US009641492B2

a2 United States Patent (10) Patent No.: US 9.641.492 B2

Eller et al. 45) Date of Patent: *May 2, 2017
(54) PROTOCOL LINK LAYER HO041 29/08 (2006.01)
HO04L 9/08 (2006.01)
(71) Applicant: CoCo Communications Corp., Seattle, (52) U.S. CL
WA (US) CPC HO4L 63/061 (2013.01); HO4L 9/0841
(2013.01); HO4L 9/0861 (2013.01); HO4L
(72) Inventors: Riley Ellerj Seattle, WA (US),J Frank 63/08 (201301) HO4L 67714 (201301)
Laub, Seattle,, WA (US); Jeremy HO4L 69/32 (2013_01)
E"“E“‘eﬂssea’{ﬂeivwﬁ (lés); Mark L (58) Field of Classification Search
ucker, Seattle, WA (US) CPC ... HO4L 63/061; HO4L 9/0861; HO4L 63/08;
(73) Assignee: CoCo Communications Corp., Seattle, . HO4L 9/0841; HO4L 69/32; HO 4L 67/14
See application file for complete search history.
WA (US)
(*) Notice: Subject to any disclaimer, the term of this (56) References Cited
patent 1s extended or adjusted under 35 U S PATENT DOCUMENTS
U.S.C. 1534(b) by 0 days.
. 5,511,122 A 4/1996 Atkinson et al.
This patent is subject to a terminal dis- 6,314,425 BL* 11/2001 Serbinis GOGF 17/3089
claimer. (Continued)
(21) Appl. No.: 14/512,690
OTHER PUBLICATIONS
(22) Filed: Oct. 13, 2014 Sanzgiri K et al: “A Secure Routing Protocol for Ad Hoc Networks,”
(65) Prior Publication Data Network Protocols, 2002. Proceerflings. 10th IEEE International
Conference on Nov. 12-15, 2002, Piscataway, NJ, USA, IEEE, Nov.
US 2015/0100790 Al Apr. 9, 2015 12, 2002 (Nov. 12, 2002).
Continued
Related U.S. Application Data (Continued)
(63) Continuation of application No. 13/587,661, filed on Primary Examiner — Clemence Han
Aug. 16, 2012, now Pat. No. 8,861,393, which is a (74) Attorney, Agent, or I'irm — Lowe Graham Jones
continuation of application No. 13/398,751, filed on PLLC
Feb. 16, 2012, now Pat. No. 8,248,964, which 1s a
continuation of application No. 12/278,145, which 1s (57) ABSTRACT
a continuation of application No. A link 1s a software abstraction that represents a direct
PC1/US2007/061487, filed on Feb. 1, 2007, now connection between two CoCo nodes. The link layer detects
abandoned. the presence of neighboring devices and establishes links to
(Continued) them. A protocol abstraction layer converts data frames that
arrive on network interfaces into packet objects used by the
(531) Inmt. CI. COCO Protocol Suite.
HO4L 1/00 (2006.01)
HO4L 29/06 (2006.01) 22 Claims, 19 Drawing Sheets

o \Work Token {128}

TimeStamp [§4)

LNI (G4)

HetoMunt {(32)

- T Num
MumAcks .
(15} [Encodinge

{18)

‘p_ D L L L L Tl e B e T LI e T e A L e e e e B R N I Y

—— e —— —

HehoMiim
Lasi Heard (32)

Hold Time (32)

Ack Sighature (B4)

e e L Lty b ey et 8] = i i vl o ok e ool el e P S] R) MY L N L]

| Encoding (16) |

- SN e el e ey

PublicKey
Siza (18}

Public Key
(Variable tength; Comenion size: 512)

US 9,641,492 B2

Page 2
Related U.S. Application Data 2006/0274695 Al1* 12/2006 Krishnamurthi HO4L 63/0807
370/331
.. L. 2006/0282528 Al* 12/2006 Madams HO4L 12/58
(60) Provisional application No. 60/763,959, filed on Feb. 700/224
1, 2006. 2007/0011261 Al* 1/2007 Madams HO4L 12/58
709/207
(56) References Cited 2007/0169189 Al1* 7/2007 Crespo GO6F 21/6227
726/20
U.S. PATENT DOCUMENTS 2007/0174630 Al1* 7/2007 Shannon et al. 713/183
2010/0202295 Al* &2010 Smith et al. 370/235.1
7,512,799 B1* 3/2009 Chowetal. 713/172
7,720,864 B1* 5/2010 Muth ... GOOF 1%37%3; OTHER PUBLICATIONS

200%0035687 Al 3’?2002 Skantze etala.l. Ghazizadeh S et al: “Security-Aware Adaptive Dynamic Source
gggi/g?ggggg i 5 2/3883 %m et al. GOGE 17/30006 Routing Protocol,” Local Computer Networks, 2002. Proceedings.
i Do 709/270 LCN 2002. 27th Annual IEEE Conference on Nov. 6-8 2002,

2004/0190459 Al* 9/2004 Ueda et al. ...ocooooo........ 370/252 Piscataway, NJ, USA, IEEE, Nov. 6, 2002.
2005/0089024 Al 4/2005 Bergeron et al. Zhou et al: “Securing Ad Hoc Networks”, IEEE Network, IEEE
2005/0138386 Al* 6/2005 Le Saint HO4IL. 9/321 Service Center, New York, NY, US, vol. 13, No. 6, Nov. 1, 1999
713/185 (Nov. 1, 1999), pp. 24-30, XP000875728, ISSN: 0890-8044, DOI.

2005/0235140 Al* 10/2005 Huietal.cccoovvnnnn... 713/156 10.1109/65.806983. | |
2006/0123092 Al* 6/2006 Madams ... HO4T. 12/58 Brumfield, Robert, “CoCo helps diverse devices talk to each other”,

709/206 Dec. 15, 2005, eSchool News.
2006/0187839 Al* 82006 Smith et al. 370/235

2006/0259492 Al* 11/2006 Jun GO6F 17/30864 * cited by examiner

U.S. Patent May 2, 2017 Sheet 1 of 19 US 9,641,492 B2

Application

Naming
Systern

Routing

Network interface

FiG. 1

U.S. Patent May 2, 2017 Sheet 2 of 19 US 9,641,492 B2

Link Setup QoS Link Data
Layer Handier Layer

R R R R R g R g ag gy
TR TR

Protocot Abstraction Layer {(PAL)

FiIG. 2

U.S. Patent May 2, 2017 Sheet 3 of 19 US 9,641,492 B2

Circuit and Routing Layears]

H ;

L
» - -5 &
= 3 S B o
s - 5 a @
b= = i >, o
- = D £ @
I g?} g
0

Link Setup Layer QoS Handlar Link Data Layer

Protocot Abstraction Layer (PAL)

a—SendFrame
Receivelrame

Nelwork interface Layer

FlG, 3

U.S. Patent May 2, 2017 Sheet 4 of 19 US 9,641,492 B2

1
b e i o W oy

Typea cacrypt | Facket Size
(1} (H) _ (14)

FIG. 4

U.S. Patent May 2, 2017 Sheet 5 of 19 US 9,641,492 B2

oWork Token (128)
TimeStamp (64)
UNI (64)
Mum
NumAcks = .
neodings
eltoNum {32
H {32) (18) (16)
e e e :
grmmm e aemamm e R :
1 ¥
; Nodea Acked (64) !
i o e
¢ ¥
| HetloNum Hold Time (32) i
E- Last Heard (32) E
$ | 1
’ %
; Ack Signature (64) 5
e :
o E
{ Encoding (16} |
e i
PublicKey
Size {(16)
Public Key

(Variable Length; Common size: 512)

U.S. Patent May 2, 2017 Sheet 6 of 19 US 9,641,492 B2

... Work Token (128) e
TimeStamp (64)
UNI (64)
- e Num
HelloNum (32) Nu?;g;;:' K Encodings
(16)

U.S. Patent May 2, 2017 Sheet 7 of 19 US 9,641,492 B2

A M g R e B WS e e B MR SR A, MR Rl gl B N N Sy e G- S SO L e Bl e g m R MR SR Py SR TRy Y Rl - bed B v AN B R B TR Y B M THE TR ST PR AN i s s af e B B MR Wy gk el S P et St it st Sl Ny P e e SR

Node Acked (E64)

L A g gl e gl L R g g gl

HelloNum

Last Heard (32) Hold Time (32)

Ack Signature (64)

W W A wyr Wy Ay A A el wef Ser' gt W ' et o By By Rf Sar A Ay dyr At Sur Sur b Al Py e e S

R R R R R RN RCECY TR ORTRURCRCR R R LR

W R et ey syt dpl iy dly el Wi Ak ww ol wis Wi dul WS BER S0f wis VR W g vhys M Gl st Wl pRA R Slw ok i G N e s wily ARe V- s Ofs S Jaer EeR vyt fple iy W SEee ST el A Suee wee S Pol win BN el ol il wie Jut gy ShE Pgl iy dhwgt v iR N Nyl Mgt Wt el JRgR g, e g il

U.S. Patent May 2, 2017 Sheet 8 of 19 US 9,641,492 B2

i
3
i
t
¥
$
}
$
:
i
¥
3
t

W e WA e . e L N W o AR R W A e A el Bk e THHD W Y

Encoding (16)

W W A e A A e iy L e P A e

Encryption Hash Reserved

(4) (4) (8)

WA e R e e e b W T S W

§
1
]
]
¥
-
3
i
¥
I
i
i
i

- mpm Gl TR e RN R R i Mgl ek wplg W AN Tuak g g M- A Dml Wk ek PR TR TER aph Rl T A W R T WA YRe i el TR WK M e W e M- AME BN v b SR e dwer Y W AN el cwlF N Wi ek vk WL e e e amip g aak e wiF g e alo omle g il A GANE I AR b AN P e wamw W Sl vk wl

U.S. Patent May 2, 2017 Sheet 9 of 19 US 9,641,492 B2

PublicKay
Size (16)

o Fanbuieiiiniibifubialin, _ Lt

FLiblic Key
{Variable Length; Common size: §12)

FIG. 9

U.S. Patent May 2, 2017 Sheet 10 of 19 US 9,641,492 B2

et b AR E NS NTEENE o g T N I ey Py ey

AL A

Total ehaprsad thme

Il DId

BARBIUDE B 81]

US 9,641,492 B2

¥ S3B8Y & Ji MOLDY 1,u580p
1IC g sipal v Aemel

e | / \, 1 40} OlI3H ON
— M_ DY Joy ¢ /
D L IMONRMON A f
m / L ﬁm N / HOY/M wmmz 02y
_ I
7 .
= aﬁ% OlfSH
S — _
N ysiBoy g § mowy Lusaop
m 1 UG W0Y piesy Lusey v Aeaen

U.S. Patent

Y SIBSY F puk
Q sty ¥ Aeme7

U.S. Patent May 2, 2017 Sheet 12 of 19 US 9,641,492 B2

Nu(ag}&igs DestSetiHagh (243
T S T T T T
i Sig (32}
;
b ammaanns e e e voreees e et e e e e e e 2 venn 2 e e
P (323
| P f Frag{ 1}
Acks (8) | Resi6) Type (8) Aﬂgg{‘g;”
. Last - ' ;
i Frag Fragmeniation Offset if Fragmented) (31) :
o ' E

e el gt E TRy A W Gl R Bl AN i R ks e R o A e A ke e A e mm mn L L o
'l"--"-"-"l' "-'f'#ﬂl -*_l-l' uuwn“.ﬁ-“*u“ P iy el Nafa el Fal P ey Paly whE R Cale A0 DD WO mOp Gt Cald o Pafe el sl puE gy oG N wlE AT AN ME De DB CEC- ACE OB EOR BOB OB Sp mide Umr Bl GBS RN W Wl RO WS T RN AT TR A

o

NP P R R o A b b At et s St o e W P A Y AW i e B e i ek i s iy W RS Al Ay B el wly BaP Nk S SR Nl i AR Wiy BR Tl gyt TR Wiy Sy TR A Mg W W TR WA ARl e A W R oM A W afa AR e Pw Pafe ac

ACK {F Mum Acks >)
{32, or 8 if AckCom = 1)

ﬂﬂ”ﬂﬂrﬂrﬁ'ﬂ-ﬁ-ﬂ‘
R T R R T

Average Hold Time (32}

ﬂ“ﬁ‘““““ﬂ“]/
)
]
)
o e A AR A O BN Ak A A

kN

R e AR LR TR SRR AR R WS S i W A e e I W AR WER O B B8 SO G0 a0 B e e e, mee el i ol gl main s e L e Sk on, omE i Ny gy Rl Ay e Bl Wle ha Rl i AR Gme SN M Gy ghep Syl gy, g gy g wR wRe i TRy e Sehy

Lraty
(size determined from PackeiSize in CoCo Headear)

e g e il

FiG. 12

U.S. Patent May 2, 2017 Sheet 13 of 19 US 9,641,492 B2

S eyt e

.,--'## IS
_ ~
- Rt
» o,
// .-""*”_h““" \‘\‘
7 - s ~
P P - \
7 ™ \
4 7 A
/ \
/ A _
/ / Ty
i ! - }
{ f {
l ‘\ — ; *
\ e~ i
\ \ JL"“'H-..,"
N\ “ 7 r e
\ ”
", -
~ -
—~ -
-~ -~

R i

eh)e atent
y Sheet 14 of 1 9 4 49 2
.

NamSH
(8}
estsett
tHash (2
(44}

US 9,641,492 B2

Sheet 15 of 19

May 2, 2017

U.S. Patent

[12L-oglanBAUSEl

§TDIAd
Teuibuo auy Buipio; Aq pauRigo ‘snjea ysey JIozs

t

P [LZ1-0gloneAuSEH |
e vl |
leg-zelonpauser

\\ [Le-plenEauseH
| -
/ \ |
/ \
[G6-polenfeAUseH m@%@?ﬁ% N {Le-gleneaysed

vogouny yoey Ag Inding anjea ysey ua-ar rulbuo

U.S. Patent May 2, 2017 Sheet 16 of 19 US 9,641,492 B2

r““w--”mmﬂdﬁq—'m“m‘“ . | " el mages PR PR el e dakigemem e ey waiaSLELRARLE ey ol . il iy pimtewitabmiall Thals iy, Sgfials Tefelefoiatuial, Tl Welotalefataly NSl

U.S. Patent May 2, 2017 Sheet 17 of 19 US 9,641,492 B2

Pl {32}

i, el i 2 el sl

MNum ToS{2) ’
Acks (8) Res(6) | Type (8) Res(6)

Frag(1) AckCom(1)

U.S. Patent May 2, 2017 Sheet 18 of 19 US 9,641,492 B2

i
{
'
;
H
|
{
|
{
{
i
i
~
i
i
]
}
i
i
i
i
i
]
i
i
i
i
]
§
i
1
{
H
§
}
X
i
{
§
}
3
}
i
{
f
t
¢
$
}
t
{
{
|
f
]
|
i
}
|
i
i
}
}
}
{
§
}
}
}
i
{
}
|
{
§
}
i
|
{
}
1
}
i
{
H
¢
i
}
}
|
i
{
!
1

Frag Fragmentiation Offset {if Fragmented) (31)

TEmAms T
[
b
{2
¥

o 'k i A dn e o ul aF W i S e uk

L

Sart e Sarle twrbe oy e A gy g R et e S W e R iy ek gk ol plly g Spl dplin gl b Splh il oy gt SRR gl gly gt Sl Egb Sl gl wiy i gl Suy gl el vy el W WM el el twth i alin e sl S il SSa pt gk, bl gy gSgt Sgf gl Wiy Sy puer A Sl e s Sut dply gy JSg SgF W Wiy Sy By o ol bl ARy el el oSy JPee Soh el 0% 0Sw JBek el

FIG. 18

U.S. Patent May 2, 2017 Sheet 19 of 19 US 9,641,492 B2

T
t {
: :
; Ack {if Num Acks > Q) ;
: (32, or 8 it AckCom = 1) !

3
i o
e T 1
i E
I 3
i Average Hold Time (32) !
: :
: :
!

ik Bk g iy gk Spk gy Sglk Sglk, iy g ik pEr gup By Sdh gyt Mg gy Sy Tl Sr g Agis yly g By wliy gugt gy Wy gy bk spme yEpr mph) SEE R Sl wak bk Bl s Ml wbl Wbl Cwmll B Shalk el LA Tmil AL R S AL PR REN HR GRH MEE MR N SR MR el el e VT AR e g BN B oM W MR L AN SR A R e G MR DA AL AL LA WEAT RRE

FIG, 19

US 9,641,492 B2

1
PROTOCOL LINK LAYER

PRIORITY CLAIM

This application 1s a Continuation of U.S. Utility appli-
cation entitled “PROTOCOL LINK LAYER,” having appli-
cation Ser. No. 13/587,661, filed Aug. 16, 2012, which 1s a
Continuation of U.S. Utility application entitled “PROTO-
COL LINK LAYER,” having application Ser. No. 13/398,
751, filed on Feb. 16, 2012, which 1s a Continuation of U.S.
Utility application entitled “PROTOCOL LINK LAYER,”
having application Ser. No. 12/278,145, filed on Aug. 1,
2008, and completed on May 18, 2009, which 1s a U.S.
National Stage application of International Application No.
PCT/US07/61487, entitled “PROTOCOL LINK LAYER,”
filed Feb. 1, 2007, which claims the benefit of U.S. Provi-
sional application, entitled “PROTOCOL LINK LAYER”
having Application Ser. No. 60/763,959, filed Feb. 1, 2006,
which 1s related to U.S. Provisional application entitled
“PROTOCOL CIRCUIT LAYER” having Application Ser.
No. 60/763,977, filed Feb. 1, 2006, and U.S. Provisional
application, entitled “CONGESTION MANAGEMENT
AND LATENCY PREDICTION IN CSMA MEDIA” hav-
ing Application Ser. No. 60/764,013, filed Feb. 1, 2006.
Accordingly, the present application claims priority to and
the benelflt of the filing dates of U.S. application Ser. No.
13/398,751, U.S. application Ser. No. 12/278,145, Interna-
tional Application No. PCT/US07/6148°7, Provisional Appli-
cation No. 60/763,959, which are all incorporated by refer-
ence herein 1n their entireties.

BACKGROUND

Computers have been networked to exchange data
between them for decades. One important network, the
Internet, comprises a vast number ol computers and com-
puter networks interconnected through communication
channels. The Internet 1s used for various reasons, mncluding
clectronic commerce, exchanging information such as elec-
tronic mail, retrieving information and doing research, and
the like. Many standards have been established for exchang-
ing information over the Internet, such as electronic mail,
Gopher, and the World Wide Web (“WWW™). The WWW
service allows a server computer system (1e., web server or
web site) to send graphical web pages of information to a
remote client computer system. The remote client computer
system can then display the web pages. Each resource (e.g.,
computer or web page) of the WWW 1s uniquely 1dentifiable
by a Uniform Resource Locator (“URL™). To view a specific
web page, a client computer system specifies the URL for
that web page 1n a request (e.g., a Hyperlext Transier
Protocol (“HTTP”) request). The request 1s forwarded to the
web server that supports that web page. When that web
server recerves the request, 1t sends the requested web page
to the client computer system. When the client computer
system receives that web page, 1t typically displays the web
page using a browser. A browser 1s typically a special
purpose application program for requesting and displaying
web pages.

Currently, web pages are often defined using HyperText
Markup Language (“HTML”). HIML provides a standard
set of tags that define how a web page 1s to be displayed.
When a user makes a request to the browser to display a web
page, the browser sends the request to the server computer
system to transfer to the client computer system an HTML
document that defines the web page. When the requested

HTML document 1s recerved by the client computer system,

10

15

20

25

30

35

40

45

50

55

60

65

2

the browser displays the web page as defined by the HIML
document. The HTML document contains various tags that
control the display of text, graphics, controls, and other
teatures. The HTML document may contain URLSs of other
web pages available on that server computer system or on
other server computer systems.

New protocols exist, such as Extensible Mark-up Lan-
guage (“XML”) and Wireless Access Protocol (“WAP”).
XML provides greater flexibility over HTML. WAP pro-
vides, among other things, the ability to view web pages
over hand-held, wireless devices, such as cell phones and
portable computers (e.g. PDA’s). All of these protocols
provide easier ways to provide information to people via
various data processing devices. Many other protocols and
means for exchanging data between data processing devices
continue to develop to further aid the exchange of informa-
tion.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a block diagram illustrating the relationship of
the link layer to the other layers of the CoCo Protocol Suite
in some embodiments.

FIG. 2 1s a block diagram 1illustrating the relationship of
various layers in the CoCo Protocol Suite 1n various embodi-
ments.

FIG. 3 1s a block diagram 1llustrating a detailed view of
the link layer protocols in some embodiments.

FIG. 4 1s a block diagram illustrating a CoCo protocol
header 1n some embodiments.

FIG. 5 1s a block diagram 1llustrating a packet format that
1s employed by a link setup sublayer 1n some embodiments.

FIG. 6 1s a block diagram illustrating a link setup packet
in some embodiments.

FIG. 7 1s a block diagram 1llustrating an acknowledge-
ment section of the Link Setup Packet in some embodi-
ments.

FIG. 8 1s a block diagram 1llustrating an encoding section
of a link setup packet in some embodiments.

FIG. 9 1s a block diagram 1llustrating a public key section
of a link setup packet in some embodiments.

FIG. 10 1s a flow diagram illustrating how to determine
roundtrip times and reception quality 1n some embodiments.

FIG. 11 1s a state diagram showing link states 1n various
embodiments.

FIG. 12 1s a block diagram illustrating a link data packet
in some embodiments.

FIG. 13 1s a block diagram illustrating multicasting 1n
some embodiments.

FIG. 14 1s a block diagram, illustrating a destination set
section of a link data packet 1n some embodiments.

FIG. 15 1s a flow diagram illustrating a technique for
folding hash values used in some embodiments.

FIG. 16 1s a block diagram 1llustrating a signature field
section of a data link packet 1n some embodiments.

FIG. 17 1s a block diagram illustrating a packet informa-
tion section of a data link packet in some embodiments.

FIG. 18 1s a block diagram, illustrating a fragmentation
section of a link data packet 1n some embodiments.

FIG. 19 1s a block diagram illustrating fields 1n an
acknowledgement section of a link data packet in some
embodiments.

US 9,641,492 B2

3
DETAILED DESCRIPTION

The Link Concept

A link 1s a software abstraction that represents a direct
connection between two CoCo nodes. The principle task of
the link layer 1s to detect the presence of neighboring CoCo
devices and establish links to them.
Description of Link Layer Protocol Functionality

Link establishment employs a variation on the traditional
three-way handshake protocol (packets containing “hello,”
“hello-ack,” and “final-ack™; see [1SI]). Link establishment
includes the negotiation of an encoding method and a
DifieHellman key exchange so that all communication sent
over the link may be cryptographically check-summed [S].
This ensures consistency of identity; that 1s, a node 1is

guaranteed that all packets recerved over a link came from
the node with which it established that link.

Once a link 1s established, the link layer

Relays packets between the network interface layer and
higher protocol layers (the routing and circuit layers).

Monitors Quality of Service (QoS) statistics and 1s able to
report these to higher protocol layers.

Supports multicasting by suppressing redundant packet
transmission across a single network interface.

Performs fragmentation when packet sizes exceed the

network interface Maximum Transmission Unit
(MTU).

Closes mactive links to free system resources for new link
requests.

The Link Layer in the Context of Other Protocol Layers

FIG. 1 1llustrates the relationship of the link layer to the
other layers of the CoCo Protocol Suite. The CoCo Protocol
Suite layers are shown with italic font 1in FIG. 1.

More details about the routing layer, circuit layer, and
naming system layer may be found, respectively, in com-
monly owned U.S. patent application Ser. No. 12/160,597
(heremafiter referred to as “[BLMS]”), commonly owned
U.S. patent application Ser. No. 12/278,144 (heremafter
referred to as “|[BMV]”), and commonly owned U.S. patent
application Ser. No. 12/160,399 (hereinaiter referred to as
“IBELM]). The network iterface layer i1s the operating
system’s device driver for a physical network device such as
an Ethernet card.

Components of the Link Layer

FIG. 2 1s a block diagram illustrating the relationship of
various layers 1 the CoCo Protocol Suite. The link layer
connects to the network interface layer and 1s comprised of
the following components:

The Protocol Abstraction Layer (PAL), which converts
the mcoming data frames that arrive on network inter-
faces 1nto packet objects used by the CoCo Protocol
Suite.

The link setup sublayer, which establishes links with
neighboring nodes in a CoCo network.

The link data sublayer, which transiers data across estab-
lished links.

The QoS handler, which monitors the quality of links.

FIG. 3 gives a more detailed view of the link layer
protocols, including their interfaces. Each arrow 1n FIG. 3
represents a function call that 1s part of the interface. An

arrow from layer A to layer B indicates a procedure or
function 1n layer B 1s called from layer A. A circle at the tail
of an arrow indicates a function that returns a value to the
caller.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Link Layer Interface

The link layer interface offers the following functions,
which the routing and circuit layers use to determine the
presence and absence of links, and to send and receive
packets over links:

LinkUp(link)

The link layer calls LinkUp (link) to inform the circuit and
routing layers that a link has opened.

LinkDown(link)

The link layer calls LinkDown (link) to inform the circuit

and routing layers that a link has closed.
Receive(packet,link)

The link layer calls Receive (packet, link) to inform the
circuit and routing layers that a packet arrived over a link.

Send(packet, link)

The circuit or routing layer calls Send (packet, link) to
send a packet over a link.

GetQos(link)

The circuit or routing layer calls GetQos (link) to obtain
the QoS metrics associated with the given link.

Link Layer Packet Types

After the PAL parses the incoming data frames, it discards
the network interface header; the data that remains 1s either
a link setup packet or a link data packet.

Link setup packet: A link setup packet contains informa-
tion necessary to establish a link. Its packet header 1s
the entire link setup packet; there 1s no separate data
portion of a link setup packet. Link setup packets are
used only within the link layer.

Link data packet: In addition to actual user data (and any
data relevant to higher protocol layers), link data pack-
cts contain extra fields to handle data packet acknowl-
edgements, data packet fragmentation, and a crypto-
graphic checksum. Link data packets are forwarded to
the routing and circuit layers.

Protocol Abstraction Layer

The Protocol Abstraction Layer (PAL) of the link layer
parses the imcoming data frames that arrive on network
interfaces (such as Ethernet or Satellite interfaces), uses that
data to create a CoCo header and address translation table,
and then discards the header of the network interface data
frame. After the network interface header 1s discarded, the
data that remains 1s either a link setup packet or a link data
packet. The link layer examines these packets and sends link
setup packets to the link setup sublayer and link data packets
to the link data sublayer.

To summarize, the PAL:

Gets data frames from a network device or connection.

Constructs a CoCo header and address translation table
that capture relevant information from the network
interface layer (which 1s typically a device driver for a
network device such as an Ethernet card).

Removes and discards the network interface layer header.

Passes the modified packet to either the link setup sub-
layer or the link data sublayer.

The CoCo Header and Address Translation Table

The CoCo header and address translation table are
replacements for the header from the network interface
layer. The PAL creates them after receiving a packet from
the network interface. When a frame arrives from any
physical network interface, the PAL reads the frame header
to construct a CoCo header and add an entry to 1ts address
translation table.

The address translation table exists only in memory and 1s
used only by the PAL. The PAL extracts the source address
from the frame header and associates 1t with the umiversal
node 1dentifier (UNI) of the source node, storing the asso-
ciation 1n an address translation table. An address translation

US 9,641,492 B2

S

table 1s created for each type of physical transport used by
the node. The UNI 1s then used throughout the CoCo
Protocol; the address translation table may be needed only
when data 1s sent to the network interface layer. (See
|[BLMS] for more information about UNIs.)

The format of the CoCo header 1s uniform—it 1s the same
regardless of which interface type the packet arrived on. The
CoCo header 1s stored 1n memory and 1s available to higher
protocol layers; 1ts structure 1s shown 1n FIG. 4, with the bit
s1ze of each field given in parentheses.

The Type field describes the type of packet that follows
the CoCo header—either a link setup packet or a link data
packet. The Encrypt field describes whether or not the
packet 1s encrypted. Since encryption may not happen until
after a link has been established, all link setup packets are
unencrypted; all broadcast packets are also unencrypted
because of the difliculty of encrypting a message that would
be decrypted by multiple nodes. The Packet Size field is the
size 1 bytes of the entire packet that follows the CoCo
header.

CoCo nodes also send the CoCo header over the physical
network interface to act as a check on the packet integrity.
After the PAL composes the CoCo header in the usual
manner, the results are checked against the CoCo header that
was sent over the wire; 1f they do not match, the packet 1s
discarded.

Transports that the PAL Supports

The PAL supports numerous network interface formats,
including;:

Ethernet (IEEE 802.3)

Token-ring (IEEE 802.5)

Wi-F1 (IEEE 802.11)

Synchronous Optical Network (SONET)

Asynchronous Transter Mode (ATM)

Satellite

Because other transport technologies use the network
interface formats listed previously, the link layer also sup-
ports:

Internet Protocol (IP)

Transmission Control Protocol (TCP)

User Datagram Protocol (UDP)

Global System for Mobile Communications (GSM) and

Code Division Multiple Access (CDMA)

Cellular Digital Packet Data (CDPD)

General Packet Radio Service (GPRS), and 1xRTT

The PAL can be easily extended to support other formats
because of 1ts modular design.

Link Setup Sublayer
The link setup sublayer performs the following functions:
Discovers the presence and maintains awareness ol other
nodes
Establishes links to nodes within range
Establishes a Diflie-Hellman key for each link
Establishes an encoding method for each link
Computes and verifies work tokens to resist denial-oi-
service attacks
Monitors round-trip times for each link
Determines when links are inactive and closes them
The link setup sublayer uses an iterative, two-phase
process for nodes to exchange information to accomplish the
preceding functions.

Link Setup Packet
The link setup sublayer uses a single packet format, as 1s
illustrated 1n FIG. §, that 1s referred to as a link setup packet.
The link setup packet provides a mechanism for a node to
announce 1ts presence and identity to other nodes, and to
simultaneously inform other nodes that it has heard such

10

15

20

25

30

35

40

45

50

55

60

65

6

announcements from them. Therefore, 1n some contexts the
link setup packet acts as a hello packet, and 1n other contexts
it acts as an acknowledgement, or ack packet.

To facilitate the dynamic addition and deletion of nodes
on the network, each node broadcasts a link setup packet at
fixed time intervals. This also makes 1t possible for the link
setup packet to serve as both a hello and an ack 1n the same
packet. This fixed time interval 1s called the hello interval
and 1s typically one second. Acknowledgements are piggy-
backed onto outgoing hello packets. Each node maintains a
set of nodes called the ack-set from which it has received a
hello within a fixed time interval called the ack-interval,
approximately 5-10 seconds.

The ack-interval 1s a link timeout parameter; 1f a node A
does not receive any hello packets from node B for ack-
interval or longer, 1t drops B from its ack-set and no longer
acknowledges B 1n its outgoing hello messages.

To prevent security attacks from packet floods, each node
computes a work token that 1s included 1n every link setup
packet. A work token 1s valid for an amount of time called
the work token validity interval (WTVI), which 1s typically
a length of time greater than the hello interval but less than
the ack-interval. When a work token expires (based on the
WTVI), a new work token should be computed by the node
betore sending out 1ts next link setup packet.

A fourth time terval used by the link layer 1s the
Diflie-Hellman cache interval (DHCI), which should be
greater than the WTVI and should also be longer than the
ack-interval. The DHCI 1s the length of time that a node A
keeps a cached version of the Dithe-Hellman key 1t uses to
communicate with node B. Because computing the Diflie-
Hellman key 1s resource intensive, 1t 1s useful to keep a
cached version of the key even after the link has been
dropped, 1n case node B tries to re-establish its link to node
A. If node A does not recerve a link setup packet from node
B within the DHCI, node A purges its cached copy of the
key.

The link setup packet—separated by section—is shown 1n
FIG. 5, where dashed lines indicate sections of the packet
that can be repeated, and numbers 1n parentheses indicated
the bit-size of each field.

The link setup packet contains the following sections:

Link establishment fields

A set of acknowledgments and associated fields (the

ack-set)

A list of supported encodings

The public key of the node
Link Establishment Section of the Link Setup Packet

The mitial fixed-length portion of the link setup packet,
illustrated i FIG. 6, 1s comprised of the following fields:

Work Token (128) The random number that i1s used for
work token validation, as described in the “Work Token™
section. This helps prevent denmial-of-service attacks. A work
token 1s valid only for a length of time determined by the
work token validity interval, after which a new work token
should be computed.

TimeStamp (64) The time (using ustime data format) at
which the work token was computed. This field 1s updated
every work token validity interval, rather than at every hello
interval.

UNI (64) The unmiversal node identifier (UNI) that
unmiquely 1dentifies this CoCo node. It 1s an unranked UNI;
see [BLMS] for more mnformation.

HelloNum (32) A sequence number that increments with
every link setup packet sent by this CoCo node. Link setup
packets are broadcast at regular intervals called the hello
interval.

US 9,641,492 B2

7

NumAcks (16) The number of acknowledgements that are
piggybacked onto this packet.

NumEncodings (16) The number of encodings that the
sending CoCo node supports.

Acknowledgement Section of the Link Setup Packet

FIG. 7 1s a block diagram illustrating an acknowledge-
ment section of the Link Setup Packet in some embodi-
ments.

This set of fields contains the acknowledgement of the
receipt of link setup packets from another CoCo node. These
acknowledgements are piggybacked onto the link establish-
ment section of the link setup packet. There can be several
acknowledgements in a single link setup packet, each
acknowledging the receipt of a link setup packet from a
different CoCo node. The number of acknowledgements 1n
a link setup packet i1s given by the NumAcks field of the link
establishment section (see FIG. 6). Each acknowledgement
1s comprised of the following set of fields:

Node Acked (64) The universal node identifier (UNI) of
the node being acknowledged.

HelloNum Last Heard (32) The HelloNum of the last
packet received from node being acknowledged.

Hold Time (32) The time elapsed since the arrival of the
last packet from the node being acknowledged; see FIG. 10.

Ack Signature (64) A hash of the Difhie-Hellman key
negotiated between this CoCo node and the CoCo node of
the packet being acknowledged, used to prevent spoofing of
acks. The hash function that 1s used 1s negotiated by that pair
of nodes as explammed in the “Encoding and Security”
section below.

Encoding Section of the Link Setup Packet

FIG. 8 1s a block diagram 1llustrating an encoding section
of a link setup packet. This section comprises a sequence of
Encoding fields, one for each pair of encryption/hash encod-
ing methods that the source node supports. The number of
Encoding fields mn a link setup packet 1s given by the
NumEncodings field of the link establishment section (see
FIG. 6). Each Encoding field 1s comprised of the following
subfields:

Encryption (4) A 4-bit 1dentifier for the encryption method
to be used with 1ts associated Hash as an encoding pair.
Encryption methods currently supported are RC4, DES,

3DES, Blowfish, and AES.

Hash (4) A 4-bit identifier for the hashing method to be
used with 1ts associated Encryption as an encoding pair. The
hashing methods currently supported are MD5, SHAI1, and
RIPEMD.

Reserved (8) Reserved for future use.
Public Key Section of the Link Setup Packet

FI1G. 9 1s a block diagram illustrating a public key section
of a link setup packet.

PublicKey Size (16) The size, in bytes, of the Public Key
field.

Public Key (variable; commonly 512) The public key
used for the Diflie-Hellman key exchange; see the “Encod-
ing and Security” section.

Determining Roundtrip Times and Reception Quality

FIG. 10 1s a flow diagram 1llustrating how to determine
roundtrip times and reception quality.

The link setup sublayer enables each node to determine:

Roundtrip times to every other node.

The quality of the signals from other nodes.

The quality of 1ts own signal, as perceived by other nodes.

For a node A to compute the roundtrip time to a node B,
node A notes the time elapsed between the time it sends a
setup packet to node B and the time 1t receives a link setup
packet from node B acknowledging setup (checking that the

10

15

20

25

30

35

40

45

50

55

60

65

8

value of hello-num 1s the same), and then subtracts the hold
time that appears 1n that acknowledgement.

In addition to roundtrip time computation, the link setup
layer can determine signal quality based on the percentage
of link setup packets that it sends which are later acknowl-
edged. For example, 1f node B receives hello packets from
node A numbered 1, 2, 3, 4, . . . then 1t knows that 1t has a
strong signal from node A. On the other hand, 1f node B
receives hello packets from node A numbered 4, 9, 15,
23, .. .then it knows that the signal from node A 1s relatively
weak. Similarly, 1f node A receives acknowledgements from
node B and A’s hello packets contain gaps in the numbered
sequence, (for example, 5, 11, 17, 21, . . .) then node A
knows that the signal from node B 1s weak, its signal to node
B 1s weak, or both.

Encoding and Security

The encoding and security of the link layer relies upon a
Diflie-Hellman key exchange between nodes, as well as the
exchange of work tokens to prevent demial-of-service
attacks.

Work Tokens

A rogue node could mount denial-of-service attacks
against a network by:

Flooding nodes within 1ts range with link setup requests.

Simulating the existence of a multitude of fake nodes.

These actions constitute an attack since nodes that receive
link setup requests should perform a Diflie-Hellman key-
exchange computation, which 1s resource intensive (ap-
proximately one millisecond on a 400 MHz XScale proces-
sor). In the presence of a large number of malicious
establishment requests, link establishment requests from
legitimate nodes may be delayed or denied altogether due to
timeouts.

Therefore, the link setup protocol uses a mechanism
called a work token to force nodes attempting to establish a
link to perform a nontrivial computation. This makes such
denial-of-service attacks more costly for the attacker, less-
emng their likelihood or preventing them altogether,
depending on the attacker’s computational resources.

Because of these considerations, validating a work token

precedes the Dithie-Hellman computation. If the work token
1s 1nvalid, the node may not devote time computing a
Diflie-Hellman key, which 1s a much more expensive com-
putation than the work token verification.

Before node A can send a link setup packet to node B,
node A should compute a valid work token, W, which 1t
places 1n the work token field of 1ts link setup packet (see
FIG. 6).

This timestamp T 1s also included 1n the link setup packet
(see FIG. 6). Upon receipt of the link setup packet, node B
uses the timestamp to determine whether the work token has
expired (and 1s therefore invalid).

Work Token Algorithms

In the following work token algorithms, the function h 1s
a global hash function set within the protocol source code
that 1s used by all CoCo nodes. The outputs of h are
distributed uniformly across its range [0, MAX].

The value r 1n Step 3.b of the following algorithms 1s
chosen to be small relative to MAX. This value r 1s set at the
time ol network provisioning and can be chosen for a
particular deployment as a way of calibrating the tradeoil
between security and etliciency of this protocol. This 1s
because Step 3.b succeeds probabilistically with MAX/r
expected iterations, since the outputs of h are uniformly
distributed over 1ts range.

US 9,641,492 B2

9

The notation (7, Y) used in the following algorithms
indicates string concatenation of the binary representations

of Z and Y.

Work Token Computation

Node A should ensure that all link setup packets 1t sends
out contain a valid work token. If the time difference
between the current time and the timestamp, T, of 1ts most
recently-sent packet 1s less than the work token validity
interval, node A resends 1ts most recent packet. Otherwise,
the previously-sent work token 1s now invalid and should be
recomputed by performing the following steps:

1. Node A identifies itself by setting the UNI field of its
link setup packet (see FIG. 6) to 1ts name, N.

2. Node A sets the TimeStamp field of 1ts link setup packet

to the current time, T.

3. Node A then
a. Chooses a 128-bit random number, X
b. Tests to see 1if c=h(X,T,N,X)<r. (The comma repre-

sents the concatenation operation.)
c. Repeats Steps 3.a and 3.b until 1t finds an X such that
the resulting ¢ 1s 1ndeed less than r.

4. Node A sets the Work Token field of its link setup
packet to the work token, W, which 1s the successiul
value of X that was used to complete Step 3.c.

With a new valid work token now computed, node A
sends out the link setup packet, containing the values of W,
T, and N 1n the appropnate fields of the link establishment
section of the packet.

1.1.1.1.1 Work Token Validation

When node B receives a link setup packet from node A,
it should verily that the work token 1s valid before continu-
ing with 1ts link establishment to node A. Because veritying
the work token 1s much faster than computing the Dithe-
Hellman key, overhead 1s reduced because not all link setup
packets will contain a valid work token and resources will
not be wasted on computing a Diflie-Hellman key for those
packets. In addition, by silently 1gnoring all link setup
packets that contain invalid work tokens, the protocol
reduces the number of packets 1t uses, and hence the overall
traflic overhead induced by the protocol 1s also reduced.
Silently 1gnoring the failures also reduces exposure to
attacks, since the less activity the protocol generates, the
tewer the opportunities there are to exploit it.

Each node B maintains a cache of previously-calculated
Diflie-Hellman keys for each node A from which it has
received valid link setup requests. This ensures that node B
may not need to recalculate the Diflie-Hellman key 1n the
case where 1ts acknowledgment to node A gets lost. The
cached key can also be use to quickly re-establish recently
dropped links. Node B eventually purges 1ts cached key for
node A 1f 1t receives no link setup packets from node A for
a duration of time that exceeds the Dithe-Hellman cache
interval.

To venily that the work token 1n the link setup packet from
node A 1s valid, node B performs the following;

1. Node B extracts W, T, and N from the Work Token,
Time Stamp, and UNI fields, respectively, of the link
setup packet 1t received from node A; see FIG. 6.

2. Node B checks whether the work token has expired,
based on the timestamp, T, in the link setup packet, the
current time, and the work token validity interval.

a. If the work token has expired, node B ignores the link
setup request because node A might be attempting a

10

15

20

25

30

35

40

45

50

55

60

65

10

packet flood attack or a reply attack by using previ-
ously-valid values of W and T.

b. If the work token has not expired, node B continues
with the verification process.

3. Node B checks whether it has a cached Dithe-Hellman
key from node A.

a. IT a cached key for node A exists, node B acknowl-
edges node A 1n the next link setup packet it sends
out, setting the Ack Signature field (see FI1G. 7) to the
hashed key 1n 1ts cache.

b. If a cached key for node A does not exist, node B
continues with the verification process.

4. Node B computes v=h(W, TN, W). (The comma repre-
sents the concatenation operation.) The value of v
should be the same as the successtul value of ¢ that was
computed i Step 3.b of the work token computation
(described previously), and therefore v should be less
than r.

a. If vzr, node B 1gnores the link setup request because
node A has not sent a valid work token and therefore
might be a rogue node.

b. If v<r, node A has sent a valid work token so node
B continues with the link setup process.

With a valid work token verified, node B 1s ready to
continue with the link setup process by acknowledging the
link setup packet it received from node A.
Acknowledging a Link Setup Request

After veniiying that node A sent a valid work token, node
B continues with the link setup. If node B does not already
have a cached value of the Difhe-Hellman key for its link
with node A (see Step 3 of the work token validation
algorithm), it performs the followmg steps:

1. Node B computes the Diflie-Hellman key for its link

with node A. See the section “Diflie-Hellman Key

Exchange” for more imnformation.

2. Node B caches the Diflie-Hellman key with the UNI
that identifies node A. Because node A regularly broad-
casts 1ts link setup hello packet and node B acknowl-
edges each hello 1t receives from node A, 1t can be
useful to keep a cached version of the Diflie-Hellman
key.

3. Node B establishes an encryption and hashing function
pair for the link. See the section “Establishing Link

Encryption and Hashing” for more information.

4. Node B acknowledges node A in the next link setup
packet 1t broadcasts, setting the Ack Signature field (see
FIG. 7) to the hashed Difhie-Hellman key 1t computed.
This enables node A to quickly authenticate the
acknowledgement, preventing a rogue node from
spooling acks, which would keep unused links open
and degrade performance because of all the extra acks
that node A would need to include 1n its link setup
packets.

Diflie-Hellman Key Exchange
Because the Ditlie-Hellman key exchange 1s a component

to the security and encoding of the link layer, this section

provides a brief overview of the process.

Nodes A and B agree on a prime number, p, and a
generator, g, modulo p. (The values p and g are supplied to
cach device at provision time and can be publicly known.)
Node A chooses a private key a; node B chooses a private
key 3 (a0 and f3 are each between 1 and p-1). CoCo nodes
may be supplied with private keys at provision time, or they
may choose a private key at startup time by any of several
standard methods (see the section “Generating Keys™ 1n [S]).
The key exchanged between the two nodes 1s computed as
follows:

US 9,641,492 B2

11

1. Node A sends node B its public key—the value P ,=g™
(sent 1n the link setup hello packet from A to B 1n the

public key field; see FIG. 9).

2. Node B sends node A its public key—the value P,=g”
(sent 1n the link setup ack packet from B to A i the
public key field; see FIG. 9).

. Node A computes (P;)*=(g?)"

. Node B computes (P ,)P=(g*)P

5. These two values from Steps 3 and 4 are the same, so

it can be referred to as Ky 5, or simply k 1f the
context 1s understood. This value 1s known to both A
and B, and to no one else, since determining o. from g
1s computationally infeasible (see [S]). Therefore A and
B can use 1t as a secret key for the encryption method
they will use for all data sent over the link between

them (see “Establishing Link Encryption and Hash-
ng’’).
Continuity of Identity after a Dithe-Hellman Key Exchange

After an exchange of link setup packets and the Diilie-
Hellman key between nodes A and B, each node knows that
the other should have had a valid prwa‘[e key. The key
Kz 45 18 then used throughout the session 1n which this link
1s used, so there can be no man-in-the-middle attacks once
a session begins Any man-in-the-middle attack should have
happened prior to link establishment and should last for the
lifetime of the link. The Dithe-Hellman key exchange guar-
antees continuity of identity; that 1s, once a node begins
communicating over a link, 1t 1s guaranteed to be talking to
the same node for the duration of the link session.
Establishing Link Encryption and Hashing

Each node maintains an ordered list of encodings 1t
supports. Fach encoding in the list represents an encryption
method paired with a hashing function. When a node sends
a link setup packet, 1t includes the encodings that appear 1n
this list in the encoding section of the packet (refer to FIG.
5 and FIG. 8). The encodings appear 1n the link setup packet
in the same order they appear 1n 1ts ordered list.

After node A sends a link setup (hello) packet to node B
and node B sends a link setup ack packet to node A, nodes
A and B each have a list of the paired encryption methods
and hash functions supported by the other, ordered by
preference. Nodes A and B each perform the following steps
to determine which of these encoding methods to use over
the newly established A-B link.

1. Determine whether node A or node B i1s the preferential

encoder (see the following section).

2. Pick the encoding method highest on the preferential
encoder’s list that also appears on the list of the other
node. If no match 1s found, communication occurs over
this link unencrypted. (If security requirements demand
that no data be transmitted over an unencrypted link,
the circuit used for the data transmission will never
incorporate an unencrypted link; see [BMV] for more
information.)

This link encoding selection algorithm 1s eflicient because
it requires the receipt of only a single packet by each
participant.

Algorithm to Determine the Preferential Encoder

This algorithm 1s a deterministic process by which both
nodes A and B conclude by agreeing on the outcome. Nodes
A and B perform this algorithm by comparing (P ,—Pj)
modulo p and (Pz-P,) modulo p. If the former 1s larger,
node A 1s the preferential encoder; i1 the latter 1s larger, node
B 1s the preferential encoder. Here, P, and P, are the
Diflie-Hellman public keys of nodes A and B, respectively,
and p 1s the prime modulo that i1s used to perform the

= W

10

15

20

25

30

35

40

45

50

55

60

65

12

Diflie-Hellman computation. Note that this algorithm 1s
deterministic, so both nodes A and B compute the same
preferential encoder.

Link State

FIG. 11 1s a state diagram showing possible link states.

Every node keeps a link state table, which includes an
entry for each node it has heard from that contains:

The Diflie-Hellman key used to communicate with that

node; see the “Encoding and Security” section.

The last hello-num 1t received from that node.
The hello-num 1n the last acknowledgement 1t has heard
from that node.
Every node also maintains a state machine for each node
it has heard from. The state machine on node A manages the
state of its link with node B and 1s called the A-B link state
machine. The A-B link state machine for node A can exist in
one of four states (see FIG. 11):
Blank: node A 1s not aware of node B.
0-way: node A 1s aware of node B but has not received a
link setup hello from node B. (A knows of B but hasn’t
heard from B.)

1-way: node A has received a link setup hello from node
B but has not received an acknowledgment from node
B. (A hears B but doesn’t know whether B hears A.)

2-way: node A has recerved a link setup hellop from node
B and has also received an acknowledgement from
node B. (A hears B and knows that B also hears A.)

Node A will send link data packets to node B only when
the A-B link state machine 1s in state 2-way.

Let M be the A-B link state machine for node A. The state
machine M can change in one of the following six ways:

1. M 1s 1n state blank or O-way and node A receives a link

setup hello packet from node B, then
M transitions to one of the following states:
State 1-way if the link setup packet from node B does
not contain an ack for node A.
State 2-way 11 the link setup packet from node B also
contains an ack for node A. (This would happen,

for example, 1 node A imitiated the link setup with

node B).

Node A:

Validates the work token.

Establishes an encryption and hashing function pair
for the link.

Computes and caches a Diflie-Hellman key (if the
key 1s not already cached).
Adds node B to its ack-list.

2. If M 1s 1n state 1-way and node A recerves a link setup
acknowledgement about 1itself from node B, then
M transitions to state 2-way.

3. If M 1s 1n state 2-way and node A does not receive an
acknowledgement about 1tself from node B for longer
than the ack-interval, then
M transitions to state 1-way.

4. If M 1s 1n state 1-way or 2-way and node A does not
receive a link setup hello from node B for longer than
ack-interval, then
M transitions to state 0-way.

Node A removes node B from its ack-list.

5. If M 1s 1n state O-way and node A’s Dithe-Hellman
cache interval expires, then
M transitions to state blank.

Node A removes the Difhie-Hellman key for node B
from 1ts cache.

6. In all states, node A sends at every hello-interval a link
setup packet containing an (incremented) hello-num, a
time stamp and work token, and acknowledgements for

US 9,641,492 B2

13

cach node 1t has heard from in the last ack-interval
(which have entries 1n its link state table).
Link Data Sublayer

The link data sublayer 1s responsible for getting data from
one node to another across an established link, managing
data flow, monitoring QoS measurements such as latency
and roundtrip times, and performing compression and frag-
mentation.

Higher Layer Packet Types

Any packet that 1s not a link setup packet 1s treated by the
link layer as data destined for higher protocol layers; in the
CoCo Protocol these include the routing layer, circuit layer,
and naming system layer.

Clustering packets contain information related to clusters,

a recursive decomposition of CoCo nodes that permits
more etlicient routing (see [BLMS]).

Advertising packets contain information about the cost of
reaching nodes (see [BLMS]).

Circuit control packets contain imformation about the
establishment and maintenance of circuits, which are
dedicated end-to-end commumication paths (see
[BMV]).

The Link Data Packet

Unlike link setup packets, link data packets contain user
data. The length of the data 1s not specified 1n the packet
header because the entire packet length 1s given 1n the CoCo
header that was constructed by the Protocol Abstraction
Layer (see FIG. 4). The CoCo header for each data packet
1s stored 1n the node’s memory so 1t can be easily accessed
by the higher protocol levels that will use the packet data.

Before a data packet can be sent between them, a link
should be established between nodes A and B. Theretore,
nodes A and B will have exchanged link setup packets and
will have calculated a Dithe-Hellman key kjz 45, that is
specific to their link (see the “Diflie-Hellman Key
Exchange” section). Nodes A and B will have also negoti-
ated a hashing function h ,, and an encryption method ¢ 5
that are specific to the A-B link (see the “Establishing Link
Encryption and Hashing™ section).

The entire data packet content i1s encrypted with the
function ¢,,. Note that “none” 1s one of the encryption
methods, so 11 both nodes A and B agreed upon “none” as the
encryption method, each of A and B knows not to attempt to
encrypt when sending nor decrypt when receiving.

The link data packet—separated by section—is shown in
FIG. 12, where dashed lines indicate sections of the packet
that can be repeated, and numbers 1n parentheses indicated
the field size in bats.

The link data packet contains the following sections:

Fields used when the data packet 1s multicast

A signature that serves as a secure checksum of the data
packet

Information specific to each data packet

Fragmentation information so the data can be recon-
structed 1f the packet needs to be fragmented

A set of acknowledgments of received data packets

The average hold time of the packets being acknowledged

The actual data that will be erther processed by the higher
protocol layers or sent to the network interface layer

Multicast Section of the Link Data Packet

FIG. 13 15 a block diagram illustrating multicasting. The
link layer protocol supports multicasting. Multicast support
enables non-redundant transmission of data sent from a
single source to multiple destinations, meaning only one
copy of the data packet 1s sent across a broadcast interface
if the links from the source to the destinations share the
interface. For example, suppose node A has links to nodes B

5

10

15

20

25

30

35

40

45

50

55

60

65

14

and C using the same wireless interface, as shown m FIG.
13. To send the same packet to both nodes B and C, node A
broadcasts the packet on the interface only once.

For multicast messages with many recipients sharing the
same broadcast link, multicast support represents a substan-
tial reduction of bandwidth utilization. However, since the
recipients ol a multicast use different Difhie-Hellman keys
for encrypting data over their links to the source node,
multicast data packets are not encrypted. FIG. 14 shows the
multicast section of a link data packet; this section 1s not
present 1n unicast data packets.

Using a Destination Set to Improve Multicast Efliciency

FIG. 14 1s a block diagram illustrating a destination set
section ol a link data packet. Before sending a multicast
packet, a node should 1dentify which nodes are the intended
recipients of the broadcast data. For each intended recipient,
it computes and attaches a signature to the outgoing packet
(see “Signature Section of the Link Data Packet”). In
addition, the broadcasting node creates a 24-bit hash value
from the concatenation of the intended recipients” UNIs.
This hash value 1s put into the DestSetHash field of the link
data packet (see FI1G. 14). The DestSetHash value provides
a quick way for nodes that receive a broadcast packet to
determine whether they are any of the intended recipients.

When a node receives a broadcast packet 1t compares the
DestSetHash field of the received packet against a table of
previously-received DestSetHash values. The table cross-
references the DestSetHash with the position of that node’s
signature 1n the array of signatures that are sent with the
packet. If the node 1s not an intended recipient, the signature
position will be O for that DestSetHash value, and the node
can discard the packet.

If the DestSetHash field of the received packet 1s not 1n
the table, the node calculates 1ts signature for the packet (see
“Signature Section of the Link Data Packet”) and compares
its signature with each of the signatures attached to the
packet (which indicate the intended recipients). If the node
finds a match, 1t adds the DestSetHash value and the
signature position to its table of known DestSetHash values.
If no signature match 1s found, the DestSetHash value 1s
added to the table with a signature position of 0, indicating
that the node 1s not one of the intended recipients for
broadcast packets that contain this DestSetHash; the node
then discards the packet.

Because signatures also act as checksums for packet
integrity, a packet with incomplete data will have a different
signature than that same packet when 1t 1s complete. I such
an incomplete packet arrived at an intended recipient with a
new DestSetHash value, the intended recipient would not
find any matching signatures and would therefore incor-
rectly conclude that this DestSetHash value indicates that
this node (which received the packet) 1s not an intended
recipient. This node would then incorrectly 1gnore all future
broadcast packets with this DestSetHash value. This can be
avoided by relying on checksums performed at the Medium
Access Control (MAC) level, which 1s part of the network
interface level, to ensure packet integrity.

Fields 1n the Multicast Section of the Link Data Packet

NumSigs (8) The number of signatures that appear 1n the
packet; 1t 1s 1n the range from 1 to 255. A separate signature

1s created for each intended recipient of the multicast data
packet (see “Signature Section of the Link Data Packet™).
This field appears only in multicast data packets; it 1s absent
in unicast data packets.

US 9,641,492 B2

15

DestSetHash (24) Contains a unique value created from a
hash of the set of mtended destination nodes. This field
appears only 1n multicast data packets; 1t 1s absent 1n unicast
data packets.

Signature Section of the Link Data Packet

The signature section of the link data packet serves as a
secure checksum for the packet data and also authenticates
the data sender. The sender of a data packet, node A,
computes a hash of the data and Dithie-Hellman key used for
the recipient—h(k, D, k)—and places 1t 1n the Sig field of the
link data packet header. When node B receives the packet,
it applies the hash function h to the string k,D.k and verifies
that the result matches the contents of the Sig field. If the two
match, node B knows that the data arrived uncorrupted with
high probability (because h(k,D.k) 1s a checksum), and 1t
also knows that the data should have come from node A

(because only A knows the value of k).
Folding the Hash Value

FIG. 15 1s a flow diagram illustrating a technique for
tolding hash values. The output of the standard hash func-
tions—ior example, MD-5—1s a 128 bit hash value. This 1s
collapsed into a 32-bit quantity by a process called folding.
To fold a 128 bit hash value h,, 1nto a 32-bit result h;,, the
exclusive-or operator 1s applied bit-wise to the four 32-bit
substrings of h,,,. More precisely:

B fi]=h o f1]OR 55 [i+32]00 | 55 [i+64]0k 55 [/i+96] for
each /=0 ... 31

where 0 represents the exclusive-or operator.

To see this more graphically, suppose h,,. 15 the string
shown at the top of FIG. 15. By realigning the four 32-bit
substrings shown as a stack of four 32-bit strings 1n FIG. 15,
one can obtain a single 32-bit hash value as the result of the
bit-wise exclusive-or of the four bits that appear 1n each
column. Although 2°° different hash values in h, ,, fold into
a single hash value in h,,, the 2°* different values of h,,
make 1t diflicult to spootf a node by simply guessing the hash
value.

Fields 1n the Signature Section of the Link Data Packet

FIG. 16 1s a block diagram 1illustrating a signature field
section of a data link packet. Sig (32) Serves as a secure
checksum for the data and authenticates the data sender.
Node A sets this field to the 32-bit folded string of h(k, D,
k), where h 1s the negotiated hash function, k 1s the Difhe-
Hellman key for the link and D represents the data in the
packet, which follows the packet header. In this context, the
comma represents the concatenation operator. A unicast data
packet has only one Sig field, whereas a multicast data
packet can have multiple Sig fields, with the actual number
of signatures given by the NumSigs field in the multicast
section of the packet (see FIG. 14).

Packet Information Section of the Link Data Packet

Once nodes A and B establish a link with each other,
packets sent from A to B are numbered sequentially
(0, 1, 2 ...) with a Packet ID (PID). Likewise, packets sent
from B to A are also numbered sequentially, using a separate
sequence for its own PIDs.

To safteguard against reply attacks, the link layer discards
packets that arrive with a PID less than HighestPID or
greater than HighestPID+RangePID, where HighestPID 1is
the highest value of a PID so far received 1in any link data
packet, and a typical constant value for RangePID 1s 1000.
In any implementation, appropriate adjustments should be
made to handle “wraparound,” that 1s, accommodating the
smooth transition from the PID with bit pattern of all ones
to the PID waith bit pattern of all zeros. This 1s necessary to

10

15

20

25

30

35

40

45

50

55

60

65

16

because the PID 1s a 32-bit unsigned integer field, so
arithmetic is performed modulo 2.

Fields 1n the Packet Information Section of the LLink Data
Packet

FIG. 17 1s a block diagram illustrating a packet informa-
tion section of a data link packet. PID (32) An integer that
increments sequentially with each packet sent over the life
of the link (per link, per direction).

NumAcks (8) The number of acknowledgements of

incoming packets that are included with this (outgoing)
packet. See “Acknowledgement Section of the Link Data
Packet” for more information.

ToS (2) Specifies the type of service for the data passed
over the link. The currently supported ToS types are given

in Table 1.

TABLE 1

Currentlv supported ToS types

ToS filed

(decimal) Description

Video-audio broadcast (passive media streaming)
Media-stream interactive (active voice conversation)

0

1

2 Passive data file transfer (ftp)

3 Interactive data file transfer (web browsing)

If more types are i1dentified and considered desirable,
some of the 6 bits 1n the reserved field adjacent to the ToS
field 1n the link data packet header may be used.

Type (8) Describes the type of data contained in the
packet, as shown 1n Table 2. This field 1s set to O 11 the packet
contains only acknowledgements. Otherwise, this field 1s
available for the purposes of higher protocol layers.

TABLE 2

Possible values for the Type field

Type field

(decimal) Purpose

0 Acknowledgement-only packet
1 Advertisement packet (routing layer)
2 Test packet (routing layer)

128 Circuit data (CDAT) packet (circuit layer)

129 Circuit establishment (CEST) packet (circuit layer)

130 Circuit close (CCLS) packet (circuit layer)

131 Circuit acknowledgement (CACK) packet (circuit layer)
132 Circuit reset (CRST) packet (circuit layer)

133 Circuit unknown (CUNK) packet (circuit layer)

Frag (1) Set to 1 when a packet represents one of several
fragments from an original data packet; otherwise set to 0.
When a packet size exceeds the network interface MTU, the
link data layer breaks the data portion of the packet into
fragments sufhiciently small enough that when combined
with the link data header the resulting packet 1s within the
MTU constraint. See “Fragmentation Section of the Link
Data Packet” for more information.

AckCom (1) Set to 1 when there 1s acknowledgement
compression, which means that acknowledgements are 8
bits 1n length instead of 32 bits; otherwise set to 0. See
“Acknowledgement Section of the Link Data Packet” for
more mformation.

Res (6) Reserved for future use.

US 9,641,492 B2

17

Fragmentation Section of the Link Data Packet

FIG. 18 1s a block diagram 1illustrating a fragmentation
section of a link data packet.

The link layer protocol supports a process called link
packet fragmentation. When the link layer receives a packet
from the circuit and routing layers, the packet may be too
large for the network interface layer to handle. This may be
due to hardware-related maximum transmaission unit (MTU)
restrictions. In this case, the link layer fragments the packet
it receives mto smaller packets before sending them to the
network interface. Similarly, when 1t receives such frag-
mented packets, it reformats them to their original packet
configuration before relaying them to the routing and circuit
layers. The MTU 1s the largest packet size that the under-
lying network transport technology can support and varies
for different technologies such as Ethernet, satellite, WikFi,
and wireless carrier.

All packets that contain fragments from a single higher-
level packet—such as a circuit layer packet——contain the
same PID. The recerving node sends an acknowledgement
for this PID only after recerving all the fragments.

Each data packet fragment contains a oflset that describes
that fragment’s position within the higher-level packet.
These oflsets, along with a bit that indicates the last frag-
ment, enable the receiver to reassemble the fragments.

The Frag field of the Packet Information section (see FIG.
17) indicates whether the current data packet 1s a fragment
of a larger block of data. The remaining fields related to
packet fragmentation are shown in FIG. 18.

Fields in the Fragmentation Section of the Link Data Packet

LastFrag (1) Set to 1 1f the packet contains the last of a
series of fragments; otherwise set to 0.

Fragmentation Offset (31) Set to the byte offset of this
fragment from the beginning of the original data packet.
Acknowledgement Section of the Link Data Packet

The link layer recognizes packets by using a system that
attaches acknowledgements of incoming packets to outgo-
ing packets—1for as many incoming packets as possible
within time and space constraints, up to a fixed limit. When
an outgoing packet 1s ready to be sent, the link layer attaches
available acknowledgements. If acknowledgements are
available but there are no ready outgoing packets, the link
layer should wait for one of two events:

A fixed time limit has elapsed

A fixed number of acknowledgements accumulate

Regardless of which state occurs, the link layer creates a
blank packet unrelated to any active data stream, attaches the

waiting acknowledgements, and sends the packet.

When acknowledgement compression 1s used (by setting,
the AckCom field of the Packet Information section; see
FIG. 17), only the 8 lowest-order bits are used from the PID
of the packet being acknowledged. As long as the ack 1s
received by the sending node within the 256 most-recent
packets 1t has sent, the node can reliably determine which
packet 1s being acknowledged.

Fields 1n the Acknowledgement Section of the Link Data
Packet

FIG. 19 1s a block diagram illustrating fields in an
acknowledgement section of a link data packet. Ack (8 or
32) Contains the PID of an incoming packet received and
being acknowledged. The size of the field 1s 8 bits or 32 bits,
depending on the value of the AckCom field 1n the Packet
Information section (see FIG. 17). The number of Ack fields
present 1s given by the NumAcks field (also 1n the Packet
Information section).

10

15

20

25

30

35

40

45

50

55

60

65

18

Average Hold Time (32) Contains the average of the hold
times of each of the packets being acknowledged by this
packet. This field 1s used for measuring quality of service.
Distinguishing Multicast from Unicast

The procedure OnReceiveDataPacket (), outlined 1n the
following psuedocode, describes how the link layer distin-
guishes a unicast packet from a multicast data packet. This
processing 1s performed 1n the PAL. When a sender wants to
perform a multicast, it computes a value, DestSetHash,
determined by the set of the mtended recipients (see “Mul-
ticast Section of the Link Data Packet” for more information
about the DestSetHash value). Although each node that
physically receives the packet 1s able to determine 11 it 1s one
of the sender’s intended recipients by scanning the signa-
tures 1n the packet header, the DestSetHash value provides
a way to more quickly determine whether the local node 1s
an intended recipient by eliminating the need to always scan
through the list of signatures in the packet header.

In the procedure OnReceiveDataPacket (), the variable
DestSetTable 1s an array indexed by values of DestSetHash.
Each entry contains an unsigned integer value. The local
node 1s 1 DestSetHash 1f DestSetTable [DestSetHash] 1s
nonzero, 1n which case the value of DestSetTable [Dest-
SetHash] indicates the position of the signature (in the list of
signatures attached in the data packet header) that should
match the local node’s signature. If the value of DestSet-
Table [DestSetHash] 1s zero, the local node 1s not an
intended recipient and it should discard the packet.

The value of DestSetTable [DestSetHash] 1s defined only
after the local node receives a packet containing the value
DestSetHash 1n the DestSetHash field of the packet. Prior to

that, DestSetTable [DestSetHash] 1s undefined. If a sender

broadcasts packets with a diflerent set of intended destina-
tions, 1t computes a new value of DestSetHash for the
DestSetHash field on the data packet it sends. When the local
node receives a multicast packet that contains a new Dest-
SetHash value, 1t calculates 1ts signature and scans for a
match among the signatures in the packet header. The
position ol the matching signature 1s placed mnto DestSet-
Table [DestSetHash]; i1 no signatures match, DestSetTable
[DestSetHash] 1s set to zero and the packet 1s discarded.

procedure OnRecerveDataPacket (linkID)
{
if frame header indicates network frame is not broadcast then
Process this packet normally, as a unicast packet;
else // This packet 1s a broadcast packet.
// See 1f the local node 1s an intended recipient:
if DestSetTable[DestSetHash] i1s defined then
sigOffset < DestSetTable[DestSetHash]|;
if s1gOflset = O then
// Previously determined to be an intended recipient.
Process packet using signature at sigOffset position;
else // Local node 1s not an intended recipient.
Discard the packet;
else

sig <— sig of a packet using negotiated key for linkID;
if sig appears in the list of sigs in this packet then
sifOffset < offset of this sig in the packet header;

DestSetTable[DestSetHash] < s1gOfIset;
Process this packet normally;
clse

DestSetTable[DestSetHash] < 0;
Discard the packet;

QoS Measurements
The link layer monitors the cost of sending data across a
link. Some common cost metrics 1nclude bandwidth,

latency, jitter, reliability, congestion, and actual monetary

US 9,641,492 B2

19

expense (for example, a network may lease the use of a
satellite link). The circuit layer uses this data to establish
circuits that satisty user-specified QoS requirements.

getQos()

The getQos, , function returns a set of QoS metrics. The
metrics returned are implementation-specific.
Packet Delivery

Packets are delivered to higher protocol layers through a
call to RecervePacket (see FIG. 3). If a packet has 1ts Type
field set to test packet or advertisement (see Table 2 and the
section “‘Packet Information Section of the Link Data
Packet”), the link data layer calls ReceivePacket in the
routing layer. If a packet has a type field set to one of the
circuit-related packet types (see Table 2) then the link data
layer calls ReceivePacket 1n the circuit layer.

CONCLUSION

The link layer protocol creates and manages links, which
are direct connections between pairs of CoCo nodes. The
link layer detects the presence of neighboring CoCo devices
and establishes links to them. Link establishment includes
the negotiation of an encoding method and a Diflie-Hellman
key exchange so that all communications sent over the link
can be secure.

Once a link 1s established, the link layer relays packets
between the network interface layer and higher protocol
layers, monitors Quality of Service (QQoS) statistics and 1s
able to report these to higher protocol layers. It supports
multicasting by suppressing redundant packet transmission
across a single network interface, performs fragmentation
when packet sizes exceed the network interface Maximum
Transmission Umt (MTU), and closes mactive links to free
system resources for new link requests.

The link layer uses a Dithe-Hellman key exchange and a
work token computation to provide a level of security that 1s
absent from TCP and IP. This protocol 1s designed specifi-
cally for mobile ad hoc networking, and 1s superior to
TCP/IP for this purpose.

The following are possible:

1. A method for establishing links in a heterogeneous
communications network that 1s scalable and dynamic.

2. A method for detecting the presence of other network
nodes 1n communications networks.

3. A method for making links with other network nodes
secure. IT A and B are two network nodes joined by a link,
then when A sends a packet to B, B 1s guaranteed that only
A could have sent it and A 1s guaranteed that only B can read
it.

4. A method to prevent man-in-the-middle attacks. Once
a link 1s established between two nodes A and B, no rogue
node 1s able to iterpose itself between A and B and
impersonate each to the other. Hence CoCo networks pre-
vent so-called man-in-the-middle attacks.

5. A method to prevent demial-of-service attacks. Any
node attempting to tlood a network with spurious packets 1s
forced to use significant computational resources. Hence
CoCo networks prevent so-called demial of service attacks.

6. A method for monitoring the quality of links 1n com-
munication networks.

7. A method for using measured link quality to establish
circuits satisiying specified QoS requirements 1n communi-
cation networks.

8. A method for assigning uniform addresses (uniform
network i1dentifiers) to network nodes in heterogeneous
communications networks.

10

15

20

25

30

35

40

45

50

55

60

65

20

9. A method for nodes to negotiate appropriate security
mechanisms during link establishment.

10. A method to support multicasting by suppressing
redundant packet transmission across a single network inter-
face.

11. A method to detect when links should be closed.
Semantic Concepts Involved

Link

Bandwidth

Latency

Encryption

Diflie-Hellman key negotiation

Universal Node Identifier

Protocol Abstraction Layer

Denial-of-service prevention

Man-in-the-middle attack prevention

Link setup packets

Round trip time computation

Acknowledgements

Multicasting

Unicasting

Link state machine

From the foregoing, it will be appreciated that specific
embodiments of the invention have been described herein
for purposes of 1illustration, but that various modifications
may be made without deviating from the spirit and scope of
the invention. Accordingly, the invention 1s not limited
except as by the appended claims.

The invention claimed 1s:

1. A secure communication system comprising:

a first network node that 1s configured to establish a secure
communication link for sending packets to a second
network node by:
computing a work token, the work token including at

least a work token validity interval that defines a
period of time that the work token 1s valid; and
communicating from the first network node to the

second network node the work token and a time
stamp corresponding to a time that the work token
was computed,

wherein the work token validity interval 1s at least equal
to a hello interval and 1s less than an acknowledgement
interval.

2. The system of claim 1, wherein the first network node

1s Turther configured to:

transmit to the second network node a link setup packet
that includes the work token and the time stamp.

3. The system of claim 2, wherein the first network node

1s Turther configured to:

determine whether the work token period has expired
based on a current time, the time that the work token
was computed, and the work token validity interval;
and

11 the work token has expired, compute a new work token
prior to communicating a new link setup packet.

4. The system of claim 2, wherein the link setup packet
further includes a hello number that 1s a sequence number
that 1s incremented each time the link setup packet 1s
communicated from the first network node.

5. The system of claim 2, wherein the first network node
1s Turther configured to:

recerve an acknowledgement from the second network
node, wherein the acknowledgement includes a public
key of the second network node.

US 9,641,492 B2

21

6. A secure communication system comprising;

a first network node that 1s configured to establish a secure
communication link for sending packets to a second
network node by:
computing a work token, the work token including at

least a work token validity interval that defines a
period of time that the work token 1s valid; and
communicating from the first network node to the

second network node the work token and a time
stamp corresponding to a time that the work token
was computed; and

wherein the first network node 1s further configured to
transmit to the second network node a link setup packet
that includes the work token and the time stamp, and
receive an acknowledgement from the second network
node,

wherein the acknowledgement includes a public key of
the second network node, and

wherein the received acknowledgement 1s piggybacked
onto a second link setup packet that 1s returned by the
second network node to the first network node, and
wherein the second link setup packet includes an
acknowledgement number indicating the number of
acknowledgements that are piggybacked onto the sec-
ond link setup packet.

7. A secure communication system comprising:

a first network node that 1s configured to establish a secure
communication link for sending packets to a second
network node by:
computing a work token, the work token including at

least a work token validity interval that defines a
period of time that the work token 1s valid; and
communicating from the first network node to the

second network node the work token and a time
stamp corresponding to a time that the work token
was computed; and
wherein the first network node 1s further configured to:
transmuit to the second network node a link setup packet
that includes the work token and the time stamp, and
recetve an acknowledgement {from the second net-
work node, wherein the acknowledgement includes a
public key of the second network node,

communicate a public key of the first network node to
the second network node;

compute a Dithe-Helman key that 1s valid only between
the first network node and the second network node,
wherein the Diflie-Helman key 1s associated with a
Diflie-Helman cache interval (DHCI), wherein the
DHCI defines a time interval that the Diflie-Helman
key 1s valid, and wherein the Diflie-Helman key 1s
purged from memory at the first network node upon
expiration of the DHCI; and

store, at the first network node, the computed Ditlie-
Hellman key.

8. The system of claim 7, further comprising:

receive, at the first network node, a link data packet with
user data from the second network node; and

determine that the link data packet with user data received
from the second network node 1s valid based upon the
stored Diflie-Hellman key.

9. A secure communication system comprising:

a first network node, configured to establish a secure
communication link for receiving packets from a sec-
ond network node, by:
receiving from the second network node a work token

and a time stamp, the work token including a work
token validity interval that defines a period of time

10

15

20

25

30

35

40

45

50

55

60

65

22

that the work token 1s valid, wherein the time stamp
corresponds to a time that the work token was
computed, and wherein the work token wvalidity
interval 1s at least equal to a hello 1interval and 1s less
than an acknowledgement interval;

determining whether the work token has expired based
on the time stamp, the work token validity interval,
and a current time; and

when the work token has not expired, providing to the
second network node a key.

10. The system of claim 9, wherein the work token and the
time stamp are received as part of a first link setup packet,
and wherein the first network node transmits the key as part
ol a second link setup packet.

11. The system of claam 10, wherein the first network
node 1s further configured to:

when the work token has expired, 1gnore the first link
setup packet, wherein no response is returned by the
first network node to the second network node.

12. The system of claim 9, wherein the first network node

1s Turther configured to:

generate the key.

13. The system of claim 12, wherein the first network
node 1s further configured to:

validate the work token received from the second network
node.

14. The system of claim 12, wherein the key 1s a Diflie-

Hellman key.
15. The system of claim 12, wherein the first network
node 1s further configured to:
cache the key.
16. A secure communication system, comprising;
a lirst network node, configured to establish a secure
communication link for receiving packets from a sec-
ond network node, by:
receiving from the second network node a work token
and a time stamp, the work token including a work
token validity interval that defines a period of time
that the work token 1s valid, the time stamp corre-
sponding to a time that the work token was com-
puted;

determining whether the work token has expired based
on the time stamp, the work token validity interval,
and a current time;

generating a key;

when the work token has not expired, providing the key
to the second network node; and

determine which of only one of the first network node
and the second network node 1s to apply an encryp-
tion method to packets sent over the communication
link,

wherein the work token and the time stamp are recerved
as part of a first link setup packet, and wherein the
first network node transmits the key as part of a
second link setup packet.
17. A secure communication system comprising:
a first network node; and
a second network node;
wherein the first network node 1s configured to:
establish a secure communication link for sending
packets to the second network node;

compute a work token, the work token including at
least a work token validity interval that defines a
period of time that the work token 1s valid, wherein
the work token validity interval 1s at least equal to a
hello nterval and 1s less than an acknowledgement
interval; and

US 9,641,492 B2

23

communicate the work token and a time stamp from the
first network node to the second network node,
wherein the time stamp corresponds to a time that the
work token was computed;
wherein the second network node 1s configured to:
receive from the first network node the work token and
the time stamp;
determine whether the work token has expired based on
the time stamp, the work token validity interval, and
a current time; and
when the work token has not expired, transmit to the
first network node a key generated by the second
network node.
18. The system of claim 17,
wherein the first network node 1s configured to transmit to
the second network node a first link setup packet that
includes the work token and the time stamp; and
wherein the second network node 1s configured to trans-
mit to the first network node a second link setup packet
that includes the key generated by the second network
node.

19. The system of claim 17, wherein the first network

node 1s further configured to:

determine whether the work token period has expired
based on a current time, the time that the work token
was computed, and the work token validity interval;
and

if the work token has expired, compute a new work token
prior to communicating a new link setup packet to the
second network node.

20. A secure communication system comprising:

a first network node that 1s configured to establish a secure
communication link for sending packets to a second
network node by:
computing a work token, the work token including at

least a work token validity interval that defines a
period of time that the work token 1s valid, and
communicating from the first network node to the

second network node the work token and a time
stamp corresponding to a time that the work token
was computed,

wherein the first network node 1s further configured to
determine which of only one of the first network node
and the second network node 1s to apply an encryption
method to packets sent over the communication link.

10

15

20

25

30

35

40

45

24

21. A secure communication system comprising:
a lirst network node, configured to establish a secure
communication link for receiving packets from a sec-
ond network node, by:
receiving from the second network node a work token
and a time stamp, the work token including a work
token validity interval that defines a period of time
that the work token 1s valid, the time stamp corre-
sponding to a time that the work token was com-
puted;

determining whether the work token has expired based
on the time stamp, the work token validity interval,
and a current time; and

when the work token has not expired, providing to the
second network node a key,

wherein the first network node 1s further configured to
determine which of only one of the first network
node and the second network node 1s to apply an

encryption method to packets sent over the commu-
nication link.

22. A secure communication system comprising:
a first network node, and
a second network node,
wherein the first network node 1s configured to:
establish a secure communication link for sending
packets to the second network node;
determine which of only one of the first network node
and the second network node 1s to apply an encryp-
tion method to packets sent over the communication
link;
compute a work token, the work token including at
least a work token validity interval that defines a
period of time that the work token 1s valid; and
communicate the work token and a time stamp from the
first network node to the second network node,
wherein the time stamp corresponds to a time that the
work token was computed;
wherein the second network node 1s configured to:
receive from the first network node the work token and
the time stamp;
determine whether the work token has expired based on
the time stamp, the work token validity interval, and
a current time; and
when the work token has not expired, transmit to the
first network node a key generated by the second
network node.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

