US009645829B2

a2 United States Patent (10) Patent No.: US 9,645,829 B2

Jayakumar et al. 45) Date of Patent: May 9, 2017
(54) TECHNIQUES TO COMMUNICATE WITH A (56) References Cited
CONTROLLER FOR A NON-VOLATILE |
DUAL IN-LINE MEMORY MODULE U.S. PATENT DOCUMENTS
(71) Applicant: INTEL CORPORATION, Santa Clara 2010/0202237 AL* 82010 Moshayed: GLIC 5/141
" " 365/228
CA (US) 2010/0202239 Al 8/2010 Moshayedi et al.
(72) Inventors: Sarathy Jayakumar, Portland, OR 2010/0205470 Al1* 8/2010 Moshayed:r G11C 5/141
- SaTatlly Jdy : : 713/340
(US); Mohan J. Kumar, Aloha, OR 2011/0239021 AL* 9/2011 Vedder ..o GOGF 1/263
(US); Adam J. Brooks, Phoenix, AZ 713/323
(US); George Vergis, Portland, OR 2012/0131253 Al* 5/2012 McKnight GO6F 1/30
(US) 710/308
2012/0151118 Al1* 6/2012 Flynn GO6F 11/1008
(73) Assignee: INTEL CORPORATION, Santa Clara, _ 71176
2012/0198136 Al* 8/2012 Moshayedi GOO6F 11/1658
CA (US) 711/103
2013/0086309 Al* 4/2013 Leeccoovvevennn. GO6F 12/0246
(*) Notice: Subject to any disclaimer, the term of this - 711/103
patent 1s extended or adjusted under 35 2015/0186278 Al* 7/2015 Jayakumar GOGF 12/0804
U.S.C. 154(b) by 44 days. 711/103
(22) Filed: Jun. 30, 2014 International Search Report and Written Opinion recerved for PCT
_ o Patent Application No. PCT/US2015/032922, mailed Aug. 31,
(65) Prior Publication Data

2015, 14 pages.

US 2015/0378841 Al Dec. 31, 2015
* cited by examiner

(51) Int. CL
GO6F 11/14 (2006.01) Primary Examiner — Nadeem Igbal
GO6l’ 9/44 (2006.01)
GOGF 11/20 (2006.01) (57) ABSTRACT
(52) US. ClL Examples may include communicating with a controller for
CPC ... GO6F 9/4401 (2013.01); GOGF 11/1441 a non-volatile dual 1n-line memory module through a system
(2013.01); GO6F 1172015 (2013.01) management bus (SMBus) interface. In some examples,
(58) Field of Classification Search selective assertion of bits maintained in registers accessible
CPC GO6F 11/1469; GO6F 11/1441; GO6F through the SMBus interface may enable communication
9/4401; GO6F 3/0679; GOOF 3/0655; with the controller. The selective assertion may be based on
GO6F 3/0634; G11C 5/141; G11C 5/143; a register map.
G11C 5/04
See application file for complete search history. 235 Claims, 19 Drawing Sheets
System 100
Host Computing Platform
o S
Device
mos | [T | [
Circuitry
112

Comm. Ch. 115 I

SMBus Interface Host Interface Memory Interface
122 120 124
Comm, Link 125 e
5
Y A
Registers 132 =
ST Ctrl. Ch. 137 =
134 ¢ v Pwr. Link 177 | C@pacitor
NVDIMM Controller Control Switch Pack
130 140 170
Ctrl. Ch. 135T l Ctrl. Ch. 147
Non-Volatile Mem. Ch. 155 Volatile
Memory -l Memory
160 150
NVDIMM 105

US 9,645,829 B2

OL1
[9td

9 ;

N 10)10eden)

S

S

—

~

>

>

e

7.

~

—

—

~

o~

>

=

J

00 WISAS

U.S. Patent

LLT AU IMd

[OIA

0¢1
ATOUWATA

SMBIOA

Lyl 4O H)

NN

Ctrl. Ch. 127

174!
QVBIINUT ATOUIJA

ST
(s)ddy

LET YD THO

$S1T D U

SO WINIAAN

091
ATOUIATA]

S[NB[OA-UON

el WD [HO

O¢l

DIODUOT) NINIAAN

Pl

AIINOIL)

7S] SISISAY

SCT U] Wof)

0CT
Q0BLIJIU| 1SOH

JORLINUT SUYAS

¢Cl

CTT 4 Wo))
48
ADIINDIIN)
911
TQALI(] il
01A(] SOOI
Ol1

wIoperd sunndwon) 1So0H

U.S. Patent

May 9, 2017

Sheet 2 of 19

Register Map Portion 200

US 9,645,829 B2

(Header)
Field Name Offset | Length | Access | Description
PAGE NUM 0x00] RW BIT[2:0]: Page Number
BIT[5:3]: Maximum Number of pages
BIT[7:6]: Reserved
HWREV 0x01] RO Hardware Revision Info
FWREV 0x(02 |2 RO Firmware Revision Info
GENCAP 0x04 | 1 RO BIT 0: SAVE Command Class Supported
BIT 1: RESTORE Command Class Supportcd
BIT 2: ERASE Command Class Supported
BIT 3: Enable Catastrophic SAVE (ARM)
Command Class Supported
BIT 4: Health Check Command Class Supported
BIT [6:5]: Reserved. Must be 0
BIT 7: Extended Capabilitics Supported
EXTCAP 0x05 |1 RO Extended Capabilities Structure.
Validation Bits 0x06 1 RO Specifies which of these fields have valid data
BIT 0: Number of SAVE regions
BIT 1: Savc Latency Valid
BIT 2: Restore Latency Valid
BIT 3: Controller Ready latency Valid
BIT 4: Command Accepted (CA) Latency Valid
BIT 5: Super Cap Charging time Valid
Numbcr of SAVE | 0x07 | 1 RO SAVE rcgions in the NVDIMM
- TegIons Valid Values=1to N
SAVE Latency Ox08 |2 RO Worst case - default region (REGION-0)
RESTORE Ox0A |2 RO Worst casc - dctault region (REGION -0)
Latency
Controller Ready | Ox0C | 2 RO Worst case - NVDIMM controller ready after
Latency T (CR) power-up or reset.
BIT15: 0 — Indicates Time-out m ms
1 — Indicates time-out in secs
BIT[14:0]: Time-out value
Command Ox0E | 2 RO Worst case - CA bit to be set by the controller on
Accepled Latency receipt of a command. Used by requestor 1o time-
T(CA) out.
BIT15: 0 — Timc-out 1n us
1 — Time-out in ms
BIT[14:0]: Time-out value
Capacilor charging | Ox10 | 2 RO Worsl case capacilor charging lime 1n secs
time (OV to Peak V).
EXTCAP Ox12 |1 RO Extended Capabilities Structure.
Page swilching Ox13 1 RO Amount of time requestor has 1o wait for page
latency switching to happen, before 1t times-out, 1n ms
Energy Required Ox14 | 2 RO Energy required by the NVDIMM for
Catastrophic SAVE operation, in Joules.
Reserved Ox16 | 10 RO Reserved

FIG. 2

U.S. Patent

May 9, 2017

Sheet 3 of 19

Register Map Portion 300
(NVDIMM STATE Class)

Field Name

Offset

Length

Access

Description

GET NVDIMM STATE

0X20

|

RW

Gel NVDIMM stlale command
BIT7 — (RA) Request Accepted.
BIT6 — (SV) Status Valid

BITS — Reserved

BIT[4:0] - 0x00 — No Operation
0x01: Return NVDIMM stalus
0x02: Clear NVDIMM status
0x03: Reset controller

0x04 to Ox7F: Reserved

0x&80 - OxFF: Vendor defined

Reserved

0x21

RO

Reserved

T(NvState.SV)

0x22

RO

Valid only when GET NVDIMM STATE.CA

BIT15: 0 — Time-out 1n ms

1 — Time-out 1n seconds.
BIT[14:0]: Time-out value for requestor
whil¢ waiting for corrcsponding SV bit to be
set.

NVDIMM STATUS

Ox24

RO

Valid only when GET NVDIMM STATE.
SV

BITO: 0 - Controller NOT busy
1 - Controller busy
BIT 1: SAVE m progress, 1f set
BIT 2: ABORT SAVE 1n progress, 1t sct
BIT 3: RESTORE 1n progress, 1t set
BIT 4: ABORT RESTORE in progress ,if set
BIT 5: ERASE 1n progress, 1f set
BIT 6: ABORT ERASE 1n progrcss, 1f sct
BIT 7: 0 — SAVE# pin not asserted on
previous boot
1 — SAVE/# pin asserted on previous
boot, triggcring a catastrophic savc
BIT 8: 0— Catastrophic SAVE successtul
1 - Catastrophic SAVE not successtul
(This BIT 1s valid only if either BIT7 or BITS
18 sct)
BIT[15:9]: Reserved

BUSY TIMEOUT
T(Busy)

0x26

RO

Valid only when NVDIMM STATUS.BUSY

BIT15: 0 —Time-out 1n ms
1 —Time-out 1n sec.
BIT [14:0]: Time-out value that requestor uses

warting for NVDIMM STATUS.BUSY == 0.

FIG. 3

US 9,645,829 B2

U.S. Patent May 9, 2017 Sheet 4 of 19 US 9,645,829 B2

Register Map Portion 400
(SAVE Class)

Field Name Offset | Length | Access | Description
SAVE CMD 0x28] RW SAVE command
BIT7: (CA) Command Accepted
BIT6: (SV) Status Valid.
BITS: (GUID V) Image GUID Valid.

0 - Image GUID not valid. SAVE to

dcfault rcgion

1- Tmage GUID 1s valid
BIT[4:0]: Command
0x00: No Operation
0x01: Start the SAVE opcration
x00 - OxFF: Reserved
0x100 — 0x1FF: Vendor Defined
ABORT SAVE 0x29] RW ABORT SAVE command
BIT7: (CA) Command Accepted
BIT6: (SV) Status Valid
BITS5: (GUID V) Image GUID Valid

() - Image GGUID not valid. Abort Save

to dcfault recgion

1 - ITmage GUID 1s valid
BIT[4:0]: Command
0x00: No Operation
0x01: ABORT the SAVE operation
0x00 - OxFF: Reserved
0x100 - 0x1FF: Vendor Defined
T(Save.SV) Ox2A |2 RO Valid only when SAVE CMD.CA =1 OR
ABORT SAVE.CA ==
BIT15: 0 — Indicates Time-out 1n ms

1 — Indicates Tiume-out 1n secs
BIT[14:0]: Time-out value that the requestor will
use while waiting for corresponding SV bil (o be
set
Reserved 0x2C RO Reserved
SAVE STATUS Ox2E | 2 RO Status Ficld. Valid only if SAVE CMD.SV ==
OR ABORT SAVE.SV ==
0x0000: SAVE Successtully completed
0x0001: ERROR. SAVE failure
0x0002: ABORT successtul
0x0003: ERROR. Abort Failure
0x0004 — O0x7FFF: Reserved
0x8000 — OxFFFF: Reserved
SAVE IMAGE GUID | 0x30 | ¥ RW IMAGE GUID associated with the
SAVE/ABORT SAVE/GET SAVE STS

command

FIG. 4

I Sl

2

U.S. Patent May 9, 2017 Sheet 5 of 19 US 9,645,829 B2

Register Map Portion 500

(RESTORE Class)
Field Name Offset | Length | Access | Description
RESTORE_CMD Ox38 | 1 RW RESTORE command

BIT7: (CA) Command Accepted
BIT6: (SV) Status Valid.
BITS: (GUID V) Image GUID Valid.
0 - Image GUID not valid.
RESTORE default region
1 - Tmage GUID 1s valid
BIT[4:0]: Command
0x00: No Operation
0x01: Start thc RESTORE opcration
0x00 - OxFF: Reserved
0x100 — 0x1FF: Vendor Defined
ABORT RESTORE 0x39] RW ABORT RESTORE command
BIT7: (CA) Command Accepted
BIT6: (SV) Status Valid
BITS: (GUID V) Image GUID Valid
0 - Image GUID not valid. Abort
Restore to default region
1 - Image GUID 1s valid
BIT[4:0]: Command
0x00: No Opcration
0x01: ABORT the RESTORE
operation
0x00 - OxFF: Recscrved
0x100 - Ox1FF: Vendor Detined
T(Reslore.SV) 0x3A | 2 RO Valid only when RESTORE CMD.CA ==
OR ABORT RESTORE.CA ==
BIT15: 0 — Indicates Time-out 1n ms
1 — Indicales Time-out 1n secs
BIT[14:0]: Time-out value that the requestor
will use while waiting for corresponding SV
b1t lo be set
Reserved 0x3C | 2 RO Reserved
RESTORE STATUS Ox3E RO Status Field. Valid only 1f
RESTORE CMD.SV ==
OR ABORT RESTORE.SV ==
0x0000: RETORE Successtully completed
0x0001: ERROR. RESTORE failure
0x0002: ABORT successtul
0x0003: ERROR. Abort Failure
C
C

o

x0004 — O0x7FFE: Reserved

x8000 — OxFFFF: Reserved

RESTORE IMAGE GUID | 0x40 | 8 RW IMAGE_GUID associated with the
RESTORE/ABORT RESTORE/GET REST

ORE STS command

FIG. 5

U.S. Patent May 9, 2017 Sheet 6 of 19 US 9,645,829 B2

Register Map Portion 600

(ERASE Class)
Field Name Offset | Length | Access | Description
ERASE CMD 0x48 |1 RW ERASE command

BIT7:. (CA) Command Accepted
BIT6: (SV) Slalus Valid.
BITS: (GUID V) Image GUID Valid.
0 - Image GUID not valid. ERASE
default region
1 - Image GUID 1s valid
BIT[4:0]: Command
0Ox00: No Operation
0x01: Start the ERASE operation
0x00 - OxFF: Reserved
0x100 — 0x1FF: Vendor Defined
0x49 |1 RW ABORT RESTORE command
BIT7: (CA) Command Accepted
BIT6: (SV) Status Valid
BITS: (GUID V) Image GUID Valid
0 - Image GUID not valid. Abort Erase
(o default region
| - Imagc GUID 1s vahd
3IT[4:0]: Command
0x00: No Operation
0x01: ABORT the RESTORE
opcration
0x00 - OxFF: Reserved
0x100 - Ox1FF: Vendor Defined
T(Erasc.SV) Ox4A |2 RO Valid only when ERASE CMD.CA =1 OR
ABORT ERASE.CA ==
BIT15:; 0 — Indicates Time-out in ms
1 — Indicates Time-out in secs
BIT[14:0]; Timc-oul valuc that thc requcstor
will use while waiting for corresponding SV bit
to be set

Rescerved Ox4C RO Rescrved

ERASE STATUS Ox4E | 2 RO Status Field. Valid only if ERASE CMD.SV ==
1 OR ABORT ERASE.SV ==

0x0000: ERASE Successtully complcted
Ox(J001: ERROR. ERASE failure

Ox(0002: ABORT successtul

0x0003: ERROR. Abort Failure

0x0004 — O0x7FFF: Rcscrved

Ox8000 — OxFFFF: Reserved

ERASE IMAGE GUID | 0x50 8 RW IMAGE GUID associated with the
ERASE/ABORT ERASE/GET ERASE STS
command

ABORT ERAS!

L1l

o

FIG. 6

U.S. Patent May 9, 2017 Sheet 7 of 19 US 9,645,829 B2

Register Map Portion 700

(ARM/DISARM Class)
Field Name Ofiset | Length | Access | Description
ENABLE CATASTRO | 0x58 1 RW Enablcs catastrophic save
PHIC SAVE (ARM) BIT7: (CA) Command Accepted

BIT6: (SV) Stalus Valid.

BIT5: Reserved

BIT[4:0]: Command

0x00: No Operation

0x01: Start the ARM operation
0x00 - OxFF: Reserved

0x100 — 0x1FF: Vendor Defined

DISABLE CATASTRO | 0x59 | 1 RW Disables catastrophic save
PHIC SAVE BIT7: (CA) Command Accepted
(DISARM) BIT6: (SV) Status Valid

BITS: Reserved
BIT[4:0] — Command

0x00: No Opcration

0x01: Start the DISARM operation

0x00 - OxFF: Reserved

0x100 — Ox1FF: Vendor Defined
T(Arm.SV) Ox5A | 2 RO Valid only when ARM. CMD.CA =1 OR
DISARM CMD.CA ==
BIT15: 0 — Indicates Time-out 1n ms

1 — Indicates Time-out m secs

BIT[14:0]: Time-out value that the requestor
will use while waiting for correspondimg SV bit

to be set
Reserved 0x5C |2 RO Reserved
CATASTROPHIC SAV | Ox5E | 2 RO Status Field. Valid only if ARM CMD.SV ==
E STATUS OR DISARM CMD.SV ==

0x0000: ARM Successtully completed
0x0001: ERROR. ARM failure
0x0002: DISARM successtul

0x0003: ERROR. DISARM Failure
0x0004 — Ox7FFF: Reserved

Ox8000 — OxFFFF: Reserved

FIG. 7

U.S. Patent May 9, 2017 Sheet 8 of 19 US 9,645,829 B2

Register Map Portion 800
(Selt-Retresh Save Class)

Field Name Offset | Length | Access [Description
ENABLE SELFREFRE | 0x60 | 1 RW Enables SAVE on Self-refresh
SH SAVE BIT7: (CA) Command Accepted

BIT6: (SV) Status Valid.
BIT5: Reserved
BIT[4:0]: Command
0x00: No Operation
0x01: Enablc SAVE on Scli-retresh
0x00 - OxFF: Reserved
0x100 - Ox1FF: Vendor Defined

DISABLE SELFREFR | (0x61 | RW Disables SAVE operation on Self-refresh
ESH SAVE BIT7: (CA) Command Accepted
BIT6: (SV) Status Valid

BIT5: Reserved
BIT[4:0]: Command

0x00: No Operation

Ux01: Disable SAVE on Self-refresh

0x00 - OxFF: Rescerved

0x100 - Ox1FF: Vendor Defined
T(SrSave.SV) Ox62 |2 RO Valid only when
ENABLE SELFREFRESH SAVE.CA ==
OR DISABLE SELFREFRESH SAVE.CA ==
]
BIT15: 0 — Indicates Time-out 1n ms

1 — Indicates Time-out 1n secs

BIT[14:0]: Time-oul value that the requestor
will use while waiting for corresponding SV bat

to beg sct
Reserved 0x64 2 RO Reserved
SRSAVE STATUS 0x66 2 RO Status Field. Valid only 1f

ENABLE SELFREFRESH SAVE.SV ==

OR DISABLE SELFREFRESH SAVE.SV =—
]

0x0000: SR SAVE enable

0x0001: ERROR. SR SAVE cnablc failurc
0x0002: SR SAVE disabled

0x0003: ERROR. SR SAVE disable Failure
0x0004 — Ox7FFF: Reserved

0x8000 — OxFFFF: Reserved

FIG. §

U.S. Patent May 9, 2017 Sheet 9 of 19 US 9,645,829 B2

Register Map Portion 900

(Health Check Class)
Field Name Offset | Length | Access | Description

GET HEALTH STATUS | 0x68] RW Get Health Status
BIT7: (RA) Request Accepted
BIT6: (SV) Status Valid.
RBITS: Reserved
BIT[4:0]: Command
0x00: No Operation
0x01: Start the Health Check Operation
0x00 - OxFF: Reserved
0x100 - Ox1FF: Vendor Defined
T(Health.SV) 0x69 | 2 RO Valid only when
GET HEALTH STATUS.CA ==
BIT15: 0 — Indicates Time-oul 1n ms
| — Indicates Time-out 11 secs
BIT[14:0]: Time-out value that the requestor
will usc whil¢ waitting for corrcsponding SV
bit to be set
HEALTH STATUS Ox6B | 2 RO Status Field. Vahd only 1f
GET HEALTH STATUS.SV ==
0x0000: Health Check Complete
0x0001: ERROR. Health Check failure
0x0002 - Ox7FFF: Reserved
0x8000 - OxFFFF: Reserved

FIG. 9

US 9,645,829 B2

Sheet 10 of 19

May 9, 2017

U.S. Patent

T01Ig

IJ[[OLUO))

S

oA

UINDIQ

L1==UIND FAVS
ouIS pasderg

(AS9ABS)]

0001

$SO1
SNLV.LS HAVS SNLVLS HAVS
ILINY peaY
pa1a1duion) 9aLg pa1daddy pue

panssT AIND dAVS
SQ X

m@@ﬂ@ﬂ@ﬂ
(VD)

SO X

SYIIAYD JOISANDAY

ON

ON

10X0 = AND.
X = IND DOVINT AAVS

0= >mdzoum><m
0=VO'AAD AAVS
/M PUBIITIO) JAVS PUIS

JOII

IO[ONU0ND)

ON

¢a01
ﬁuo _\—Uﬁom
(Asng) 1.

0C01
.Asng

IQ[[ONU0))

¢101
 JOLIg

ID[[ONUO))

NO A No A

- 0101 B
ALVLS WINIUAN LHD
(e

AND FAVS

U.S. Patent May 9, 2017 Sheet 11 of 19 US 9,645,829 B2

Sequence

GET NVDIMM STATE 1100
1010 -

Send GET NVDIMM STATE
Request
1120

No

imeout
T(CA)
Reached?

1140

GET NVDIMM

meout

T(NvState.SV)
Reached?

1160

GET NVDIMM
STATE.SV==1?

Yes

Set STATUS =

STATUS = Controller Error /

NVDIMM STATUS
1180

Not Responding
1170

Return STATUS

FIG. 11

US 9,645,829 B2

Sheet 12 of 19

May 9, 2017

U.S. Patent

TOIIg
LI[[O[UO]) Sd X

SO

=D FIOLS
douIg pasderq

NEA G R PD

09CT
SNIVIS TI0ISTY

pedy
porrdwo) gI0LSTY

el §

ON

C1CI
; IOLI

"JUASAI JT OUOTSIY
-TION] 2I0182I 01 AAS

SO J03SanhayY

Pa1dad0y pue panssy

AND TAOLSTY

SO X

CETT
[= AN TIOLSTT
X ={IND ADVIAI TIOLSTY
0= ASTTND TAOLSHI

/SO "HYOLSHY 10U o])=V AAD TIOIST

ON

AL EEABRIIN
"AIJ SUuLINpP INJ2(0)
AVS ogdonsere;

1 Id[[ONUO)) ON
- O0fet
ALVILS WINIOAN LAY
e

AN TIOLSHY

/A PUBTLILIOD ‘HHOLSHE PUS

Sa X

AIBLEN

SPCl

Lpayovay

(VD) SOX

ON

TOIIg

I[[ONUO))

0Ll

(Asng) . SA A

ON

00C1
duInbog

U.S. Patent May 9, 2017 Sheet 13 of 19 US 9,645,829 B2

Apparatus 1300

Status Request Command(s)

1305 1310

Circuitry 1320

Receive Component Status Component
1322-1 1322-2

Indicate Component save Component
1322-3 1322-4

Register Map GUID Associations
1323-a 1324-b

Restore Component Erase Component
[1322-5 1322-6

GUID Associations GUID Associations
1324-b 1324-b
Arm Component
[1322-7

Completion Status
[335 1340

FIG. 13

Acceptance
[330

U.S. Patent May 9, 2017 Sheet 14 of 19 US 9,645,829 B2

1400

RECEIVE, AT A CONTROLLER, A STATUS REQUEST, THE CONTROLLER FOR A NON-
VOLATILE MEMORY CAPABLE OF PRESERVING DATA MAINTAINED IN VOLATILE
MEMORY, THE NON-VOLATILE AND THE VOLATILE MEMORY RESIDENT ON A
NVDIMM

1402

DETERMINE A STATUS RESPONSIVE TO THE STATUS REQUEST
1404

INDICATE THE STATUS VIA SELECTIVE ASSERTION OF A FIRST SET OF BITS
MAINTAINED IN A FIRST SET OF REGISTERS, THE SELECTIVE ASSERTION BASED
ON A REGISTER MAP, THE FIRST SET OF REGISTERS ACCESSIBLE TO A
REQUESTOR OF THE STATUS REQUEST THROUGH A SMBUS INTERFACE
14006

RECEIVE A FIRST COMMAND FROM THE REQUESTOR VIA ASSERTION OF A
SECOND SET OF BITS MAINTAINED IN A SECOND SET OF REGISTERS, THE
ASSERTION OF THE SECOND SET OF BITS BASED ON THE REGISTER MAP, THE
SECOND SET OF REGISTERS ACCESSIBLE TO THE REQUESTOR THROUGH THE
SMBUS INTERFACE
1408

INDICATE ACCEPTANCE AND COMPLETION STATUS OF THE FIRST COMMAND
VI4A ASSERTION OF A THIRD SET OF BITS MAINTAINED IN A THIRD SET OF
REGISTERS, THE ASSERTION OF THE THIRD SET OF BITS BASED ON THE
REGISTER MAP, THE THIRD SET OF REGISTERS ACCESSIBLE TO THE REQUESTOR
THROUGH THE SMBUS INTERFACE
1410

INDICATING A FIRST COMPLETION STATUS OF THE FIRST COMMAND ViA
ASSERTION OF A FOURTH SET OF BITS MAINTAINED IN A FOURTH SET OF
REGISTERS, THE ASSERTION OF THE FOURTH SET OF BITS BASED ON THE
REGISTER MAP, THE FIRST COMPLETION STATUS INCLUDING A SUCCESSFUL
COMPLETION OF THE FIRST COMMAND OR A FAILURE TO COMPLETE THE FIRST
COMMAND, THE FOURTH SET OF REGISTERS ACCESSIBLE TO THE REQUESTOR
THROUGH THE SMBUS INTERFACE
1412

FIG. 14

U.S. Patent May 9, 2017 Sheet 15 of 19 US 9,645,829 B2

Storage Medium 1500

Computer Executable
Instructions for 1400

FIG. 15

U.S. Patent May 9, 2017 Sheet 16 of 19 US 9,645,829 B2

1600

Apparatus

Status Request Status
1605 1615

Circuitry 1620

Request Component Status Component
1622-1 1622-2

Register Map Register Map
1623-a 1623-a

Command Component GUID Component
1622-3 1622-4

Register Map GUIDs
1623-a 1624-b

Command(s) Acceptance Completion GUID(s)
1630 1635 1640 1645

FIG. 16

U.S. Patent May 9, 2017 Sheet 17 of 19 US 9,645,829 B2

1700

SEND A STATUS REQUEST TO A CONTROLLER FOR A NON-
VOLATILE MEMORY CAPABLE OF PRESERVING DATA
MAINTAINED IN VOLATILE MEMORY, THE NON-VOLATILE AND
THE VOLATILE MEMORY RESIDENT ON A NVDIMM COUPLED
WITH THE HOST COMPUTING DEVICE
1702

ACCESS A FIRST SET OF BITS MAINTAINED IN A FIRST SET OF
REGISTERS THROUGH A SMBUS INTERFACE, THE FIRST SET OF
BITS INDICATING A STATUS INDICATED BY THE CONTROLLER
RESPONSIVE TO THE STATUS REQUEST VIA SELECTIVE ASSERT
OF THE FIRST SET OF BITS BASED ON A REGISTER MAP
1704

SEND A FIRST COMMAND VIA ASSERTION OF A SECOND SET O

BITS MAINTAINED IN A SECOND SET OF REGISTERS, THE
ASSERTION OF THE SECOND SET OF BITS BASED ON THE

REGISTER MAP, THE SECOND SET OF REGISTERS ACCESSIBLE
THROUGH THE SMBUS INTERFACE
1706

RECEIVE AN INDICATION OF A FIRST COMPLETION STATUS OF
THE FIRST COMMAND VIA ASSERTION BY THE CONTROLLER
OF A FOURTH SET OF BITS MAINTAINED IN A FOURTH SET OF
REGISTERS, THE FOURTH SET OF BITS ASSERTED BASED ON
THE REGISTER MAP, THE FIRST COMPLETION STATUS
INCLUDING A SUCCESSFUL COMPLETION OF THE FIRST
COMMAND OR A FAILURE TO COMPLETE THE FIRST
COMMAND
1708

FIG. 17

U.S. Patent May 9, 2017 Sheet 18 of 19 US 9,645,829 B2

Storage Medium 1800

Computer Executable
Instructions for 1700

FIG. 18

U.S. Patent May 9, 2017 Sheet 19 of 19 US 9,645,829 B2

Computing Platform 1900

Processing Component Other

Platform

Components
1950

Communications
Interface

1960

NVDIMM Controller 2000

Processing Component Other
2040 Controller

C !
Apparatus 1300 : on;%giz)en ’

I
I
L

Communications

Interface
2060

FIG. 20

US 9,645,829 B2

1

TECHNIQUES TO COMMUNICATE WITH A
CONTROLLER FOR A NON-VOLATILE

DUAL IN-LINE MEMORY MODULE

TECHNICAL FIELD

Examples described herein are generally related to a
non-volatile dual in-line memory module (NVDIMM).

BACKGROUND

Memory modules coupled with computing platforms or
systems such as those configured as a server may include
dual 1n-line memory modules (DIMMs). DIMMs may
include types of volatile memory such dynamic random
access memory (DRAM). As DRAM technologies have
advanced to include memory cells having higher and higher
densities, memory capacities for DIMMSs have also substan-
tially increased. Since DRAM 1s a volatile memory, power
failures or resets may result 1 loss of most 11 not all data
maintained 1n DRAM at the time of power failure or reset.
Also, large memory capacities for DRAMSs presents a chal-
lenge for an operating system (OS) or an application (e.g.,
device driver) to sense a power failure and attempt to
prevent or reduce data loss.

In order to mitigate or reduce data loss 1n the event of a
power lailure or reset, a type of memory module that
includes both volatile and non-volatile memory has been

developed. This type of memory module 1s commonly
referred to as a non-volatile DIMM (NVDIMM). Typically,
NVDIMMs are a combination of DRAM and NAND flash.
NVDIMMSs may provide persistent storage by backing up
DRAM contents 1n a non-volatile memory such as NAND
flash 1n event of a power failure or sudden system reset. A
super-capacitor package may be coupled with an NVDIMM
to maintain power to the NVDIMM {for long enough to
back-up data from the DRAM to the non-volatile memory.

An NVDIMM may have a controller resident on or with
the NVDIMM to manage or control NVDIMM activities.
The NVDIMM controller may manage saving of DRAM
contents to non-volatile memory at the NVDIMN. The
NVDIMM controller may also manage restoration of the
DRAM contents from the non-volatile memory back to the
DRAM once system power has been restored. The
NVDIMM controller may be arranged to operate 1n coordi-
nation with an OS, device driver, application or basic
iput/output system (BIOS) for a computing platform
coupled with the NVDIMM to save or restore DRAM

contents.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates an example system.
FIG. 2 illustrates a first example register map portion.
FIG. 3 1llustrates a second example register map portion.

FIG. 4 illustrates a third example register map portion.
FIG.

5 1llustrates a fourth example register map portion.
FIG.
FI1G. 7 1llustrates a sixth example register map portion.
FIG. 10 1llustrates a first example sequence.
FIG. 11 illustrates a second example sequence.
apparatus.
FIG. 14 1llustrates an example of a first logic flow.

6 illustrates a fifth example register map portion.
FIG. 8 1llustrates a seventh example register map portion.
FIG. 9 1llustrates an eighth example register map portion.
FI1G. 12 1llustrates a third example sequence.
FIG. 13 1illustrates an example block diagram for a first

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 15 1llustrates an example of a first storage medium.

FIG. 16 1llustrates an example block diagram for a second
apparatus.

FIG. 17 1llustrates an example of a second logic flow.

FIG. 18 illustrates an example of a second storage
medium.

FIG. 19 illustrates an example computing platiform.

FIG. 20 illustrates an example non-volatile dual in-line
memory module controller.

DETAILED DESCRIPTION

As contemplated 1n the present disclosure, an NVDIMM
may have a NVDIMM controller arranged to operate in
coordination with an OS, device driver application or BIOS
for a computing platform coupled with the NVDIMM. In
some examples, an application, device driver and/or BIOS

may interface or commumicate through one or more com-
munication interfaces with the NVDIMM controller. When

interfacing or communicating with the NVDIMM controller

the application, device driver and/or BIOS may 1ssue com-
mands to the NVDIMM controller to save DRAM contents

to non-volatile memory at the NVDIMM, restore non-
volatile memory content to the DRAM, etc. Numerous
manufacturers of NVDIMMs may implement their own
proprietary interfaces to communicate with computing plat-
form elements such as an application, device driver and/or
BIOS. The use of numerous proprietary interfaces may be an
impediment to interoperability and may be problematic to
designers of computing platform elements such as an appli-
cation, device driver and/or BIOS that are designed to
support NVDIMMS. It 1s with respect to these and other
challenges that the examples described herein are needed.

Techniques to communicate with a controller for an
NVDIMM may be implemented via one or more example
methods. A first example method may include a controller
receiving a status request. The controller may be for a
non-volatile memory capable of preserving data maintained
in volatile memory, the non-volatile and the volatile memory
resident on an NVDIMM. A status may be determined by the
controller responsive to the status request and the status
indicated via selective assertion of a first set of bits main-
tamned 1 a first set of registers. For this first example
method, the first set of registers may be accessible to a
requestor (e.g., application, device driver or BIOS) of the
status request through a system management bus (SMBus)
interface.

A second example may include a device driver arranged
to be implemented by circuitry at a host computing device.
The device driver may send a status request to a controller
for a non-volatile memory capable of preserving data main-
tained 1n volatile memory, the non-volatile and the volatile
memory may be resident on a an NVDIMM coupled with the
host computing platform. For this second example method,
the device driver may access a first set of bits maintained in
a first set of registers through an SMBus interface. The first
set of bits may indicate a status provided by the controller
responsive to the status request via selective assertion of the
first set of bits based on a register map.

FIG. 1 illustrates an example system 100. As shown 1n
FIG. 1, system 100 includes a host computing platform 110
coupled to a non-volatile dual in-line memory module
(NVDIMM) 105 via communication channel 115. Also
shown i FIG. 1, a capacitor pack 170 may couple to
NVDIMM 105 via a power link 177. In some examples, as
shown 1 FIG. 1, NVDIMM 1035 may also include a host

US 9,645,829 B2

3

interface 120, an NVDIMM controller 130, a control switch
140, a volatile memory 150 or a non-volatile memory 160.

In some examples, host computing platform 110 may
include circuitry 112 capable of executing various functional
clements of host computing platform 110 that may include,
but 1s not limited to a basic input/output system (BIOS) 114,
a device driver 116 or an application(s) (App(s)) 118. For
these examples, host computing platform 110 may include,
but 1s not limited to, a server, a server array or server farm,
a web server, a network server, an Internet server, a work
station, a mini-computer, a main frame computer, a super-
computer, a network appliance, a web appliance, a distrib-
uted computing system, multiprocessor systems, processor-
based systems, or combination thereof.

According to some examples, as shown 1n FIG. 1, host
interface 120 at NVDIMM 105 may include a system
management bus (SMBus) interface 122 and a memory
interface 124. SMBus imterface 122 may be designed or
operated 1 compliance with one or more standards or
specifications (including progenies or variants) to include
the SMBus Specification, version 2.0, published 1n August
2000 (“SMBus Specification”). As described more below,
clements of host computing platform 110 may communicate
with NVDIMM controller 130 through SMBus interface
122. Also, elements of computing platform 110 may have
access to volatile memory 150 through memory interface
124 over control channel 127 through control switch 140
and then over control channel 147. In some examples, access
to volatile memory 150 may be switched by control switch
140 to NVDIMM controller 130 over control channel 137 to
save or restore contents of volatile memory 150 from or to
non-volatile memory 160 using memory channel 135
coupled between volatile memory 150 and non-volatile
memory 160.

According to some examples, as shown in FIG. 1,
NVDIMM controller 130 may include registers 132 and
circuitry 134. Circuitry 134 may be capable of executing
components or features to recerve a status request from
clements of host computing platform 110. As described
more below, the status request may pertain to a status of
NVDIMM controller 130 or other elements of NVDIMM
105 (e.g., non-volatile memory 160). The components or
features may also be capable of determining a status respon-
sive to the status request and then indicate that status via
selective assertion of bits maintained 1n registers 132 based
on a register map. The requesting element of host computing
platform 110 such as device driver 116 (requestor) may have
access to registers 132 through SMBus interface 122 and
over communication link 125 to determine which bits have
been asserted. The requestor may then use the register map
to determine what status was indicated by the components or
features implemented by circuitry 134.

In some examples, volatile memory 150 may include
volatile memory designed or operated in compliance with
one or more standards or specifications (including progenies
or vaniants) associated with wvarious types of volatile
memory such as DRAM. For example, types of DRAM such
as synchronous double data rate DRAM (DDR DRAM) may
be 1included 1n volatile memory 150 and standards or speci-
fications associated with DDR DRAM may include those
published by the JEDEC Solid State Technology Association
(“JEDEC”) for various generations of DDR such as DDR2,
DDR3, DDR4 or future DDR generations. Some example
standards or specifications may include, but are not limited
to, JESD79-3F—*“DDR3 SDRAM Standard”, published in
July 2012 or JESD79-4—*DDR4 SDRAM Standard”, pub-
lished 1 September 2012.

10

15

20

25

30

35

40

45

50

55

60

65

4

According to some examples, non-volatile memory 160
may include one or more types of non-volatile memory to

include, but not limited to, NAND flash memory, NOR flash

memory, 3-D cross-point memory, ferroelectric memory,
s1licon-oxide-nitride-oxide-silicon (SONOS) memory, poly-
mer memory such as ferroelectric polymer memory, ferro-
clectric transistor random access memory (FeTRAM) or
FeRAM), ovonic memory or nanowire. Also, 1n some
examples, non-volatile memory 160 may include enough
memory capacity to receive the full contents of volatile
memory 150 or possibly multiple copies of contents of
volatile memory 1350. For these examples, non-volatile
memory 160 sized for multiple copies may allow for images
of time-based data maintained 1n volatile memory 150 to be
saved to regions of non-volatile memory 160. As described
more below, global unique identifiers (GUIDs) may be
assigned or associated with data to be saved or restored from

a non-volatile memory such as non-volatile memory 160.
NVDIMM controller 130 may use these assigned GUIDs to
facilitate saving or restoring time-based data from or to
volatile memory 150.

In some examples, capacitor pack 170 may include one or
more capacitors to provide at least temporary power to
NVDIMM 105 via power link 177. The one or more
capacitors may be capable of storing enough energy to
power NVDIMM 105 for a suflicient time for NVDIMM
controller 130 to cause data maintained 1n volatile memory
150 to be saved to non-volatile memory 160 1f a sudden
power lailure or system reset caused the main power supply
to NVDIMM 105 to be cut or shut off. The saving of the data
contents to non-volatile memory 160 due to the sudden
power failure or system reset may be referred to as a
“catastrophic save”.

FIG. 2 illustrates a first example register map portion. In
some examples, as shown in FIG. 2, the first example
register map portion includes register map portion 200. In
some examples, elements of a system such as system 100
shown in FIG. 1 may use register map portion 200 to
communicate or exchange information with an NVDIMM
controller for an NVDIMM such as NVDIMM controller
130 for NVDIMM 105. For these examples, selective asser-
tion of various sets of bits maintained 1n corresponding sets
of registers (e.g., maintained with registers 132) may be
based, at least 1 part, on register map portion 200. Also,
clements of the system may have read-only (RO) or read/
write (RW) access to the registers through an SMBus
interface such as SMBus interface 122. Examples are not
limited to elements of a system such as system 100 shown
in FI1G. 1, other elements of a computing platform (e.g., an
operating system) may also use register map portion 200 to
communicate with the NVDIMM controller.

According to some examples, register map portion 200
may be associated with a header. The header, for example,
may be used to indicate capabilities and/or operating param-
eters of an NVDIMM and/or an NVDIMM controller. The
header may also include information to interpret one or more
other portions of an entire register map for use to commu-
nicate requests or commands to the NVDIMM controller. As
shown 1n FIG. 2, various sets of bits may be associated with
corresponding field names having specified offsets, lengths
(in bytes) and access rights such a read/write (RW) or
read-only (RO) from the perspective of elements of the host
computing platform (requestor). A description 1s also shown
in FIG. 2 for each sets of bits that may be selectively asserted
either individually (e.g., a single bit) or 1n a group (e.g.,
multiple bits).

US 9,645,829 B2

S

In some examples, as shown in FIG. 2, PAGE_NUM has
an oflset value of O0x00 (hexadecimal), a length of 1 and a
RW access. For these examples, the bits in the PAGE_NUM
field are the only bits 1n register map portion 200 that has
RW access to allow a requestor to indicate a page number 1n
BIT[2:0], maximum number of pages in BIT[5:0] and
reserves BIT[7:6] for possible future changes.

According to some examples, as shown 1 FIG. 2, the
fields associated with oflsets Ox01 to Ox03 indicate hardware
and firmware revision information, respectively. The fields
associated with oflsets 0x04 to Ox19 may be used to indicate
operating parameters associated with elements of the
NVDIMM such as the NVDIMM controller, non-volatile
memory, volatile memory and capacitor package.

In some examples, the Number of SAVE regions field
may specily the number of SAVE regions in the NVDIMM
for saving multiple copies of the volatile memory (DRAM)
contents at various points of time. For these examples, the
NVDIMM may be capable of supporting at least one region
(c.g., 1dentified as REGION-0). In other words, the non-
volatile memory (e.g., NAND flash) may have a memory
capacity large enough to save a copy of all the contents of
the DRAM in the at least one region. Also, the SAVE
Latency and RESTORE Latency indicated at offsets Ox08
and O0xOA may indicate the respective worst case SAVE
latency 1n seconds (secs) and RESTORE latency 1n secs for
REGION-0. The worst case SAVE and RESTORE latencies
may take 1into consideration write or read latencies primarily
associated with the non-volatile memory.

FIG. 3 1llustrates a second example register map portion.
In some examples, as shown 1n FIG. 3, the second example
register map portion includes register map portion 300. In
some examples, elements of a system such as system 100
shown i FIG. 1 may use register map portion 300 to

communicate or exchange information with an NVDIMM

controller for an NVDIMM. For these examples, selective
assertion of various sets of bits maintained in corresponding
sets of registers may be based, at least 1n part, on register
map portion 300. As mentioned previously, elements of the
system may have RO or RW access to the registers through
an SMBus interface. Examples are not limited to elements of
a system such as system 100 shown 1n FIG. 1, other elements
ol a computing platform may also use register map portion
300 to communicate or exchange information with the
NVDIMM controller.

According to some examples, register portion 300 may be
associated with an NVDIMM STATE class of requests
received by the NVDIMM controller from elements of the
host computing platform (requestor) to receive a status of
the NVDIMM. For these examples, as shown in FIG. 3, the
bits 1n the GET_NVDIMM_STATE field are the only bits in
register map portion 300 that has RW access to allow a
requestor to indicate a request associated with an NVDIMM
status or state.

In some examples, BIT7 of the GET_NVDIMM_STATE
field may be cleared (e.g., de-asserts the bit) by the requestor
while 1ssuing this request. For these examples, the
NVDIMM controller sets (e.g., asserts) BIT7 to indicate the
request has been accepted and bits associated with the
T(NvState.SV) field shown 1n FIG. 3 have been populated or
selectively asserted. The bits selectively asserted for
T(NvState.SV) may indicate a time-out in either millisec-
onds (ms) or secs for the requestor to wait for the NVDIMM
controller to complete the request.

According to some examples, BIT6 of the GET_
NVDIMM_STATE field may be cleared while the requestor

1s 1ssuing this request. For these examples, the NVDIMM

10

15

20

25

30

35

40

45

50

55

60

65

6

controller sets BIT6 to indicate this request has been com-
pleted and NVDIMM status 1s 1indicated by selective asser-
tion of bits associated with the NVDIMM STATUS field
based on register map portion 300. In some examples, 1
BITO 1s set or asserted 1n the NVDIMM_STATUS field, this
may indicate that the NVDIMM controller 1s busy executing
a previously received command (e.g., such as a SAVE,
ERASE or RESTORE. However, the NVDIMM may stlll
receive a new request or command and queue that new
request or command for execution after completing the
previous request or command.

In some examples, the BUSY_TIMEOUT T(Busy) may
indicate a time-out 1n either ms or secs for a requestor to wait
for the NVDIMM controller to no longer be busy belore
determining that the NVDIMM controller 1s locked-up or
malfunctioning. For these examples, the NVDIMM control-
ler may populate or selectively assert the bits associated with
this field before setting the corresponding NVDIMM_STA -
TUS.BUSY bit (e.g., BITO of the NVDIMM_STATUS field)
. The NVDIMM controller may update the BUSY_TIM-
EOUT T(Busy) field each time a GE'T_NVDIMM_STATUS
request 1s recerved from the requestor.

FIG. 4 illustrates a third example register map portion. In
some examples, as shown i FIG. 4, the third example
register map portion includes register map portion 400. In
some examples, elements of a system such as system 100
shown 1 FIG. 1 may use register map portion 400 to
communicate or exchange information with an NVDIMM
controller for an NVDIMM. For these examples, selective
assertion of various sets of bits maintained in corresponding
sets of registers may be based, at least 1n part, on register
map portion 400. As mentioned previously, elements of the
system may have RO or RW access to the registers through
an SMBus interface. Examples are not limited to elements of
a system such as system 100 shown in FIG. 1, other elements
of a computing platform may also use register map portion
400 to communicate or exchange information with the
NVDIMM controller.

According to some examples, register portion 400 may be
associated with a SAVE class of commands received by the
NVDIMM controller from elements of the host computing
platform (requestor) to cause the NVDIMM controller to
save contents stored in the volatile memory to the non-
volatile memory. For these examples, as shown in FIG. 4,
the bits 1n the SAVE CMD and ABORT SAVE fields 1n
register map portion 400 both have RW access to allow a
requestor to mndicate a command either to execute a SAVE
operation or ABORT a SAVE operation. Also, the
SAVE_IMAGE_GUID field may allow for RW access for a
requestor to indicate a global unique identifier (GUID) for
an 1mage or content to save to the non-volatile memory.

In some examples, BIT7 of the SAVE_CMD field may be
cleared by the requestor while 1ssuing this command. For
these examples, the NVDIMM controller sets BIT7 to
indicate the command has been accepted and bits associated
with the T(Save.SV) field shown i FIG. 4 have been
populated or selectively asserted. The bits selectively
asserted for T(Save.SV) may indicate a time-out in either ms
or secs for the requestor to wait for the NVDIMM controller
to complete the SAVE command.

According to some examples, BIT6 of the SAVE_CMD
field may be cleared while the requestor is 1ssuing this
command. For these examples, the NVDIMM controller sets
BIT6 to indicate this command has been completed and a
SAVE operation status 1s indicated by selective assertion of
bits associated with the SAVE STATUS field based on

register map portion 400.

US 9,645,829 B2

7

In some examples, BITS of the SAVE_CMD field may be
asserted to indicate whether a valid image GUID has been
associated with the content to be saved to the non-volatile

memory as indicated 1n bits selectively asserted in the
SAVE_IMAGE_GUID fields. For these examples, the

requestor may have indicated a GUID 1n the SAVE_IM-
AGE_GUID for the NVDIMM controller to associate with
content to be saved to the non-volatile memory. If the GUID
1s valid (e.g., doesn’t match a previously associated GUID
for another 1image) BITS may be asserted and the NVDIMM
controller may save the image/contents to an available
region of the non-volatile memory. The NVDIMM control-
ler may preserve the association between the GUID and the
region saved, until an ERASE command 1s 1ssued to this
GUID. If GUID 1s not valid, BIT5 1s not asserted and the
contents may be saved to a default region of the non-volatile
memory (e.g., REGION-0).

In some examples, BIT7 of the ABORT_SAVE field may
be cleared by the requestor while 1ssuing this command. For
these examples, the NVDIMM controller sets BIT 7 to
indicate the command has been accepted and bits associated
with the T(Save.SV) field shown in FIG. 4 have been
populated or selectively asserted. The bits selectively
asserted for T(Save.SV) may indicate a time-out 1n either ms

or secs for the requestor to wait for the NVDIMM controller
to complete the ABORT_SAVE command.

According to some examples, BIT6 of the ABORT_SAVE
fiecld may be cleared while the requestor 1s 1ssuing this
command. For these examples, the NVDIMM controller sets
BIT6 to indicate this command has been completed and an
ABORT SAVE operation status 1s indicated by selective
assertion of bits associated with the SAVE STATUS field
based on register map portion 400.

In some examples, BITS of the ABORT_SAVE field may
be asserted to indicate whether a valid image GUID has been
associated with the content for aborting the SAVE operation
to the non-volatile memory as indicated in bits selectively
asserted in the SAVE IMAGE GUID fields. If the GUID 1s
valid (e.g., doesn’t match a previously associated GUID for
another 1mage) BIT5 may be asserted and the NVDIMM
controller may abort the SAVE operation for the image/
contents to an available region of the non-volatile memory.
[T GUID 1s not valid, BITS 1s not asserted and the NVDIMM
controller may abort the SAVE operation for contents to be
saved to a default region of the non-volatile memory (e.g.,
REGION-0).

FIG. 5 1llustrates a fourth example register map portion.
In some examples, as shown 1n FIG. 5, the fourth example
register map portion includes register map portion 500. In
some examples, elements of a system such as system 100
shown i FIG. 1 may use register map portion 500 to
communicate or exchange information with an NVDIMM
controller for an NVDIMM. For these examples, selective
assertion of various sets of bits maintained 1n corresponding
sets of registers may be based, at least i part, on register
map portion 500. As mentioned previously, elements of the
system may have RO or RW access to the registers through
an SMBus interface. Examples are not limited to elements of
a system such as system 100 shown in FIG. 1, other elements
of a computing platform may also use register map portion
500 to communicate or exchange information with the
NVDIMM controller.

According to some examples, register portion 300 may be
associated with a RESTORE class of commands received by
the NVDIMM controller from elements of the host comput-
ing platform (requestor) to cause the NVDIMM controller to

RESTORE contents stored in the non-volatile memory to the

10

15

20

25

30

35

40

45

50

55

60

65

8

volatile memory. For these examples, as shown in FIG. 5,
the bits in the RESTORE_CMD and ABORT_RESTORE

fields 1n register map portion 500 both have RW access to

allow a requestor to indicate a command either to execute a
RESTORE operation or ABORT a RESTORE operation.

Also, the RESTORE_IMAGE_GUID field may allow for

RW access for a requestor to indicate a GUID for an image
or content to restore to the volatile memory. The requestor
or caller of a RESTORE_CMD or ABORT_RESTORE may
setup the image GUID belfore invoking the command.

In some examples, BIT7 of the RESTORE_CMD f{ield
may be cleared by the requestor while 1ssuing this command.
For these examples, the NVDIMM controller sets BIT7 to
indicate the command has been accepted and bits associated
with the T(Restore.SV) field shown in FIG. 5 have been

populated or selectively asserted. The bits selectively
asserted for T(Restore.SV) may indicate a time-out 1n either
ms or secs for the requestor to wait for the NVDIMM

controller to complete the RESTORE command.
According to some examples, BIT6 of the RESTO-

RE_CMD field may be cleared while the requestor 1s 1ssuing
this command. For these examples, the NVDIMM controller
sets BIT6 to indicate this command has been completed and
a RESTORE operation status 1s indicated by selective asser-
tion of bits associated with the RESTORE STATUS field

based on register map portion 500.

In some examples, BITS of the RESTORE_CMD field
may be asserted to indicate whether a valid image GUID has
been associated with the content to be restored to the volatile
memory as indicated 1n bits selectively asserted in the
RESTORE_IMAGE_GUID fields. For these examples, the
requestor may have indicated a GUID 1n the RESTOR-
E IMAGE GUID for the NVDIMM controller to associate
with content to be restored to the volatile memory. If the
GUID 1s valid (matches a previously associated GUID)
BIT5 may be asserted and the NVDIMM controller may
restore the 1mage/contents to the volatile memory. If GUID
1s not valid, BITS 1s not asserted and the contents may be
restored from a default region of the non-volatile memory
(e.g., REGION-0) to the volatile memory.

In some examples, BIT7 of the ABORT_RESTORE field
may be cleared by the requestor while 1ssuing this command.
For these examples, the NVDIMM controller sets BIT7 to
indicate the command has been accepted and bits associated
with the T(RESTORE.SV) field shown 1n FIG. 5 have been
populated or selectively asserted. The bits selectively
asserted for T(RESTORE.SV) may indicate a time-out 1n
either ms or secs for the requestor to wait for the NVDIMM
controller to complete the ABORT_RESTORE command.

According to some examples, BIT6 of the ABORT_RE-
STORE field may be cleared while the requestor 1s 1ssuing
this command. For these examples, the NVDIMM controller
sets BI'T6 to indicate this command has been completed and
an ABORT RESTORE operation status i1s indicated by
selective assertion of bits associated with the RESTOR-
E_STATUS field based on register map portion 500.

In some examples, BITS of the ABORT_RESTORE field
may be asserted to indicate whether a valid image GUID has
been associated with the content for aborting the RESTORE
operation to the volatile memory as indicated 1n bits selec-
tively asserted in the RESTORE_IMAGE_GUID fields. IT
the GUID 1s valid (matches a previously associated GUID)
BIT5 may be asserted and the NVDIMM controller may
abort the restore operation for the image/contents to the
volatile memory. If GUID 1s not valid, BIT5 1s not asserted
and the restore operation for the contents being restored

US 9,645,829 B2

9

from a default region of the non-volatile memory (e.g.,
REGION-0) to the volatile memory 1s aborted.

FIG. 6 1llustrates a fifth example register map portion. In
some examples, as shown i FIG. 6, the fifth example
register map portion includes register map portion 600. In
some examples, elements of a system such as system 100
shown i FIG. 1 may use register map portion 600 to

communicate or exchange information with an NVDIMM

controller for an NVDIMM. For these examples, selective
assertion of various sets of bits maintained in corresponding
sets of registers may be based, at least 1n part, on register
map portion 600. As mentioned previously, elements of the
system may have RO or RW access to the registers through
an SMBus interface. Examples are not limited to elements of
a system such as system 100 shown 1n FIG. 1, other elements
ol a computing platform may also use register map portion
600 to communicate or exchange nformation with the
NVDIMM controller.

According to some examples, register portion 600 may be
associated with an ERASE class of commands received by
the NVDIMM controller from elements of the host comput-
ing platform (requestor) to cause the NVDIMM controller to
ERASE contents stored in the non-volatile memory. For
these examples, as shown i FIG. 6, the bits 1 the
ERASE_CMD and ABORT_ERASE fields 1n register map
portion 600 both have RW access to allow a requestor to

indicate a command either to execute an ERASE operation
or ABORT an ERASE operation. Also, the ERASE_IM-

AGE_GUID field may allow for RW access for a requestor
to indicate a GUID for an image or content to erase from the
non-volatile memory.

In some examples, BIT7 of the ERASE_CMD field may
be cleared by the requestor while 1ssuing this command. For
these examples, the NVDIMM controller sets BIT7 to
indicate the command has been accepted and bits associated
with the T(Erase.SV) field shown i FIG. 6 have been
populated or selectively asserted. The bits selectively
asserted for T(Erase.SV) may indicate a time-out in either
ms or secs for the requestor to wait for the NVDIMM
controller to complete the ERASE command.

According to some examples, BIT6 of the ERASE_CMD
fiecld may be cleared while the requestor 1s 1ssuing this
command. For these examples, the NVDIMM controller sets
BIT6 to indicate this command has been completed and an
ERASE operation status is indicated by selective assertion
of bits associated with the ERASE STATUS field based on
register map portion 600.

In some examples, BIT5 of the ERASE_CMD field may
be asserted to indicate whether a valid image GUID has been
associated with the content to be erased from the non-

volatile memory as indicated in bits selectively asserted in
the ERASE_IMAGE_GUID fields. For these examples, the

requestor may have indicated a GUID 1n the ERASE_IM-
AGE GUID for the NVDIMM controller to determine what
content and/or regions to erase from the non-volatile
memory. If the GUID 1s valid (e.g., matches a previously
associated GUID) BIT5 may be asserted and the NVDIMM
controller may ERASE the image/contents from the region
of the non-volatile memory associated with the valid GUID.
If GUID 1s not valid, BITS5 1s not asserted and the contents
may be erased from a default region of the non-volatile
memory (e.g., REGION-0).

In some examples, BIT7 of the ABORT_ERASE field
may be cleared by the requestor while 1ssuing this command.
For these examples, the NVDIMM controller sets BIT 7 to
indicate the command has been accepted and bits associated

with the T(Erase.SV) field shown i FIG. 6 have been

10

15

20

25

30

35

40

45

50

55

60

65

10

populated or selectively asserted. The bits selectively
asserted for T(Erase.SV) may indicate a time-out 1n either
ms or secs for the requestor to wait for the NVDIMM
controller to complete the ABORT_ERASE command.

According to some examples, BIT6 of the ABORT_
ERASE field may be cleared while the requestor 1s 1ssuing
this command. For these examples, the NVDIMM controller
sets BIT6 to indicate this command has been completed and
an ABORT ERASE operation status 1s indicated by selective
assertion of bits associated with the ERASE STATUS field
based on register map portion 600.

In some examples, BITS5 of the ABORT_ERASE field
may be asserted to indicate whether a valid image GUID has
been associated with the content for aborting the ERASE
operation to the non-volatile memory as indicated in bits
selectively asserted in the SAVE_IMAGE_GUID fields. If
the GUID 1s valid (e.g., matches a previously associated
GUID) BIT5 may be asserted and the NVDIMM controller
may abort the ERASE operation for the image/contents to

the region of the non-volatile memory associated with the
valid GUID. If GUID 1s not valid, BIT5 1s not asserted and
the NVDIMM controller may abort the ERASE operation
for contents to be erased from a default region of the
non-volatile memory (e.g., REGION-0).

FIG. 7 illustrates a sixth example register map portion. In
some examples, as shown i FIG. 7, the sixth example
register map portion includes register map portion 700. In
some examples, elements of a system such as system 100
shown 1 FIG. 1 may use register map portion 700 to
communicate or exchange information with an NVDIMM
controller for an NVDIMM. For these examples, selective
assertion of various sets of bits maintained in corresponding
sets of registers may be based, at least 1n part, on register
map portion 700. As mentioned previously, elements of the
system may have RO or RW access to the registers through
an SMBus interface. Examples are not limited to elements of
a system such as system 100 shown in FIG. 1, other elements
of a computing platform may also use register map portion
700 to communicate or exchange information with the
NVDIMM controller.

According to some examples, register portion 700 may be
associated with ARM/DISARM class of commands received
by the NVDIMM controller from elements of the host
computing platform (requestor) to cause the NVDIMM
controller to enable catastrophic save capabilities of the
NVDIMM m order to save contents stored in the volatile
memory to the non-volatile memory based on a power loss
or unexpected system reset. Enabling catastrophic save
capabilities may be referred to as an ARM operation as 1t
may cause one or more capacitors coupled to the NVDIMM
to start storing energy or “arming”’ for a catastrophic save
event. For these examples, as shown 1n FIG. 7, the bits 1n the
ENABLE_CATASTROPHIC_SAVE and DISABLE_
CATASTROPHIC_SAVE fields 1n register map portion 700
both have RW access to allow a requestor to indicate a
command either to execute an ARM operation or disable an
ARM operation.

In some examples, BIT7 of the ENABLE_ CATA-
STROPHIC_SAVE field may be cleared by the requestor
while 1ssuing this command. For these examples, the
NVDIMM controller sets BIT/ to indicate the command has
been accepted and bits associated with the T(Arm.SV) field
shown 1n FIG. 7 have been populated or selectively asserted.
The bits selectively asserted for T(Arm.SV) may indicate a
time-out 1n either ms or secs for the requestor to wait for the
NVDIMM controller to complete the ENABLE_ CATA-
STROPHIC SAVE or ARM command.

US 9,645,829 B2

11

According to some examples, BIT6 of the ENABLE_
CATASTROPHIC_SAVE field may be cleared while the
requestor 1s 1ssuing this command. For these examples, the
NVDIMM controller sets BIT6 to indicate this command
has been completed and an ARM operation status 1s 1ndi-
cated by selective assertion of bits associated with the
CATASTROPHIC_SAVE_STATUS field based on register
map portion 700.

In some examples, BIT7 of the DISABLE_ CATA-
STROPHIC_SAVE field may be cleared by the requestor
while 1ssuing this command. For these examples, the
NVDIMM controller sets BIT/ to indicate the command has
been accepted and bits associated with the T(Arm.SV) field
shown 1n FIG. 7 have been populated or selectively asserted.
The bits selectively asserted for T(Arm.SV) may indicate a
time-out 1n erther ms or secs for the requestor to wait for the
NVDIMM controller to complete the
DISABLE_CATASTROPHIC_SAVE or DISARM com-
mand.

According to some examples, BIT6 of the DISABLE_
CATASTROPHIC_SAVE field may be cleared while the
requestor 1s 1ssuing this command. For these examples, the
NVDIMM controller sets BIT6 to indicate this command
has been completed and a DISARM operation status 1s
indicated by selective assertion of bits associated with the
CATASTROPHIC_SAVE_STATUS field based on register
map portion 700.

FIG. 8 illustrates a seventh example register map portion.
In some examples, as shown 1n FIG. 8, the seventh example
register map portion includes register map portion 800. In
some examples, elements of a system such as system 100
shown i FIG. 1 may use register map portion 800 to
communicate or exchange information with an NVDIMM
controller for an NVDIMM. For these examples, selective
assertion of various sets of bits maintained in corresponding
sets of registers may be based, at least 1n part, on register
map portion 800. As mentioned previously, elements of the
system may have RO or RW access to the registers through
an SMBus interface. Examples are not limited to elements of
a system such as system 100 shown 1n FIG. 1, other elements
of a computing platform may also use register map portion
800 to communicate or exchange information with the
NVDIMM controller.

According to some examples, register portion 800 may be
associated with a self-refresh save class of commands
received by the NVDIMM controller from elements of the
host computing platform (requestor) to cause the NVDIMM
controller to save on selif-refresh (e.g., mitiate volatile to
non-volatile copy on the volatile memory going to a seli-
refresh mode). For these examples, as shown 1n FIG. 8, the
bits 1n the ENABLE_SELFREFRESH_SAVE and DIS-
ABLE_SELFREFRESH_SAVE fields 1n register map por-
tion 800 both have RW access to allow a requestor to
indicate a command either to execute a self-refresh save

operation or disable a seli-refresh save operation.
In some examples, BIT7 of the ENABLE_SELFRE-

FRESH_SAVE field may be cleared by the requestor while
1ssuing this command. For these examples, the NVDIMM
controller sets BIT7 to indicate the command has been
accepted and bits associated with the T(SrSave.SV) field
shown 1n FIG. 8 have been populated or selectively asserted.
The bits selectively asserted for T(SrSave.SV) may indicate
a time-out 1n either ms or secs for the requestor to wait for

the NVDIMM controller to complete the ENABLE_SEL-
FREFRESH_SAVE command.

According to some examples, BIT6 of the ENABLE_
SELFREFRESH_SAVE field may be cleared while the

10

15

20

25

30

35

40

45

50

55

60

65

12

requestor 1s 1ssuing this command. For these examples, the
NVDIMM controller sets BIT6 to indicate this command

has been completed and a self-refresh save operation status

1s 1ndicated by selective assertion of bits associated with the
SR_SAVE STATUS field based on register map portion 800.

In some examples, BIT7 of the DISABLE_SELFRE-
FRESH_SAVE field may be cleared by the requestor while
issuing this command. For these examples, the NVDIMM
controller sets BIT7 to indicate the command has been
accepted and bits associated with the T(SrSave.SV) field
shown 1n FIG. 7 have been populated or selectively asserted.
The bits selectively asserted for T(SrSave.SV) may indicate

a time-out 1n either ms or secs for the requestor to wait for
the NVDIMM controller to complete the DISABLE_SEL-

FREFRESH_SAVE command.
According to some examples, BIT6 of the DISABLE_
SELFREFRESH_SAVE field may be cleared while the

requestor 1s 1ssuing this command. For these examples, the
NVDIMM controller sets BIT6 to indicate this command
has been completed and a disable seli-refresh save operation

status 1s 1ndicated by selective assertion of bits associated
with the SRSAVE_STATUS field based on register map
portion 800.

FIG. 9 illustrates an eighth example register map portion.
In some examples, as shown in FIG. 3, the eighth example
register map portion includes register map portion 900. In
some examples, elements of a system such as system 100
shown 1 FIG. 1 may use register map portion 900 to
communicate or exchange information with an NVDIMM
controller for an NVDIMM. For these examples, selective
assertion of various sets of bits maintained in corresponding
sets of registers may be based, at least 1n part, on register
map portion 900. As mentioned previously, elements of the
system may have RO or RW access to the registers through
an SMBus interface. Examples are not limited to elements of
a system such as system 100 shown in FIG. 1, other elements
of a computing platform may also use register map portion
900 to communicate or exchange information with the
NVDIMM controller.

According to some examples, register portion 900 may be
associated with a Heath Check class of requests received by
the NVDIMM controller from elements of the host comput-
ing platform (requestor) to receive a health status of the
NVDIMM and or elements of the NVDIMM. For these
examples, as shown 1 FIG. 9, the bits in the GET_H-
EALTH_STATUS field are the only bits in register map
portion 900 that has RW access to allow a requestor to
indicate a request associated with a get health status opera-
tion.

In some examples, BIT7 of the GET_HEALTH_STATUS
field may be cleared or de-asserted by the requestor while
issuing this request. For these examples, the NVDIMM
controller sets or asserts BIT7 to indicate the request has
been accepted and bits associated with the T(Health.SV)
field shown in FIG. 9 have been populated or selectively
asserted. The bits selectively asserted for T(Health.SV) may
indicate a time-out 1n either ms or secs for the requestor to
wait for the NVDIMM controller to complete the GET_H-
EALTH_STATUS request.

According to some examples, BIT6 of the GET_H-
EALTH_STATUS field may be cleared while the requestor
1s 1ssuing this request. For these examples, the NVDIMM
controller sets BIT6 to indicate this request has been com-
pleted and health status 1s indicated by selective assertion of
bits associated with the HEALTH STATUS field based on

register map portion 900.

US 9,645,829 B2

13

FIG. 10 illustrates a first example sequence. In some
examples, as shown 1n FIG. 10, the first example sequence
includes sequence 1000. In some examples, elements of a
system such as system 100 shown 1n FIG. 1 may implement
sequence 1000 to 1ssue a SAVE_CMD using a register map
such as register map portions 200, 300 or 400 shown 1n
FIGS. 2-4. For these examples, the elements of system 100

such as BIOS 114, device drive 116 or App(s) 118 may cause
the SAVE_CMD to be issued to NVDIMM controller 130 by
accessing registers 132 through SMBus interface 122.
Examples are not limited to elements of a system such as
system 100 shown in FIG. 1, other elements of a host
computing platform (e.g., an operating system) may also use
register map portions 200, 300 or 400 to communicate with
NVDIMM controller 130. Also, other example portions of a
register map may be used to 1ssue a SAVE_CMD.

Starting with a SAVE_CMD and moving to block 1010
(Call GET_NVDIMM_STATE), logic and/or features at
host computing platform 110 such as device driver 116 may
first place a request for the status of NVDIMM controller
130 by clearing both BIT7 and BIT6 in the GET_
NVDIMM_STATE field as indicated 1n register map portion
300. In some examples, sequence 1100 as shown in FIG. 11
below may be implemented to receive a status from
NVDIMM controller 130.

Proceeding from block 1010 to decision block 1015
(Controller Error?), device driver 116, based on sequence
1100 (described more below) may either receive the status of
NVDIMM controller 130 or may determine that a controller
error has occurred. If a controller error was determined, the
process comes to an end. Otherwise the process moves to
decision block 1020.

Moving from decision block 1015 to decision block 1020
(Controller Busy?), device driver 116 may determine
whether BITO of the NVDIMM_STATUS field of register
map portion 300 1s asserted. I asserted, the process moves

to decision block 1025. Otherwise, the process moves to
block 1030.

Moving from decision block 1020 to decision block 1025
(T(Busy) Reached?), device driver 116 may determine
whether a time-out value indicated in BIT[14:0] of the
BUSY-TIMOUT T(Busy) field of register map portion 300
has been exceeded. If the time-out value has not been
exceeded another SAVE_CMD may be imtiated by device
driver 116 that causes another request for a status of
NVDIMM controller 130. If the time-out value has been
exceeded, a controller error 1s determined and the process

comes to an end.
Moving from decision block 1020 to block 1030 (Send

SAVE command w/ SAVE CMD.CA=0 SAVE_C-
MD.SV=0 SAVE_IMAGE_GUID=x CMD=0x01), device
driver 116 may de-assert or clear BIT7 and BIT6 of the
SAVE_CMD field of register map portion 400 to result 1n
SAVE_CMD.CA=0 and SAVE_CMD.SV=0. Device driver
116 may also selectively assert bits in SAVE_IMAGE_
GUID to provide a GUID {for an image or contents of
volatile memory 150 to save to non-volatile memory 160.
Device driver 116 may also selectively assert bits in BIT[4:
0] of the SAVE_CMD field to indicate a command to start
the SAVE operation.

Proceeding from block 1030 to decision block 1035
(SAVE_CMD.CA==1?), device driver 116 may check BI'T7
of the SAVE CMD field to determine whether NVDIMM
controller 130 has accepted the SAVE command. If BIT7
has been asserted, the SAVE CMD has been 1ssued and
accepted by NVDIMM controller 130. Device driver 116
may then check BIT6 of the SAVE_CMD field at a later time

u L.L

10

15

20

25

30

35

40

45

50

55

60

65

14

and the process moves to decision block 1045. If BIT7 has
not been asserted, the process moves to decision block 1040.

Moving from decision block 10335 to decision block 1040
(T(CA) Reached), device driver 116 may determine whether
a wait time for receiving a command acceptance ndication
for the SAVE command has exceeded a time-out value
indicated in BIT[14:0] of the Command Accepted Latency
T(CA) field of register map portion 200. I the wait time has
exceeded the time-out value, a controller error 1s determined
and the process comes to an end. If the wait time does not
exceed the time-out value, device driver 116 may check
BIT7 repeatedly until either the wait time exceeds the
time-out value or NVDIMM controller 130 indicates accep-
tance of the SAVE command by asserting BIT7.

Moving from decision block 1035 to decision block 1045
(SAVE_CMD.SV==17?), device driver 116 may check BIT6
of the SAVE CMD field to determine whether NVDIMM
controller 130 has completed the SAVE command. If BIT6
has not been asserted the process moves to block 1055,

Otherwise, the process moves to decision block 1050.
Moving from decision block 1043 to decision block 1050

(T(Save.SV) Elapsed Since SAVE_CMD==17?), device
driver 116 may determine whether a wait time for receiving
a command completion indication for the SAVE command
has exceeded a time-out value indicated 1 BIT[14:0] of the
T(Save.SV) field of register map portion 400. If the wait
time has exceeded the time-out value, a controller error 1s
determined and the process comes to an end. If the wait time
does not exceed the time-out value, device driver 116 may
check BIT6 repeatedly until either the wait time exceeds the
time-out value or NVDIMM controller 130 1indicates
completion of the SAVE command by asserting BIT®6.

Moving from decision block 1045 to block 1055 (Save
Completed Read SAVE_STATUS), device driver 116 may
read SAVE_STATUS indicated by the bits in the
SAVE_STATUS field of register map portion 400 that may
have been selectively asserted by NVDIMM controller 130
to mdicate the status of the completed SAVE operation. In
some examples, as shown 1n FIG. 10 a SAVE_STATUS may
be returned to device driver 116 or to an operating system or
software (e.g., App(s) 118) of host computing platform 110
based on that indicated status. The process then comes to an
end.

FIG. 11 illustrates a second example sequence. In some
examples, as shown i FIG. 11, the second example
sequence 1ncludes sequence 1100. As mentioned above,
sequence 1100 may be implemented by device driver 116 to
receive a status from NVDIMM controller 130. Examples
are not limited to device driver 116 implementing sequence
1100. Other elements of a host computing platform may
implement sequence 1110 to receive a status from
NVDIMM controller 130. Also, sequence 1100 1s not limited
to obtaining a status from an NVDIMM controller for a
SAVE command. Other command or request classes such as
RESTORE, ERASE, ARM/DISARM, Self-Relfresh Save or
Health Check may also implement sequence 1110 to obtain
a status from the NVDIMM controller prior to 1ssuing a
command to the NVDIMM controller.

Starting with block 1010 from sequence 1000 (GET_
NVDIMM_STATE), device driver 116 may initiate the
process ol requesting a status from NVDIMM controller
130.

Proceeding from bloc 1010 to block 1120 (Send GET_
NVDIMM_STATE Request), device driver 116 may send a
request for the status of NVDIMM controller 130 by clear-
ing both BIT7 and BIT6 1n the GET_NVDIMM_STATE

field as indicated 1n register map portion 300.

US 9,645,829 B2

15

Proceeding from block 1120 to decision block 1130
(GET_NVDIMM_STATE.RA==1?), device drniver may
check BIT7 of the GET_NVDIMM_STATE field of register
map portion 300 to determine whether NVDIMM controller
130 has accepted the request for a status from NVDIMM 5
controller 130. If BIT/ has been asserted, the process moves
to decision block 1150. Otherwise, the process moves to
decision block 1140.

Moving from decision block 1130 to decision block 1140
(Timeout T(CA) Reached?), device driver 116 may wait a 10
period of time for an indication from NVDIMM controller
130 that the request has been accepted (BIT7 1n the GET_
NVDIMM_STATE field 1s asserted). In some examples, the
period of time device driver 116 may wait may be based on
a worst case value indicated in the Command Accepted 15
Latency (T(CA)) field of register map portion 200. I the
waiting time period exceeds the worst case value, the
Timeout T(CA) has been reached and the process moves to
block 1170. If not reached, the process moves back to
decision block 1130. 20
Moving from decision block 1130 to decision block 1150
(GET_NVDIMM_STATE.SV==17?), device driver 116 may
check BIT6 of the GET NVDIMM STATE field to deter-
mine whether NVDIMM controller 130 has completed the
request. If BIT6 has not been asserted the process moves to 25
block 1160. Otherwise, the process moves to decision block
1180.

Moving from decision block 1150 to decision block 1160
(Timeout T(NvState.SV Reached?), device driver 116 may
determine whether a wait time for receiving a request 30
completion indication for the status request has exceeded a
time-out value indicated 1n BIT[14:0] of the T(NvState.SV)
ficld of register map portion 300. If the wait time has
exceeded the time-out value, the process moves to block
1170. If the wait time does not exceed the time-out value, the 35
process moves back to decision block 1150.

Moving from either decision blocks 1140 or 1160 to block
1170 (Set STATUS=Controller FError/Not responding),
device driver 116 may determine that NVDIMM controller
130 1s 1n an error state or 1s not responding. That error or not 40
responding status may be returned to decision block 1015 of
sequence 1000 and may result 1n the end of that sequence
due to the error or not responding state of NVDIMM

controller 130.
Moving from decision block 1150 to block 1180 45

(STATUS=NVDIMM_STATUS), device driver 116 may
access bits selectively asserted by NVDIMM controller 130
in NVDIMM_STATUS field of register map portion 300 to
determine the status of the NVDIMM. That status indicated
in these bits may be returned to decision block 1015 of 50
sequence 1000 to continue on with a SAVE command. In
other examples, the status indicated in these bits may be

returned to other sequences associated with other commands
or requests such a RESTORE, ERASE, ARM/DISARM,

Self-Refresh Save or Health Check. 55

FIG. 12 illustrates a third example sequence. In some
examples, as shown in FIG. 12, the second example
sequence includes sequence 1200. In some examples, ele-
ments ol a system such as system 100 shown 1n FIG. 1 may
implement sequence 1200 to 1ssue a RESTORE_CMD using 60
a register map such as register map portions 200, 300 or 500

shown 1n FIGS. 2, 3 and 5. For these examples, the elements
of system 100 such as BIOS 114, device drive 116 or App(s)

118 may cause the RESTORE_CMD to be issued to
NVDIMM controller 130 by accessing registers 132 through 65
SMBus interface 122. Examples are not limited to elements
of a system such as system 100 shown in FIG. 1, other

16

clements of a host computing platform (e.g., an operating
system) may also use register map portions 200, 300 or 500
to communicate with NVDIMM controller 130. Also, other
example portions of a register map may be used to 1ssue a
RESTORE_CMD.

Starting with a RESTORE_CMD and moving to block
1210 (Call GET_NVDIMM_STATE), logic and/or features
at host computing platform 110 such as BIOS 114 may {irst
place a request for the status of NVDIMM controller 130 by
clearng both BIT7 and BIT6 1 the GET_
NVDIMM_STATE field as indicated 1n register map portion
300. In some examples, sequence 1100 as shown in FIG. 11

above may be implemented to receive a status from
NVDIMM controller 130.

Proceeding from block 1210 to decision block 1215
(Controller Error?), BIOS 114, based on sequence 1100
(described above for FIG. 11) may either receive the status
of NVDIMM controller 130 or may determine that a con-
troller error has occurred. If a controller error was deter-
mined, the process comes to an end. Otherwise the process
moves to decision block 1220.

Moving from decision block 1213 to decision block 1220
(D1d Catastrophic SAVE Occur during Previous Boot and
Successtul?), BIOS 114 may first access BIT7 of the
NVDIMM_STATUS field for register map portion 300 to
determine whether or not a SAVE# pin was asserted on a
previous boot. If BIT7 was asserted, BIOS 114 may then
determine whether or not the Catastrophic SAVE operation
was successtul (BITS8 asserted). If both BIT7 and BITS8 were
determined to be asserted the process moves to decision
block 1225. If at least one of BIT7 or BIT8 were not
asserted, then BIOS 114 will stop the RESTORE command.
An operating system or software (e.g., App(s) 118) for host
computing platform 110 may then restore Non-RegionO of
non-volatile memory 160 (i present) to volatile memory
150 and the RESTORE process may come to an end for
BIOS 114.

Moving from decision block 1220 to decision block 1225
(Controller Busy?), BIOS 114 may determine whether BITO
of the NVDIMM_STATUS field of register map portion 300
1s asserted. If asserted, the process moves to decision block
1230. Otherwise, the process moves to block 1235.

Moving from decision block 1225 to decision block 1230
(T(Busy) Reached?), BIOS 114 may determine whether a
time-out value 1ndicated 1n BIT[14:0] of the BUSY-
TIMOUT T(Busy) field of register map portion 300 has been
exceeded. If the time-out value has not been exceeded
another RESTORE_CMD may be mitiated by BIOS 114 that
causes another request for a status of NVDIMM controller
130. If the time-out value has been exceeded, a controller

error 1s determined and the process comes to an end.
Moving from decision block 1225 to block 1235 (Send

RESTORE command w/ RESTORE_CMD.CA=0 RESTO-
RE_CMD.SV=0 RESTORE_IMAGE_GUID=x
CMD=0x01), BIOS 114 may de-assert or clear BIT7 and
BIT6 of the RESTORE_CMD field of register map portion
500 to result in RESTORE_CMD.CA=0 and RESTORE_C-
MD.SV=0. BIOS 114 may also selectively assert bits 1n
RESTORE_IMAGE_GUID to provide a GUID for an image
or contents of volatile memory 150 to RESTORE from
non-volatile memory 160 to volatile memory 150. BIOS 114

may also selectively assert bits in BIT[4:0] of the RESTO-
RE CMD field to indicate a command to start the
RESTORE operation.

Proceeding from block 1235 to decision block 1240
(RESTORE_CMD.CA==17?), BIOS 114 may check BIT7 of
the RESTORE CMD field to determine whether NVDIMM

US 9,645,829 B2

17

controller 130 has accepted the RESTORE command. If
BIT7 has been asserted, the RESTORE CMD has been
1ssued and accepted by NVDIMM controller 130. BIOS 114
may then check BIT6 of the RESTORE_CMD field at a later
time and the process moves to decision block 1250. If BIT7
has not been asserted, the process moves to decision block
1245.

Moving from decision block 1240 to decision block 1245
(T(CA) Reached), BIOS 114 may determine whether a wait

time for recerving a command acceptance indication for the
SAVE command has exceeded a time-out value indicated 1n

BIT[14:0] of the Command Accepted Latency T(CA) field

of register map portion 200. If the wait time has exceeded
the time-out value, a controller error 1s determined and the

process comes to an end. If the wait time does not exceed the

time-out value, BIOS 114 may check BIT7 repeatedly until
either the wait time exceeds the time-out value or NVDIMM
controller 130 indicates acceptance of the SAVE command
by asserting BIT'/.

Moving from decision block 1240 to decision block 1250
(SAVE_CMD.SV==1?), BIOS 114 may check BIT6 of the
RESTORE_CMD field to determine whether NVDIMM
controller 130 has completed the RESTORE command. If
BIT6 has not been asserted the process moves to block 1260.
Otherwise, the process moves to decision block 1255.

Moving from decision block 1250 to decision block 1255
(T(Save.SV) Elapsed Since SAVE_CMD==17?), BIOS 114
may determine whether a wait time for receiving a command
completion indication for the SAVE command has exceeded
a time-out value indicated 1n BI'T[14:0] of the T(Restore.SV)
ficld of register map portion 500. If the wait time has
exceeded the time-out value, a controller error 1s determined
and the process comes to an end. If the wait time does not
exceed the time-out value, BIOS 114 may check BIT6
repeatedly until either the wait time exceeds the time-out

value or NVDIMM controller 130 indicates completion of
the RESTORE command by asserting BIT6.

Moving from decision block 1250 to block 1260 (RE-
STORE Completed Read RESTORE_STATUS), BIOS 114
may read RESTORE_STATUS indicated by the bits in the
RESTORE_STATUS field of register map portion 500 that
may have been selectively asserted by NVDIMM controller
130 to indicate the status of the completed RESTORE
operation. In some examples, as shown in FIG. 12, a
RESTORE_STATUS may be returned to BIOS 114 or to an
operating system or soltware (e.g., App(s) 118) of host
computing platform 110 based on that indicated status. The
process then comes to an end.

FIG. 13 1illustrates an example block diagram for a first
apparatus 1300. As shown in FIG. 13, the first apparatus
includes an apparatus 1300. Although apparatus 1300 shown
in FIG. 13 has a limited number of elements 1n a certain
topology, 1t may be appreciated that the apparatus 1300 may
include more or less elements 1n alternate topologies as
desired for a given implementation.

The apparatus 1300 may be supported by circuitry 1320
maintained at an NVDIMM controller that may be coupled
to a host computing platform. Circuitry 1320 may be
arranged to execute one or more software or firmware
implemented components 1322-a. It 1s worthy to note that
“a” and “b” and *“c” and similar designators as used herein
are mtended to be variables representing any positive inte-
ger. Thus, for example, 11 an implementation sets a value for
a=7, then a complete set of software or firmware for com-
ponents 1322-a may include components 1322-1, 1322-2,
1322-3, 1322-4, 1322-5, 1322-6 or 1322-7. The examples

10

15

20

25

30

35

40

45

50

55

60

65

18

presented are not limited 1n this context and the different
variables used throughout may represent the same or difler-
ent 1nteger values.

According to some examples, circuitry 1320 may include
a processor or processor circuitry. The processor or proces-
sor circuitry can be any of various commercially available
processors, including without limitation an AMD® Ath-
lon®, Duron® and Opteron® processors; ARM® applica-
tion, embedded and secure processors; IBM® and
Motorola® DragonBall® and PowerPC® processors; IBM
and Sony® Cell processors; Intel® Atom®, Celeron®, Core
(2) Duo®, Core 13, Core 15, Core 17, Itanium®, Pentium®,

Xeon®, Xeon Phi® and XScale® processors; and similar
processors. According to some examples circuitry 1320 may
also be an application specific integrated circuit (ASIC) and
at least some components 1322-¢ may be implemented as
hardware elements of the ASIC.

According to some examples, apparatus 1300 may
include a receive component 1322-1. Receive component
1322-1 may be executed by circuitry 1320 to receive a status
request. For these examples, the status request may be
included 1n status request 13035 and may be recerved from a
requestor at the host computing platform. The requestor may
be coupled 1n communication with the NVDIMM controller
through an SMBus interface. The requestor, for example,
may include a BIOS, device driver or application imple-
mented by host circuitry for the host computing platform
coupled with the NVDIMM.

In some examples, apparatus 1300 may also include a
status component 1322-2. Status component 1322-2 may be
executed by circuitry 1320 to determine a status responsive
to the status request. The status may be a status of the
NVDIMM controller or a health check status for one or more
clements of the NVDIMM such as non-volatile or volatile
memory modules.

In some examples, apparatus 1300 may also include an
indicate component 1322-3. Indicate component 1322-3
may be executed by circuitry 1320 to indicate the status
determined by status component 1322-2 via selective asser-
tion of a first set of bits maintained in a first set of registers

to indicate status 1340. For these examples, the selective
assertion may be based on register map 1323-a (e.g., main-
tained 1n a data structure such as a lookup table (LUT)). The
first set of registers may be accessible to the requestor of the
status request through the SMBus interface. Also, 1n some
examples, indicate component 1322-3 may be capable of
indicating acceptance and completion status for the request
or for possible commands (e.g., command(s) 1310) received
from the requestor. For example, acceptance 1330 and
completion 1335 may be indicated based on register map
1323-a for acceptance of a request or command and subse-
quent completion of the request or command via assertion of
bits for fields of register map 1323-a associated with request
or command. The registers for the asserted bits may be
accessible to the requestor through the SMBus interface for
the requestor to determine whether the request or command
has been accepted and/or completed.

In some examples, apparatus 1300 may also include a
save component 1322-4. Save component 1322-4 may be
executed by circuitry 1320 to save data 1n a first region of
non-volatile memory for the NVDIMM and maintain an
association between a first GUID indicated by the requestor
issuing a SAVE command and the first region. For these
examples, the first GUID may be indicated with a command
included 1n command(s) 1310. Save component 1322-4 may

US 9,645,829 B2

19

maintain or have access to GUID associations 1324-b5 for
maintaining the association between the first GUID and the
first region (e.g., via a LUT).

In some examples, apparatus 1300 may also include a
restore component 1322-3. Restore component 1322-5 may
be executed by circuitry 1320 to restore data from a first
region of the non-volatile memory. For these examples, the
first region may have been previously associated with a first
GUID (e.g., by save component 1322-4). The first GUID
may have been indicated by requestor 1ssuing a RESTORE
command. Restore component 1322-5 may have access to
GUID associations 1324-b to determine that the first region
has been associated with the first GUID and then carry out
the RESTORE command.

In some examples, apparatus 1300 may also include an
erase component 1322-6. Erase component 1322-6 may be
executed by circuitry 1320 to erase data from a first region
of the non-volatile memory. For these examples, the first
region may have been previously associated with a first
GUID (e.g. by save component 1322- 4) The first GUID
may have been indicated by requestor 1ssuing an ERASE
command. Erase component 1322-6 may have access to
GUID associations 1324-b to determine that the first region
has been associated with the first GUID and then carry out
the ERASE command to erase the data in the first region of
the non-volatile memory.

In some examples, apparatus 1300 may also include an
Arm component 1322-7. Arm component 1322-7 may be
executed by circuitry 1320 to cause one or more capacitors
coupled with the NVDIMM to charge or ARM. For these
examples, save component 1322-4 may be capable of imple-
menting a catastrophic save operation using power supplied
by the one or more capacitors to preserve data maintained in
the volatile memory of the NVDIMM 1f a direct current
power supply loss 1s sensed or expected by the NVDIMM
controller or an element of the host computing platform
(e.g., BIOS or a device driver).

Included herein 1s a set of logic tlows representative of
example methodologies for performing novel aspects of the
disclosed architecture. While, for purposes of simplicity of
explanation, the one or more methodologies shown herein
are shown and described as a series of acts, those skilled in
the art will understand and appreciate that the methodologies
are not limited by the order of acts. Some acts may, 1n
accordance therewith, occur in a different order and/or
concurrently with other acts from that shown and described
herein. For example, those skilled in the art will understand
and appreciate that a methodology could alternatively be
represented as a series of interrelated states or events, such
as 1n a state diagram. Moreover, not all acts 1llustrated 1n a
methodology may be required for a novel implementation.

A logic flow may be implemented in software, firmware,
and/or hardware. In software and firmware embodiments, a
logic flow may be implemented by computer executable
instructions stored on at least one non-transitory computer
readable medium or machine readable medium, such as an
optical, magnetic or semiconductor storage. The embodi-
ments are not limited 1n this context.

FIG. 14 1llustrates an example of a first logic flow. As
shown 1n FIG. 14 the first logic flow includes a logic flow
1400. Logic tlow 1400 may be representative of some or all
of the operations executed by one or more logic, features, or
devices described herein, such as apparatus 1300. More
particularly, logic tflow 1400 may be implemented by receive
component 1322-1, status component 1322-2, indicate com-
ponent 1322-3, save component 1322-4, restore component

1322-3, erase component 1322-6 or Arm component 1322-7.

10

15

20

25

30

35

40

45

50

55

60

65

20

According to some examples, logic flow 1400 at block
1402 may receive, at a controller, a status request, the
controller for a non-volatile memory capable of preserving
data maintained 1n volatile memory, the non-volatile and the
volatile memory resident on an NVDIMM. For these
examples, receive component 1322-1 may receive the status
request from a requestor that may include a BIOS, an
application or device driver implemented by circuitry at a
host computing platform coupled to the NVDIMM.

In some examples, logic flow 1400 at block 1404 may
determine a status responsive to the status request. For these
examples, status component 1322-2 may determine the
status.

According to some examples, logic flow 1400 at block
1406 may i1ndicate the status via selective assertion of a first
set of bits maintained 1n a first set of registers. The selective
assertion may be based on a register map. The first set of
registers may be accessible to a requestor of the status
request through an SMBus interface. For these examples,
indicate component 1322-3 may indicate the status.

In some examples, logic flow 1400 at block 1408 may
receive a first command from the requestor via assertion of
a second set of bits maintained 1n a second set of registers.
The assertion of the second set of bits may be based on the
register map. The second set of registers may be accessible
to the requestor through the SMBus interface. For these
examples, receive component 1322-1 may receive the com-
mand.

According to some examples, logic flow 1400 at block
1410 may 1ndicate acceptance and completion status of the
first command via assertion of a third set of bits maintained
in a third set of registers. The assertion of the third set of bits
may be based on the register map. The third set of registers
may be accessible to the requestor through the SMBus
interface. For these examples, indicate component 1322-3
may indicate the acceptance and completion status.

In some examples, logic flow 1400 at block 1412 may
indicate a first completion status of the first command via
assertion of a fourth set of bits maintained 1n a fourth set of
registers. The assertion of the fourth set of bits may be based
on the register map. The first completion status may include
a successiul completion of the first command or a failure to
complete the first command. The fourth set of registers may
be accessible to the requestor through the SMBus interface.
For these examples, indicate component 1322-3 may 1ndi-
cate the first completion status of the first command.

FIG. 15 illustrates an example of a first storage medium.
As shown 1 FIG. 15, the first storage medium includes a
storage medium 1500. The storage medium 1500 may
comprise an article of manufacture. In some examples,
storage medium 1500 may include any non-transitory com-
puter readable medium or machine readable medium, such
as an optical, magnetic or semiconductor storage. Storage
medium 1500 may store various types of computer execut-
able instructions, such as instructions to implement logic
flow 1400. Examples of a computer readable or machine
readable storage medium may include any tangible media
capable of storing electronic data, including volatile
memory or non-volatile memory, removable or non-remov-
able memory, erasable or non-erasable memory, writeable or
re-writeable memory, and so forth. Examples of computer
executable instructions may include any suitable type of
code, such as source code, compiled code, interpreted code,
executable code, static code, dynamic code, object-oriented
code, visual code, and the like. The examples are not limited
in this context.

US 9,645,829 B2

21

FIG. 16 1llustrates an example block diagram for a second
apparatus. As shown i FIG. 16, the second apparatus
includes an apparatus 1600. Although apparatus 1600 shown
in FIG. 16 has a limited number of elements 1n a certain
topology or configuration, 1t may be appreciated that appa-
ratus 1600 may include more or less elements 1n alternate
configurations as desired for a given implementation.

The apparatus 1600 may be supported by circuitry 1620
maintained at a host computing platform. Circuitry 1620
may be arranged to execute one or more software or {irm-
ware implemented components 1622-qa. It 1s worthy to note
that “a” and “b” and *“c” and similar designators as used
herein are imntended to be variables representing any positive
integer. Thus, for example, 1I an implementation sets a value
for a=4, then a complete set of software or firmware for
components 1622-a may include components 1622-1, 1622-
2,1622-3 or 1622-4. The examples presented are not limited
in this context and the different variables used throughout
may represent the same or different integer values.

In some examples, as shown 1n FIG. 16, apparatus 1600
includes circuitry 1620. Circuitry 1620 may be generally
arranged to execute one or more software and/or firmware
components 1622-q. Circuitry 1620 may be part of a host
computing platform’s circuitry that includes processing
cores (e.g., used as a central processing unit (CPU)). Alter-
natively circuitry 1620 may part of the circuitry in a chipset
tor the host computing platform. In either scenario, circuitry
1620 may be a part of any of various commercially available
processors to include, but not limited to, those previously
mentioned for circuitry 1320 for apparatus 1300. Circuitry
1620 may also be part of dual microprocessors, multi-core
processors, and other multi-processor architectures. Accord-
ing to some examples, circuitry 1620 may also be an ASIC
and components 1622-a may be implemented as hardware
clements of the ASIC.

According to some examples, apparatus 1600 may
include a request component 1622-1. Request component
1622-1 may be executed by circuitry 1620 to send a status
request to an NVDIMM controller for an NVDIMM coupled
with the host computing platform that includes apparatus
1600. For these examples request component 1622-1 may
have access to registers at the NVDIMM controller via an
SMBus interface and may send status request 1605 using
one or more portions of a register map 1ncluded in register
map 1623-a, ¢.g., maintained 1n a data structure such as a
lookup table (LUT) accessible to request component 1622-1.

In some examples, apparatus 1600 may also include a
status component 1622-2. Status component 1622-2 may be
executed by circuitry 1620 to access a bits maintained 1n
registers at the NVDIMM controller through the SMBus
interface. The bits may indicate a status indicated by the
NVDIMM controller responsive to the status request via
selective assertion of the bits based on the register map
included in register map 1623-a, e.g., maintained 1n a LUT
accessible to status component 1622-2. For these examples,
the status may be 1ncluded 1n status 16135 and status com-
ponent 1622-2 may use one or more portions of the register
map to determine the status indicated by the NVDIMM
controller.

According to some examples, apparatus 1600 may also
include a command component 1622-3. Command compo-
nent 1622-3 may be executed by circuitry 1620 to send
commands via assertion of bits maintained 1n the registers at
the NVDIMM controller. The assertion of the bits may be
according to one or more portions ol the register map
included 1n register map 1623-a, e.g., maintained in a LUT
accessible to command component 1622-3. For these

10

15

20

25

30

35

40

45

50

55

60

65

22

examples, the portion of the register map used may be based
on the command included in command(s) 1630 such as a
SAVE, RESTORE, Self-Refresh Save or an ERASE com-
mand. Command component 1622-3 may receirve an indi-
cation that the command was accepted via acceptance 1635
and 11 accepted, an indication of completion of the command
via completion 1640. The indications may be indicated by
the NVDIMM controller selectively asserting bits based on
one or more portions of the register map and based on the
command sent by command component 1622-3.

In some examples, apparatus 1600 may also include a
GUID component 1622-4. GUID component 1622-4 may be

executed by circuitry 1620 to indicate a GUID 1in GUID(s)
1645 for an i1mage or content maintained in the volatile
memory to save the image in a region of the non-volatile
memory and to preserve or maintain an association between
the indicated GUID and the region of the non-volatile
memory. For these examples, GUID component 1622-4 may
also preserve the association for possible future use for
ERASE or RESTORE commands in GUIDs 1624-4 (e.g.,
maintained 1 a LUT). These GUIDs may be provided to
command component 1622-3 for inclusion in these types of
ERASE or RESTORE commands when sent.

Various components of apparatus 1600 and a host com-
puting platform including apparatus 1600 may be commu-
nicatively coupled to each other by various types of com-
munications media to coordinate operations. The
coordination may involve the uni-directional or bi-direc-
tional exchange of information. For instance, the compo-
nents may communicate information in the form of signals
communicated over the communications media. The infor-
mation can be implemented as signals allocated to various
signal lines. In such allocations, each message 1s a signal.
Further embodiments, however, may alternatively employ
data messages. Such data messages may be sent across
various connections. Example connections include parallel
interfaces, serial interfaces, and bus interfaces.

Included herein 1s a set of logic tlows representative of
example methodologies for performing novel aspects of the
disclosed architecture. While, for purposes of simplicity of
explanation, the one or more methodologies shown herein
are shown and described as a series of acts, those skilled 1n
the art will understand and appreciate that the methodologies
are not limited by the order of acts. Some acts may, 1n
accordance therewith, occur in a different order and/or
concurrently with other acts from that shown and described
herein. For example, those skilled in the art will understand
and appreciate that a methodology could alternatively be
represented as a series of interrelated states or events, such
as 1n a state diagram. Moreover, not all acts 1llustrated 1n a
methodology may be required for a novel implementation.

A logic flow may be implemented 1n software, firmware,
and/or hardware. In software and firmware embodiments, a
logic flow may be implemented by computer executable
instructions stored on at least one non-transitory computer
readable medium or machine readable medium, such as an
optical, magnetic or semiconductor storage. The embodi-
ments are not limited 1n this context.

FIG. 17 illustrates an example of a second logic flow. As
shown 1n FIG. 17, the second logic flow includes a logic
flow 1700. Logic tlow 1700 may be representative of some
or all of the operations executed by one or more logic,
features, or devices described herein, such as apparatus
1600. More particularly, logic flow 1700 may be imple-
mented by request component 1622-1, status component
1622-2, command component 1622-3 or GUID component

1622-4.

US 9,645,829 B2

23

In the illustrated example shown i FIG. 17, logic flow
1700 at block 1702 may send a status request to a controller
for a non-volatile memory capable of preserving data main-
tained 1n volatile memory. The non-volatile and the volatile
memory may be resident on an NVDIMM coupled with a
host computing platform. For these examples, request com-
ponent 1622-1 may cause the status request to be sent.

According to some examples, logic flow 1700 at block
1704 may access a first set of bits maintained in a first set of
registers through an SMBus interface. The first set of bits
may indicate a status indicated by the controller responsive
to the status request via selective assertion of the first set of
bits based on a register map. For these examples, status
component 1622-2 may access the first set of bits through
the SMBus interface and may determine the status indicated
by the controller based on the register map.

According to some examples, logic flow 1700 at block
1706 may send a first command via assertion of a second set
of bits maintained 1n a second set of registers. The assertion
of the second set of bits may be based on the register map.
The second set of registers may also be accessible through
the SMBus iterface. For these examples, command com-
ponent 1622-2 may cause the command to be sent by
asserting the second set of bits based on the register map.

In some examples, logic tlow 1700 at block 1708 receive
an 1ndication of acceptance and completion status of the first
command via assertion by the controller of a third set of bits
maintained 1n a third set of registers. The third set of bits
may be asserted based on the register map. The third set of
registers may also be accessible through the SMBus inter-
face. For these examples, command component 1622-3 may
be capable of accessing the third set of registers to determine
which bits have been asserted and to determine whether
acceptance and completion of the command was 1ndicated
based on the register map.

FIG. 18 illustrates an example of a second storage
medium. As shown 1n FIG. 18, the second storage medium
includes a storage medium 1800. Storage medium 1800 may
comprise an article of manufacture. In some examples,
storage medium 1800 may include any non-transitory com-
puter readable medium or machine readable medium, such
as an optical, magnetic or semiconductor storage. Storage
medium 1800 may store various types of computer execut-
able 1nstructions, such as instructions to implement logic
flow 1500. Examples of a computer readable or machine
readable storage medium may include any tangible media
capable of storing electronic data, including volatile
memory or non-volatile memory, removable or non-remov-
able memory, erasable or non-erasable memory, writeable or
re-writeable memory, and so forth. Examples of computer
executable instructions may include any suitable type of
code, such as source code, compiled code, interpreted code,
executable code, static code, dynamic code, object-oriented
code, visual code, and the like. The examples are not limited
in this context.

FIG. 19 1llustrates an example computing platform 1900.
In some examples, as shown 1n FIG. 19, computing platiorm
1900 may include a processing component 1940, other
platform components or a communications interface 1960.
According to some examples, computing platform 1900 may
be part of a host computing platform as mentioned above.

According to some examples, processing component
1940 may execute processing operations or logic for appa-
ratus 1600 and/or storage medium 1800. Processing com-
ponent 1940 may include various hardware elements, soft-
ware elements, or a combination of both. Examples of
hardware elements may include devices, logic devices,

10

15

20

25

30

35

40

45

50

55

60

65

24

components, processors, miCroprocessors, circuits, proces-
sor circuits, circuit elements (e.g., transistors, resistors,
capacitors, inductors, and so {forth), integrated circuaits,
application specific integrated circuits (ASIC), program-
mable logic devices (PLD), digital signal processors (DSP),
field programmable gate array (FPGA), memory units, logic
gates, registers, semiconductor device, chips, microchips,
chip sets, and so forth. Examples of software elements may
include software components, programs, applications, com-
puter programs, application programs, device drivers, sys-
tem programs, soltware development programs, machine
programs, operating system software, middleware, firm-
ware, soltware components, routines, subroutines, func-
tions, methods, procedures, software interfaces, application
program 1interfaces (API), instruction sets, computing code,
computer code, code segments, computer code segments,
words, values, symbols, or any combination thereof. Deter-
mining whether an example 1s implemented using hardware
clements and/or software elements may vary in accordance
with any number of factors, such as desired computational
rate, power levels, heat tolerances, processing cycle budget,
input data rates, output data rates, memory resources, data
bus speeds and other design or performance constraints, as
desired for a given example.

In some examples, other platform components 1950 may
include common computing elements, such as one or more
processors, multi-core processors, Co-processors, memory
unmts, chipsets, controllers, peripherals, interfaces, oscilla-
tors, timing devices, video cards, audio cards, multimedia
iput/output (I/O) components (e.g., digital displays), power
supplies, and so forth. Examples of memory units may
include without limitation various types of computer read-
able and machine readable storage media in the form of one
or more higher speed memory units, such as read-only

memory (ROM), random-access memory (RAM), dynamic
RAM (DRAM), Double-Data-Rate DRAM (DDRAM), syn-
chronous DRAM (SDRAM), static RAM (SRAM), pro-
grammable ROM (PROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), tlash memory, polymer memory such as ferroelec-
tric polymer memory, ovonic memory, phase change or
ferroelectric memory, silicon-oxide-nitride-oxide-silicon
(SONOS) memory, magnetic or optical cards, an array of
devices such as Redundant Array of Independent Disks
(RAID) drnives, solid state memory devices (e.g., USB
memory), solid state drives (SSD) and any other type of
storage media suitable for storing information.

In some examples, communications interface 1960 may
include logic and/or features to support a communication
interface. For these examples, communications interface
1960 may include one or more communication interfaces
that operate according to various communication protocols
or standards to communicate over direct or network com-
munication links. Direct communications may occur via use
of communication protocols or standards described 1n one or
more industry standards (including progenies and varants)
such as those associated with the SMBus specification or the
PCI Express specification. Network commumnications may
occur via use of communication protocols or standards such
those described 1n one or more Ethernet standards promul-
gated by the Institute of Electrical and Flectronics Engineers
(IEEE). For example, one such Ethernet standard may
include IEEE 802.3-2008, Carrier sense Multiple access
with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifications, Published in December 2008

(heremaftter “IEEE 802.37).

US 9,645,829 B2

25

Computing platform 1900 may be part of a computing
device that may be, for example, a server, a server array or
server farm, a web server, a network server, an Internet
server, a work station, a mini-computer, a main iframe
computer, a supercomputer, a network appliance, a web
appliance, a distributed computing system, multiprocessor
systems, processor-based systems, or combination thereof.
Accordingly, functions and/or specific configurations of
computing platform 1900 described herein, may be included
or omitted 1n various embodiments of computing platform
1900, as suitably desired.

The components and features of computing platform 1900
may be mmplemented using any combination of discrete
circuitry, application specific integrated circuits (ASICs),
logic gates and/or single chip architectures. Further, the
teatures of computing platform 1900 may be implemented
using microcontrollers, programmable logic arrays and/or
microprocessors or any combination of the foregoing where
suitably appropniate. It 1s noted that hardware, firmware
and/or software elements may be collectively or individually
referred to hereimn as “logic™ or “circuit.”

It should be appreciated that the example computing
platiorm 1900 shown in the block diagram of FIG. 19 may
represent one functionally descriptive example of many
potential implementations. Accordingly, division, omission
or inclusion of block functions depicted 1n the accompany-
ing figures does not infer that the hardware components,
circuits, software and/or elements for implementing these
tunctions would necessarily be divided, omitted, or included
in embodiments.

FI1G. 20 illustrates an example NVDIMM controller 2000.
In some examples, as shown 1 FIG. 20, NVDIMM con-

troller 2000 may include a processing component 2040,
other platform components 2050 or a communications inter-
tace 2060. According to some examples, NVDIMM con-
troller 2000 may be implemented in an NVDIMM controller
resident on or with an NVDIMM coupled to a host com-
puting platform as mentioned above.

According to some examples, processing component
2040 may execute processing operations or logic for appa-

ratus 1300 and/or storage medium 1500. Processing com-
ponent 2040 may include various hardware elements, soft-
ware elements, or a combination of both. Examples of
hardware elements may include devices, logic devices,
components, processors, miCroprocessors, circuits, proces-
sor circuits, circuit elements (e.g., transistors, resistors,
capacitors, inductors, and so {forth), integrated circuits,
application specific integrated circuits (ASIC), program-
mable logic devices (PLD), digital signal processors (DSP),
field programmable gate array (FPGA), memory units, logic
gates, registers, semiconductor device, chips, microchips,
chip sets, and so forth. Examples of software elements may
include soitware components, programs, applications, com-
puter programs, application programs, device drivers, sys-
tem programs, software development programs, machine
programs, operating system software, middleware, firm-
ware, software modules, routines, subroutines, functions,
methods, procedures, software interfaces, application pro-
gram 1nterfaces (API), instruction sets, computing code,
computer code, code segments, computer code segments,
words, values, symbols, or any combination thereof. Deter-
mimng whether an example 1s implemented using hardware
clements and/or software elements may vary in accordance
with any number of factors, such as desired computational
rate, power levels, heat tolerances, processing cycle budget,

10

15

20

25

30

35

40

45

50

55

60

65

26

input data rates, output data rates, memory resources, data
bus speeds and other design or performance constraints, as
desired for a given example.

In some examples, other controller components 2050 may
include common computing elements, such as one or more
processors, multi-core processors, Co-processors, memory
units, interfaces, oscillators, timing devices, and so forth.
Examples of memory units may include without limitation
various types of computer readable and machine readable
storage media 1 the form of one or more higher speed
memory units, such as ROM, RAM, DRAM, DDRAM,
SDRAM, SRAM, PROM, EPROM, EEPROM, flash
memory or any other type of storage media suitable for
storing 1information.

In some examples, communications interface 2060 may

include logic and/or features to support a communication
interface. For these examples, communications interface
2060 may include one or more commumnication interfaces
that operate according to various communication protocols
or standards to communicate over communication links or
channels. Communications may occur via use of communi-
cation protocols or standards described in one or more
industry standards (including progenies and variants) such
as those associated with the PCI Express specification or the
SMBus specification.
The components and features of NVDIMM controller
2000 may be implemented using any combination of dis-
crete circuitry, application specific integrated circuits
(ASICs), logic gates and/or single chip architectures. Fur-
ther, the features of NVDIMM controller 2000 may be
implemented using microcontrollers, programmable logic
arrays and/or microprocessors or any combination of the
foregoing where suitably appropnate. It 1s noted that hard-
ware, firmware and/or software elements may be collec-
tively or individually referred to herein as “logic™ or “cir-
cuit.”

It should be appreciated that the example NVDIMM
controller 2000 shown 1n the block diagram of FIG. 20 may
represent one functionally descriptive example of many
potential implementations. Accordingly, division, omission
or inclusion of block functions depicted in the accompany-
ing figures does not infer that the hardware components,
circuits, software and/or elements for implementing these
functions would necessarily be divided, omitted, or included
in embodiments.

One or more aspects of at least one example may be
implemented by representative mstructions stored on at least
one machine-readable medium which represents various
logic within the processor, which when read by a machine,
computing device or system causes the machine, computing
device or system to fabricate logic to perform the techniques
described herein. Such representations may be stored on a
tangible, machine readable medium and supplied to various
customers or manufacturing facilities to load into the fab-
rication machines that actually make the logic or processor.

Various examples may be implemented using hardware
elements, software elements, or a combination of both. In
some examples, hardware elements may include devices,
components, processors, miCroprocessors, circuits, circuit
clements (e.g., transistors, resistors, capacitors, inductors,
and so forth), integrated circuits, ASICs, PLDs, DSPs,
FPGAs, memory units, logic gates, registers, semiconductor
device, chups, microchips, chip sets, and so forth. In some
examples, software elements may include soitware compo-
nents, programs, applications, computer programs, applica-
tion programs, system programs, machine programs, oper-
ating system software, middleware, firmware, software

US 9,645,829 B2

27

modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, APIs, instruction sets, computing

code, computer code, code segments, computer code seg-
ments, words, values, symbols, or any combination thereof.
Determining whether an example 1s implemented using
hardware elements and/or soitware elements may vary in
accordance with any number of factors, such as desired
computational rate, power levels, heat tolerances, processing
cycle budget, mput data rates, output data rates, memory
resources, data bus speeds and other design or performance
constraints, as desired for a given implementation.

Some examples may include an article of manufacture or
at least one computer-readable medium. A computer-read-
able medium may include a non-transitory storage medium
to store logic. In some examples, the non-transitory storage
medium may include one or more types of computer-
readable storage media capable of storing electronic data,
including volatile memory or non-volatile memory, remov-
able or non-removable memory, erasable or non-erasable
memory, writeable or re-writeable memory, and so forth. In
some examples, the logic may include various software
clements, such as software components, programs, applica-
tions, computer programs, application programs, system
programs, machine programs, operating system software,
middleware, firmware, software modules, routines, subrou-
tines, functions, methods, procedures, software interfaces,
API, mstruction sets, computing code, computer code, code
segments, computer code segments, words, values, symbols,
or any combination thereof.

According to some examples, a computer-readable
medium may include a non-transitory storage medium to
store or maintain 1instructions that when executed by a
machine, computing device or system, cause the machine,
computing device or system to perform methods and/or
operations 1n accordance with the described examples. The
instructions may include any suitable type of code, such as
source code, compiled code, interpreted code, executable
code, static code, dynamic code, and the like. The instruc-
tions may be implemented according to a predefined com-
puter language, manner or syntax, for instructing a machine,
computing device or system to perform a certain function.
The instructions may be mmplemented using any suitable
high-level, low-level, object-oniented, visual, compiled and/
or interpreted programming language.

Some examples may be described using the expression
“in one example” or “an example” along with their deriva-
tives. These terms mean that a particular feature, structure,
or characteristic described in connection with the example 1s
included in at least one example. The appearances of the
phrase “in one example™ 1n various places 1n the specifica-
tion are not necessarily all referring to the same example.

Some examples may be described using the expression
“coupled” and “‘connected” along with their derivatives.
These terms are not necessarily intended as synonyms for
cach other. For example, descriptions using the terms “con-
nected” and/or “coupled” may indicate that two or more
clements are 1n direct physical or electrical contact with each
other. The term “coupled,” however, may also mean that two
or more elements are not in direct contact with each other,
but yet still co-operate or interact with each other.

The follow examples pertain to additional examples of
technologies disclosed herein.

Example 1

An example apparatus may include circuitry at a control-
ler for a non-volatile memory capable of preserving data

10

15

20

25

30

35

40

45

50

55

60

65

28

maintained 1 volatile memory. The non-volatile and the
volatile memory may be resident on an NVDIMM. The
example apparatus may also include a receive component
for execution by the circuitry to receive a status request. The
example apparatus may also include a status component for
execution by the circuitry to determine a status responsive to
the status request. The example apparatus may also include
an indicate component for execution by the circuitry to
indicate the status via selective assertion of a first set of bits
maintained 1n a first set of registers of the NVDIMM. For
this example, the selective assertion may be based on a
register map.

Example 2

The example apparatus of example 1, the first set of
registers may be accessible to a requestor of the status
request through an SMBus interface.

Example 3

The example apparatus of example 2, the requester may
include a basic mput/output system (BIOS), an application
or a device driver implemented by host circuitry at a host
computing platform coupled with the NVDIMM.

Example 4

The example apparatus of example 1, the status request
may include a request for a health status of the NVDIMM.

Example 5

The example apparatus of example 1, the status request
may include a request for a state of the controller or of the

NVDIMM.

Example 6

The example apparatus of example 5, the indicate com-
ponent may indicate the status as at least one of a busy
controller, a not busy controller, a save 1n progress, an abort
save 1n progress, a restore 1 progress, an abort restore 1n
progress, an erase in progress, an abort erase in progress,
save pin not asserted on a previous start-up or boot of the
NVDIMM, save pin asserted on a previous start-up or boot
of the NVDIMM that triggered a catastrophic save, cata-
strophic save successiul or catastrophic save not successtul.

Example 7

The example apparatus of example 2 also including the
receive component to receive a first command from the

requestor via assertion of a second set of bits maintained in
a second set of registers of the NVDIMM. For this examples,
the assertion of the second set of bits may be based on the
register map, the second set of registers accessible to the
requestor through the SMBus interface. The example appa-
ratus of example 2 also including the indicate component to
indicate acceptance and completion status of the first com-
mand via assertion of a third set of bits maintained 1n a third
set of registers of the NVDIMM, the assertion of the third set
of bits based on the register map. For this example, the third
set of registers may be accessible to the requestor through

the SMBus interface.

Example 8

The example apparatus of example 7, the indicate com-
ponent may indicate a first completion status of the first

US 9,645,829 B2

29

command via assertion of a fourth set of bits maintained 1n
a fourth set of registers of the NVDIMM. For this example,
the assertion of the fourth set of bits may be based on the
register map. The first completion status may include a
successiul completion of the first command or a failure to
complete the first command. The fourth set of registers may
be accessible to the requestor through the SMBus interface.

Example 9

The example apparatus of example 8 also including the
receive component to receive an abort command from the
requestor to abort the first command via assertion of a fifth
set of bits maintained in a fifth set of registers of the

NVDIMM. For this example, the assertion of the fifth set of

bits may be based on the register map. The fifth set of
registers accessible to the requestor through the SMBus
interface. The example apparatus of example 8 also 1includ-
ing the indicate component to indicate acceptance of the
abort command and subsequent completion of the abort
command via assertion of a sixth set of bits maintained 1n a
sixth set of registers of the NVDIMM. The assertion of the
sixth set of bits may be based on the register map. The sixth
set of registers may be accessible to the requestor through
the SMBus interface.

Example 10

The example apparatus of example 8, the first command
may 1nclude a save command to preserve data maintained in
the volatile memory at a given point 1n time.

Example 11

The example apparatus of example 8 also including a save
component for execution by the circuitry to save the data in
a first region of the non-volatile memory and maintain an
association between a first GUID indicated by the requestor.
For this example, the GUID may be indicated with the save
command.

Example 12

The example apparatus of example 8, the first command
may include a restore command to restore data saved in the
non-volatile memory to the volatile memory.

Example 13

The example apparatus of example 12 also including a
restore component for execution by the circuitry to restore
the data from a first region of the non-volatile memory. For
this example, the first region may have been previously
associated with a first GUID indicated by the requestor, the
GUID indicated with the restore command.

Example 14

The example apparatus of example 8, the first command
may include an erase command to erase data saved in the
non-volatile memory.

Example 15

The example apparatus of example 14 also including an
erase component for execution by the circuitry to erase the
data from a first region of the non-volatile memory. For this

10

15

20

25

30

35

40

45

50

55

60

65

30

example, the first region may have been previously associ-
ated with a first GUID 1ndicated by the requestor. The GUID
may be indicated with the erase command.

Example 16

The example apparatus of example 8 also include the first
command received by the receive component 1s an arm
command. The example apparatus of example 8 also includ-
ing an arm component for execution by the circuitry to cause
one or more capacitors coupled with the NVDIMM to
charge. The example apparatus of example 8 also including
a save component for execution by the circuitry capable of
implementing a catastrophic save using power supplied by
the one or more capacitors to preserve data maintained in the
volatile memory 11 a direct current power supply loss 1s
sensed or expected.

Example 17

The example apparatus of example 16 also including the
receive component to receive a disarm command from the
requestor. For this example, the disarm command may be
received via assertion of a fifth set of bits maintained in a
fifth set of registers of the NVDIMM. The assertion of the
fifth set of bits may be based on the register map. The fifth
set of registers may be accessible to the requestor through
the SMBus interface. For this example, the arm component
may allow the one or more capacitors to discharge respon-
sive to the disarm command. Also, for this example, the
indicate component may indicate acceptance of the disarm
command and subsequent completion of the disarm com-
mand via assertion of a sixth set of bits maintained 1n a sixth
set of register of the NVDIMM. The assertion of the sixth set
of bits may be based on the register map. The sixth set of
registers may be accessible to the requestor through the

SMBus interface.

Example 18

The example apparatus of example 1, the non-volatile
memory may include NAND flash memory and the volatile
memory may include DRAM.

Example 19

An example method may include recerving, at a control-
ler, a status request, the controller for a non-volatile memory
capable of preserving data maintained in volatile memory.
The non-volatile and the volatile memory may be resident
on an NVDIMM. The example method may also include
determining a status responsive to the status request and
indicating the status via selective assertion of a first set of
bits maintained 1n a first set of registers of the NVDIMM.
The selective assertion may be based on a register map.

Example 20

The example method of example 19, the first set of
registers may be accessible to a requestor of the status
request through an SMBus interface.

Example 21

The example method of example 20, the requester may
include BIOS, an application or a device driver implemented
by circuitry at a host computing platform coupled with the

NVDIMM.

US 9,645,829 B2

31

Example 22

The example method of example 19, the status request
may 1nclude a request for a health status of the NVDIMM.

Example 23

The example method of example 19, the status request

may 1nclude a request for a state of the controller or of the
NVDIMM.

Example 24

The example method of example 23, indicating the status
may include indicating at least one of a busy controller, a not
busy controller, a save 1n progress, an abort save 1n progress,
a restore 1n progress, an abort restore 1n progress, an erase
In progress, an abort erase in progress, save pin not asserted
on a previous start-up or boot of the NVDIMM, save pin
asserted on a previous start-up or boot of the NVDIMM that
triggered a catastrophic save, catastrophic save successiul or
catastrophic save not successiul.

Example 25

The example method of example 20 also including receiv-
ing a first command from the requestor via assertion of a
second set of bits maintained 1n a second set of registers of
the NVDIMM. For this example, the assertion of the second
set of bits may be based on the register map. The second set
of registers may be accessible to the requestor through the
SMBus interface. The example method of example 20 also
including indicating acceptance and completion status of the
first command via assertion of a third set of bits maintained
in a third set of registers of the NVDIMM. The assertion of
the third set of bits may be based on the register map. The
third set of registers may be accessible to the requestor
through the SMBus interface.

Example 26

The example method of example 25 also including indi-
cating a first completion status of the first command via
assertion of a fourth set of bits maintained in a fourth set of
registers ol the NVDIMM. For this example, the assertion of
the fourth set of bits may be based on the register map. The
first completion status may include a successtul completion
of the first command or a failure to complete the first

command, the fourth set of registers accessible to the
requestor through the SMBus interface.

Example 27

The example method of example 25 also including receiv-
ing an abort command from the requestor to abort the first
command via assertion of a fifth set of bits maintained 1n a
fifth set of registers of the NVDIM. For this example, the
assertion of the fifth set of bits may be based on the register
map. The fifth set of registers may be accessible to the
requestor through the SMBus interface. Also, the example
method of example 25 may include indicating acceptance of
the abort command and subsequent completion of the abort
command via assertion of a sixth set of bits maintained 1n a
sixth set of register of the NVDIMM, the assertion of the
sixth set of bits based on the register map. The sixth set of
registers may be accessible to the requestor through the

SMBus interface.

10

15

20

25

30

35

40

45

50

55

60

65

32

Example 28

The example method of example 26, the first command
may 1nclude a save command to preserve data maintained in
the volatile memory at a given point 1n time.

Example 29

The example method of example 28, the requestor to
indicate a first GUID for the controller to save the data 1n a
first region of the non-volatile memory and preserve an
association between the first GUID and the first region.

Example 30

The example method of example 26, the first command
may include a restore command to restore data saved 1n the
non-volatile memory to the volatile memory.

Example 31

The example method of example 30, the requestor may
indicate a first GUID for the controller to restore the data
from a first region of the non-volatile memory. The first

region may have been previously associated with the first
GUID by the controller.

Example 32

The example method of example 26, the first command
may include an erase command to erase data saved in the
non-volatile memory.

Example 33

The example method of example 32, the request may
indicate a first GUID for the controller to erase the data from
a first region of the non-volatile memory. The first region
may have been previously associated with the first GUID by
the controller.

Example 34

The example method of example 26, the first command
may include an arm command indicating to the controller to
cause one or more capacitors coupled with the NVDIMM to
charge and enable the controller to implement a catastrophic
save using power supplied by the one or more capacitors to
preserve data maintained in the volatile memory if a direct
current power supply loss 1s sensed or expected.

Example 35

The example method of example 34 also including receiv-
ing a disarm command from the requestor indicating to the
controller to allow the one or more capacitors to discharge.
The disarm command may be received via assertion of a fifth
set of bits maintamned in a fifth set of register of the

NVDIMM. The assertion of the fifth set of bits may be based

on the register map. The fifth set of registers may be
accessible to the requestor through the SMBus interface. The
example method of example 34 also including indicating
acceptance of the disarm command and subsequent comple-
tion of the disarm command via assertion of a sixth set of
bits maintained 1n a sixth set of register of the NVDIMM.

US 9,645,829 B2

33

The assertion of the sixth set of bits may be based on the
register map. The sixth set of registers may be accessible to
the requestor through the SMBus interface.

Example 36 5

The example method of example 19, the non-volatile
memory including NAND flash memory and the volatile
memory including DRAM.

10

Example 37

An example machine readable medium including a plu-
rality of instructions that in response to being executed by a
controller for a non-volatile memory capable of preserving
data maintained in volatile memory. The non-volatile and
the volatile memory may be resident on an NVDIMM and
the instructions may cause the controller to carry out a
method according to any one of examples 19 to 35.

15

Example 38 20

An example apparatus may include means for performing
the methods of any one of example 19 to 33.

Example 39 -

An example machine readable medium including a plu-
rality of instructions that in response to being executed by a
controller for a non-volatile memory capable of preserving
data maintained in volatile memory. The non-volatile and
the volatile memory may be resident on an NVDIMM. The
instructions may cause the controller to receive a status
request. The 1nstructions may also cause the controller to
determine a status responsive to the status request. The
instructions may also cause the controller to indicate the
status via selective assertion of a first set of bits maintained
in a first set of register of the NVDIM. The selective
assertion may be based on a register map.

30

35

Example 40
: : 40
The example at least one machine readable medium of
example 39, the first set of registers accessible to a requestor
of the status request through an SMBus interface.

E le 41
xample 45
The example at least one machine readable medium of
example 40, the requester may include a basic input/output
system (BIOS), an application or a device driver imple-

mented by circuitry at a host computing platform coupled

with the NVDIMM. >0

Example 42

The example at least one machine readable medium of
example 40, the status request may include a request for a >3

health status of the NVDIMM.

Example 43

The example at least one machine readable medium of 60
example 40 the status request may include a request for a

state of the controller or of the NVDIMM.

Example 44
63
The example at least one machine readable medium of
example 43, the istructions may cause the controller to

34

indicate the status by indicating at least one of a busy
controller, a not busy controller, a save 1n progress, an abort
save 1n progress, a restore 1 progress, an abort restore 1n
progress, an erase in progress, an abort erase in progress,
save pin not asserted on a previous start-up or boot of the
NVDIMM, save pin asserted on a previous start-up or boot
of the NVDIMM that triggered a catastrophic save, cata-
strophic save successiul or catastrophic save not successtul.

Example 45

The example at least one machine readable medium of
example 40 also including instructions to cause the control-
ler to receive a first command from the requestor via
assertion of a second set of bits maintained 1n a second set
of register of the NVDIMM. The assertion of the second set
of bits may be based on the register map, the second set of
registers accessible to the requestor through the SMBus
interface. The example at least one machine readable
medium of example 40 also including instructions to cause
the controller to indicate acceptance and completion status
of the first command via assertion of a third set of bits
maintained 1n a third set of registers of the NVDIM. The
assertion of the third set of bits based on the register map.

The third set of registers may be accessible to the requestor
through the SMBus interface.

Example 46

The example at least one machine readable medium of
example 45 also including instructions to cause the control-
ler to 1indicate a first completion status of the first command
via assertion of a fourth set of bits maintained in a fourth set
of register of the NVDIMM. The assertion of the fourth set
of bits may be based on the register map. The first comple-
tion status may include a successiul completion of the first
command or a failure to complete the first command, the
fourth set of registers accessible to the requestor through the

SMBus interface.

Example 47

The example at least one machine readable medium of
example 44 also including instructions to cause the control-
ler to receive an abort command from the requestor to abort
the first command via assertion of a fifth set of bits main-
tammed 1 a fifth set of register of the NVDIMM. The
assertion of the fifth set of bits may be based on the register
map. The fifth set of registers may be accessible to the
requestor through the SMBus interface. The example at least
one machine readable medium of example 44 also including
instructions to cause the controller to indicate acceptance of
the abort command and subsequent completion of the abort
command via assertion of a sixth set of bits maintained 1n a
sixth set of register of the NVDIMM. The assertion of the
sixth set of bits may be based on the register map. The sixth

set of registers may be accessible to the requestor through
the SMBus interface.

Example 48

The example at least one machine readable medium of
example 46, the first command may include a save command
to preserve data maintained 1n the volatile memory at a given
point in time.

Example 49

The example at least one machine readable medium of
example 46, the requestor may indicate a first GUID for the

US 9,645,829 B2

35

controller to save the data 1n a first region of the non-volatile
memory and preserve an association between the first GUID
and the first region.

Example 30

The example at least one machine readable medium of
example 46, the first command may include a restore com-
mand to restore data saved 1n the non-volatile memory to the
volatile memory.

Example 51

The example at least one machine readable medium of
example 50, the requestor may 1ndicate a first GUID {for the
controller to restore the data from a first region of the
non-volatile memory. The first region may have been pre-
viously associated with the first GUID by the controller.

Example 52

The example at least one machine readable medium of
example 46, the first command may include an erase com-
mand to erase data saved in the non-volatile memory.

Example 53

The example at least one machine readable medium of
example 52, the request may indicate a first GUID for the
controller to erase the data from a first region of the
non-volatile memory. The first region may have been pre-
viously associated with the first GUID by the controller.

Example 54

The example at least one machine readable medium of
example 46, the first command may include an arm com-
mand indicating to the controller to cause one or more
capacitors coupled with the NVDIMM to charge and enable
the controller to implement a catastrophic save using power
supplied by the one or more capacitors to preserve data
maintained 1n the volatile memory 1f a direct current power
supply loss 1s sensed or expected.

Example 55

The example at least one machine readable medium of
example 54 also including instructions to cause the control-
ler to receive a disarm command from the requestor indi-
cating to the controller to allow the one or more capacitors
to discharge. The disarm command may be received wvia
assertion of a fifth set of bits maintained in a fifth set of
register of the NVDIMM. The assertion of the fifth set of bits
may be based on the register map. The fifth set of registers
may be accessible to the requestor through the SMBus
interface. The example at least one machine readable
medium of example 54 also including nstructions to cause
the controller to indicate acceptance of the disarm command
and subsequent completion of the disarm command wvia
assertion of a sixth set of bits maintained in a sixth set of
register of the NVDIMM. The assertion of the sixth set of
bits may be based on the register map. The sixth set of
registers may be accessible to the requestor through the

SMBus interface.

10

15

20

25

30

35

40

45

50

55

60

65

36

Example 56

The example at least one machine readable medium of
example 46, the non-volatile memory may include NAND
flash memory and the volatile memory including DRAM.

Example 57

An example method may include sending, at a device
driver implemented by circuitry at a host computing plat-
form, a status request to a controller for a non-volatile
memory capable of preserving data maintained 1n volatile
memory. For this example, the non-volatile and the volatile

memory may be resident on an NVDIMM coupled with the
host computing platform. The example method may also
include, accessing a first set of bits maintained 1n a first set
of register of the NVDIMM through an SMBus interface.
The first set of bits may indicate a status indicated by the
controller responsive to the status request via selective
asserting of the first set of bits based on a register map.

Example 58

The method of example 57, the status request may include
a request for a health status of the NVDIMM.

Example 59

The method of example 57, the status request may include
a request for a state of the controller or of the NVDIMM.

Example 60

The method of example 59, the indicated status may
include at least one of a busy controller, a not busy control-
ler, a save 1n progress, an abort save 1n progress, a restore 1n
progress, an abort restore 1n progress, an e€rase in progress,
an abort erase 1 progress, save pin not asserted on a
previous start-up or boot of the NVDIMM, save pin asserted
on a previous start-up or boot of the NVDIMM that triggered
a catastrophic save, catastrophic save successful or cata-
strophic save not successiul.

Example 61

The method of example 57 also including sending a first
command via assertion of a second set of bits maintained 1n
a second set of register of the NVDIMM. The assertion of
the second set of bits may be based on the register map. The
second set of registers may be accessible to the device driver
through the SMBus interface. The method of example 57
also including recerving an indication of acceptance and
completion status of the first command via assertion by the
controller of a third set of bits maintained 1n a third set of
registers of the NVDIMM. The third set of bits may be
asserted based on the register map. The third set of registers
may be accessible to the device driver through the SMBus
interface.

Example 62

The method of example 61 also including receiving an
indication of a first completion status of the first command
via assertion by the controller of a fourth set of bits main-
tained 1n a fourth set of register of the NVDIMM. The fourth
set of bits may be asserted based on the register map. The
completion status may include a successtul completion of

US 9,645,829 B2

37

the first command or a failure to complete the first com-
mand. The fourth set of registers may be accessible to the
device driver through the SMBus interface.

Example 63

The method of example 62 also including sending an
abort command to abort the first command via assertion of
a fifth set of bits maintained in a fifth set of register of the
NVDIMM. The assertion of the fifth set of bits may be based
on the register map. The {fifth set of registers may be
accessible to the device driver through the SMBus interface.
The method of example 62 also including receiving an
indication of acceptance of the abort command and subse-
quent completion of the abort command via assertion by the
controller of a sixth set of bits maintained 1n a sixth set of
register of the NVDIMM. The assertion of the sixth set of

bits may be based on the register map. The sixth set of
registers may be accessible to the device driver through the
SMBus 1nterface.

Example 64

The method of example 62, the first command may
include a save command to preserve data maintained in the
volatile memory at a given point in time.

Example 65

The method of example 64 also including indicating a first
GUID for the controller to save the data 1n a first region of
the non-volatile memory and preserve an association
between the first GUID and the first region.

Example 66

The method of example 62, the first command may
include a restore command to restore data saved i the
non-volatile memory to the volatile memory.

Example 67

The method of example 66 also including indicating a first
GUID {for the controller to restore the data from a first region

of the non-volatile memory, the first region previously
associated with the first GUID by the controller.

Example 68

The method of example 62, the first command may
include an erase command to erase data saved in the
non-volatile memory.

Example 69

The method of example 68 also including indicating a first
GUID for the controller to erase the data from a first region
of the non-volatile memory. The first region may have been
previously associated with the first GUID by the controller.

Example 70

The method of example 62, the first command may
include an arm command indicating to the controller to
cause one or more capacitors coupled with the NVDIMM to
charge and enable the controller to implement a catastrophic
save using power supplied by the one or more capacitors to

10

15

20

25 .

30

35

40

45

50

55

60

65

38

preserve data maintained in the volatile memory if a direct
current power supply loss 1s sensed or expected.

Example 71

The method of example 70 also including sending a
disarm command indicating to the controller to allow the
one or more capacitors to discharge. For this example, the
disarm command may be sent via assertion of a fifth set of
bits maintained in a fifth set of register of the NVDIMM.
The assertion of the fifth set of bits may be based on the
register map. The fifth set of registers may be accessible to
the device driver through the SMBus interface. The method
of example 70 also including receiving an indication of
acceptance of the disarm command and subsequent comple-

tion of the disarm command via assertion by the controller
ol a sixth set of bits maintained 1n a sixth set of register of
the NVDIMM. The assertion of the sixth set of bits may be
based on the register map. The sixth set of registers may be
accessible to the device dniver through the SMBus interface.

Example 72
The method of example 57, the non-volatile memory may
include NAND flash memory and the volatile memory may
include DRAM.

Example 73

At least one machine readable medium including a plu-
rality of instructions that in response to being executed by
system at a host computing platform may cause the system

to carry out a method according to any one of examples 57
to 72.

Example 74

An apparatus may 1include means for performing the
methods of any one of examples 57 to 72.

Example 75

At least one machine readable medium may include a
plurality of instructions that 1n response to being executed
by system at a host computing platform may cause the
system to send a status request to a controller for a non-
volatile memory capable of preserving data maintained in
volatile memory. The non-volatile and the volatile memory
may be resident on an NVDIMM coupled with the host
computing platform. The instructions may also cause the
system to access a first set of bits maintained 1n a {irst set of
register ol the NVDIMM through an SMBus interface. The
first set of bits may indicate a status indicated by the
controller responsive to the status request via selective
asserting of the first set of bits based on a register map.

Example 76

The at least one machine readable medium of example 73,

the status request may include a request for a health status
of the NVDIMM.

Example 77

The at least one machine readable medium of example 73,
the status request may include a request for a state of the

controller or of the NVDIMM.

US 9,645,829 B2

39

Example 78

The at least one machine readable medium of example 77,
the indicated status may include at least one of a busy
controller, a not busy controller, a save 1n progress, an abort
save 1n progress, a restore 1n progress, an abort restore 1n
progress, an erase in progress, an abort erase in progress,
save pin not asserted on a previous start-up or boot of the
NVDIMM, save pin asserted on a previous start-up or boot
of the NVDIMM that triggered a catastrophic save, cata-
strophic save successiul or catastrophic save not successtul.

Example 79

The at least one machine readable medium of example 75,
the instructions to also cause the system to send a first
command via assertion of a second set of bits maintained 1n
a second set of register of the NVDIMM. The assertion of
the second set of bits may be based on the register map. The
second set of registers may be accessible through the SMBus
interface. The instructions to also cause the system to
receive an indication of acceptance and completion status of
the first command via assertion by the controller of a third
set of bits maintained 1n a third set of registers of the
NVDIMM. The third set of bits may be asserted based on the
register map. The third set of registers may be accessible
through the SMBus intertace.

Example 80

The at least one machine readable medium of example 79,
the 1instructions to also cause the system to receive an
indication of a first completion status of the first command
via assertion by the controller of a fourth set of bits main-
tained 1n a fourth set of register of the NVDIMM. The fourth
set of bits may be asserted based on the register map. The
first completion status may include a successiul completion
of the first command or a failure to complete the first
command.

Example 81

The at least one machine readable medium of example 80,
the instructions to also cause the system to send an abort
command to abort the first command via assertion of a fifth
set of bits maintained 1n a fifth set of register of the
NVDIMM. The assertion of the fifth set of bits may be based
on the register map. The fifth set of registers may be
accessible to through the SMBus interface. The instructions
to also cause the system to receive an indication of accep-
tance of the abort command and subsequent completion of
the abort command via assertion by the controller of a sixth
set of bits maintammed 1 a sixth set of register of the
NVDIMM. The assertion of the sixth set of bits may be
based on the register map. The sixth set of registers may be
accessible through the SMBus interface.

Example 82

The at least one machine readable medium of example 80,
the first command may include a save command to preserve
data maintained 1n the volatile memory at a given point 1n
time.

Example 83

The at least one machine readable medium of example 82,
the instructions to also cause the system to indicate a first

10

15

20

25

30

35

40

45

50

55

60

65

40

GUID ifor the controller to save the data 1n a first region of
the non-volatile memory and preserve an association
between the first GUID and the first region.

Example 84

The at least one machine readable medium of example 80,
the first command may 1nclude a restore command to restore
data saved in the non-volatile memory to the volatile
memory.

Example 85

The at least one machine readable medium of example 84,
the mstructions to also cause the system to indicate a first
GUID for the controller to restore the data from a {irst region

of the non-volatile memory, the first region previously
associated with the first GUID by the controller.

Example 86

The at least one machine readable medium of example 80,
the first command may include an erase command to erase
data saved in the non-volatile memory.

Example 87

The at least one machine readable medium of example 86,
the mstructions to also cause the system to indicate a first
GUID for the controller to erase the data from a first region
of the non-volatile memory. The first region may have been
previously associated with the first GUID by the controller.

Example 88

The at least one machine readable medium of example 80,
the first command may include an arm command that
indicates to the controller to cause one or more capacitors
coupled with the NVDIMM to charge and enable the con-
troller to 1implement a catastrophic save using power sup-
plied by the one or more capacitors to preserve data main-
tamned in the volatile memory 1f a direct current power
supply loss 1s sensed or expected.

Example 89

The at least one machine readable medium of example 88,
the structions to also cause the system to send a disarm
command that indicates to the controller to allow the one or
more capacitors to discharge. For this example, the disarm
command may be sent via assertion of a fifth set of bits
maintained 1 a fifth set of register of the NVDIMM. The
assertion of the fifth set of bits may be based on the register
map. The fifth set of registers may be accessible to the
device driver through the SMBus interface. The instructions
may also cause the system to receive an indication of
acceptance of the disarm command and subsequent comple-
tion of the disarm command via assertion by the controller
ol a sixth set of bits maintained 1n a sixth set of register of
the NVDIMM. The assertion of the sixth set of bits may be
based on the register map, the sixth set of registers acces-
sible through the SMBus interface.

Example 90

The at least one machine readable medium of example 73,
the non-volatile memory may include NAND tflash memory
and the volatile memory may include DRAM.

US 9,645,829 B2

41

Example 91

The at least one machine readable medium of example 75,
the system may include a basic input/output system (BIOS),
an application or a device driver.

Example 92

A system may include circuitry for a host computing
platform to implement a BIOS, an application or a device
driver. The system may also include an NVDIMM having
resident non-volatile memory and volatile memory. The
non-volatile memory may be capable of preserving data
maintained 1 a volatile memory. The system may also
include a controller for the non-volatile memory. The con-
troller may be operative to receive a status request from the
BIOS, the application or the device driver. The status request
may include one of a request for a health status of the
NVDIMM, a state of the controller or a state of the
NVDIMM. The controller may also be operative to deter-
mine a status responsive to the status request and indicate the
status via selective assertion of a first set of bits maintained
in a first set of registers of the NVDIMM. The selective
assertion may be based on a register map.

Example 93

The system of example 92 may include the first set of
registers being accessible to the BIOS, the application or the
device driver through a system management bus (SMBus)
interface.

Example 94

The system of example 93, the controller also operative to
receive a command from the BIOS, the application or the
device driver via assertion of a second set of bits maintained
in a second set of registers of the NVDIMM. For this
example, the assertion of the second set of bits may be based
on the register map. The second set of registers may be
accessible to the BIOS, the application or the device driver
through the SMBus interface. The controller may also be
operative to indicate acceptance and completion status of the
command via assertion of a third set of bits maintained 1n a
third set of registers of the NVDIMM. The assertion of the
third set of bits may be based on the register map. The third
set of registers may be accessible to the BIOS, the applica-
tion or the device driver through the SMBus interface. The
controller may also be operative to indicate a completion
status of the command via assertion of a fourth set of bits
maintained 1n a fourth set of registers of the NVDIMM. The
assertion of the fourth set of bits may be based on the register
map. The completion status may include a successiul
completion of the command or a failure to complete the
command. The fourth set of registers may be accessible to
the BIOS, the application or the device driver through the
SMBus interface.

Example 935

The system of example 94, the controller also operative to
receive an abort command from the BIOS, the application or
the device driver to abort the command via assertion of a
fifth set of bits maintained 1n a fifth set of registers of the
NVDIMM. For this example, the assertion of the fifth set of
bits may be based on the register map. The fifth set of
registers may be accessible to the BIOS, the application or

10

15

20

25

30

35

40

45

50

55

60

65

42

the device driver through the SMBus interface. The control-
ler may also be operative to indicate acceptance of the abort
command and subsequent completion of the abort command
via assertion of a sixth set of bits maintained 1n a sixth set
of registers of the NVDIMM. The assertion of the sixth set
of bits may be based on the register map. The sixth set of
registers may be accessible to the BIOS, the application or
the device drniver through the SMBus interface.

It 1s emphasized that the Abstract of the Disclosure 1s
provided to comply with 37 C.F.R. Section 1.72(b), requir-
ing an abstract that will allow the reader to quickly ascertain
the nature of the technical disclosure. It 1s submitted with the
understanding that 1t will not be used to interpret or limit the
scope or meaning of the claims. In addition, 1n the foregoing,
Detailed Description, 1t can be seen that various features are
grouped together 1n a single example for the purpose of
streamlining the disclosure. This method of disclosure 1s not
to be mterpreted as reflecting an intention that the claimed
examples require more features than are expressly recited 1n
cach claim. Rather, as the following claims reflect, inventive
subject matter lies 1n less than all features of a single
disclosed example. Thus the following claims are hereby
incorporated into the Detailed Description, with each claim
standing on 1ts own as a separate example. In the appended
claims, the terms “including” and ““in which”™ are used as the
plain-English equivalents of the respective terms “compris-
ing” and “wherein,” respectively. Moreover, the terms “first,
” “second,” “third,” and so forth, are used merely as labels,
and are not mtended to 1mpose numerical requirements on
their objects.

Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What 1s claimed 1s:

1. An apparatus comprising:

circuitry at a controller for a non-volatile memory capable
of preserving data maintained 1n volatile memory, the
non-volatile and the volatile memory resident on a
non-volatile dual in-line memory module (NVDIMM),
the NVDIMM comprising a first set ol registers, a
second set of registers, and a third set of registers;

a recerve component for execution by the circuitry to
receive a status request and a first command, the first
command to be received via assertion of a {first set of
bits maintained 1n the first set of registers, the assertion
of the first set of bits based on a register map;

a status component for execution by the circuitry to
determine a status responsive to the status request; and

an 1ndicate component for execution by the circuitry to
indicate the status via selective assertion of a second set
of bits maintained 1n the second set of registers and to
indicate acceptance and completion status of the first
command via assertion of a third set of bits maintained
in a third set of registers of the NVDIMM, the selective
assertion based on the register map and the assertion of
the third set of bits based on the register map.

2. The apparatus of claim 1, the first set of registers
accessible to a requestor of the status request through a
system management bus (SMBus) interface.

3. The apparatus of claim 2, the requester comprising a
basic input/output system (BIOS), an application or a device
driver implemented by host circuitry at a host computing
plattorm coupled with the NVDIMM, the status request

US 9,645,829 B2

43

including at least one of a request for a health status of the
NVDIMM, a request for a state of the controller or a request
for a state of the NVDIMM.

4. The apparatus of claim 3, comprising the indicate
component to idicate the status as at least one of a busy
controller, a not busy controller, a save 1n progress, an abort
save 1n progress, a restore 1 progress, an abort restore 1n
progress, an erase in progress, an abort erase in progress,
save pin not asserted on a previous start-up or boot of the
NVDIMM, save pin asserted on a previous start-up or boot
of the NVDIMM that triggered a catastrophic save, cata-
strophic save successiul or catastrophic save not successtul.

5. The apparatus of claim 2, the second set of registers
accessible to the requestor through the SMBus 1nterface and
the third set of registers accessible to the requestor through
the SMBus nterface.

6. The apparatus of claim 5, comprising the indicate
component to indicate a first completion status of the first

command via assertion of a fourth set of bits maintained 1n
a Tourth set of registers of the NVDIMM, the assertion of the
fourth set of bits based on the register map, the first
completion status including a successtul completion of the
first command or a failure to complete the first command,
the fourth set of registers accessible to the requestor through
the SMBus 1nterface.
7. The apparatus of claim 6, comprising:
the recetve component to recerve an abort command from
the requestor to abort the first command via assertion of
a fifth set of bits maintained 1n a fifth set of registers of
the NVDIMM, the assertion of the fifth set of bits based
on the register map, the fifth set of registers accessible
to the requestor through the SMBus interface; and
the indicate component to indicate acceptance of the abort
command and subsequent completion of the abort
command via assertion of a sixth set of bits maintained
in a sixth set of registers of the NVDIMM, the assertion
of the sixth set of bits based on the register map, the
sixth set of registers accessible to the requestor through
the SMBus interface.
8. The apparatus of claim 6, comprising:
the first command 1s a save command to preserve data
maintained 1n the volatile memory at a given point 1n
time; and
a save component for execution by the circuitry to save
the data 1n a first region of the non-volatile memory and
maintain an association between a first global unique

identifier (GUID) indicated by the requestor, the GUID
indicated with the save command.

9. The apparatus of claim 6, comprising:

the first command 1s a restore command to restore data
saved 1n the non-volatile memory to the volatile
memory; and

a restore component for execution by the circuitry to
restore the data from a first region of the non-volatile
memory, the first region previously associated with a
first global unique identifier (GUID) indicated by the
requestor, the GUID indicated with the restore com-
mand.

10. The apparatus of claim 6, comprising:

the first command 1s an erase command to erase data
saved 1n the non-volatile memory: and

an erase component for execution by the circuitry to erase
the data from a first region of the non-volatile memory,
the first region previously associated with a first global
umque identifier (GUID) indicated by the requestor, the
GUID indicated with the erase command.

10

15

20

25

30

35

40

45

50

55

60

65

44

11. The apparatus of claim 6, comprising:

the first command received by the receive component 1s
an arm command;

an arm component for execution by the circuitry to cause
one or more capacitors coupled with the NVDIMM to
charge; and

a save component for execution by the circuitry capable
of implementing a catastrophic save using power sup-
plied by the one or more capacitors to preserve data
maintained 1n the volatile memory 1f a direct current
power supply loss 1s sensed or expected.

12. The apparatus of claim 11, comprising:

the recerve component to recerve a disarm command from
the requestor, the disarm command received via asser-
tion of a fifth set of bits maintained 1n a fifth set of
registers of the NVDIMM, the assertion of the fifth set
of bits based on the register map, the fifth set of
registers accessible to the requestor through the SMBus

interface; and

the arm component to allow the one or more capacitors to
discharge responsive to the disarm command; and

the indicate component to indicate acceptance of the
disarm command and subsequent completion of the
disarm command via assertion of a sixth set of bits
maintained 1n a sixth set of registers of the NVDIMM,
the assertion of the sixth set of bits based on the register
map, the sixth set of registers accessible to the
requestor through the SMBus 1ntertace.

13. The apparatus of claim 1, the non-volatile memory
including NAND flash memory and the volatile memory
including dynamic random access memory (DRAM).

14. A method comprising:

recerving, at a controller, a status request, the controller

for a non-volatile memory capable of preserving data
maintained 1n volatile memory, the non-volatile and the
volatile memory resident on a non-volatile dual in-line
memory module (NVDIMM);

determining a status responsive to the status request;

indicating the status via selective assertion of a first set of
bits maintamned 1n a first set of registers of the
NVDIMM, the selective assertion based on a register

mnap;

receiving, at the controller, a first command via assertion

of a second set of bits maintained 1n a second set of
registers of the NVDIMM, the assertion of the second
set of bits based on the register map; and

indicating acceptance and completion status of the first

command via assertion of a third set of bits maintained
in a third set of registers of the NVDIMM, the assertion
of the third set of bits based on the register map.

15. The method of claim 14, comprising the first set of
registers accessible to a requestor of the status request
through a system management bus (SMBus) interface.

16. The method of claim 15, the status request comprising
a request for a state of the controller or of the NVDIMM.

17. The method of claim 15, the second set of registers
accessible to the requestor through the SMBus interface and
the third set of registers accessible to the requestor through
the SMBus interface.

18. The method of claim 17, comprising:

indicating a first completion status of the first command

via assertion of a fourth set of bits maintained in a
fourth set of registers of the NVDIMM, the assertion of
the fourth set of bits based on the register map, the first
completion status including a successiul completion of
the first command or a failure to complete the first

US 9,645,829 B2

45

command, the fourth set of registers accessible to the
requestor through the SMBus 1nterface.
19. The method of claim 18, comprising:
receiving an abort command from the requestor to abort
the first command via assertion of a fifth set of bits
maintained 1n a fifth set of registers of the NVDIMM,
the assertion of the fifth set of bits based on the register
map, the fifth set of registers accessible to the requestor
through the SMBus interface; and
indicating acceptance of the abort command and subse-
quent completion of the abort command via assertion of
a sixth set of bits maintained 1n a sixth set of registers
of the NVDIMM, the assertion of the sixth set of bits
based on the register map, the sixth set of registers
accessible to the requestor through the SMBus inter-
face.
20. At least one non-transitory machine readable medium
comprising a plurality of instructions that in response to
being executed by system at a host computing platform
cause the system to:
send a status request to a controller for a non-volatile
memory capable of preserving data maintained 1n vola-
tile memory, the non-volatile and the volatile memory
resident on a non-volatile dual 1n-line memory module
(NVDIMM) coupled with the host computing platform:;

access a first set of bits maintained 1n a {irst set of registers
of the NVDIMM through a system management bus
(SMBus) interface, the first set of bits indicating a
status 1ndicated by the controller responsive to the
status request via selective asserting of the first set of
bits based on a register map;

send a command via assertion of a second set of bits

maintained 1m a second set of registers of the
NVDIMM, the assertion of the second set of bits based
on the register map; and

receive an indication of acceptance and completion status

of the command via a third set of bits maintained 1n a
third set of registers of the NVDIMM.

21. The at least one non-transitory machine readable
medium of claim 20, the status request comprising a request
for a state of the controller or of the NVDIMM.

22. The at least one non-transitory machine readable
medium of claim 20, the assertion of the second set of bits
based on the register map, the second set of registers
accessible through the SMBus interface; and the third set of
bits asserted by the controller, based on the register map, the
third set of registers accessible through the SMBus intertace.

10

15

20

25

30

35

40

45

46

23. A system comprising;:
circuitry for a host computing platform to implement a
basic mput/output system (BIOS), an application or a
device dniver;
a non-volatile dual 1n-line memory module (NVDIMM)
having resident non-volatile memory and volatile
memory, the non-volatile memory capable of preserv-
ing data maintained 1n a volatile memory; and
a controller for the non-volatile memory, the controller
operative to:
receive a status request from the BIOS, the application
or the device driver, the status request comprising a
request for a health status of the NVDIMM, a state
of the controller or a state of the NVDIMM:;

determine a status responsive to the status request;

indicate the status via selective assertion of a first set of
bits maintained 1 a first set of registers of the
NVDIMM, the selective assertion based on a register
map; and

receive a command from the BIOS, the application or
the device driver via assertion of a second set of bits
maintained 1n a second set of registers of the
NVDIMM, the assertion of the second set of bits
based on the register map.

24. The system of claim 23, comprising the first set of
registers accessible to the BIOS, the application or the
device driver through a system management bus (SMBus)
interface.

25. The system of claim 24, the second set of registers
accessible to the BIOS, the application or the device driver
through the SMBus interface, the controller operative to:

indicate acceptance and completion status of the com-
mand via assertion of a third set of bits maintained in
a third set of registers of the NVDIMM, the assertion
of the third set of bits based on the register map, the
third set of registers accessible to the BIOS, the appli-
cation or the device driver through the SMBus inter-
face; and

indicate a completion status of the command via assertion
of a fourth set of bits maintained in a fourth set of
registers of the NVDIMM, the assertion of the fourth
set of bits based on the register map, the completion
status 1ncluding a successiul completion of the com-
mand or a failure to complete the command, the fourth
set of registers accessible to the BIOS, the application
or the device driver through the SMBus interface.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

