2012.
Ruest et al.,, Virtualization: A Beginner’s Guide, 2009, McGraw
Hull.

(Continued)

Primary Examiner — We1 Zhen
Assistant Examiner — Clint Thatcher
(74) Attorney, Agent, or Firm — Tutunjian & Bitetto, P.C.

(57) ABSTRACT

A computer-implemented method, apparatus and computer
program product for debugging programs, the method com-
prising: displaying a graphic waveform showing values of
one or more state variables of a computer program being
debugged 1n two or more points in time; receiving a user
selection from points in time, of an indication to a selected
point 1n time 1n execution from the graphic wavetorm; and
resuming within a debugger an execution state of the com-
puter program associated with the selected point 1n time.

20 Claims, 4 Drawing Sheets

A : wireidoorCpen
- wire: dﬁvaufttﬂ.:n{t

4 wireidownBullonfz]

*’ fiEy .-: T f:= wf ai e
el -\. :.::I- {.‘:\-:i:‘ F :‘\. ‘"‘\‘:}'\:ﬁ? "‘1.\'_".,'. """"b_";? zl { i-" . }}I.‘:-:: ;E.l::'\':-"-"-
T S ."*?‘rf‘.*_ 3"*-'.?;“-‘- T -.r::-:-:-'..-f::

u:'f ﬂﬂﬂ'::- gy Gl i
‘.‘.:"' ::'.::..:'......'..'-':': A N TR L) CLERCLRY LRI R

e ey =T ey
E%:n"';ilﬂtllls:\:;i_? Sk
:: -ﬁ‘ﬂéfa ; e
"'k. h,_ A4 - """":""_“.l . atatesh Al
5 ‘3 "\. "“" :- o H
Ha{‘t Y ~;$¢--.1---
m"'-:l‘- e -ﬂr -

'.~ :_,,,:. 'f‘i" {“u.“ﬂ
“‘5& "‘i::« u.-:ﬁ.,:,.r“’:i n

e]

?_-aﬁ;!;aa&a'f.:;sg;::-::::a-w.ﬁ SR

PR AR SRR E1e t-.;a it *-:-

%::’3:?1#‘:':{:‘-;5-:%'"5) .'113-':':;:.‘.7.‘1-'55{':'? 3?-:? D 51 3
T e T

FELEWATEND STEE ey bE

LR e T

R _r:ﬁ:s‘é&m """""

ﬁ%m ;w:w ? @ »w‘ﬂ {*-“x zﬁ“t ~H~. (e g

;_.:.H'\.-:-."'I'l"':dl. b el RO Ty by R :.J F ot i] ot R R) :'I""'ﬁ"-.'l" o Wl Rl pF i Sy bl il B T e R IR b el Ry R i
.'-\."'-;. - TP e .-'_:.rl' . B R R T R
LA p UEMREEE UL L T i i T I T e T D R L S il fiin i it i LG R AR T S e R ey
T . ot -t - PR P T T e T T 2 0 T T T e T s e T T T T e R I
S coe T L b T e i D e
s N Lalt sy Ameg h [BB
N R R A R S et I e RN i e i el e e i e e e e
BE T Tl AT R A T W B T TS P T U i L b Tl P S S NS B SIS B R TR SRS
R
WL Deednagt sk - B T T oty s A e e e e e s et A et
o PERGNL L B QG e T R S R T e e i st T R A e
A k S T . 54 PR ol
‘ R A TSRS R T el T T e e L R e L L T R R s e T S it e Do
: RS R . D
LT L T e e Pt e 2y
R M L S
3'_: : EE-\. A S
3.0 iue &0 IEERENEN A o
1 JEEA &L L = ST I -
T A O s - S - ot r‘ifwng tnmg” g T
I e e B LT T e e T T T e AT T e T T e O RIS e T e 1= s]
PTG e T L e T T e A T e downButton]Z}= L[
E .-\-.,_-.;.\.;-{'--I--l: ':\.-\\‘:E ;.. !-5_. . ..::-\.. -\..-\.M.-\.:_..-\I.i...: S ﬁr_« ﬁ_-::._:.\,'-:.
i BRI TR AL PiE‘-“u"Hff}“i r::ﬂaﬁmI ’H S OO ﬁf_*! [
3 A CER N Y Gt ST L H L STEE TSNt v S S e
G e e T :
LR DL e s T .
e SRS
- _ EERL LY ; """
i : A S : . S Il :
et AN '-5-- : . T M e T e sk : -
'- iy "‘-:,. }',-n-g "H- ‘s ""l !e-. "-'.t :‘- \, * b O R T 3"' i &"‘-iﬁﬁ ek e Ty L ;
;

wnre elevatcrrLa{:attani‘r {}}

......
o S T

......

.........
......

..............................
L I L e e L e e T e Wi e L
...............

..

\
100

US 9,645,913 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

VMware Virtualization for Desktops, Retrieved at <<http://www.

vmware.com>>>, on Jul. 26, 2012.

What 1s Xen, Retrieved at <<http://www.xen.org>>, on Jul. 26,
2012.

Waveform viewer, Retrieved at <<http://en.wikipedia.org/wiki/
Wavetorm_ viewer>>, on Jul. 26, 2012.

Saito, Jockey: A user-space library for record-replay debugging,
Proceedings of the 6th International Symposium on Automated
Analysis, 2005.

Lewis, Better Software Development with Replay Debugging,
Retrieved at <<http://www.replaydebugging.com/2008108/
vmware-works . . . >> on Jul. 26, 2012.

GDB: The GNU Project Debugger, Retrieved at <<http://www.gnu.
org/software/gdb/documentation/>>, on Jul. 26, 2012.

Debugging with IntelliTrace, Retrieved at <<http://msdn.microsoft.
com/en-us/dd264915 .aspx>>, on Jul. 26, 2012.

Integrated Virtual Debugger for Visual Studio Developer’s Guide,
Retrieved at <http://www.vmware.com/pdf/ws7__ visualstudio__de-
bug/pdt>>, on Jul. 26, 2012.

What Lizard 1s and how it works, Retrieved at <<http://lizard.
sourceforge.net/explain.html>>, on Jul. 26, 2012.

Omniscient Debugging, Retrieved at <<http://lambdadocs.com/de-
bugger>>, on Jul. 26, 2012.

* cited by examiner

U.S. Patent May 9, 2017 Sheet 1 of 4 US 9,645,913 B2

112

FLIUL

4 T S S T Y S R R R T S N S e e S S S S N e e S R R S S e W o G S S S o S S S O e

i
04

—

-
A g

TQ0E 01}

W
Lk

1
]
.

e e T e L e e e B L e S ol T e T e e T L e i e | e S e e T L N S N e e B i R e i N B e e e T B e U e " B e N B e

§

£

;

:
__r::,_

e

kAT

--;-::-.:f._j.-.-

H

H
Fin—iaind

i
L
i
1
i

—

e e R A A L L T T TR R DR D =0 =i = = = s = 1= 1 = 1 = = L T T e ==

Ty R ATy e W sy ey

05 101

240's6C

4

i

P

{isec

A L N

R It R S

"1"3_.1"3 L e nn
(1

£o0sec

O

downBution{2])=

doorOpens=
downButton[1i=
slevatorLocation(

1T F1IrF=S717L7TTET TP FI-FTIIFTITIISTI %3P0 F
P T T T T B o B e I I I IO BT I R |

0]

rrrrT

L A

At SRR

T TR T R T e T wTeT e

L N L L L s,

downBution{ 1]

downBution{2}
slevatoriocationt

doorOpen

SR

ddiddalbbliddiddaddaldfadddidbliddrbabiddaldiddiddaldbiddss

-

L L)

u

W
L]
-

1

e

wire
Wire
wire
Wwire

e P aoL oy e ey eyt e st e e e e B e T O D T O G O T T L i T T e oL TC

T A ﬂl:::- =

A e

Py gy

vy

nra et

ke,

L e

LTew

v
1

L
'\-t.

)

R

':«:- 1
L

el T T G T L e T e e e, e
Ll = T Pty .

R =

LI Eakg

. i

" oar, -
L o

S

ra,

+
oA

L
i

R
-

]

e LA
T

2
b
2

1N
b
v

Ewa i)
RIS

-

Y 1. .
..'l'::\. .
Py

4™

:"L"-J:.'-H - :. i .-J'.-"'- la P [F:__
- AL .. P N T - .
Fa ;::;.-.r*.- P :,_:. . -r-u-.*"":.-*'.;_-' - f":'u'i":; -

- e A St A ._.:. Lyt gt e
i S M LA R P :.;3\-.! Lt e
L e RN = L I Lt o .
F Wl e T -i-___ T e e £ bty :‘"E R

. R U L o R R b

o °
Nl
'

SRR B

LN

- o
' R
PR h
LA R
o

TR N A
.
B
s

il

T

-
'
K
o

I r ey
u
et

M

AN
1
a

L

LI
"rd
iy

LM
i
-
o
e
Y ..‘_. s
R
-
')
e
3
<

i #
1 L LY .l"l_p
SRR T v T s
..:_: BT A et S

b .
T LT L L L B L R L A e B P L EE A L R b g L kL e b e B ke a pkd p et T g

US 9,645,913 B2

Sheet 2 of 4

May 9, 2017

U.S. Patent

¥3aVO0l
oes] 3LVIS

4

- ¥ISMONS
[INYO4IAVM

d4499N48440
8CC

C

¢ Old

S1OHSdVNS
NOILNOAXd

vcc

SANIVA
4 19VIAVA
31V1S

430Vl

0cc

4%

SA1aVIdVA
41V1S

80¢

SNOILVOOT
NVHO0dd

r0C

400D
NVHOO0™d

00¢

U.S. Patent May 9, 2017 Sheet 3 of 4 US 9,645,913 B2

304
RECEIVE PROGRAM CODE ~
RECEIVE PROGRAM LOCATIONS AND 308
STATE VARIABLES

EXECUTE PROGRAM TO OBTAIN AND 312
STORE EXECUTION SNAPSHOTS AND

STATE VARIABLES AT LOCATIONS

RECEIVE EXECUTION SNAPSHOTS AND |320
STATE VARIABLES AT LOCATIONS
324
DISPLAY STATE VARIABLES USING A
WAVEFORM BROWSER

RECEIVE A POINT SELECTION

330
OBTAIN INFORMATION FOR RESUMING
EXECUTION
RESUME EXECUTION IN ACCORDANCE 332
WITH POINT SELECTION

FIG. 3B

U.S. Patent May 9, 2017 Sheet 4 of 4 US 9,645,913 B2

400
COMPUTING DEVICE

404 412
PROCESSOR(S) /O DEVICE
416

~ STORAGE DEVICE
420 424 428

PROGRAM

PROGRAM LOCATIONS AND

STATE VARIABLES TRACER
RECEIVING
COMPONENT

RECEIVING
COMPONENT

432 444 452

DEBUGGER DATA AND

CONTROL FLOW
MANAGEMENT
COMPONENT

INFORMATION
436

WAVEFORM
BROWSER
448
MMI MODULE

RESUMING
COMPONENT

AND STATE
VARIABLES

FIG. 4

US 9,645,913 B2

1

METHOD AND APPARATUS FOR
DEBUGGING PROGRAMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/514,533 filed Aug. 3, 2011, which 1s

hereby incorporated by reference 1n 1ts entirety.

TECHNICAL FIELD

The present disclosure relates to debugging programs in
general, and to techniques and user 1nterfaces for debugging
software programs, in particular.

BACKGROUND

Computerized devices control almost every aspect of our
life—from writing documents to controlling traflic lights.
However, computerized devices are bug-prone, and thus
require a testing phase in which the bugs should be discov-
ered. The cost of not discovering a bug may be enormous,
as the consequences of the bug may be disastrous. For
example, a bug may cause the injury of a person relying on
the designated behavior of the computerized device, such as
a medical device, a traflic light, or others. Additionally, a bug
in a marketed product may be expensive to fix, as patching
it may require call-back of devices from the market. Hence,
many developers of computerized devices ivest a substan-
tial portion of the development cycle in discovering erro-
neous behaviors of the computerized device.

The testing phase 1s considered one of the most dithcult
tasks 1n designing a computerized device. Debugging 1s one
of the most time consuming tasks of a software developer.
Finding bugs and determining their root cause may require
significant human and time resources. It 1s often the case that
bugs exhibit unexpected behavior only a long time and many
instructions after it was created, which makes discovering 1t
much harder. Generally, as the software 1s more complex,
debugging may take more time and may be more complex
and involve more data. Debugging may become especially
difficult when the software contains some form of parallel
processing, for example software utilizing multiple threads,
multiple processors, or the like.

If more efhicient and productivity-enhancing tools become
available, the faster and more eflicient may the debugging
process become.

BRIEF SUMMARY

One exemplary embodiment of the disclosed subject
matter 1s a computer-implemented method performed by a
computerized device, comprising: displaying a graphic
wavelorm showing values of one or more state variables of
a computer program being debugged in two or more points
1in time; recerving a user selection from the points in time, of
an indication to a selected point 1n time 1n execution from
the graphic wavelorm; and resuming within a debugger an
execution state of the computer program associated with the
selected point 1 time. Within the method, resuming the
execution state of the computer program optionally com-
prises loading a previously stored execution snapshot taken
at the selected point 1n time during execution. Within the
method, the execution snapshot optionally comprises one or
more 1tems selected from the group consisting of: a call
stack, a heap, and a memory 1mage. Within the method,

10

15

20

25

30

35

40

45

50

55

60

65

2

resuming the execution state of the computer program
optionally comprises replaying execution of the computer

program based on a previously recorded execution. The
method may further comprise: recerving one or more pro-
gram locations within program code of the computer pro-
gram; receiving the state variables; executing the computer
program; and storing values of the state variables when the
executed computer program reaches one of the program
locations. The method may further comprise storing an
execution snapshot when the computer program executed
reaches one of the program locations. The method may
further comprise modifying the program code to include
instructions for storing the state variables. Within the
method, one or more of the two or more points 1n time are
optionally determined based on a temporal assertion.

Another exemplary embodiment of the disclosed subject
matter 1s an apparatus having a processing unit and a storage
device, the apparatus comprising: a debugger, comprising: a
wavelorm browser for displaying a graphic wavetorm show-
ing values of one or more state variables of a computer
program being debugged 1n two or more points 1n time; a
man machine interface module for receiving a user selection
of an indication to a selected point 1n time 1n execution from
the graphic wavelform; and a state resuming component for
resuming within the debugger a state of the computer
program associated with the selected point 1n time 1n execu-
tion. The apparatus may further comprise: a program receiv-
ing component; a program locations and state variables
receiving code for recerving one or more program locations
and the state variables; and a tracer for executing the
program and storing values of the state variables when the
program reaches the any of the program locations. Within
the apparatus, resuming the state of the computer program
optionally comprises loading an execution snapshot.

Yet another exemplary embodiment of the disclosed sub-
ject matter 1s a computer program product comprising: a
non-transitory computer readable medium; a first program
instruction for, displaying a graphic waveform showing
values of one or more state variables of a computer program
being debugged 1n yow or more points 1n time; a second
program 1instruction for receiving a user selection from the
points in time, of an mdication to a selected point 1n time in
execution from the graphic wavetform; and a third program
instruction for resuming within a debugger an execution
state of the computer program associated with the selected
point in time, wherein said first, second and third program
instructions are stored on said non-transitory computer read-
able medium.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present disclosed subject matter will be understood
and appreciated more fully from the following detailed
description taken 1n conjunction with the drawings 1n which
corresponding or like numerals or characters indicate cor-
responding or like components. Unless indicated otherwise,
the drawings provide exemplary embodiments or aspects of
the disclosure and do not limit the scope of the disclosure.

n the drawings:

FIG. 1 1s an exemplary screenshot ol a debugger com-
prising a wavelorm browser, in accordance with some
exemplary embodiments of the disclosed subject matter;

FIG. 2 1s a schematic data and components diagram,
showing inputs, components and activities in a system and
method 1n accordance with some exemplary embodiments of
the disclosed subject matter;

US 9,645,913 B2

3

FIG. 3A 1s a flowchart of steps in a method for preparing
a program for debug, mn accordance with some exemplary

embodiments of the disclosed subject matter;

FIG. 3B 1s a flowchart of steps 1n a method for debugging
a program, in accordance with some exemplary embodi-
ments of the disclosed subject matter; and

FIG. 4 shows a block diagram of components of an
apparatus for debugging programs, 1n accordance with some
exemplary embodiments of the disclosed subject matter.

DETAILED DESCRIPTION

The disclosed subject matter 1s described below with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the subject matter. It waill
be understood that blocks of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer program instructions. These computer
program 1nstructions may be provided to one or more
processors ol a general purpose computer, special purpose
computer, a tested processor, or other programmable data
processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block or blocks of block diagrams.

These computer program instructions may also be stored
in a non-transient computer-readable medium that can direct
a computer or other programmable data processing appara-
tus to function 1n a particular manner, such that the mnstruc-
tions stored 1n the non-transient computer-readable medium
produce an article of manufacture including instruction
means which implement the function/act specified in the
flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a device. A computer or other programmable data
processing apparatus to cause a series of operational steps to
be performed on the computer or other programmable
apparatus to produce a computer implemented process such
that the 1nstructions which execute on the computer or other
programmable apparatus provide processes for implement-
ing the functions/acts specified 1n the tlowchart and/or block
diagram block or blocks.

One technical problem dealt with by the disclosed subject
matter 1s determining the point 1n execution, e.g., the spe-
cific instruction or 1instructions, in which an incorrect
instruction 1s performed. The instruction may be incorrect
due to any reason ranging from a small mistake to a major
mis-design, however 1t may be equally important to detect 1t.
The implications of the imncorrect instruction may not always
be immediately observable, but rather the error may have
ellect on observable behaviors only later 1n the execution,
sometimes 1n a location or step which may seem unrelated
to the incorrect instruction.

In addition to performing a “step-by-step” execution
during a debugging session, a user may desire to restore a
state of the program that the program was previously in and
the debugger may be instructed to restore the state.

One technique for resuming execution of a previously
encountered state 1s checkpointing, which may consist of
storing one or more snapshots of the program execution
state. Any of the snapshots may later on be used for
restarting execution of the program in that specific state.
Checkpointing may be used for debugging and diagnostics,
as well as for fault tolerance or load balancing on a computer

10

15

20

25

30

35

40

45

50

55

60

65

4

cluster. In some embodiments, a checkpoint may be loaded
using a command line instruction to the debugger.

It will be appreciated that checkpointing can be partial or
tull, and may be done at various levels, for example storing
one or more variable values of the program, storing process
level state of a process 1n a program, storing the entire
program state, or even part or all of the state of the
computing environment the program was runmng in. Some
virtualization soitware may provide the ability to checkpoint
and store a snapshot of the state of an entire virtual machine.

Some debuggers, referred to as replay debuggers, provide
for resuming a previous checkpoint during a run. Some
debuggers may provide checkpoint saving such that execu-
tion may be resumed to any of the stored states. However,
such resuming may not be practical in situations where long
runs with many checkpoints are required. Furthermore, the
stored checkpoints are only useful within the same interac-
tive session, and checkpoints from previous runs cannot be
loaded.

In some exemplary embodiments, checkpointing may
save process level information. Additionally or alternatively,
checkpointing may be save instruction level information.
The saved information may be used to restore the state of the
program, either based on the process level information, the
instruction level information, or both.

Another technique for resuming execution of a previously
encountered state relates to recording or replaying. Using
these techniques, rather than saving the execution state, the
inputs to the program during execution are recorded and
stored. The program can then be replayed with the recorded
values used as inputs.

The recording can be relatively
cilicient 1n time and space. Recording and replaying may
also be implemented at diflerent levels, such as at process
level, virtual machine level, or the like. In a deterministic
program, by replaying the same input, the program will
reach the same state. In some exemplary embodiments,
pseudo-random inputs may be modified to be deterministic,
such as by re-using the same random seed.

Another technical problem dealt with by the disclosed
subject matter 1s to provide a user interface which makes
debugging, including the loading of required snapshots more
cilicient. As more checkpoints are available, the more com-
plex it may be to choose the one to load.

Another technical problem dealt with by the disclosed
subject matter 1s to provide a user with interface for efli-
ciently checking and tracking a program, even if the user 1s
not looking for a specific bug. The user may thus benefit
from using debugging tools also in other parts of the
development process.

One technical solution comprises the storage of multiple
execution states at multiple checkpoints during a prelimi-
nary run. The terms checkpoint and program location at
which a snapshot 1s taken may be used interchangeably. At
cach checkpoint, the values of one or more varables or
memory locations of the program are also stored, optionally
in a different format or a separate memory or storage area.
The preliminary run at which the states and the varniables are
stored may be performed as part of debugging or at a
preliminary stage.

After the preliminary run, a debug session may take place,
which may be a confinuation of a session at which the
preliminary run was performed, or a diflerent session. Dur-
ing the debug session, the values of the variables, as stored
at the checkpoints may be presented to a user, for example
using a wavelorm browser.

A wavelorm browser or viewer may be a software module
that visualizes the progress of program execution over time.

US 9,645,913 B2

S

The browser may present the values of one or more program
variables as functions 1n time, as detailed below. Although
these functions are discrete, they may be displayed, for
example 1n the form of one or more continuous graphs.

It will be appreciated that the time axis of a waveform in
accordance with the disclosure may be non-linear, or may
even be inconsistent, since the variable values are stored at
various checkpoints wherein a time indication may not be
provided or available. For example, checkpoints at which
variable values are stored may occur at 2 seconds, 10
seconds, 10.05 seconds, 12.4 seconds 1nto the execution, or
the like. Thus, the time axis may only represent partial order
between the checkpoints.

A user may examine the wavetorms of the values as stored
during the preliminary run, locate a checkpoint at which the
values or the value changes seem of importance, and select
that checkpoint. The program state recorded at the check-
point may then be loaded into the debugger and execution
may be resumed therefrom, using all available functionality
of the debugger. The user may then select another check-
point such that execution 1s resumed at the state recorded at
that checkpoint, and so on.

Additionally or alternatively, instead of storing and load-
ing checkpoints, the disclosed subject matter may record the
execution and replay 1t until reaching the selected point 1n
execution. In some embodiments, checkpointing and replay
may be combined, by loading a certain checkpoint and
continuing with replay from that point on.

One technical eflect of the disclosed subject matter relates
to displaying values of one or more variables 1n a program,
in one or more checkpoints during an execution of the
program. The variables” values may be visualized as wave-
forms, which may provide a user with a broad view of the
behavior of the varniable. It will be noted that 1n some
exemplary embodiments, one or more of the values’ changes
may not be reflected in the wavetorm, for example 1f a value
changed from O to 1 and back to 0 between two checkpoints,
but such behavior can be corrected using different or addi-
tional checkpoints 1n another preliminary run.

Another technical effect of the disclosed subject matter
relates to providing a method to assume a program state at
a point at which one or more variables assume a particular
value, change 1n particular manner, or exhibit any other
behavior reflected 1n the wavelorm. By selecting a point in
the waveform, the state of the program, machine, virtual
machine or another environment as recorded during execu-
tion, 1s loaded 1nto the debugger, and debugging may resume
from that checkpoint. Resuming execution at the exact
checkpoint may save a lot of debugging time of stopping
execution at multiple predetermined locations which may
not include the erroneous areas of the program.

The disclosed subject matter thus provides for more
convenient and eflicient debugging. The debugging 1s made
convenient and eflicient due to the clear view of variable
values during execution of the program, and due to the
convenient way of resuming execution at an exact check-
point without having to go through long execution paths.

Referring now to FIG. 1, showing an exemplary screen-
shot of a debugger comprising a wavetform browser. FIG. 1
shows a screenshot 100 of a user interface of a debugger
program.

The user iterface may display, as common 1n debuggers,
a pane 104 containing a portion of the code of the program
being debugged, a tracing pane 108, or other panes or
windows which may be used when debugging a program.

10

15

20

25

30

35

40

45

50

55

60

65

6

Screenshot 100 also comprises window or pane 112,
which shows a wavelorm browser or viewer, or additional
related data.

Thus, pane 112 may comprise variable area 116 present-
ing a list of one or more state variables for which a
wavelorm 1s available, and wavelorm area 118 presenting
the respective wavelorms for the state variables.

Wavelorm area 118 may comprise vertical indications of
the time points for which the state variables are available.
For each such time point, an execution snapshot of the
program may also be available. However, 1n some exem-
plary embodiments, the waveforms in wavetform area 118
may comprise values at points in time for which the value of
the state variables was recorded but an option to resume the
program 1in that point 1n the time 1s not available. In some
exemplary embodiments, points 1n time for which a resume
option exists may be presented 1n a distinguished manner
such as using different color or line thickness, using an
overlaid vertical line, or any other visual manner.

It will be appreciated that the time points are not neces-
sarily uniformly spaced, and may not even be designated 1n
time units. Rather, consecutive numbering or even no num-
bering at all can be used.

As seen 1n area 118, a single Boolean variable, such as the
“door open” variable may be depicted using a graph, while
more complex variables, such as the elevator location array
may be displayed textually. It will be appreciated that
different or additional presentation manners may also be
used. Each such representation 1s referred to herein generally
as “wavetorm”.

Area 120 may provide a user of the debugger with tools
for managing the waveform browser, for example selecting
the state variables to be presented, their order, the respective
display type, or the like.

A user may select any of the time points from waveform
browser 118. Upon receiving the user’s selection, the execu-
tion snapshot associated with the particular time point may
be loaded into the debugger, such that the debugger assumes
the same internal states and memory contents as 1f the
program was launched and run as in the preliminary run,
until that point. The user may then continue debugging using
any available debugging option, or select and load any other
time point which may be loaded mto the debugger.

In some exemplary embodiments, the definition of points
in time may be based on a user-configurable temporal
scheme, such as an execution of a pre-defined library
function, modification of a value of a predetermined vari-
able, or the like. In some exemplary embodiments, other
temporal schemes may be defined, such as for example,

those depicted in PCT Publication No. WO 2011/083459
entitled UTILIZING TEMPORAL ASSERTIONS IN A
DEBUGGER, by GEIST Daniel, filed on Jan. 2, 2011, which
1s hereby incorporated by reference in 1ts entirety.

It will be appreciated that a multiplicity of sets of vari-
ables may be created, for example using a multiplicity of
temporal assertions, each associated with a set of variables.
The user may then be presented with a list of the sets and
may choose which set he would like to be displayed.

Referring now to FIG. 2 showing a data and components
diagram 1n an apparatus for debugging.

The first mput to the system 1s program code 200, which
has to be debugged. Program code 200 may be written 1n any
programming language, such as C, C++, C#, Java, or others.

Another input to the system comprises program locations
204, which relates to locations in the program, which when
the program arrives to these locations, execution snapshots
and the values of the state variables will be stored. Each

US 9,645,913 B2

7

location may be indicated, for example, as the beginning of
a function, a method, a procedure or other functional unit, a
specific mstruction selected by a user, an nstruction 1den-
tified using another tool or technique such as temporal
assertions, or the like. The location may also be indicated 1n
relative or absolute time units, such as 10 seconds into
execution, at 10:0000 AM, which will cause the program to
take the snapshots and state variables at the particular time,
or the like. Additionally or alternatively, program locations
204 may be defined implicitly based on a user-configurable
temporal scheme.

Yet another input to the system comprises state variables
208, which comprises one or more variables of the program,
the values of which will be stored when the program reaches
any of locations 204, and displayed by the wavelorm
browser. State variables 208 may include global variables
which are available throughout execution, local parameters
which exist only 1n a partial scope of the execution, function
or method parameters, or the like. The state variables may be
selected by a user, 1dentified using another tool or technique
such as temporal assertions, or the like.

Program code 200, program locations 204 and state
variables 208 are input into a tracer 212, which may or may
not constitute a part of a debugger. Tracer 212 may generate
and insert 1nstructions into program code 200 at program
locations 204, which may cause the program to dump an
execution snapshot, and store the current values of the state
variables. Tracer 212 may then run the program 1n a pre-
liminary run, and whenever one of program locations 204 1s
reached, the dumping 1nstructions are executed, such that an
execution snapshot and the state variables are stored. The
execution snapshot or the state variable values nay be
associated with a time stamp.

In some exemplary embodiments, tracer 212 may operate
by creating a subroutine, function, procedure, method or
another functional unit that stores the values of state vari-
ables 208 when called. Program code 200 may be modified
to call this unit when 1t reaches any of program locations 204
by adding a call to the program code in the location, by
adding a breakpoint trap at the location, and causing the
program to call this unit whenever 1t has a breakpoint trap in
the location, or in any other manner.

It will be appreciated that tracer 212 may trace the
program a-priori, before debugging 1s started. In this mode,
tracer 212 may 1nsert breakpoint traps at any of program
locations 204 and may create a modified program 216, such
as program with traps. Tracer 212 may then execute the
modified program and monitor the program execution.
Whenever a relevant trap 1s reached, the program may be
suspended. The tracer may create an execution snapshot of
the program execution, and the values of state variables 208
may be dumped. The values may be dumped by appending
them into a dump file. Tracing may continue until the
program 1s halted or exits.

In other embodiments of a-priori tracing the program, a
variant using record or replay technique may be used by
tracer 212. In such embodiments, the entire execution may
be recorded using the record/replay technology, such as, for
example, by running the tracer inside a virtual machine that
has execution recording turned on. It will be appreciated,
however, that record/replay technology may be used 1n other
contexts and 1s not limited to virtual machines. When using
record/replay the tracer does not have to output snapshots,
but only to dump the values of state variables 208. In some
embodiments, the program may be run without the tracer, by
inserting a call to the unit that dumps the values at program
locations 204. In some exemplary embodiments, during

10

15

20

25

30

35

40

45

50

55

60

65

8

recordation of the execution, inputs provided to the program
may be recorded to be provided as inputs 1f the execution 1s
to be replayed.

Alternatively, tracer 212 may be run from within a debug-
ger. In this mode the tracer may be integrated into a
debugger, such as debugger 228. A debugger may use an
internal tracer to run the program as described above. The
debugger may insert breakpoint traps in program locations
204 and monitor program execution. Whenever a relevant
trap 1s reached, the program is suspended, the debugger
creates a snapshot of the program execution, and the unit
that stores the values of state variables 208 1s also called.
Tracing may continue until the program 1s halted.

Tracer 212 may or may not output the program with the
added 1instructions, such as modified program 216, and may
output one or more sets of state variable values 220 and one
or more execution snapshots 224, depending on the number
of program locations 204 reached during the preliminary
run.

Modified program 216 may be 1mput into a debugger 228.
Alternatively, a pointer to a location at which state variables
220 and execution snapshots 224 can be retrieved from, may
be provided. In addition to known features of a debugger,
debugger 228 may comprise wavelorm browser 232 for
displaying one or more wavelorms of state variables 220,
optionally along with the respective time stamps.

Debugger 228 may also comprise state loader 236 for
loading any of execution snapshots 224, such that the current
execution state of debugger 228 1s identical to the state as
stored at one of the locations 204.

Debugger 228 may operate such that a user may select a
particular point using waveform browser 232, and the
execution snapshot taken at that time 1s loaded by state
loader 236.

When record/replay techniques 1s used, execution snap-
shots 224 may not exist. Rather a time value on the wave-
form browser may correspond to a location 1n program code
200. In case the same location 1s executed more than once,
a time value may correspond also to a number of times the
program has passed through the location when the corre-
sponding state was reached. In the case of a virtual machine
record/replay, a debugger may be used, which can attach
itself to a virtual machine replay. With record/replay tech-
nology, the replay may be run until 1t reaches that program
location the exact same number of times. In order to
implement this behavior, the replay technology may be
augmented with a command that causes 1t to replay the
program until the location 1s reached for the desired number
of times during the reply execution. For example, 1f the time
value selected corresponds to reaching line number 10123
for the 34th time, then the execution of the replay may be
paused when line 10123 1s reached and 1s executed for the
34th time.

Referring now to FIGS. 3A and 3B, showing flowcharts of
steps 1n a method for preparing a program for debug, and
debugging the program, respectively, in accordance with
some exemplary embodiments of the disclosed subject mat-
ter.

On step 304 of FIG. 3A, the program code may be
received, for example by a tracer, which may or may not be
part of a debugger.

On step 308, the program locations and state variables
may also be received by the tracer.

On step 312, the program may be executed by the tracer.
Whenever the program reaches any of the program loca-
tions, iformation usetful for resuming the execution from
the same point (e.g., snapshot, replay information, or the

US 9,645,913 B2

9

like) may be obtained, and the values of the state variables
may be stored, optionally along with a respective time
stamp, which may be absolute, relative to the start of the
program execution, or to any other time.

In some exemplary embodiments, the information usetul
for resuming execution may be an execution snapshot. The
execution snapshot may comprise the call stack, heap,
memory 1mage, or the like.

Referring now to FIG. 3B showing a flowchart of steps in
a method for debugging a program, after the preparation
showed for example in FIG. 3A.

On step 320, values of the state variables may be receirved
by the debugger.

On step 324, the values of the state variables may be
graphically displayed by the debugger, for example using a
wavetorm browser which may use and display the associ-
ated time stamps. The wavetform browser may be displayed
on a separate pane of the debugger, on a modal or modeless
window, or the like. Each state variable may be displayed as
a wire graph, a histogram, a sequence of numeric values, or
the like. The presentation type may be selected by a user and
may be changed. It will be appreciated that one or more
graphs may be mncomplete, due for example to variables that
exist only 1n a partial scope of the program.

On step 328, the debugger may receive from a user an
indication to a point 1n execution of the program or a point
in time, in the waveform browser. The indication may be
received by a user pointing at a location on the waveform
browser, entering a value, or the like. In some exemplary
embodiments, the user may select the point 1n execution
using a graphical user interface, and optionally using a
pointing device or a pointing mechanism such as a mouse or
a touch screen.

On step 330, the debugger may obtain information usetul
for resuming the execution at the selected point. In some
exemplary embodiments, the debugger may obtain an
execution snapshot corresponding to the time selection.
Additionally or alternatively, the debugger may obtain
replay information corresponding to the selection. In some
exemplary embodiments, the debugger may a-prior1 obtain
all relevant information (e.g., all checkpoints associated
with all possible points of selection) and may determine the
relevant information based on the selection.

On step 332, the debugger may resume an execution state
in accordance with the time point received from the user. In
some embodiments, the resuming may be performed by
loading an execution snapshot associated with the time
point. Since the wavelorm browser indicates the values of
the state variables at time points, and at each such point an
execution snapshot 1s take, such snapshot may exist for the
particular time point. In embodiments 1 which record/
replay technique 1s used, a time value on the waveform
browser may correspond to the number of times the program
has passed through a location when the corresponding state
was reached. Thus, the replay may be run until it reaches the
program location the same number of times.

Referring now to FIG. 4, showing a block diagram of
components 1 an apparatus for debugging programs.

The apparatus comprises a computing device 400, which
may comprise one or more processors 404. Any of proces-
sors 404 may be a Central Processing Unit (CPU), a micro-
processor, an electronic circuit, an Integrated Circuit (IC) or
the like. Alternatively, computing device 400 can be 1mple-
mented as firmware written for or ported to a specific
processor such as digital signal processor (DSP) or micro-
controllers, or can be implemented as hardware or configu-
rable hardware such as field programmable gate array

10

15

20

25

30

35

40

45

50

55

60

65

10

(FPGA) or application specific integrated circuit (ASIC).
Processors 404 may be utilized to perform computations
required by computing device 400 or any of it subcompo-
nents.

In some embodiments, computing device 400 may com-
prise an mput-output (I/0) device 412 such as a terminal, a
display, a keyboard, a microphone or another audio 1nput
device or the like, used to interact with the system, to invoke
the system and to receive or view the results.

Computing device 400 may comprise one or more storage
devices 416 for storing executable components. Storage
device 416 may also contain data during execution of one or
more components. Storage device 416 may be persistent or
volatile. For example, storage device 416 can be a Flash
disk, a Random Access Memory (RAM), a memory chip, an
optical storage device such as a CD, a DVD, or a laser disk;
a magnetic storage device such as a tape, a hard disk, storage
area network (SAN), a network attached storage (NAS), or
others; a semiconductor storage device such as Flash device,
memory stick, or the like. In some exemplary embodiments,
storage device 416 may retain program code operative to
cause any of processors 404 to perform acts associated with
any of the steps shown in FIG. 3A or FIG. 3B above, for
example preparing a program for debug, displaying a wave-
form browser, or the like.

The components detailed below may be implemented as
one or more sets of interrelated computer instructions,
executed for example by any of processors 404 or by another
processor. The components may be arranged as one or more
executable files, dynamic libraries, static libraries, methods,
functions, services, or the like, programmed 1n any program-
ming language and under any computing environment.
Storage device 416 may comprise or be loaded with one or
more of the components, which can be executed on com-
puting platform 400 by any one or more of processors 404.
Alternatively, any of the executable components may be
executed on any other computing device which may be 1n
direct or indirect commumnication with computing platform
400.

Storage device 416 may comprise program receiving
component 420 for receiving code of a program to be
debugged. Program receiving component 420 may be imple-
mented as part of a development environment, by which a
user may input or import code.

Storage device 416 may also comprise program locations
and state variables receiving component 424 for receiving
the program locations and state variables. Program locations
and state variables receiving component 424 may be imple-
mented as part ol a development environment.

Yet another component which may be loaded to storage
device 416 1s tracer 428, which may be configured to receive
the program code, program locations and state variables, and
to output or store information useful for resuming execution
(e.g., execution snapshots or record/replay information) and
values of the state variables when the program reaches any
of the program locations.

Storage device 416 may also comprise debugger 432,
which comprises 1n addition to debugging components also
a wavelorm browser 436 for presenting as waveforms the
values of the state variables as output by tracer 428, and state
resuming component 440 for resuming the execution state
when the program was run by the tracer and passed through
the program location. If execution snapshots are stored, the
relevant execution snapshot 1s loaded and debug may con-
tinue.

It will be appreciated that tracer 428 may be implemented
as part of debugger 432 or as a module independent of

US 9,645,913 B2

11

debugger 432. It will also be appreciated that tracer 428 and
debugger 432 may be implemented on different computing
devices, such that debugger 432 may receive the execution
snapshots and state variables values online or ofiline.

Storage device 416 may also comprise data and control
flow management component 444 for managing the tlow of
data and control between the components, for example
transierring program code, program locations and state
variables received by program receiving component 420 and
program locations and state variables receiving component
424 to tracer 428, and the output of tracer 428 to debugger
432 or any of its subcomponents.

Yet another component of storage device 416 may be
MMI module 448. MMI module 448 may be utilized to
provide communication between the apparatus and a user for
providing input, receiving output or the like. For example,
MMI module 448 may be related to a debugger program or
a development environment and may be used for receiving
from a user an indication, for example via the waveform
browser, to a time for which 1t i1s required to load an
execution snapshot.

Storage device 416 may also comprise one or more data
structures, such as one or more execution snapshots or state
variables values taken 1n any of the indicated program
locations, or the like.

In some exemplary embodiments, Storage device 416
may retain information useful for resuming execution and
state variables (452). The retained information may be
determined by tracer 428 and may be used 1n whole or 1n part
by debugger 432.

It will be appreciated that the disclosed methods and
apparatus may be implemented on any kind of hardware
programming platform and on any kind of operating system
plattorm which enables to suspend a process to take a
snapshot, record mputs of the process for later replay or
provides a virtualization software for this platform exists
which has record/replay capability. The hardware program-
ming platform should also provide or enable the develop-
ment of a debugger that may present a wavelform browser.
Such hardware platform may be any computing platform
such a server, desktop, laptop, etc. alternatively, the hard-
ware platform may be an embedded system, a handheld
device, a game console, a graphics device, or the like, or a
virtual machine. The platiorm may operate with any oper-
ating system, such as but 1s not limited to Windows, Linux,
MacOS, AIX, Solaris, z/VM, or others.

The flowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block 1n the flowchart
and some of the blocks 1n the block diagrams may represent
a module, segment, or portion of program code, which
comprises one or more executable instructions for imple-
menting the specified logical function(s). It should also be
noted that, 1n some alternative implementations, the func-
tions noted 1n the block may occur out of the order noted 1n
the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality ivolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are itended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used 1n this specification, specily the
presence of stated features, integers, steps, operations, e¢le-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

As will be appreciated by one skilled 1in the art, the
disclosed subject matter may be embodied as a system,
method or computer program product. Accordingly, the
disclosed subject matter may take the form of an entirely
hardware embodiment, an entirely software embodiment
(including firmware, resident software, micro-code, etc.) or
an embodiment combining soitware and hardware aspects
that may all generally be referred to herein as a ““circuit,”
“module” or “system.” Furthermore, the present disclosure
may take the form of a computer program product embodied
in any tangible medium of expression having computer-
usable program code embodied 1n the medium.

Any combination of one or more computer usable or
computer readable medium(s) may be utilized. The com-
puter-usable or computer-readable medium may be, for
example but not limited to, any non-transitory computer-
readable medium, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable
compact disc read-only memory (CDROM), an optical
storage device, a transmission media such as those support-
ing the Internet or an intranet, or a magnetic storage device.
Note that the computer-usable or computer-readable
medium could even be paper or another suitable medium
upon which the program i1s printed, as the program can be
clectronically captured, via, for instance, optical scanning of
the paper or other medium, then compiled, interpreted, or
otherwise processed 1n a suitable manner, 11 necessary, and
then stored 1 a computer memory. In the context of this
document, a computer-usable or computer-readable medium
may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in con-
nection with the istruction execution system, apparatus, or
device. The computer-usable medium may include a propa-
gated data signal with the computer-usable program code
embodied therewith, either in baseband or as part of a carrier
wave. The computer usable program code may be transmit-
ted using any appropriate medium, including but not limited
to wireless, wireline, optical fiber cable, RF, and the like.

Computer program code for carrying out operations of the
present disclosure may be written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++
or the like, conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages, scripting languages such as Perl,
Python, Ruby, or any other programming language. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a

US 9,645,913 B2

13

remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

The corresponding structures, materials, acts, and equiva-
lents of all means or steps plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the disclosure 1n the form disclosed. Many
modifications and vanations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiment was chosen and
described 1n order to best explain the principles of the
disclosure and the practical application, and to enable others
of ordinary skill in the art to understand the disclosure for
vartous embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A computer-implemented method performed by a com-
puterized device, comprising:

displaying a graphic wavetorm showing values of at least

two state vanables of a computer program being
debugged 1n at least two points in time, wherein the
graphic wavelorm displaying a timeline indicating for
cach of the at least two points 1n time, values of each
of the at least two state variables:

receiving a user selection from the graphic waveform,

wherein the user selection 1s a selection of a selected
point 1 time 1 execution which 1s graphically dis-
played 1n the graphic waveform; and

resuming within a debugger an execution state of the

computer program associated with the selected point 1n
time.

2. The computer-implemented method of claim 1,
wherein resuming the execution state of the computer pro-
gram comprises loading a previously stored execution snap-
shot taken at the selected point 1n time during execution.

3. The computer-implemented method of claim 2,
wherein the execution snapshot comprises at least one 1tem
selected from the group consisting of: a call stack, a heap,
and a memory 1mage.

4. The computer-implemented method of claim 1,
wherein resuming the execution state of the computer pro-
gram comprises replaying execution of the computer pro-
gram based on a previously recorded execution.

5. The computer-implemented method of claim 1, further
comprising;

receiving at least one program location within program

code of the computer program;

receiving the at least one state variable;

executing the computer program; and

storing values of the at least one state variable when the

executed computer program reaches one of the at least
one program location.

6. The computer-implemented method of claim 3 further
comprising storing an execution snapshot when the com-
puter program executed reaches one of the at least one
program location.

7. The computer-implemented method of claim 5 further
comprising modifying the program code to include instruc-
tions for storing the at least one state variable.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

8. The computer-implemented method of claim 1,
wherein at least one of the at least two points 1 time 1s
determined based on a temporal assertion.

9. An apparatus having a processor and a memory, the
apparatus comprising:

a debugger, comprising;

a wavelorm browser for displaying a graphic waveform
showing, at the same time, values of at least two state
variables of a computer program being debugged 1n at
least two points in time, wherein the graphic wavetform
displaying a timeline indicating for each of the at least
two points 1n time, values of each of the at least two
state variables;

a man machine interface module for receiving a user
selection from the graphic waveform, wherein the user
selection 1s a selection of a selected point 1n time 1n
execution which 1s graphically displayed in the graphic
wavetorm; and

a state resuming component for resuming within the
debugger a state of the computer program associated
with the selected point in time 1n execution.

10. The apparatus of claim 9, further comprising:

a program receiving component;

a program locations and state variables receiving code for
receiving at least one program location and the at least
one state variable; and

a tracer for executing the program and storing values of
the at least one state variable when the program reaches
the at least one program location.

11. The apparatus of claim 9, wherein resuming the state
of the computer program comprises loading an execution
snapshot.

12. A computer program product comprising:

a non-transitory computer readable medium;

a {irst program nstruction for displaying a graphic wave-
form showing, at the same time, values of at least two
state variables of a computer program being debugged
in at least two points 1 time, wherein the graphic
wavelorm displaying a timeline indicating for each of
the at least two points 1n time, values of each of the at
least two state variables;

a second program instruction for receiving a user selec-
tion from the graphic waveform, wherein the user
selection 1s a selection of a selected point in time 1n
execution which 1s graphically displayed in the graphic
wavetorm; and

a third program 1instruction for resuming within a debug-
ger an execution state of the computer program asso-
ciated with the selected point 1n time,

wherein said first, second and third program instructions
are stored on said non-transitory computer readable
medium.

13. The computer-implemented method of claim 1 further

COmMprises:

receiving program locations or definition thereof;

executing the computer program, wherein during said
executing the program, upon reaching any of the pro-
gram locations, storing an execution snapshot; and

wherein the graphic wavetform displays values of the at
least one state variable only in points in time that
correspond to the execution reaching any of the pro-
gram locations.

14. The computer-implemented method of claim 1,
wherein the graphic wavelorm does not show values of at
least one variable of the computer program.

15. The computer program product of claim 12, wherein
the user selection 1s a selection performed by the user by

US 9,645,913 B2

15

explicitly pomnting on the selected point in time using a
pointing device or a pointing mechanism.

16. The computer program product of claim 12, wherein
the selected point 1n time 1s a selection of any time point
displayed in the graphic waveform.

17. The apparatus of claim 9, wherein the user selection
1s a selection performed by the user by explicitly pointing on
the selected point 1n time using a pointing device or a
pointing mechanism.

18. The apparatus of claim 9, wherein the selected point
in time 1s a selection of any time point displayed in the
graphic wavetiorm.

19. The computer implemented method of claim 1,
wherein the user selection 1s a selection performed by the
user by explicitly pointing on the selected point 1n time using
a pointing device or a pointing mechanism.

20. The computer mmplemented method of claim 1,
wherein the at least two state variables comprise a local
variable which exists only 1n a partial scope of the execution,
wherein the graphic waveform of the local variable 1s an
incomplete graph which does not show values in points 1n
time 1n the execution where the local variable does not exist.

¥ ¥ # ¥ o

10

15

20

16

	Front Page
	Drawings
	Specification
	Claims

