US009641598B1

12 United States Patent

(10) Patent No.: US 9,641,598 B1

Yuhan 45) Date of Patent: May 2, 2017
(54) CONTEXTUALLY UNIQUE IDENTIFIER USPC e, 709/201, 202
GENERATION SERVICE See application file for complete search history.
(71) Applicant: Amazon Technologies, Inc., Reno, NV (56) References Cited
(US)

U.S. PATENT DOCUMENTS

(72) Inventor: John Sandeep Yuhan, Lynnwood, WA

(US) 6,023,721 A * 2/2000 Cummings GO6F 9/4843

707/999.008

(73) Assignee: Amazon Technologies, Inc., Reno, NV 2015/0215315 Al1* 7/2015 Gordon GO6F 21/31
(US) 726/5

. . L . * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this M

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 246 days. Primary Examiner — Adnan Mirza

(74) Attorney, Agent, or Firm — Baker & Hostetler LLP

21) Appl. No.: 14/230,480
(1) Appl. No (57) ABSTRACT

(22) Filed: Mar. 31, 2014 Random numbers or unique 1dentifiers may be generated up
receiving an API call from a remote system requesting such

(51) Imt. Cl. numbers or 1dentifiers. The API call may specily character-

GoOol 15/16 (2006.01) istics desired 1n the provided number or i1dentifier, such as
HO4L 29/05 (2006.01) numeral system, length, character types, lifespan, etc. The
(52) U.S. Cl. number or 1dentifier generation system may track the num-
CPC . HO4L 67/10 (2013.01); HO4L 67/00 bers to ensure that each requesting system receives numbers

(2013.01) or 1dentifiers unique to that system.
(58) Field of Classification Search

CPC HO4L. 67/00 16 Claims, 6 Drawing Sheets
100
& \iieooor Unigue Jdentifier/ Random Number 171 i Data 172 -~ i Response 170
 Generatorial |
' . Generatorl42 .
User SVStE!m L HTTP SE"I'VE!' o 4 -’*Z*Z*I*Z*Z*Z*I*Z*I*Z*Z*Z*I*Z*I*Z*Z*Z*I*Z*I*Z*I*Z*I*Z*I*Z*I*Z*I*Z*I*Z*Z*Z*I*Z*I*Z*Z*Z*Z*l':
116 130 | ey
o Generator 3430
Unique Identifier/
{ Random Number Generator
T T T . | 140
APICall 160 | Parameter 161 ' Parameter 162~ Parameter163 | . '

LL

Bos o o T mma s e e e e e e e e e T

T T T D
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
__
.............................
.............................
............................
............................

L . T T . L T TR

.........................

= = m = = e o= o= == omomom o= o= amE =

US 9,641,598 B1

Sheet 1 of 6

May 2, 2017

- o [
l.ll-.l.ll.l.l.-ll.-ll.-llnl..-ll‘.-.

372!
JO}eiauan) Joquunp wopuey
/43y3usp) anbiun

lll

B PP RS _ _ IS w“m n_._...wI | v_ y % %H@ Z Wi mum>m 495 D

..

U.S. Patent

001

US 9,641,598 B1

Sheet 2 of 6

May 2, 2017

U.S. Patent

WaIsAs Jasn 0] sJjaquinuy
(IOPUBRL JO SIBL{IIUBP!
anbiun ypm asuodsal puag

GCV

{ajqedijdde Ji suaiswesed

guisn) sisquinu wopueld
10 S4a143U3P1 anbrin

S40WU 10 2U0 olBialiol)

_________________ Am_ﬂmum_ﬁ_ﬂm ”_.& ______________.__
siajauieled SUltlliaglas(j

[cee

| DZE

LUBISAS
J9SN 01 3supdsad puss

33
R LFEEY:
(04} BSUOUSDS BAISIDY

jo3eiauasd 0} jjed idv puss

101843UTE SUILLB1RQ

L

[STe

LUB1SAS
13SN WOJ {}BD |dY BAIB09Y

JBquiny wopuel
JO 131 1IUBPI 9nbiun asn

0£¢ Jaquinu
WopUER) 10 Jainuapt anbiun
Ym 9suodsal aA1a09Y

0ct
(9iqedijdde §i sualawieled
pue} {jed {dy auiunsiag

I RN
wiopues 10 Jaiiuapi
oNDIUN 10} PO3U JUILLIBIB(G

US 9,641,598 B1

Sheet 3 of 6

May 2, 2017

U.S. Patent

11111111111111111

.N...m.w_ﬁmm
sunjorIl 310315 |

R4 oF 1 F P PR P R r Lomo omoF o ox o r

TEG 35U0dSS wu
31213U3D

HWprrrr s r s s s e s r s e e T e T

005

rrPFrFCFfPCFCFrPFrRQL FrLOF C"FCFfFCFrCFFFCrCCFrCFCrfFCrAsSCFPFCrGLTOFPlL F " F PP S CFCFfFCFrCFFFCFrCCF e FCrCFPGL FIL F I FFF R FFFFCFFFFCrEFFPFCr LI OFLCF " Fr @ FrFrrrrrrrrrrrroror o B

™ EEC IaguUnu Wopues S0 J31Iuap

~ TZC J2QUUINU WORUES 10 I13113U3P

S "Dl

o
Ml = 4 = 4 = 4 = 4 = 4 = o4 owoaowon
R

wmm ‘_wn_E:c EoncE ile .@E:m@_
anbun suipnoul asuodsay

INDIUN SUIPNIOUL 9SUOUSIY

anbiun supssanbal el idy

plingpiegriiagrinjelingelingringriag:

T7C 1031243U38 3UILIIBIR(Q --

- T1G 19gWnu Wwopues 10 iai}iuspl
anbiun dunsenbal jjed idvy

..
..

..
...

S e dmr T e r T T T e T e e e e O

US 9,641,598 Bl

Sheet 4 of 6

May 2, 2017

U.S. Patent

30T wiofield 931A19S Sunndwiod

NZ09

isjuadeie(

laiuadeleq

19juaneleQ

Jaiuadele(

- ¥09
909 WB)SAS
HHOMIDN B3Iy 3pip Y= gunndwo)
131101sNn7

P\d

009

US 9,641,598 B1

Sheet 5 of 6

May 2, 2017

U.S. Patent

Y0/ 133ndUI0)) IDAISS

017 jusauoduwio) juatisdeurp

¢ 1/ Juduodiuo] dutjeds oiny

138eurip
SOURISLY

3aINAWO) 18AISS

80L
Jageueip
IS

4ciL
J2INCWIOY) J1aAIag

N30OL
32URISU}

[90L
SIULISUS

L "Dl

NIOMION
B/ OPIM O

RIOMIBN E3JY {8307

0L
JajuRdeie(

iadeuein

3DULISU

0L

121ndwio]) 1aA1ss

35ULIS U

198euen
S0URISU]

J2INGuwio)) 19A48S

804
jageuripg
oLBISL)

V0L
33N JOAISS

3904
2IULISUY

€77 soueysy) |
J0UEIIUDY

V90L
IIURISU

U.S. Patent May 2, 2017 Sheet 6 of 6 US 9,641,598 B1

Local Area Network
/16

Input/Output

Network Interface
Controller
822

Controller
832

302

Storage Controller
824

Management
Component
/10

FIG. 8

US 9,641,598 Bl

1

CONTEXTUALLY UNIQUE IDENTIFIER
GENERATION SERVICE

BACKGROUND

Random numbers and unique identifiers are commonly
used 1n computing systems for various tasks. One of the
most common 1s 1dentification of information and objects.
For example, unique identifiers or random numbers may be
used to 1identily interfaces, controls, files, objects, database
keys or any other generated i1tem or construct that a com-
puting system may need to track. A unique identifier or
random number may be combined with other data to form an
identifier for an 1dentified 1tem. Such other data may provide
additional information such as a date, item ownership,
context, etc. Random numbers and unique 1dentifiers are not
typically truly unique and/or random as there are only finite
computing resources available at any system, but most
implementations of random number and unique identifier
generators can produce numbers and identifiers that are
virtually umique and very unlikely to be the same as other
numbers and identifiers generated. Random numbers and
unique 1dentifiers are currently generated locally by the
device or system that desires a random number or unique
identifier, thereby using local resources and requiring that
the device maintain records where 1dentifier and/or number
tracking 1s needed. This results 1 the diversion of resources
that may be better directed to the main functions of such a
device or system.

BRIEF DESCRIPTION OF DRAWINGS

Throughout the drawings, reference numbers may be
re-used to mdicate correspondence between referenced ele-
ments. The drawings are provided to illustrate example
embodiments described herein and are not mtended to limait
the scope of the disclosure.

FIG. 1 1illustrates an example environment in which
embodiments of the invention may be implemented;

FIG. 2 depicts example operating procedures for a user
system according to embodiments;

FI1G. 3 depicts example operating procedures for an HT'TP
server according to embodiments;

FIG. 4 depicts example operating procedures for a ran-
dom number or unique identifier generator according to
embodiments

FIG. § depicts an example signal tlow according to
embodiments;

FIG. 6 depicts an example of a suitable computing envi-
ronment 1 which embodiments described herein may be
implemented;

FIG. 7 depicts a computing system diagram that illustrates
one configuration for datacenter that implements computing
services platform; and

FIG. 8 depicts an example computer architecture for a
computer capable of executing the above-described software
components.

DETAILED DESCRIPTION

Computing systems often have a need for random num-
bers or identifiers that are umique or relatively unique.
Unique or relatively unique 1dentifiers are commonly based
on random numbers or random strings of characters. Gen-
erating unique 1dentifiers or random numbers (used inter-
changeably herein) locally may overburden a computing
system or divert resources away ifrom more essential tasks.

10

15

20

25

30

35

40

45

50

55

60

65

2

In an embodiment, such a computing system may request
one or more random numbers or unique identifiers from a
remote system, such as a cloud-based service, by sending a
request to an application programming interface (API). This
request may be referred to as an “API call”. The API may
allow the requesting system to specily a type and/or quantity
of random numbers or unique identifiers requested using
parameters provided with the API call. The random number
or unique identifier generation system may track the num-
bers or identifiers provided to particular systems or appli-
cations to ensure that the numbers or identifiers provided to
that system or application are unique to that system or
application.

FIG. 1 illustrates non-limiting exemplary system 100 1n
which embodiments of the instant disclosure may be imple-
mented. System 100 1s a simplified diagram of a system that
may be used to implement the disclosed embodiments, but
those skilled 1n the art will recognize that such a system may
include other elements, including those as described herein
in regard to FIGS. 6, 7 and 8. User system 110 may be any
type of computer, computing device, server, cluster of
servers, distributed computing system or any other device or
combination of devices of any type capable of communi-
cating with one or more other devices. User system 110 may
be executing software that 1s capable of performing a call to
an application programming interface (API). An API 1s a
specification that sets forth one or more routines that may be
called (1.e., invoked) and the manner in which such routines
may be called. For example, an API may specily a name of
a routine and one or more parameters that each represent or
contain data or imformation to be provided to the routine.
Calls to a particular API may be used to eflectuate the
performance of certain tasks. For instance, user system 110
may be in need of a random number or a unique 1dentifier
and may perform an API call that sends a request to another
system or device for a random number or a unique 1dentifier.

User system 110 may be communicatively connected to
network 120. Network 120 represents any type and number
of networks, including the Internet, and any combination
thereol, that facilitate communication between devices. The
communication links between user system 110 and network
120, and any communication link and any means that may
be used to facilitate communication between two or more
devices described herein, may be any type and number of
communications links capable of facilitating communication
between two or more devices, including a wired communi-
cations link, a wireless communications link and a combi-
nation thereof, using any protocol or other means of
enabling communication between devices. All such embodi-
ments are contemplated as within the scope of the present
disclosure.

HTTP server 130 may also be communicatively con-
nected to network 120 by any type and number of commu-
nications links. HTTP server 130 may be any type and
number of servers or devices that perform the functions of
a hypertext transier protocol (HTTP) server. HI'TP server
130 may be communicatively connected to unique 1dentifier/
random number generator 140 (also referred to herein as
“identifier generation system 1407 or simply “‘generator
140”’) that may be any type and number of devices that are
capable of generating umque 1dentifiers and/or random
numbers as set forth herein. Note that generator 140 repre-
sents any one or more servers, co-located or remote from
one another, that may execute services and applications that
may be referred to herein as “generators”. Any number and
type ol generator servers are contemplated as within the
scope of the present disclosure. Generator 140 may be

US 9,641,598 Bl

3

communicatively connected to database 150 that represents
any type and number of devices that may implement, host,
or otherwise provide database services for one or more
generator applications or services.

HTTP server 130 may exchange data with user system
110. For example, user system 110 may perform an API call
that generates API call 160 that 1s transmitted to HTTP
server 130. API call 160 represents one or more messages,
frames, packets, etc., that are generated as a result of user
system 110 performing an API call. API call 160 may be a
request for generation of one or more random numbers
and/or umique i1dentifiers, allowing user system to request
that generator 140 generate such numbers and/or 1dentifiers
rather than generating them locally at user system 110. API
call 160 may include zero or more parameters that may
specily required or optional data that may be provided in
API call 160 to the called API as set forth below 1n more
detail. API call 160 may also include any other data neces-
sary for relaying API call 160 to a device and data for
providing a response, such as source and destination
addresses, port number(s), etc. Alternatively, such data may
be included 1n a frame, packet, and/or any other structure in
which API call 160 may be encapsulated or otherwise
transported. All such embodiments are contemplated as
within the scope of the present disclosure.

Upon receiving API call 160, in some embodiments via
network 120, HTTP server 130 may determine that API call
160 1s intended for generator 140 and 1n response may relay
or otherwise convey API call 160 and/or the data therein to
generator 140. HT'TP server 130 may determine that gen-
crator 140 1s the appropriate destination for API call 160
using any means or methods known to those skilled 1n the
art. Upon receipt of API call 160, generator 140 may process
API call 160 and generate response 170 that may be trans-
mitted to user system 110 via HI'TP server 130 and, 1n some
embodiments, network 120. Response 170 may include one
or more requested unique 1dentifiers/random numbers 171
and other data 172 as described in more detail herein.
Response 170 represents one or more messages, frames,
packets, etc., that are generated as a result of generator 140
processing API call 160. Response 170 may also include any
other data necessary for relaying response 170 to user
system 110, such as source and destination addresses, port
number(s), etc. Alternatively, such data may be included in
a frame, packet and/or any other structure 1n which response
170 may be encapsulated or otherwise transported. All such
embodiments are contemplated as within the scope of the
present disclosure.

In some embodiments, generator 140 may track unique
identifiers and/or random numbers provided to requesting
systems using database 150. For example, to ensure that no
duplicate unique identifiers or random numbers are provided
to the one system or device, generator 140 may store unique
identifiers or random numbers sent to a particular system or
device 1n database 150 with an i1dentifier of the particular
system associated with each of the unique identifiers or
random numbers.

In some embodiments, generator 140 may be a distributed
system with several generators that may be used to generate
random numbers and/or unique identifiers. For example,
generator 140 may distribute generation load across genera-
tors 141, 142, and 143. In such an embodiment, generator
140 may serve as a management layer to a random number/
unique 1dentifier system and handle the management of
generators and communications with other devices.

According to the disclosed embodiments, a random num-
ber or unique i1dentifier APl may specily parameters that

10

15

20

25

30

35

40

45

50

55

60

65

4

may be provided by the requesting entity that indicate the
type of response requested or other preferences of the
requesting entity. The API may be defined using any means
or methods 1n any programming language or abstraction.
Shown below 1s an example definition of an API call for 1n
pseudocode. Any means or methods of defining an API are
contemplated as within the scope of the present disclosure:

getUniquelD {parameter 1, parameter 2, . . . parameter N }

Shown below 1s an example API call using HT'TP format.
Any means or methods of constructing and transmitting an
APl call are contemplated as within the scope
of the present disclosure:
https://[examplewebsite].com/? Action=getUniquel D&
Parameter.1=X &Parameter.2=Y & Parameter.3=/

Table 1 below lists parameters that may be defined by an
API and included 1n an API call according to the embodi-
ments set forth herein. Any zero or more of these parameters
may be required or optional as defined by the API. In some
embodiments, no parameters are used and an API call simply
returns a random number or an identifier (unique or other-
wise) 1n a default form and format as defined by the API. In
some embodiments, a context 1s determined by a generator
implicitly. For example, a generator may use an IP address,
in some embodiments in combination with a port number, to
determine a system that 1s requesting a random number or
unmique 1dentifier. The generator may then track the 1denti-
fiers or random numbers provided to that system using an
identifier of that system based on the IP address and/or other
contextual information. In other embodiments, a context
may simply refer to a user-defined parameter that a request-
ing system provides. For example, a requesting system may
be executing several applications and may assign some type
of label to each application. This label may then be provided
by the requesting system as a context parameter 1n a request
for a random number or umique 1dentifier. Any type of label,
name, identifier, string, data, or any other information may
be used as a context parameter, defined by a requesting
system, and/or used by a generator to track the 1ssuance of
a random number or umique identifier. Default values may
also be used for any or all of the parameters below or any
other possible parameters, such as expiration times, whether
to track 1ssued numbers or identifiers, numbers of bits of
returned numbers or identifiers, format of returned numbers
or 1dentifiers, alphanumeric property of returned numbers or
identifiers, etc.

In some embodiments, some or all parameters may be
determined indirectly for an API call based on data associ-
ated with the requesting system, a context, a default con-
figuration, or any other criteria. For example, the requesting
system may be associated with a policy established or
requested by a customer operating the requesting system.
The policy may specily any zero or more of the parameters
disclosed herein. Upon receipt of a request, a generator may
determine the related policy, or the parameters associated
therewith, and use that data, 1n some embodiments 1n
combination with one or more other parameters received
with the request, to generate the requested numbers or
identifiers. The determination of the related policy, or the
parameters associated therewith, may be based on an 1den-
tifier of the customer, customer account, requesting system,
a parameter included in the request (e.g., one parameters
identifies a policy), or any other means. All such embodi-
ments are contemplated as within the scope of the present
disclosure.

Examples of parameters, associated data, and returned
identifiers are set forth below for illustrative purposes only.

Any form, order, notation and other types of data used for
returned numbers or identifiers are contemplated as within

US 9,641,598 Bl

S

the scope of the present disclosure.

TABLE 1

Parameters that may be defined by disclosed API and included in

API calls

Pa-
raI-
cter

Con-
text

Track

In-
clude-
Con-
text

Bits

Num-
ber-

Digits

Al-
pha

Nu-
meric

Al-
pha-
Nu-
meric

Reg-
Ex

Definition

System 1dentifier for requesting system, such as, but not limited
to, system IP address, system identifier, customer identifier,
virtual network identifier, application 1dentifier, etc. A context
parameter may also be a user defined and may take any form,
format, or content that may be provided by a requesting system.
This may allow the generator to track the returned identifiers by
context, ensuring that the identifiers provided are contextually
unique.

This may specify whether the generator is to track the returned
identifiers or numbers. A requesting system may simply want a
number or identifier, while another system may want a
contextually unique number or identifier that has not and will
not be used within that system while the returned number or
identifier 1s active (1.e., not expired).

Whether to include context information in the returned unique
identifier. For example, a random number or unique 1dentifier
may be concatenated with a context identifier or indicator of the
context. Some requesting systems may not want the generated
unique identifier to include identification mformation for the
requesting system for security reasons.

Example returned 1dentifier, random number 1in decimal
concatenated with system identifier:
4591621574805524satisfiedcustomer

Specifies the number of bits of a requested random number or
unique identifier. For example, a 128-bit random number may
be requested. Note that this may be independent of the
alphanumerical format and length in any base other than binary.
Any number of bits 1s contemplated as within the scope of the
present disclosure.

Specifies length of requested random number or unique
identifier in any form, and may also specify the numeral system
(1.e., base) of the number returned (e.g., number of binary digits,
number of hexadecimal digits, number of decimal digits, etc.)
or character format (alphabetic, numeric, alphanumeric). Any
number of digits i1s contemplated as within the scope of the
present disclosure.

Example returned identifier, random number 1n 16 decimal
digits:

4591621574805524

Specifies that generated random number or unique 1dentifier is
to be provided as a string of alphabetic characters. May include
specifying upper case characters only, lower case characters
only, combination of upper and lower case characters, whether
to include special characters, etc.

Example returned identifier, random number 1in 16 alphabetic
characters:

AHZDIHFEUINSYHGS

Specifies that generated random number or unique identifier 1s
to be provided as a string of numerals.

Example returned identifier, random number 1n 16 numeric
digits:

4591621574805524

Specifies that generated random number or unique identifier 1s
to be provided as a string of both numerals and alphabetic
characters. May include specifying upper case alphabetic
characters only, lower case alphabetic characters only,
combination of upper and lower case alphabetic characters,
whether to include special characters, etc.

Example returned 1dentifier, random number 1n 16 alphanumeric
digits:

45A16FW574705K 4

Provides regular expression that defines format of random
number or unique identifier to be provided.

Example returned identifier where regular expression indicated
that first eight digits are alphabetic and last eight digits are

numeric of 16 digit identifier:
FHWEIRHD48567862

10

15

20

25

30

35

40

45

50

55

60

65

6
TABLE 1-continued

Parameters that may be defined by disclosed API and included in

API calls

Pa-
rain-
cter

Range

In-
clude-
Date
clude-
Time

Ex-
pira-
tion
Ex-
plra-
tion
Time

RNG

Seed

Quan-

tity

Definition

Specifies range of values within which generated random
number or unique identifier 1s to be drawn from. For example, a
requesting system may request a random number between 0 and
1,000,000. The base of the range (binary, decimal hex) may
also be provided or set by default. Any range of values 1s
contemplated as within the scope of the present disclosure.
Example returned identifier in decimal, where a random decimal
number between O and 1,000,000 was requested:
0000000008439758

Specifies that the current date or time, 1n any granularity, is to
be included in the returned unique identifier. For example, a
date and time of generation of the random number or unique
identifier may be concatenated with the random number or
unique identifier. A format of the date may also be specified,
with this parameter or as a separate parameter. Any format of a
date or time 1s contemplated as within the scope of the present
disclosure.

Example returned identifier, random number in 16 decimal
digits concatenated with date and time down to seconds (date
and time underlined for ease of illustration, format 1s
YYYYMMDDHHMMSS):

459162157480552420140307053541

Specifies whether the random number or unique identifier
should expire, and in some embodiments when 1t should expire
or a lifespan of the random number or unique identifier. At
expiration, the random number or unique identifier may be
deleted along with associated data, or the random number or
unique 1dentifier and 1ts associated data may be marked for
deletion at a later time. This may indicate to the generator of
the random number or unique identifier when the generator
should stop tracking the generated random number or unique
identifier and delete it (or mark it for deletion) from its tracking
database or otherwise indicate that the random number or
unique identifier 1s available for future random number or
unique 1dentifier generation, allowing that number or identifier
to be returned to the pool of available random number or unique
identifiers. Alternatively, this parameter may simply indicate
that the returned identifier should expire, and the generator may
use a default value for the identifier’s lifespan. The expiration
time may also be included in the returned identifier so that it
may also be used by the requesting system. In such
embodiments, this parameter may specify the format of the
expiration date to be provided. Any date or time format is
contemplated as within the scope of the present disclosure.
Example returned 1dentifier, random number in 16 decimal
digits concatenated with expiration date and time down to
seconds (date and time underlined for ease of illustration,
format 1s YYYYMMDDHHMMSS):
459162157480552420140407053541

Specifies a particular random number generator, generation
method, or generation algorithm to be used by the generator. In
some embodiments, a generator may offer more than one
random number generation method and may allow a requesting
system to specify the method.

Specifies a seed to be used by the random number generator or
generation method to generate a random number to be returned
or to generate a random number to serve as a basis for an
identifier to be returned. Alternatively, this parameter may
specify that a current time or a time of generation is to be used
as the seed or the basis of the seed used.

Specifies a number of random numbers or unique identifiers to
be returned. In some embodiments, a system may request a
batch of numbers for use with a task that requires more than one
random number or unique identifier. This may prevent the need
for such a system to send multiple API calls to obtain the batch
of numbers.

Note that rather than a more generic API call with a
variety of possible parameters (e.g., getUniquelD {param-
eterl, parameter2, . . . parameter N}), multiple API calls
providing various results associated with the particular API
call are contemplated for other embodiments. For example,
one API call may request a ten-digit decimal numeric unique

US 9,641,598 Bl

7

identifier or random number (e.g., getTenDigDec { }), while
another may request a set of five 128-bit unique 1dentifiers
or random numbers in hexadecimal (e.g., getl28Hex5Set
{ 1. Alternatively, or in addition, some embodiments may
support a combination of more specific calls and parameters.
For example, an API call may request a ten-digit decimal
numeric umque identifier or random number and permit
parameters idicating context and expiration date or time
(e.g., getTenDigDec {context_parameter, expiration_param-
eter}). All such embodiments are contemplated as within the
scope of the present disclosure.

FIG. 2 depicts example operating procedures 200 for a
device, system, group of devices or systems, soltware mod-
ule executing on hardware or any other entity that may
request one or more unique i1dentifiers or random numbers
(referred to herein for ease of description as “user system’)
according to embodiments. Operating procedures 200 begin
with operation 210 and move to operation 215 where a user
system may determine that it has a need for one or more
unique 1dentifiers or random numbers. As one skilled in the
art will appreciate, there are many situations where a com-
puting system may have a need for such a number or
identifier. At operation 215, an API call (in HT'TP format or
otherwise) requesting one or more unique identifiers or
random numbers may be determined and generated at the
user system. The API call may include a customer account
identifier that may be used by a generator to determine
parameters based on an associated policy and/or for charg-
ing and billing purposes. The customer account identifier
may be a parameter. Any parameters that are needed or
desired may also be determined at this operation. The API
call may take any form as disclosed herein, and may be
transmitted at operation 225 directly from the user system to
a generator or transmitted via other systems, such as an
HTTP server.

At operation 230, a response that includes one or more
unique 1dentifiers or random numbers may be received, as
well as any additional data that may be provided beyond the
requested unique 1dentifiers or random numbers. For
example, an expiration time and/or date may be included 1n
the response, and/or tracking information for the generated
unique 1dentifiers or random numbers, context information
(allowing the user system to confirm that the appropnate
context was 1nitially provided), etc. At operation 235, the
user system may make use of the recetved unique identifiers
or random numbers and any associated data. After operation
235, operating procedures 200 move to operation 240 where
they end.

FIG. 3 depicts example operating procedures 300 for an
HTTP server according to embodiments. Alternatively, oper-
ating procedures 300 may be performed by a device, system,
group of devices or systems, soltware module executing on
hardware or any other entity that may serve to relay or
otherwise communicate an API call requesting one or more
random numbers or unique 1dentifiers and a response to such
a call between a user system and a generator. Operating
procedures 300 begin with operation 310 and move to
operation 315 where an HT'TP server may receive an API
call in HT'TP format requesting a unique identifier or random
number from a user system. At operation 320, the HT'TP
server may determine an appropriate generator to which to
torward or relay the API call. This may be accomplished
using any available means or methods. In one example,
where the HT'TP server distributes the load of requests for
unique identifiers or random numbers to perform load bal-
ancing ol such requests or to ensure that no single generator
becomes overloaded, the HI'TP server may determine the

10

15

20

25

30

35

40

45

50

55

60

65

8

best available generator and transmit the API call or its
equivalent to the chosen generator. At operation 325, the
HTTP server may send the API call or 1its equivalent to the
chosen generator. Alternatively, as operation 325 the HITP
server may write or otherwise store data or an indicator to a
database that may then be detected by another system or
service that will, in response, initiate the generation of the
unique 1dentifiers or random numbers. For example, a gen-
erator may be associated with a service that detects the
storage of an indicator and/or other data indicating that a
request has been received for one or more unique identifiers
or random numbers, and 1n response instruct the generator to
generate the requested unique identifiers or random num-
bers.

At operation 330, a response may be received at the HTTP
server from the generator. Alteratively, the HI'TP server
may be associated with a service that detects the storage of
data indicating that the requested unique identifiers or ran-
dom numbers have been generated, and in response may
retrieve such unique identifiers or random numbers and
generate a response for the requesting system. The response
may contain any requested one or more unique i1dentifiers or
random numbers, as well as any associated data that may be
provided with such unique i1dentifiers or random numbers.
At operation 335, this response, or the data contained
therein, including the requested unique identifier(s) or ran-
dom number(s), may be transmitted to the user system that
requested 1t. After operation 333, operating procedures 300
move to operation 340 where they end.

FIG. 4 depicts example operating procedures 400 for a
device, system, group of devices or systems, software mod-
ule executing on hardware or any other enftity that may
generate one or more unique 1dentifiers or random numbers
(referred to herein for ease of description as simply a
“generator”) according to embodiments. Operating proce-
dures 400 begin with operation 410 and move to operation
415 where a generator may receive an API call (in HI'TP
format or otherwise) requesting one or more unique 1denti-
fiers or random numbers that originated at any user system.
The API call may take any form as disclosed herein, and may
be received directly from a user system or via other systems,
such as an HT'TP server. Alternatively, the generator may be
associated with a service that detects the storage of an
indicator and/or other data indicating that a request has been
received for one or more umque identifiers or random
numbers, and may receive an instruction or otherwise begin
generation of a random number or unique identifier 1n
response. At operation 420, the generator may determine
parameters mcluded with the API call if any were provided.
Included 1n operation 420 may be the determination of a
customer account identifier. This may be determined based
on the API call, or a customer account identifier may be
included as a parameter. Alternatively, or in addition, the
generator may determine one or more parameters based on
data associated with the requesting system or context (e.g.,
based on a policy associated with the requesting system or
context). In some embodiments, no parameters may be
required or permitted by the API, while 1n other embodi-
ments parameters may be optional or may be required.

At operation 4235, the generator may generate the one or
more requested unique 1dentifiers or random numbers, using
the provided or acquired parameters 1f applicable. If appli-
cable, the generator may also ensure that the generated
number or identifier 1s not one that has already been pro-
vided to the requesting user system. This may be accom-
plished by, for example, querying a database with tracking
information for such numbers and i1dentifiers that are not

US 9,641,598 Bl

9

expired. Alternatively, the generator may determine a pool
ol available numbers or identifiers by excluding those not
listed 1n a database containing the unexpired numbers or
identifiers provided to the requesting user system. Any other
actions may be taken at operation 425 to generate a unique
identifier or random number that complies with the param-
cters and any requirements on the generator for generating
unique 1dentifiers or random numbers for the requesting user
system. A complete response may also be generated at this
operation, 1 such a response includes data beyond the
requested unique 1dentifiers or random numbers. For
example, an expiration time and/or date may be provided,
tracking information for the generated unique identifiers or
random numbers, context information (allowing the request-
ing user system to confirm that the appropriate context was
mitially provided), eftc.

At operation 430, the generator may store, 1 some
embodiments 1n a database, any tracking information that
may be associated with the request 1n the API call and/or the
context of the request (e.g., requesting user system, etc.). For
example, 1n order to ensure that the requesting user system
receives numbers or identifiers that are unique to the
requesting user system, the generator may track such num-
bers or identifiers, for example by storing them in a database
with associated identifying information. When a number or
identifier 1s requested by a user system, the generator may
query this database in the generation process to determine a
pool of numbers or identifiers from which to select a
requested number or identifier. Alternatively, the generator
may generate a number or identifier and then compare 1t to
those associated with the context (e.g., user system, etc.) to
ensure that 1t 1s not a same unexpired number or i1dentifier as
provided previously. Other means and methods of tracking
and determining relatively unique numbers or 1dentifiers are
contemplated as within the scope of the present disclosure.
Other data associated with the user system or requested
number or 1dentifier may also be stored, such as an expira-
tion time or date or a lifespan of a requested number or
identifier. In some embodiments, the generator may track a
number of requested numbers or 1dentifiers, 1n an example
within a period of time, 1n order to ensure proper billing for
the operator of the user system (e.g., where the operator pays
for a certain number of numbers or identifiers per time
period). Any other means or methods of determining and
storing data associated with a generated unique 1dentifier or
random number are contemplated as within the scope of the
present disclosure.

At operation 433, a response with the one or more unique
identifiers or random numbers, as well as any associated data
that may be provided with such unique 1dentifiers or random
numbers, may be transmitted to the requesting user system.
Also at 435, 1n some embodiments charging and/or billing
information associated with a customer account identifier
may be stored or transmitted to a billing system. After
operation 435, operating procedures 400 move to operation
440 where they end.

FIG. 5 illustrates exemplary non-limiting signal flow 500
showing example communications that may occur between
a user system, an HTTP server and a generator according to
some embodiments of the present disclosure. Note that the
user system, HT'TP server, and generator used 1n FIG. 5 may
be any of such devices as described herein. User system 510
may request one or more unique identifiers or random
numbers with an API call (in some embodiments including,
one or more parameters) transmitted to HI'TP server 520 at
communication 511. In response, HI'TP server 520 may
determine 521 an appropriate recipient generator for the API

10

15

20

25

30

35

40

45

50

55

60

65

10

call. Having determined generator 530 1s the most appro-
priate generator, or the default or only generator, HT'TP
server 520 may transmuit the API call at communication 523
to generator 530.

At operation 531, generator 530 may generate a response,
including one or more unique 1dentifiers or random numbers
and any data that may be provided with such unique 1den-
tifiers or random numbers. At operation 532, generator 530
may also store any tracking data, update a database, or
otherwise store data related to the request and response. The
response may be sent to HI'TP server 520 1n commumnication
533. HTTP server 520 may forward the response or other-
wise convey the content of the response to user system 510
in communication 534.

Note that the instant embodiments may be used with any
systems that may request one or more umque identifiers or
random numbers, generate responses including one or more
unmique 1dentifiers or random numbers and/or relay such
requests and responses. Such systems may be operated by,
but are not limited to, service providers and cloud-based
servers and systems. One skilled in the art will appreciate
that the disclosed embodiments can be readily applied to a
variety of systems, and all such applications are contem-
plated as embodiments that are within the scope of the
present disclosure.

FIGS. 6-8 are similar to FIG. 1 1n that they depict example
operating environments in which embodiments disclosed
herein may be implemented, and these figures depict these
operating environments at varying levels of granularity. FIG.
6 generally depicts a programmable execution service plat-
form that comprises a plurality of datacenters. FIG. 7
generally depicts a datacenter that comprises a plurality of
computers. FIG. 8 generally depicts a computer.

It may be appreciated that these operating environments
of FIGS. 6-8 may be used to implement aspects of the
operating environments of FIG. 1. For example, HITP
server 130, database 150, and generator 140 may each or all
be implemented 1n a datacenter 602 of FIG. 6, or across
multiple datacenters 602 of FIG. 6. Likewise, network 120
of FIG. 1 may be wide area network 606 of FIG. 6 and user
system 110 of FIG. 1 may be customer computing system
604 of FIG. 6.

Within a datacenter 602 of FIG. 6, HI'TP server 130,
database 150 and generator 140 may each be a server
computer 702 or 704 of FIG. 7 (which itsell may be
computer 800 of FIG. 8). The communications links
between these devices in FIG. 1 may be portions of local
area network 716 of FIG. 7.

Turning now to details of FIG. 6, this figure depicts an
example of a suitable computing environment i which
embodiments described herein may be implemented. A
cloud service provider (such as computing service platiform
608) may configure the illustrated computing environment
to host virtual clouds of entities and to enable communica-
tion paths between these virtual clouds that may otherwise
be 1solated. In particular, FIG. 6 1s a system and network
diagram that shows an illustrative operating environment
600 that includes a computing service platform 608 for
implementing virtual clouds and for providing on-demand
access to computing resources, such as virtual machine
instances. Computing service platform 608 may provide
computing resources for executing applications on a perma-
nent or an as-needed basis and may be configured as a
private network. These computing resources may include
vartous types of resources, such as data processing
resources, data storage resources, data communication
resources and the like. Each type of computing resource may

US 9,641,598 Bl

11

be general-purpose or may be available in a number of
specific configurations. For example, data processing
resources may be available as virtual machine instances. The
instances may be configured to execute applications, includ-
ing unique identifier or random number generators, mail
servers, web servers, HI'TP servers, storage servers, appli-
cation servers, media servers, database servers and the like.
Data storage resources may include file storage devices,
block storage devices and the like.

Each type or configuration of computing resource may be
available 1n different sizes, such as large resources consist-
ing of many processors, large amounts of memory and/or
large storage capacity and small resources consisting of
fewer processors, smaller amounts of memory and/or
smaller storage capacity. Entities may choose to allocate a
number of small processing resources, such as web servers,
HTTP servers, and/or one large processing resource as a
database server, for example.

The computing resources provided by computing service
plattorm 808 may be enabled by one or more datacenters
602A-602N, which may be referred herein singularly as
“datacenter 602" or in the plural as “datacenters 602.”
Datacenters 602 may be facilities that house and operate
computer systems and associated components and may
include redundant and backup power, communications,
cooling and security systems. Datacenters 602 may be
located 1n a same geographical area, such as 1n a same
tacility, and may be interconnected using private networks,
such as high-speed fiber optic networks, controlled and
managed by a service provider of computing service plat-
form 608. Datacenters 602 may also be distributed across
geographically disparate locations and may be intercon-
nected 1n part using public networks, such as the Internet.
One 1illustrative configuration for datacenter 602 that imple-
ments the concepts and technologies disclosed herein 1s
described below with regard to FIG. 7.

Entities of computing service platform 608 may access
the computing resources provided by datacenters 602 over a
wide-area network (“WAN™) 606. Although a WAN 1s
illustrated 1n FIG. 6, it should be appreciated that a local-
area network (“LAN""), the Internet or any other networking
topology known 1n the art that connects datacenters 602 to
remote entities and other users may be utilized. It should
also be appreciated that combinations of such networks may
also be utilized.

An entity or other entities that are customers of computing
service platform 608 may utilize a customer computing
system 604 to access the computing resources provided by
datacenters 602. Customer computing system 604 may
include a computer capable of accessing computing service
platform 608, such as a server computer, a desktop or laptop
personal computer, a tablet computer, a wireless telephone,
a PDA, an e-reader, a game console, a set-top box or any
other computing device.

As 1s described 1n greater detail below, customer com-
puting system 604 may be utilized to configure aspects of the
computing resources provided by computing service plat-
form 608. In this regard, computing service platform 608
may provide a web interface through which aspects of its
operation may be configured through the use of a web
browser application program executing on customer com-
puting system 604. Alternatively, a stand-alone application
program executing on customer computing system 604 may
access an application programming interface (API) exposed
by computing service platform 608 for performing the
configuration operations. Other mechanisms for configuring
the operation of computing service platiorm 608, including

10

15

20

25

30

35

40

45

50

55

60

65

12

launching new wvirtual machine instances on computing
service platform 608, may also be utilized.

According to embodiments disclosed herein, capacities of
purchased computing resources provided by computing ser-
vice platform 608 may be scaled in response to demand. In
this regard, scaling refers to the process of instantiating,
which may also be referred to herein as “launching” or
“creating,” or terminating, which may also be referred to
herein as “de-scaling,” nstances of computing resources in
response to demand.

Auto scaling may be one mechanism for scaling comput-
Ing resources 1n response to increases or lulls 1n demand for
the resources. Auto scaling may allow entities of computing
service platform 608 to scale their purchased computing
resources according to conditions defined by the entity. For
instance, rules may be defined for scaling up capacity 1n a
particular manner in response to the occurrence of specified
conditions, such as a spike 1n demand. Similarly, rules may
also be defined to scale down capacity 1n a particular manner
in response to the occurrence of other conditions, such as a
lull in demand. The mechanisms disclosed herein for launch-
ing virtual machine instances may be utilized when
instances are manually launched by an entity or when
instances are launched by an auto scaling component in
computing service platform 608.

Computing service platform 608 may also be configured
with a deployment component to assist entities in the
deployment of new 1nstances of computing resources. The
deployment component may receive a configuration from an
entity that may include data describing how new instances
should be configured. For example, the configuration may
specily one or more applications or software components
that should be installed in new instances, provide scripts
and/or other types of code to be executed 1n new 1nstances,
provide cache warming logic specitying how an application
cache should be prepared, and other types of information.
The deployment component utilizes the entity-provided con-
figuration and cache warming logic to launch, configure and
prime new instances ol computing resources.

FIG. 7 depicts a computing system diagram that illustrates
one configuration for datacenter 602 that implements com-
puting service platform 608. The example datacenter 702
shown i FIG. 7 may include several server computers
702A-702N, which may be referred herein singularly as
“server computer 702 or 1n the plural as “server computers
702,” for providing computing resources for hosting virtual
clouds and for executing applications. Server computers 702
may be standard tower or rack-mount server computers
configured appropriately for providing the computing
resources described above. For instance, 1n one implemen-
tation server computers 702 may be configured to provide
istances 706 A-706N of computing resources.

Instances 706A-706N, which may be referred herein
singularly as “instance 706 or 1n the plural as “instances
706,” may be virtual machine instances. As known 1n the art,
a virtual machine instance 1s an instance of a software
implementation of a machine (1.e., a computer) that executes
programs like a physical machine. In the example of virtual
machine 1nstances, each server computer 702 may be con-
figured to execute an 1instance manager 708 capable of
executing the instances. Instance manager 708 may be a
hypervisor or another type of program configured to enable
the execution of multiple mstances 706 on a single server
computer 702, for example. Fach of instances 706 may be
configured to execute all or a portion of an application. In an
embodiments, generators as described heremn may be
instances. For example, server computer 702A may be

US 9,641,598 Bl

13

configured with generator instance 723 that may perform
any or all of the functions described herein 1n regard to any
disclosed generator.

It should be appreciated that although the embodiments
disclosed herein are described primarily 1n the context of
virtual machine instances, other types of instances can be
utilized with the concepts and technologies disclosed herein.
For instance, the technologies disclosed herein may be
utilized with instances of storage resources, instances of data
communications resources, and with other types of
resources. The embodiments disclosed herein may also
execute all or a portion of an application directly on a
computer system without utilizing wvirtual machine
instances.

Datacenter 702 shown 1n FIG. 7 may also include a server
computer 704 reserved for executing software components
for managing the operation of datacenter 702, server com-
puters 702 and instances 706. In particular, server computer
704 may execute a management component 710. As dis-
cussed above, an entity of computing service platiorm 608
may utilize customer computing system 604 to access man-
agement component 710 to configure various aspects of the
operation of computing service platform 608 and instances
706 purchased by the entity. For example, the entity may
purchase instances and make changes to the configuration of
the instances. The entity may also specily settings regarding,
how the purchased instances are to be scaled in response to
demand. The entity may also provide requests to launch
instances to management component 710.

As also described briefly above, an auto scaling compo-
nent 712 may scale instances 706 based upon rules defined
by an enfity of computing service platform 608. For
example, auto scaling component 712 may allow an entity to
specily scale up rules for use i determining when new
instances should be instantiated and scale down rules for use
in determining when existing instances should be termi-
nated.

Auto scaling component 712 may execute on a single
server computer 704 or in parallel across multiple server
computers 702 1in computing service platform 608. In addi-
tion, auto scaling component 712 may consist ol a number
ol subcomponents executing on different server computers
702 or other computing devices in computing service plat-
form 608. Auto scaling component 712 may be implemented
as software, hardware or any combination of the two. Auto
scaling component 712 may monitor available computing
resources in computing service platform 808 over an internal
management network, for example.

As discussed brietly above, datacenter 602 may also be
configured with a deployment component 714 to assist
entities 1n the deployment of new instances 706 of comput-
ing resources. Deployment component 714 may receive a
configuration from an entity that includes data describing
how new 1nstances 706 should be configured. For example,
the configuration may specily one or more applications that
should be installed 1n new instances 706, provide scripts
and/or other types of code to be executed for configuring
new 1instances 706, provide cache warming logic specifying
how an application cache should be prepared and other types
ol information.

Deployment component 714 may utilize the entity-pro-
vided configuration and cache warming logic to configure,
prime and launch new instances 706. The configuration,
cache warming logic, and other information may be speci-
fied by an entity using management component 710 or by
providing this iformation directly to deployment compo-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

nent 714. Other mechanisms may also be utilized to con-
figure the operation of deployment component 714.
In the example datacenter 702 shown in FIG. 7, an

appropriate LAN 716 may be utilized to interconnect server
computers 702A-702N and server computer 704. LAN 716

may also be connected to WAN 606 1llustrated in FIG. 6. It
should be appreciated that the network topology illustrated
in FIGS. 6 and 7 has been greatly simplified and that many
more networks and networking devices may be utilized to
interconnect the wvarious computing systems disclosed
herein. Appropnate load balancing devices or software mod-
ules may also be utilized for balancing a load between each
of datacenters 602A-602N in computing service platiorm
608 of FIG. 6, between each of server computers 702A-
702N 1n datacenter 702, and between instances 706 pur-
chased by each enftity of computing service platform 608.
These network topologies and devices should be apparent to
those skilled 1n the art.

It should be appreciated that datacenter 702 described 1n
FIG. 7 1s merely 1llustrative and that other implementations
may be utilized. In particular, functionality described herein
as being performed by management component 710, auto
scaling component 712 and deployment component 714
may be performed by one another, may be performed by
other components or may be performed by a combination of
these or other components. Additionally, 1t should be appre-
ciated that this functionality may be implemented 1n soft-
ware, hardware or a combination of software and hardware.
Other implementations should be apparent to those skilled 1n
the art.

FIG. 8 depicts an example computer architecture for a
computer 800 capable of executing the above-described
soltware components. The computer architecture shown 1n
FIG. 8 illustrates a conventional server computer, worksta-
tion, desktop computer, laptop, tablet, network appliance,
PDA, e-reader, digital cellular phone or other computing
device, and may be utilized to execute any aspects of the
soltware components presented herein described as execut-
ing on user system 110, HT'TP server 130, generator 140,
database 150, within datacenters 602A-602N, on server
computers 702A-702N, on the customer computing system
604 or on any other computing system mentioned herein.

Computer 800 may include a baseboard, or “mother-
board,” that 1s a printed circuit board to which a multitude
of components or devices may be connected by way of a
system bus or other electrical communication paths. One or
more central processing units (“CPUs”) 804 may operate in
conjunction with a chipset 806. CPUs 804 may be standard
programmable processors that perform arithmetic and logi-
cal operations necessary for the operation of computer 800.

CPUs 804 may perform the necessary operations by
transitioning from one discrete physical state to the next
through the manipulation of switching elements that difler-
entiate between and change these states. Switching elements
may generally include electronic circuits that maintain one
of two binary states, such as flip-tlops, and electronic
circuits that provide an output state based on the logical
combination of the states of one or more other switching
clements, such as logic gates. These basic switching ele-
ments may be combined to create more complex logic
circuits, including registers, adders-subtractors, arithmetic
logic units, floating-point units and the like.

Chipset 806 may provide an interface between CPUs 804
and the remainder of the components and devices on the
baseboard. Chipset 806 may provide an interface to a
random access memory (“RAM™) 808 used as the main
memory 1n computer 800. Chipset 806 may further provide

US 9,641,598 Bl

15

an interface to a computer-readable storage medium such as
a read-only memory (*ROM”) 820 or non-volatile RAM
(“NVRAM?”) for storing basic routines that may help to start
up computer 800 and to transfer information between the
vartous components and devices. ROM 820 or NVRAM
may also store other software components necessary for the
operation of computer 800 in accordance with the embodi-
ments described herein.

Computer 800 may operate 1n a networked environment
using logical connections to remote computing devices and
computer systems through LAN 716. Chipset 806 may
include functionality for providing network connectivity
through a network interface controller (“NIC””) 822, such as
a gigabit Ethernet adapter. NIC 822 may be capable of
connecting the computer 800 to other computing devices
over LAN 716. It should be appreciated that multiple NICs
822 may be present in computer 800, connecting the com-
puter to other types of networks and remote computer
systems.

Computer 800 may be connected to a mass storage device
828 that provides non-volatile storage for the computer.
Mass storage device 828 may store system programs, appli-
cation programs, other program modules and data, including
requests for unique identifiers or random numbers and
tracking data for unique identifiers or random numbers,
which have been described 1n greater detail herein. Mass
storage device 828 may be connected to computer 800
through a storage controller 824 connected to chipset 806.
Mass storage device 828 may consist of one or more
physical storage units. Storage controller 824 may interface
with the physical storage units through a sernial attached
(“SAS”) Small Computer System Interface (“SCSI”) inter-
face, a serial advanced technology attachment (“SATA”)
interface, a fiber channel (“FC”) interface or other type of
interface for physically connecting and transferring data
between computers and physical storage units.

Computer 800 may store data on mass storage device 828
by transforming the physical state of the physical storage
units to retlect the mnformation being stored. The specific
transformation of a physical state may depend on various
factors and on different implementations of this description.
Examples of such factors may include, but are not limaited to,
the technology used to implement the physical storage units,
whether mass storage device 828 1s characterized as primary
or secondary storage and the like.

For example, computer 800 may store information to
mass storage device 828 by issuing instructions through
storage controller 824 to alter the magnetic characteristics of
a particular location within a magnetic disk drive unit, the
reflective or refractive characteristics of a particular location
in an optical storage unit or the electrical characteristics of
a particular capacitor, transistor, or other discrete component
in a solid-state storage unit. Other transformations of physi-
cal media are possible without departing from the scope and
spirit of the present description, with the foregoing examples
provided only to facilitate this description. Computer 800
may further read information from mass storage device 828
by detecting the physical states or characteristics of one or
more particular locations within the physical storage units.

In addition to mass storage device 828 described above,
computer 800 may have access to other computer-readable
storage media to store and retrieve information, such as
program modules, data structures or other data. It will be
appreciated by those skilled 1n the art that computer-read-
able storage media can be any available media that provides
for the storage ol non-transitory data and that may be
accessed by computer 800.

10

15

20

25

30

35

40

45

50

55

60

65

16

By way of example and not limitation, computer-readable
storage media may include volatile and non-volatile, tran-
sitory and non-transitory, removable and non-removable
media 1implemented 1n any method or technology. Com-
puter-readable storage media includes, but 1s not limited to,
RAM, ROM, erasable programmable ROM (“EPROM”),
clectrically-erasable programmable ROM (“EEPROM”),
flash memory or other solid-state memory technology, com-
pact disc ROM (“CD-ROM”), digital versatile disk
(“DVD”), high definition DVD (“HD-DVD”), BLU-RAY or
other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices or
any other medium that can be used to store the desired
information 1n a non-transitory fashion.

Mass storage device 828 may store an operating system
utilized to control the operation of the computer 800.
According to one embodiment, the operating system com-
prises a version of the LINUX operating system. According
to another embodiment, the operating system comprises a
version of the WINDOWS SERVER operating system from
the MICROSOFT Corporation. According to {further
embodiments, the operating system may comprise a version
of the UNIX operating system. It should be appreciated that
other operating systems may also be utilized. Mass storage
device 828 may store other system or application programs
and data utilized by computer 800, such as management
component 710 and/or the other software components
described above.

Mass storage device 828 or other computer-readable
storage media may also be encoded with computer-execut-
able istructions that, when loaded into computer 800,
transform the computer from a general-purpose computing
system 1nto a special-purpose computer capable of 1mple-
menting the embodiments described herein. These com-
puter-executable instructions transform computer 800 by
speciiying how CPUs 804 transition between states, as
described above. Computer 800 may have access to com-
puter-readable storage media storing computer-executable
instructions that, when executed by computer 800, may
perform operating procedures depicted 1n FIGS. 2-4.

Computer 800 may also include an imnput/output controller
832 for recerving and processing iput from a number of
input devices, such as a keyboard, a mouse, a touchpad, a
touch screen, an electronic stylus or other type of input
device. Similarly, input/output controller 832 may provide
output to a display, such as a computer monitor, a flat-panel
display, a digital projector, a printer, a plotter or other type
of output device. It will be appreciated that computer 800
may not include all of the components shown 1n FIG. 8, may
include other components that are not explicitly shown 1n
FIG. 8 or may utilize an architecture completely different
than that shown 1n FIG. 8.

It should be appreciated that the network topologies
illustrated 1n the figures have been greatly simplified and
that many more networks and networking devices may be
utilized to interconnect the various computing systems dis-
closed herein. These network topologies and devices should
be apparent to those skilled in the art.

It should also be appreciated that the systems in the
figures are merely 1illustrative and that other implementa-
tions might be used. Additionally, 1t should be appreciated
that the functionality disclosed herein may be implemented
in software, 1n hardware, or 1n a combination of software and
hardware. Other implementations should be apparent to
those skilled in the art. It should also be appreciated that a
server, gateway, or other computing device may comprise
any combination of hardware and/or software that can

US 9,641,598 Bl

17

interact and perform the described types of functionality,
including without limitation desktop or other computers,
database servers, network storage devices and other network
devices, PDAs, tablets, cellphones, wireless phones, pagers,
clectronic organizers, Internet appliances, television-based
systems (e.g., using set top boxes and/or personal/digital
video recorders) and various other consumer products that
include appropriate communication capabilities. In addition,
the functionality provided by the illustrated modules may in
some embodiments be combined in fewer modules or dis-
tributed 1n additional modules. Similarly, 1n some embodi-
ments the functionality of some of the illustrated modules
may not be provided and/or other additional functionality
may be available.

Each of the operations, processes, methods and algo-
rithms described 1n the preceding sections may be embodied
in, and fully or partially automated by, code modules
executed by one or more computers or computer processors.
The code modules may be stored on any type of non-
transitory computer-readable medium or computer storage
device, such as hard drives, solid state memory, optical disc,
and/or the like. The processes and algorithms may be
implemented partially or wholly 1n application-specific cir-
cuitry. The results of the disclosed processes and process
steps may be stored, persistently or otherwise, in any type of
non-transitory computer storage such as, e.g., volatile or
non-volatile storage.

The various features and processes described above may
be used independently of one another, or may be combined
in various ways. All possible combinations and sub-combi-
nations are mtended to fall within the scope of this disclo-
sure. In addition, certain method or process operations may
be omitted in some implementations. The methods and
processes described herein are also not limited to any
particular sequence, and the operations or states relating
thereto can be performed in other sequences that are appro-
priate. For example, described blocks, operations, and states
may be performed in an order other than that specifically
disclosed and multiple blocks or states may be combined 1n
a single block or state. The example blocks, operations, and
states may be performed 1n serial, 1in parallel, or 1n some
other manner. Blocks, operations, and states may be added
to or removed from the disclosed example embodiments.
The example systems and components described herein may
be configured diflerently than described. For example, ¢le-
ments may be added to, removed from or rearranged com-
pared to the disclosed example embodiments.

It will also be appreciated that various 1tems are illustrated
as being stored 1n memory or on storage while being used,
and that these 1tems or portions thereof may be transferred
between memory and other storage devices for purposes of
memory management and data integrity. Alternatively, in
other embodiments some or all of the software modules
and/or systems may execute 1n memory on another device
and communicate with the 1llustrated computing systems via
inter-computer communication. Furthermore, 1n some
embodiments, some or all of the systems and/or modules
may be implemented or provided in other ways, such as at
least partially 1n firmware and/or hardware, including, but
not limited to, one or more application-specific integrated
circuits (ASICs), standard integrated circuits, controllers
(e.g., by executing appropriate mnstructions, and including
microcontrollers and/or embedded controllers), field-pro-
grammable gate arrays (FPGAs), complex programmable
logic devices (CPLDs), etc. Some or all of the modules,
systems and data structures may also be stored (e.g., as
software 1nstructions or structured data) on a computer-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

readable medium, such as a hard disk, a memory, a network
or a portable media article to be read by an appropriate drive
or via an appropriate connection. The systems, modules and
data structures may also be transmitted as generated data
signals (e.g., as part of a carrier wave or other analog or
digital propagated signal) on a variety of computer-readable
transmission media, including wireless-based and wired/
cable-based media, and may take a variety of forms (e.g., as
part of a single or multiplexed analog signal, or as multiple
discrete digital packets or frames). Such computer program
products may also take other forms 1n other embodiments.
Accordingly, the present imnvention may be practiced with
other computer system configurations.

Conditional language used herein, such as, among others,

can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, 1s generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus,
such conditional language 1s not generally mtended to imply
that features, elements and/or steps are 1n any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
author mput or prompting, whether these features, elements
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having,” and the like are synonymous and are used
inclusively, 1 an open-ended fashion, and do not exclude
additional elements, features, acts, operations and so forth.
Also, the term “or” 1s used 1n its inclusive sense (and not 1n
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some or
all of the elements 1n the list.

While certain example embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limait the scope of the inventions
disclosed herein. Thus, nothing 1n the foregoing description
1s intended to imply that any particular feature, character-
istic, step, module, or block i1s necessary or indispensable.
Indeed, the novel methods and systems described herein
may be embodied in a variety of other forms. Furthermore,
various omissions, substitutions and changes in the form of
the methods and systems described herein may be made
without departing from the spirit of the mventions disclosed
herein. The accompanying claims and their equivalents are
intended to cover such forms or modifications as would fall
within the scope and spirit of certain of the inventions

disclosed herein.

94

What 1s claimed 1s:

1. A method comprising:

recerving, at an identifier generation system via a network
from a remote system, a request for a contextually
unique 1dentifier, wherein the request 1s an application
programming interface call, and wherein the request
comprises a customer account identifier and at least one
identifier parameter, the 1dentifier parameter associated
with a context;

generating, at the identifier generation system based on
the at least one identifier parameter, the contextually
unique 1dentifier;

determining, at the i1dentifier generation system, that the
contextually unique identifier complies with require-
ments associated with at least one of the at least one
identifier parameter and the customer account identi-
fier:

US 9,641,598 Bl

19

storing, at the identifier generation system, the customer
account i1dentifier and the contextually unique identi-
fler:;

transmitting the contextually unique identifier from the
identifier generation system to the remote system;

storing a time of generation of the contextually unique
identifier and associating the time of generation of the
contextually unique identifier with the contextually
unmque 1dentifier;

determining that a predetermined amount of time has
passed since the time of generation of the contextually
umque 1dentifier; and

responsive to determining that the predetermined amount
of time has passed since the time of generation of the
contextually unique i1dentifier, marking the contextually
umque 1dentifier and data associated with the contex-
tually unique 1dentifier for deletion from the i1dentifier
generation system.

2. The method of claim 1, wherein the at least one

identifier parameter comprises at least one of a format,
character type, length, number of bits, numeral system,

policy i1dentifier, or range of values.

3. A system, comprising;:

a memory comprising instructions; and

a processor coupled to the memory, wherein the proces-

sor, when executing the instructions, eflectuates opera-

tions comprising:

receiving, from a remote system, a request for a con-
textually unique 1dentifier, wherein the request 1s an
application programming interface call;

generating the contextually unique i1dentifier based at
least 1n part on a context parameter;

determining a customer account 1dentifier based on the
request;

storing the customer account identifier and the contex-
tually unique identifier;

transmitting the contextually unique identifier to the
remote system;

storing a time ol generation of the contextually unique
1dentifier;

determining that a predetermined amount of time has
passed since the time of generation; and

in response to determining that the predetermined
amount of time has passed since the time of genera-
tion, marking the time of generation and other data
associated with the contextually unique identifier for
deletion.

4. The system of claim 3, wherein generating the contex-
tually unique 1dentifier comprises concatenating the contex-
tually unique 1dentifier with the customer account identifier.

5. The system of claim 3, wherein the request comprises
a parameter indicating a number of bits, and wherein gen-
crating the contextually unique identifier comprises gener-
ating the contextually unique 1dentifier in the number of bits.

6. The system of claim 3, wherein the request comprises
a parameter indicating range of values, and wherein gener-
ating the contextually unique identifier comprises generating
the contextually unique identifier to be within the range of
values.

7. The system of claim 3, wherein the request comprises
a parameter indicating a numeral system, and wherein

10

15

20

25

30

35

40

45

50

55

60

20

generating the contextually unique 1dentifier comprises gen-
crating the contextually unique identifier 1n the numeral
system.

8. The system of claim 3, further comprising, before
storing the customer account 1dentifier and the contextually
unmique 1dentifier, determining that the contextually unique
identifier 1s not currently stored and associated with the
customer account 1dentifier.

9. The system of claim 3, further comprising determining,
a generation algorithm to use for generating the contextually
unmique 1dentifier.

10. The system of claim 3, further comprising transmit-
ting charging data associated with generation of the contex-
tually unique identifier to a billing system.

11. A non-transitory computer-readable storage medium
comprising computer-executable instructions, which when
executed by a processor, cause a processor to ellectuate
operations comprising;:

recerving, from a remote system, a request for a contex-

tually unique identifier, wherein the request 1s an appli-
cation programming interface call;

generating the contextually unique 1dentifier;

determiming a customer account identifier based on the

request;

storing the customer account 1dentifier and the contextu-

ally unique identifier;

transmitting the contextually unique identifier to the

remote system;

storing a time of generation of the contextually unique

identifier:;

determining that a predetermined amount of time has

passed since the time of generation; and

in response to determining that the predetermined amount

of time has passed since the time of generation, deleting
the time of generation and other data associated with
the contextually unique identifier.

12. The non-transitory computer-readable storage
medium of claim 11, wherein generating the contextually
umque 1dentifier comprises concatenating the contextually
unmique 1dentifier with the customer account identifier.

13. The non-transitory computer-readable storage
medium of claim 11, wherein the request comprises a
parameter indicating an identifier character type, and
wherein generating the contextually unique identifier com-
prises generating the contextually unique identifier 1in the
identifier character type.

14. The non-transitory computer-readable storage
medium of claim 11, wherein the request comprises a
parameter indicating an identifier length, and wherein gen-
crating the contextually unique identifier comprises gener-
ating the contextually unique 1dentifier having the identifier
length.

15. The non-transitory computer-readable storage
medium of claim 11, wherein the operations further com-
prise determining a time of generation of the contextually
unmique 1dentifier, wherein generating the contextually
umique 1dentifier comprises concatenating the contextually
unmique 1dentifier with the time of generation.

16. 'The non-transitory computer-readable storage
medium of claim 11, wherein generating the contextually
unique 1dentifier comprises generating a plurality of contex-
tually unique identifiers.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

